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Abstract

In stochastic zeroth-order optimization, a problem of practical relevance is under-
standing how to fully exploit the local geometry of the underlying objective function.
We consider a fundamental setting in which the objective function is quadratic, and
provide the first tight characterization of the optimal Hessian-dependent sample
complexity. Our contribution is twofold. First, from an information-theoretic point
of view, we prove tight lower bounds on Hessian-dependent complexities by intro-
ducing a concept called energy allocation, which captures the interaction between
the searching algorithm and the geometry of objective functions. A matching upper
bound is obtained by solving the optimal energy spectrum. Then, algorithmically,
we show the existence of a Hessian-independent algorithm that universally achieves
the asymptotic optimal sample complexities for all Hessian instances. The optimal
sample complexities achieved by our algorithm remain valid for heavy-tailed noise
distributions, which are enabled by a truncation method.

1 Introduction

Stochastic optimization in the zeroth order (gradient-free) setting has attracted significant attention
in recent decades. It naturally arises in various applications such as autonomous driving [12], AI
gaming [22], robotics [14], healthcare [23], and education [13]. This setting is particularly important
when the gradient of the objective function cannot be directly evaluated or is expensive.

An important case of interest in the zeroth order setting is the bandit optimization of smooth and
strongly-convex functions. Although there are ample results regarding the minimax rates of this
problem [1, 8, 21, 6, 3, 24], little is known about how its complexity depends on the geometry of
the objective function f near the global optimum x∗, as specified by the quadratic approximation
1
2 (x− x∗)⊤∇2f(x∗)(x− x∗). As an initial step, we investigate the following natural questions:

• For zeorth-order bandit optimization problems of quadratic functions of the form 1
2 (x −

x0)
⊤A(x− x0), what is the optimal instance-dependent upper bound with respect to A?

• Is there an algorithm that universally achieves the optimal instance-dependent bounds for all
quadratic functions, but without the knowledge of Hessian?

As our main contributions, we fully addressed the above questions as follows. First, we established
the tight Hessian-dependent upper and lower bounds of the simple regret. Our bounds indicate
asymptotic sample complexity bounds of Tr2(A− 1

2 )/ (2ϵ) to achieve ϵ accuracy. This covers the
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minimax lower bound of Ω(d2/ϵ) in [21]. Second, we prove the existence of a Hessian-independent
algorithm with a matching upper bound of O

(
Tr2(A− 1

2 )/ϵ
)

. Thus, we complete the theory of
zeroth-order bandit optimization on quadratic functions.

Related works beyond linear or convex bandit optimization. Compared to their linear/convex
counterparts, much less is known for finding optimal bandit under nonlinear/non-convex reward
function. A natural next step beyond linear bandits is to look at quadratic reward functions, as studied
in this paper and some prior work (see reference on bandit PCA [15, 4], its rank-1 special cases
[18, 11], bilinear [10], low-rank linear [19] and some other settings [9, 5, 16]).

When getting beyond quadratic losses, prior work on non-convex settings mainly focuses on finding
achieving ϵ-stationary points instead of ϵ-optimal reward [17], except for certain specific settings
(see, e.g., [7, 25, 26, 20, 26, 20]).

2 Problem Formulation and Main Results

We first present a rigorous formulation for the stochastic zeroth-order optimization problem studied
in this paper. Given a fixed dimension parameter d, let f : B → R be an unknown objective function
defined on the closed unit L2-ball B of the Euclidean space Rd, which takes the following form for
some positive-semidefinite (PSD) matrix A.

f(x) =
1

2
(x− x0)

⊺A(x− x0). (1)

For each time t ∈ [T ], an optimization algorithm A produces a query point xt ∈ B, and receives
yt = f(xt) + wt. (2)

The algorithm can be adaptive, so that A is described by a sequence of conditional distributions for
choosing each xt based on all prior observations {xτ , yτ}τ<t. Then we only assume that the noises
{wt}T−1

t=1 are independent random variables with zero mean and unit variance, i.e., E[wt|xt] = 0 and
E[w2

t |xt] ≤ 1.

For brevity, we use F(A) to denote all functions f satisfying equation (1) for some x0 ∈ B. We are
interested in the following minimax simple regret for any PSD matrix A.

R(T ;A) := inf
A

sup
f∈F(A)

E [f(xT )] . (3)

The above quantity characterizes the simple regrets achievable by algorithms with perfect Hessian
information. We also aim to identify the existence of algorithms that universally achieves the minimax
regret for all A, without having access to that knowledge.

Our first result provides a tight characterization for the asymptotics of the minimax regret.
Theorem 2.1. For any PSD matrix A, we have

lim sup
T→∞

R(T ;A) · T ≤ 1

2

(
Tr(A− 1

2 )
)2

, (4)

where A− 1
2 denotes the pseudo inverse of A

1
2 . Moreover, if the distributions of wt are i.i.d. standard

Gaussian, the above bound provides a tight characterization, i.e., there is a matching lower bound
that the following equality is implied.

lim
T→∞

R(T ;A) · T =
1

2

(
Tr(A− 1

2 )
)2

.

We prove Theorem 2.1 in Section 3. More generally, we also provide a full characterization of
R(T ;A) for the non-asymptotic regime, stated as follows and proved in Appendix C.
Theorem 2.2. For any PSD matrix A and T > 3 dimA, where dimA denotes the rank of A, we have

R(T ;A) =


Θ

(∑k∗
k=1 λ

− 1
2

k

)2

T + λk∗+1

 if k∗ < dimA

Θ

(
(Tr(A− 1

2 ))2

T

)
otherwise
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where λj is the jth smallest eigenvalue of A and k∗ is the largest integer in {0, 1, ..., dimA} satisfying

T ≥
(∑k∗

k=1 λ
− 1

2

k

)(∑k∗

k=1 λ
− 3

2

k

)
.

Remark 2.3. While our formulation requires the algorithm to return estimates from the bounded
domain, i.e., xT ∈ B, our lower bound applies to algorithms without this constraint as well. This
can be proved by showing that the worst-case simple regret over all f ∈ F(A) is always achievable
by estimators satisfying xT ∈ B. Their construction can be obtained using the projection step in
Algorithm 1, and proof details can be found in Appendix A.

Finally, we provide a positive answer to the existence of universally optimal algorithms, stated in the
following Theorem. We present the algorithm and prove its achievability guarantee in Section 4.

Theorem 2.4. There exists an algorithm A, which does not depend on the Hessian parameter A,
such that for A being any PSD matrix, the achieved minimax simple regret satisfies

lim sup
T→∞

sup
f∈F(A)

E [f(xT )] · T = O
(
(Tr(A− 1

2 ))2
)
.

3 Proof of Theorem 2.1

To motivate the main construction ideas, we start by proving a weaker version of the lower bound in
Theorem 2.1. We use the provided intuition to construct a matching upper bound. Then we complete
the proof by strengthening the lower bound through a Bayes analysis and the uncertainty principle.

3.1 Proof of a Weakened Lower Bound

Assuming A being positive definite, we prove the following inequality when the additive noises wt’s
are i.i.d. standard Gaussian.

lim inf
T→∞

R(T ;A) · T ≥ Ω
(
(Tr(A− 1

2 ))2
)
. (5)

Throughout this section, we fix any basis such that A = diag(λ1, ..., λd). We construct a class of
hard instances by letting

x0 ∈ XH ≜

(x1, x2, ..., xd)

∣∣∣∣∣ xk = ±

√√√√λ
− 3

2

k

(∑d
j=1 λ

− 1
2

j

)
2T

,∀k ∈ [d]

 .

We investigate a Bayes setting where the objective function is defined by equation (1) and x0 is
uniformly random on the above set. For convenience, let xt = (x1,t, ..., xd,t) be the action of the
algorithm at time t. We define the energy spectrum to be a vector R = (R1, ..., Rd) with each entry
given by

Rk = E

[
T∑

t=1

x2
k,t

]
.

Intuitively, our proof is to show that an allocation of at least Rk ≥ Ω(λ−2
k x−2

k ) energy is required
to correctly estimate each xk with Θ(1) probability. Note that for any entry that is incorrectly
estimated, a penalty of Ω(λkx

2
k) is applied to the simple regret. This penalty is proportional to the

required energy, which is due to the design of each xk. Meanwhile, the total expected energy is upper
bounded by T , which is no greater than the summation of the individual requirements. Therefore,
an Ω(1) fraction of the penalty is guaranteed, resulting in an overall effect of Ω

(∑
k λkx

2
k

)
=

Ω
(
(Tr(A− 1

2 ))2/T
)

on the simple regret.

Rigorously, consider any fixed algorithm, we define the estimation cost of each entry as follows.

Ek = E

[
1

2
λk(xk,T − xk)

2

]
.

3



For brevity, let sk = sign(xk). The above function is minimized by the minimum mean square error
(MMSE) estimator (e.g., see [2, Sec. 4.6]), which depends on the following log-likelihood ratio
(LLR) function.

Lk ≜ log
P [sk = 1|{xτ , yτ}τ<T ]

P [sk = −1|{xτ , yτ}τ<T ]
.

Specifically, the MMSE estimator is given by x̂k,T ≜ |xk| tanh Lk

2 , and the resulting error condi-
tioned on any fixed {xτ , yτ}τ<T has an expectation of x2

k · sech2 Lk

2 . Hence, we have the following
lower bound for each cost entry.

Ek ≥ E

[
1

2
λk(x̂k,T − xk)

2

]
=

1

2
λkx

2
k · E

[
sech2

Lk

2

]
. (6)

By the Gaussian noise assumption, the conditional expectation of LLR can be written as follows.

E [Lk|sk] = E

[∑
t

−
(
yt − 1

2λk(xk,t − xk)
2
)2

2
+

(
yt − 1

2λk(xk,t + xk)
2
)2

2

∣∣∣∣sk
]

= 2sk (λkxk)
2 E

[∑
t

x2
k,t

∣∣∣sk] .
The above quantity equals the KL divergence between the distributions of action-reward sequences
generated by sk = ±1. Clearly, it has the following connection to the energy spectrum.

E [Lksk] = 2 (λkxk)
2 E

[∑
t

x2
k,t

]
= 2 (λkxk)

2
Rk. (7)

Recall inequality (6), it also implies the following lower bound of the mean-squared error.

E [Lksk] = E [LkE [sk|Lk]] = E

[
Lktanh

Lk

2

]
≥ 2− 2E

[
sech2Lk

2

]
≥ 2− 4Ek

λkx2
k

. (8)

Combine inequality (7) and (8), the overall simple regret can be bounded as follows.

E [f(xT )] =
∑
k

Ek ≥
1

2

∑
k

(
1− λ2

kx
2
kRk

)
λkx

2
k. (9)

Note that the definition of XH implies that the value of each x2
k is fixed. Hence,

E [f(xT )] ≥

(∑
j λ

− 1
2

j

)2
4T

−

(∑
j λ

− 1
2

j

)2
8T 2

∑
k

Rk ≥

(∑
j λ

− 1
2

j

)2
8T

=

(
Tr(A− 1

2 )
)2

8T
,

where the last inequality uses the fact that the total energy is upper bounded by the number of samples.

Finally, when T is sufficiently large, we have ||x0||2 ≤ 1 almost surely, which implies that our
hard-instance functions belong to the set of objective functions F(A). Therefore, E [f(xT )] provides
a lower bound of the asymptotic minimax regret, and we can conclude that

lim inf
T→∞

R(T ;A) · T ≥ 1

8

(
Tr(A− 1

2 )
)2

.

Remark 3.1. The validity of the hard-instance functions requires T = Ω
((∑

k λ
− 1

2

k

)(∑
k λ

− 3
2

k

))
,

which is consistent with the transition threshold in Theorem 2.2 to the non-asymptotic regimes.

3.2 Proof of the Upper Bound

Now we provide a proof for equation (4), which is implied by the following result.
Proposition 3.2. For any PSD matrix A, let k∗ be the rank, λ1, ..., λk∗ be the non-zero eigenvalues,
and e1, e2, ..., ek∗ be the associated orthonormal eigenvectors. Then the expected simple regret
achieved by algorithm 1 satisfies

lim sup
T→∞

sup
f∈F(A)

E[f(xT )] · T ≤
1

2

(
Tr(A− 1

2 )
)2

. (10)
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Algorithm 1 Hessian Dependent Algorithm

procedure HESSIAN DEPENDENT ESTIMATION(λ1, λ2, ..., λk∗ , e1, ..., ek∗ , T )
for k ← 1 to k∗ do

Let Rk =
λ
− 1

2
k∑k∗

j=1 λ
− 1

2
j

· (T − 2d− 1), tk = ⌈Rk/2⌉.

Let αk = − 1
2λk

(Sample(ek, tk)− Sample(−ek, tk)). ▷ Obtain an unbounded estimator
end for

return xT = argminx∈B
∑k∗

k=1 λk (αk − x · ek)2 ▷ Projection to B
end procedure

procedure SAMPLE(x, t)
return the average of t samples of f at x

end procedure

Proof. Consider an eigenbasis of A with e1, ..., ek∗ being the first k∗ vectors. For each k ∈ [k∗], the
algorithm allocates Rk energy to estimate the kth entry of x0. The value of Rk is chosen such that
the hard instances in the earlier subsection maximizes (modulo a constant factor) the lower bound in
inequality (9) (i.e., Rk satisfies x2

k ≍ 1/(λ2
kRk)) while ensuring the total number of samples does

not exceed T − 1. By the zero-mean and unit-variance assumptions of the noise distribution, we have

E[(αk − x0 · ek)2] =
1

2λ2
ktk
≤

λ
− 3

2

k ·
∑k∗

j=1 λ
− 1

2
j

T − 2d− 1
.

This essentially provides an unbounded estimator x̂ ≜
∑k∗

k=1 αkek that satisfies

lim sup
T→∞

sup
f∈F(A)

E[f(x̂)] · T = lim sup
T→∞

sup
x0∈B

1

2

k∗∑
k=1

λkE[(αk − x0 · ek)2] · T

≤

(∑k∗

j=1 λ
− 1

2
j

)2
2

· lim sup
T→∞

T

T − 2d− 1

=
1

2

(
Tr(A− 1

2 )
)2

. (11)

Then, to obtain xT within the bounded constraint set, x̂ is projected to B under a pseudometric
defined by matrix A. Due to the convexity of set B, we have f(x̂) ≥ f(xT ) with probability 1 (see
Appendix A for a proof). Therefore, inequality (10) is implied by inequality (11).

3.3 Proof of the Lower Bound with Tight Constant Factors

To complete the proof of Theorem 2.1, it remains to show that for standard Gaussian noise, we have

lim inf
T→∞

R(T ;A) · T ≥ 1

2

(
Tr(A− 1

2 )
)2

. (12)

Notice that the object function and reward feedbacks depend only on the projections of x0 and query
points onto the column (or row) space of A. Hence, it suffices to focus on algorithms with actions
that are constrained on this subspace. This reduces the original problem to an equivalent instance that
is defined on a (possibly) lower dimensional space and by a non-singular A. Therefore, we only need
to prove inequality (12) for those reduced cases (i.e., when A is full-rank).

We lower bound the minimax regret by comparing them with a Bayes estimation error, where x0 has
a prior distribution that violates the bounded-norm constraint. Formally, for any fixed algorithm A,
we can consider its expected simple regret E[f(xT )] over an extended class of objective functions
where f is defined by equation (1) but x0 is chosen from the entire Euclidian space. Then for any
distribution of x0, the overall expectation is upper bounded by the following inequality.

Ex0
[E[f(xT )]] ≤ P[x0 ∈ B] · sup

f∈F(A)

E[f(xT )] + E

[
1(x0 /∈ B) · sup

x∈B
f(x)

]
, (13)

5



where the first term on the RHS above is obtained by taking the supremum over all objective functions
that satisfies x0 ∈ B, then the second term is obtained from the adversarial choice over all estimators
for x0 /∈ B. Compare the RHS of inequality (13) with equation (3), a lower bound of the minimax
simple regret R(T ;A) can be obtained by taking the infimum over algorithmA on both sides. Hence,
it remains to characterize the optimal Bayes estimation error on the LHS.

To provide a concrete analysis, let x0 be a Gaussian vector with zero mean and a covariance of
T− 2

3 · Id, where Id denotes the identity matrix.1 Under this setting, conditioned on any realization of
queries x1, ...,xT−1 and feedbacks y1, ..., yT−1, the posterior distribution of x0 is proportional to

exp

(
−
||x0||22 · T

2
3

2
−

T−1∑
t=1

(yt − 1
2 (xt − x0)

⊺A(xt − x0))
2

2

)
.

Clearly, the Bayesian error can be lower bounded by the expectation of the conditional covariance,
which is further characterized by the following principle (see Appendix B for a proof).
Proposition 3.3 (Uncertainty Principle). Let Z be a random variable on any measurable space and
θ be a real-valued random variable dependent of Z. If the conditional distribution of θ given Z has
a density function fZ(θ), and ln fZ(θ) has a second derivative that is integrable over fZ , then

E [Var[θ|Z]] ≥ 1

E
[
− ∂2

∂θ2 ln fZ(θ)
] .

Hence, by taking the second derivative, the squared estimation error for the kth entry of x0 is lower
bounded by the inverse of the following expectation.

E

[
T

2
3 +

(
T−1∑
t=1

A(xt − x0)(xt − x0)
⊺A⊺ −Awt

)
kk

]

= T
2
3 + E

[(
T−1∑
t=1

A(xt − x0)(xt − x0)
⊺A⊺

)
kk

]
,

where (·)kk denotes the kth diagonal entry of the given matrix. Recall that we chose a basis where A
is diagonal. The overall Bayes error is bounded as follows

Ex0 [E [f(xT )]] ≥
∑
k

λk

2
/

(
T

2
3 + λ2

kE

[(
T−1∑
t=1

(xt − x0)(xt − x0)
⊺

)
kk

])
,

where λk = (A)kk is the kth eigenvalue of A. By Cauchy’s inequality, the RHS above can be further
bounded by

1
2

(∑
k λ

− 1
2

k

)2
∑

k

(
T

2
3λ−2

k + E
[(∑T−1

t=1 (xt − x0)(xt − x0)⊺
)
kk

]) =

1
2

(
Tr(A− 1

2 )
)2

T
2
3 Tr(A−2) +

∑T−1
t=1 E

[
||xt − x0||22

] .
Note that by triangle inequality

E
[
||xt − x0||22

]
≤ E

[
(1 + ||x0||2)

2
]
≤
(
1 + E

[
||x0||22

] 1
2

)2

=
(
1 + d

1
2T− 1

3

)2
,

where d is the dimension of the action space. We have obtained a lower bound of Ex0
[E [f(xT )]]

that is independent of the algorithm. Formally,

inf
A

Ex0
[E [f(xT )]] ≥

1

2

(
Tr(A− 1

2 )
)2/(

T
(
1 + d

1
2T− 1

3

)2
+ T

2
3 Tr(A−2)

)
.

We apply the above estimate to inequality (13). By taking the infimum over all algorithms,

lim inf
T→∞

R(T ;A) · T ≥ lim inf
T→∞

infA Ex0 [E[f(xT )]]− E [1(x0 /∈ B) · supx∈B f(x)]

P[x0 ∈ B]
· T

1For the purpose of our proof, the covariance of x0 can be arbitrary as long as their inverse is asymptotically
large but sublinear w.r.t. T .
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Observe that for our Gaussian prior,

lim
T→∞

P[x0 ∈ B] = 1,

lim
T→∞

E

[
1(x0 /∈ B) · sup

x∈B
f(x)

]
· T = 0.

Hence, all terms above can be replace by closed-form functions. and we have

lim inf
T→∞

R(T ;A) · T ≥ lim inf
T→∞

inf
A

Ex0
[E[f(xT )]] · T

≥ lim inf
T→∞

1

2

(
Tr(A− 1

2 )
)2/((

1 + d
1
2T− 1

3

)2
+ T− 1

3 Tr(A−2)

)
=

1

2

(
Tr(A− 1

2 )
)2

.

4 Proof of Theorem 2.4

To prove the universal achievability result, we need to develop a new algorithm to learn and incorporate
the needed Hessian information. Particularly, the procedure required for achieving the optimal rates is
beyond simply adding an initial stage with an arbitrary Hessian estimator, for there are two challenges.
First, any Hessian estimation algorithm would result in a mean squared error of Ω(1/T ) in the worst
case, which translates to a cost of Ω(1/T ) in the minimax simple regret. This induced cost often
introduces a multiplicative factor that is order-wise larger than the desired O

(
(Tr(A− 1

2 ))2
)

. Second,
to utilize any estimated Hessian, the analysis for the subsequent stages often requires the estimation
error to have a light-tail distribution, which is not guaranteed for general linear estimators when the
additive noise in the observation model has a heavy-tail distribution.

To overcome these challenges, we present two main algorithmic building blocks in the following
subsections. The first uses o(T ) samples to obtain a rough estimate of the Hessian, and achieves
low-error guarantees with high probability through the introduction of a truncation method. The
second estimates the global minimum with carefully designed sample points to minimize the error
contributed from the Hessian estimation. We show that this sample phase can be written in the form
of a two-step descent. Finally, we show the combination of two stages provides an algorithm that
proves Theorem 2.4.

4.1 Initial Hessian Estimate and Truncation Method

Consider any sufficiently large T , we first use T0 = ⌈T 0.8⌉ samples to find a rough estimate of A.
Particularly, we rely on the following result.
Proposition 4.1. For any fixed dimension d, there is an algorithm that samples on T0 predetermined
points and returns an estimation Â, such that for any fixed α ∈ (0, 0.5), β ∈ (0,+∞), and PSD
matrix A,

lim
T0→∞

sup
f∈FA

P
[
||Â−A||F ≥ T−α

0

]
· T β

0 = 0, (14)

where || · ||F denotes the Frobenius norm.

Proof. We first consider the 1D case. Let y+, y−, and y each be samples of f at 1, −1, and 0,
respectively. When the additive noises are subgaussian, we have that (y+ + y− − 2y) is an unbiased
estimator of A with an error that is subgaussian. By repeating and averaging over this process ⌊T0/3⌋
times, the squared estimation error is reduced to O(1/T0), and the normalized error is subgaussian,
which satisfies the statement in the proposition.

However, recall that in Section 2 we did not assume the subgaussianity of wt. A modification of
the above estimator is required to achieve the same guanrantee in equation (14). Here we propose
a truncation method, which projects each measurement (y+ + y− − 2y) to a bounded interval
[−T 0.5

0 , T 0.5
0 ]. Specifically, the returned Â is the average of ⌊T0/3⌋ samples of max{min{y+ +

y− − 2y, T 0.5
0 },−T 0.5

0 }, which provides a guaranteed superpolynomial tail bound. A more detailed
discussion and analysis for the truncation method is provided in Appendix D.1.

7



For general d, one can return an estimator that satisfies the same light-tail requirement, for example,
by applying the above 1D estimator repetitively poly(d) times to obtain estimates of all entries of A.
Then the overall error probability is controlled by the union bound.

4.2 Two-Step Descent Stage

Let Â be any estimator that satisfies the condition in Proposition 4.1 for α = 0.4 and β = 1.6.
Asymptotically, this implies the eigenvalues and eigenvectors of Â are close to that of A. We choose
an eigenbasis of Â and remove vectors with vanishingly small eigenvalues to approximate the row
space of A. Then, we estimate the entries of x0 in these remaining directions following an energy
allocation defined based on Â.

Specifically, consider any fixed realization of Â, let λ̂1, λ̂2, ... be its eigenvalues in the non-increasing
order, ê1, ê2, ... be the corresponding eigenvectors, and k∗ be the largest integer such that λ̂k∗ ≥
T−0.2. We present the detailed steps in Algorithm 2, where T1 denotes the remaining available
samples, i.e., T − T0.

Algorithm 2

procedure QUADRATIC SEARCH(λ̂1, λ̂2, ..., λ̂k∗ , ê1, ..., êk∗ , T1)
for k ← 1 to k∗ do

Let pk =
λ̂
− 1

2
k

4
∑k∗

j=1 λ̂
− 1

2
j

, tk = ⌈pk · (T1 − 4d− 1)⌉.

Let αk = − 1

2λ̂k
Truncated Diff(êk,−êk, tk).

end for
Let x̃ =

∑k∗

k=1 αkêk, x̂ = x̃ ·min {1, 1.5/||x̃||2} ▷ Projecting to a 0-centered hyperball

for k ← 1 to k∗ do
Let βk = − 4

λ̂k
Truncated Diff( êk+2x̂

4 , −êk+2x̂
4 , tk). ▷ Obtain an unbounded estimator

end for
return xT = argminx=

∑k∗
k=1 θkêk∈B

∑k∗

k=1 λ̂k (βk − θk)
2

▷ Projection to B
end procedure

procedure TRUNCATED DIFF(x0, x1, t)
for k ← 1 to t do

Let y+, y− be a sample of f at x0,x1, respectively
Compute the projection of the difference y+ − y− to the interval [−t0.5, t0.5], i.e., let

zk = max{min{y+ − y−, t
0.5},−t0.5}

end for
return 1

t

∑t
k=1 zk

end procedure

We use the eigenbasis of Â and let Â0 be the diagonal matrix given by diag(λ̂1, λ̂2, ..., λ̂k∗ , 0, ..., 0).
In the first for-loop, we essentially estimated Ax0, and then computed the first k∗ entries of its
product with the pseudo-inverse of Â0 (note that the rest of the entries are all zero). Since Â0 is a
good estimate of A with high probability, we use it to compute the optimal energy spectrum similar
to the instance-dependent case, and allocate the measurements accordingly.

Recall the proof in Section 3. By the analysis of the truncation method in Appendix D.1, the variable
x̂ could have served as an estimator of x0 if Â0 = A, where the estimation process reduces to the
Hessian-dependent case. However, Â0 relies only on O(T 0.8) samples, which generally leads to
an expected penalty of Θ(T−0.8) = ω(1/T ) in simple regret if used in place of A. We reserve a
fraction of samples for a second for-loop to fine-tune the estimation in order to achieve the optimal
Hessian-dependent simple regrets.
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4.3 Regret Analysis

Recall our assumption on the Hessain Estimator and T0 = O(T 0.8). The probability for ||Â −
A||F ≥ T−0.32 is o(1/T ). As our algorithm always returns xT with bounded norms, the simple
regret contributed by this exceptional case is negligible. Hence, we can focus on instances where
||Â−A||F ≤ T−0.32.

Under such scenario, any non-zero λ̂k is close to a non-zero eigenvalue of A. Specifically, we have
|λ̂k − λk| ≤ T−0.32 for all k, where each λk is the kth largest eigenvalue of A. Recall the definition
of Â0. It implies that for sufficiently large T , k∗ equals the rank of A, and all non-zero eigenvalues
of Â0 are bounded away from zero. Consequently, ||Â−1

0 ||F = ||A−1||F(1 + o(1)), which does
not scale w.r.t. T , where M−1 denotes the pseudo-inverse for any symmetric M . We also have
(Tr(Â− 1

2
0 ))2 = O

(
(Tr(A− 1

2 ))2
)
.

The closeness between Â and A also implies information on the eigenvectors of Â0. Recall that Â0 is
obtained by removing the diagonal entries of Â (in their eigenbasis) that are below a threshold T−0.2.
For sufficiently large T , the removed entries are associated with the d − k∗ smallest eigenvalues,
which are no greater than T−0.32. Hence, as a rough estimate, we have ||Â0 −A||F = o(T−0.3).

These conditions can be used to characterize the distribution of x̂. As mentioned earlier, from the
analysis of the truncation method, each αk concentrates around êkÂ

−1
0 Ax0. Hence, x̃ concentrates

near Â−1
0 Ax0, and the truncation method ensures that

E
[(

x̃− Â−1
0 Ax0

)⊺
Â0

(
x̃− Â−1

0 Ax0

)]
= O

(
(Tr(Â− 1

2
0 ))2

)
/T = O

(
(Tr(A− 1

2 ))2
)
/T, (15)

P
[∣∣∣∣∣∣x̃− Â−1

0 Ax0

∣∣∣∣∣∣
2
≥ T−0.4

]
= o (1/T ) . (16)

Note that the L2-norm of Â−1
0 Ax0 is no greater than 1 + o(1) under the condition of ||Â0 −A||F =

o(T−0.3). Formally, by triangle inequality

||Â−1
0 Ax0||2 ≤ ||Â−1

0 Â0x0||2 + ||Â−1
0 (Â0 −A)x0||2 ≤ 1 + ||Â−1

0 ||F · ||Â0 −A||F = 1 + o(1).

We can apply inequality (16) to show that the L2-norm of x̃ is no greater than 1 + o(1) with
1− o(1/T ) probability. Under such high probability cases, the projection of x̃ to the hyperball of
radius 1.5 remains identical. Hence, by the PSD property of Â0, which is due to the convergence of
its eigenvalues, we can replace all x̃ in inequality (15) with x̂ and obtain that

E
[(

x̂− Â−1
0 Ax0

)⊺
Â0

(
x̂− Â−1

0 Ax0

)]
= O

(
(Tr(A− 1

2 ))2
)
/T. (17)

The same analysis can also be performed for each βk, which concentrates near êkÂ−1
0 A(2x0 − x̂).

Formally, let x̃T ≜
∑

k βkêk, we have

E
[(

x̃T − Â−1
0 A(2x0 − x̂)

)⊺
Â0

(
x̃T − Â−1

0 A(2x0 − x̂)
)]

= O
(
(Tr(A− 1

2 ))2
)
/T. (18)

The above results for the two descent steps can be combined, using triangle inequality and Proposition
4.2 below, to obtain the following inequality (See Appendix D for their proofs).

E
[
(x̃T − z)

⊺
Ã0 (x̃T − z)

]
= O

(
(Tr(A− 1

2 ))2
)
/T. (19)

where we denote z ≜

(
2Â−1

0 A−
(
Â−1

0 A
)2)

x0 for brevity.

Proposition 4.2. Let Â0, Z,y be variables dependent on a parameter T ∈ N, where Â0, Z are PSD
matrices and y belongs to the column space of Ã0. If lim supT→∞ ||Â−1

0 ||F <∞ and limT→∞ ||Z−
Ã0||F = 0, then

y⊺Zy ≤ (1 + ||Z − Â0||F||Â−1
0 ||F)(y⊺Â0y) = (1 + o(1))(y⊺Â0y).
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Assume the correctness of inequality (19), the remainder of the proof consists of two parts. First,
we show that the vector z can be viewed as a Taylor approximation for a projection of x0 onto the
column space of Â0, hence, x̃T could achieve the needed simple regret. Then, we show that the
projection of x̃T to the unit hypersphere to obtain xT induces negligible cost, so that the validity
constraint can be satisfied the same time.

For the first part, let P1 denote the projective map onto the column space of Â0, i.e., P1 = Â0Â
−1
0

(here and in the following, Â−1
0 denotes the pseudo inverse of Â0). We consider the Hessian of f

on this restricted subspace, which is given by A1 ≜ P1AP1. Note that the definition of Â0 implies
Â0 = P1ÂP1. We have ||Â0 −A1||F = ||P1(Â−A)P1||F ≤ ||Â−A||F ≤ T−0.32. Then recall that
the non-zero eigenvalues of Â0 are bounded away from 0, i.e., ||Â−1

0 ||F = o(T 0.32). We have that A1

is invertible within the column space of Â0 (i.e., A1A
−1
1 = P1) for sufficiently large T .

The pseudo inversion of A1 provides a point of equivalence to x0 within the column space of Â0.
Particularly, let z0 ≜ A−1

1 Ax0, we have P1z = z and f(x) = (x− z0)
⊺A(x− z0) for any x ∈ Rd

and sufficiently large T . The second equality is due to A(x0 − z0) = (A − AA−1
1 A)x0 = 0 for

sufficiently large T , which is implied by the following proposition (see Appendix D.4 for a proof).
Proposition 4.3. For any symmetric matrix A and any symmetric projection map P1 (i.e., P 2

1 = P1 =

P ⊺
1 ), if A1 ≜ P1AP1 and A has the same rank, then the pseudo inverse A−1

1 satisfies A = AA−1
1 A.

We show that the error z − z0 is bounded by o(T−0.5). Observe that P1Â
−1
0 = Â−1

0 P1 = Â−1
0 and

A−1
1 P1 = A−1

1 , we have

z − z0 =

(
A−1

1 A−
(
2Â−1

0 A−
(
Â−1

0 A
)2))

x0 = A−1
1

((
Â0 −A1

)
Â−1

0

)2
Ax0.

From ||Â0 − A1||F ≤ T−0.32, ||Â−1
0 ||F = ||Â−1||F · O(1) and the fact that A1 is restricted to the

column space of Â0, we can derive that ||A−1
1 ||F = ||Â−1||F ·O(1), which also does not scale w.r.t.

T . Therefore, the above equality implies that ||z − z0||2 = o(T−0.5). As a consequence, we have
following inequalities due to inequality (19) and triangle inequality.

E
[
(x̃T − z0)

⊺
Ã0 (x̃T − z0)

]
= O

(
(Tr(A− 1

2 ))2
)
/T, (20)

For the second part, we first note that the L2 norm of z0 is bounded by the spectrum norm of A−1
1 A.

Specifically,

||z0||2 = ||A−1
1 Ax0||2 ≤ ||x0||2 · ||A−1

1 A|| ≤ ||A−1
1 A||,

where || · || denotes the spectrum norm. Recall the definition of A1, we have A−1
1 AA1 =

A−1
1 P1AP1A1 = A−1

1 A1A1. Hence,

||A−1
1 A||2 =

∣∣∣∣A−1
1 A2A−1

1

∣∣∣∣ = ∣∣∣∣∣∣A−1
1 (A1 + (A−A1))

2
A−1

1

∣∣∣∣∣∣ = ∣∣∣∣∣∣P1 +A−1
1 (A−A1)

2
A−1

1

∣∣∣∣∣∣
≤ ||P1||+

∣∣∣∣∣∣A−1
1 (A−A1)

2
A−1

1

∣∣∣∣∣∣ .
Note that ||A − A1||F ≤ ||Â0 − A1||F + ||Â0 − A1||F ≤ o(T−0.3). By the fact that ||A−1

1 ||F =

||Â−1||F ·O(1), we have ||A−1
1 A||2 ≤ 1 + o(T−0.6), and ||z0||2 ≤ 1 + o(T−0.6).

Therefore, we have minx∈B(z0 − x)⊺Â0(z0 − x) = o(T−1.2). The projection of x̃T to the unit
hypersphere guarantees the following bound (see Appendix A for a proof).

E
[
(xT − z0)

⊺
Ã0 (xT − z0)

]
≤ E

[
(x̃T − z0)

⊺
Ã0 (x̃T − z0)

]
+ o(T−1.2) = O

(
(Tr(A− 1

2 ))2
)
/T.

Note that both xT and z0 belong to the column space of Â0. From Proposition 4.2, we can substitute
Â0 by A for the above inequality and obtain

E [(xT − z0)
⊺
A (xT − z0)] = O

(
(Tr(A− 1

2 ))2
)
/T. (21)

Then the theorem is proved from the fact that f(xT ) = (xT − z0)
⊺A(xT − z0).
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A Projection Lemma

Proposition A.1. For any PSD matrix A with dimension d, any closed convex set B in the Euclidian
space Rd, and x̂ ∈ Rd, let

x∗ = argmin
x∈B

g(x̂,x)

where
g(u,v) ≜ (u− v)⊺A(u− v),

then

g(x∗,x0) ≤ g(x̂,x0) ∀x0 ∈ B.

More generally,

g(x∗, z0) ≤ g(x̂, z0) + min
x∈B

g(z0,x) ∀z0 ∈ Rd.

Proof. We first provide a proof for x0 ∈ B. For any α ∈ [0, 1], let

xα ≜ αx∗ + (1− α)x0.

By convexity, we have xα ∈ B for any α. Note that g(x̂,xα) is differentiable. By the definition of
x∗, we have

(x∗ − x̂)⊺A(x∗ − x0) =
1

2

∂

∂α
g(x̂,xα)

∣∣∣
α=1
≤ 0.

Therefore,

g(x∗,x0) = g(x̂,x0) + 2(x∗ − x̂)⊺A(x∗ − x0)− g(x∗, x̂) ≤ g(x̂,x0),

where the last inequality uses the PSD property of A.

Now we consider the more general case and let x be any vector in B. Following the same steps in the
earlier case, we have

(x∗ − x̂)⊺A(x∗ − x) ≤ 0.

Hence,

g(x∗, z0)− g(x̂, z0) = 2(x∗ − x̂)⊺A(x∗ − z0)− g(x∗, x̂)

≤ 2(x∗ − x̂)⊺A(x− z0)− g(x∗, x̂)

= g(z0,x)− (x− z0 − x∗ + x̂)
⊺
A (x− z0 − x∗ + x̂)

≤ g(z0,x).

Note that the above inequality holds for any x ∈ B. The proposition is proved by taking the minimum
over x.

B Proof of Proposition 3.3

Proof. We first prove for the case where Z is deterministic. Let µZ denote the conditional expectation
of θ. By Cauchy’s inequality,

E[(θ − µZ)
2|Z] · E

[(
∂

∂θ
ln fZ(θ)

)2
∣∣∣∣∣Z
]
≥ E

[∣∣∣∣(θ − µZ) ·
∂

∂θ
ln fZ(θ)

∣∣∣∣ ∣∣∣∣Z]2 . (22)
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The quantity on the RHS above can be bounded as follows.

E

[∣∣∣∣(θ − µZ) ·
∂

∂θ
ln fZ(θ)

∣∣∣∣ ∣∣∣∣Z] = ∫ ∣∣∣∣(θ − µZ) ·
∂

∂θ
ln fZ(θ)

∣∣∣∣ fZ(θ)dθ
=

∫ ∣∣∣∣(θ − µZ) ·
∂

∂θ
fZ(θ)

∣∣∣∣ dθ
≥ lim sup

T→+∞

∣∣∣∣∣
∫ T

−T

(θ − µZ) ·
∂

∂θ
fZ(θ)dθ

∣∣∣∣∣
= lim sup

T→+∞

∣∣∣((θ − µZ)fZ(θ)
∣∣θ=T

θ=−T

)
− P[θ ∈ [−T, T ]|Z]

∣∣∣
≥ 1,

where the last inequality uses the integrability of fZ , which implies

lim inf
T→+∞

(θ − µZ)fZ(θ)
∣∣θ=T

θ=−T
≤ 0.

Then we evaluate the second factor on the LHS of inequality (22). Recall that ∂2

∂θ2 ln fZ(θ) is
integrable, the following limit exists.

E

[
∂2

∂θ2
ln fZ(θ)

∣∣∣∣∣Z
]
= lim

T→+∞

∫ T

−T

fZ(θ)
∂2

∂θ2
ln fZ(θ)dθ.

Then by positivity, we also have

E

[(
∂

∂θ
ln fZ(θ)

)2
∣∣∣∣∣Z
]
= lim

T→+∞

∫ T

−T

fZ(θ)

(
∂

∂θ
ln fZ(θ)

)2

dθ.

If we focus the non-trivial case where the first limit is not −∞, the above two equation implies the
existence of the following limit.

E

[
∂2

∂θ2
ln fZ(θ)

∣∣∣∣∣Z
]
+ E

[(
∂

∂θ
ln fZ(θ)

)2
∣∣∣∣∣Z
]

= lim
T→+∞

∫ T

−T

fZ(θ)

(
∂2

∂θ2
ln fZ(θ) +

(
∂

∂θ
ln fZ(θ)

)2
)
dθ

= lim
T→+∞

fZ(θ)
∂

∂θ
ln fZ(θ)

∣∣∣θ=T

θ=−T

= lim
T→+∞

∂

∂θ
fZ(θ)

∣∣∣θ=T

θ=−T
.

The result of the above equation has to be zero, because the limit points of ∂
∂θfZ(θ) must contain

zero on both ends of the real line, which is implied by the integrability of fZ . Consequently, we have

E

[(
∂

∂θ
ln fZ(θ)

)2
∣∣∣∣∣Z
]
= E

[
− ∂2

∂θ2
ln fZ(θ)

∣∣∣∣∣Z
]
. (23)

Then, the special case of Proposition 3.3 with fixed Z is implied by inequality (22).

When Z is variable, we simply have

E [Var[θ|Z]] ≥ E

[
1/E

[(
∂

∂θ
ln fZ(θ)

)2
∣∣∣∣∣Z
]]

≥ 1

E
[
E
[(

∂
∂θ ln fZ(θ)

)2 ∣∣Z]] .
Then the proposition is implied by equation (23).
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C Proof of Theorem 2.2

We first investigate the lower bounds. Observe that the proof provided in Section 3.1 only fails
when the constructed hard instances have ||x0||2 > 1. Hence, we have already covered the T ≥(∑d

k=1 λ
− 1

2

k

)(∑d
k=1 λ

− 3
2

k

)
case, i.e., when k∗ = dimA = d. It remains to consider the other

scenarios, where k∗ < d is satisfied.

By the assumption that T ≥
(∑k∗

k=1 λ
− 1

2

k

)(∑k∗

k=1 λ
− 3

2

k

)
, one can instead set the entries of x0 in

the earlier proof with indices greater than k∗ to be zero, so that ||x0||2 ≤ 1 is satisfied. Formally, let
the hard-instance functions be constructed by the following set.

x0 ∈ XH ≜

(x1, x2, ..., xk∗ , 0, ..., 0)

∣∣∣∣∣ xk = ±

√√√√λ
− 3

2

k

(∑
j λ

− 1
2

j

)
2T

,∀k ∈ [k∗]

 .

Then by the identical proof steps, we have R(T ;A) = Ω

((∑k∗

k=1 λ
− 1

2

k

)2/
T

)
.

Next, we show that R(T ;A) = Ω (λk∗+1). We assume the non-trivial case where λk∗+1 ̸= 0. Note
that R(T ;A) is non-increasing w.r.t. T . We can lower bound R(T ;A) through the above steps
but by replacing T with any larger quantity. Specifically, recall that k∗ is largest integer satisfying
T ≥

(∑k∗

k=1 λ
− 1

2

k

)(∑k∗

k=1 λ
− 3

2

k

)
, which implies T ≤

(∑k∗+1
k=1 λ

− 1
2

k

)(∑k∗+1
k=1 λ

− 3
2

k

)
. We have,

R(T ;A) ≥ R

((
k∗+1∑
k=1

λ
− 1

2

k

)(
k∗+1∑
k=1

λ
− 3

2

k

)
;A

)
.

Notice that this change of sampling time allows us to apply the earlier lower bound with k∗ incre-
mented by 1.

R(T ;A) ≥ Ω


(∑k∗+1

k=1 λ
− 1

2

k

)2
(∑k∗+1

k=1 λ
− 1

2

k

)(∑k∗+1
k=1 λ

− 3
2

k

)


= Ω

(∑k∗+1
k=1 λ

− 1
2

k∑k∗+1
k=1 λ

− 3
2

k

)
= Ω(λk∗+1).

To conclude,

R(T ;A) = Ω

max


(∑k∗

k=1 λ
− 1

2

k

)2
T

, λk∗+1


 = Ω


(∑k∗

k=1 λ
− 1

2

)2
T

+ λk∗+1

 ,

which completes the proof of the lower bounds.

The needed upper bounds can be obtained by only estimating the first k∗ entries of x0.

Remark C.1. The requirement of T > 3 dimA in the Theorem statement is simply due to the integer
constraints for the achievability bounds. Indeed, when λdimA is large, it requires at least Ω(dimA)
samples to achieve O(1) expected simple regret.

D Proof Details for Theorem 2.4

D.1 Truncation Method and Its Applications

The truncation method is based on the following facts.
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Proposition D.1. For any sequence of independent random variables X1, X2, ..., Xn and any fixed
parameter m satisfying m > maxk |E[Xk]|. Let Zk = max{min{Xk,m},−m} for any k ∈ [n], we
have

|E[Zk]− E[Xk]| ≤
1

4
· Var[Xk]

m− |E[Xk]|
, (24)

Var[Zk] ≤ E
[
(Zk − E[Xk])

2
]
≤ Var[Xk]. (25)

Moreover, for any z > 0, we have

P

[∣∣∣∣∣∑
k

Zk −
∑
k

E[Xk]

∣∣∣∣∣ ≥ z

]
≤ 2 exp

(∑
k

Var[Xk]

m(m− |E[Xk]|)
− z

m

)
. (26)

Proof. The first inequality is proved by expressing the LHS with piecewise linear functions. Note
that by the definition of Zk, we have

|E[Zk]− E[Xk]| = |E[max{−m−Xk, 0}]− E[max{Xk −m, 0}]|
≤ |E[max{−m−Xk, 0}]|+ |E[max{Xk −m, 0}]|
= E[max{|Xk| −m, 0}].

We apply the following inequalities, which holds for any m ≥ |E[Xk]|.

|Xk| −m ≤ |Xk − E[Xk]| −m+ E[Xk] ≤
1

4
· |Xk − E[Xk]|2

m− E[Xk]
.

Therefore,

|E[Zk]− E[Xk]| ≤ E

[
1

4
· |Xk − E[Xk]|2

m− E[Xk]

]
=

1

4
· Var[Xk]

m− |E[Xk]|
.

The second inequality is due to the following elementary facts,

E[(Zk − E[Xk])
2]≤E[(Xk − E[Xk])

2] = Var[Xk],

where the inequality step is implied by the definition of Zk and the condition m > maxk |E[Xk]|.
To prove the third inequality, we first investigate the following upper bound, which is due to Markov’s
inequality.

P

[∑
k

Zk −
∑
k

E[Xk] ≥ z

]
≤ E[e

1
m (

∑
k Zk−

∑
k E[Xk])]

e
z
m

=

∏
k E[e

1
m (Zk−E[Xk])]

e
z
m

(27)

The equality step above is by the fact that Zk’s are jointly independent. For each k, using the fact that
Zk is bounded, particularly, Zk − E[Xk] ≤ m+ |E[Xk]|, we have the following inequality

e
1
m (Zk−E[Xk]) − 1− 1

m
(Zk − E[Xk]) ≤ (Zk − E[Xk])

2 ·
e

1
m (m+|E[Xk]|) − 1− 1

m (m+ |E[Xk]|)
(m+ |E[Xk]|)2

.

For brevity, let θ ≜ |E[Xk]|
m . We combine the above bound with inequality (24) and (25) to obtain that

E[e
1
m (Zk−E[Xk])] = 1 + E

[
1

m
(Zk − E[Xk])

]
+ E

[
e

1
m (Zk−E[Xk]) − 1− 1

m
(Zk − E[Xk])

]
≤ 1 +

Var[Xk]

m(m− |E[Xk]|)
·
(
1

4
+ (1− θ) · e

1+θ − 2− θ

(1 + θ)2

)
. (28)
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Recall that θ < 1 as assumed in the proposion. From elementary calculus, we have

E[e
1
m (Zk−E[Xk])] ≤ 1 +

Var[Xk]

m(m− |E[Xk]|)

≤ exp

(
Var[Xk]

m(m− |E[Xk]|)

)
.

Therefore, recall inequality (27), we have

P

[∑
k

Zk −
∑
k

E[Xk] ≥ z

]
≤ exp

(∑
k

Var[Xk]

m(m− |E[Xk]|)
− z

m

)
.

By symmetry, one can also prove the following bound through the same steps.

P

[∑
k

Zk −
∑
k

E[Xk] ≤ −z

]
≤ exp

(∑
k

Var[Xk]

m(m− |E[Xk]|)
− z

m

)
.

Hence, the needed inequality is obtained by adding the two inequalities above.

Now equation (14) for the 1D case is immediately implied by Proposition D.1. Recall the construction
of Â in the proof, for any sufficiently large T0, we have

P
[∣∣∣Â−A

∣∣∣ ≥ T−α
0

]
≤ 2 exp

(
3− T 0.5−α

0

3

)
= o

(
1

T β
0

)
.

Remark D.2. Instead of projecting to a bounded interval, the same achievability result can be
obtained if the we average over any functions that map the samples to [−T 0.5

0 , T 0.5
0 ] while imposing

an additional error of o(T−α) everywhere. This includes Θ(lnT )-bit uniform quantizers, which
naturally appear in digital systems, over which exact computation can be performed to eliminate
numerical errors. We present this simple generalization in the following corollary.
Corollary D.3. Consider the setting in Proposition D.1. Let Y1, ..., Yn be variables that satisfy
|Yk − Zk| ≤ b for all k with probability 1. We have

P

[∣∣∣∣∣∑
k

Yk −
∑
k

E[Xk]

∣∣∣∣∣ ≥ z

]
≤ 2 exp

(∑
k

Var[Xk]

m(m− |E[Xk]|)
− z − bn

m

)
.

D.2 Proof of Proposition 4.2

Proof.

y⊺Zy − y⊺Â0y = y⊺(Z − Â0)y ≤ ||Z − Â0||F||y||22 ≤ ||Z − Â0||F||Â−1
0 ||F(y⊺Â0y).

D.3 Proof of inequality (19)

We apply Proposition 4.2 to inequality (17) and let Z = AÂ−1
0 A. Note that

||Z − Â0||F ≤ 2||A− Â0||F + ||(A− Â0)Â
−1
0 (A− Â0)||F = o(1),

which satisfies the condition of Proposition 4.2. Using the fact that Â−1
0 Â0Â

−1
0 = Â−1

0 , we have

E
[(

Â−1
0 A

(
x̂− Â−1

0 Ax0

))⊺
Â0

(
Â−1

0 A
(
x̂− Â−1

0 Ax0

))]
= E

[(
x̂− Â−1

0 Ax0

)⊺
Z
(
x̂− Â−1

0 Ax0

)]
= O

(
(Tr(A− 1

2 ))2
)
/T. (29)

Then by the triangle inequality for the PSD matrix Â0, the combination of the above inequality and
inequality (18) gives

E
[
(x̃T − z)

⊺
Â0 (x̃T − z)

]
= O

(
(Tr(A− 1

2 ))2
)
/T.
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D.4 Proof of Proposition 4.3

Proof. When A1 and A has the same rank, the map P1 is invertible over the column space of A.
Under such condition, there exists a matrix X such that A = XP1A. Note that A1A

−1
1 = P1. We

have XP1 = XP1A1A
−1
1 = AA−1

1 . Therefore, the needed A = AA−1
1 A is obtained by multiplying

A on the right-hand sides in the above identity.
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