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Abstract

We study the problem of counting the number of unique elements in a dataset sub-1

ject to the constraint of differential privacy. We consider the challenging setting2

of person-level DP (a.k.a. user-level DP) where each person may contribute an3

unbounded number of items and hence the sensitivity is unbounded.4

Our approach is to compute a bounded-sensitivity version of this query, which5

reduces to solving a max-flow problem. The sensitivity bound is optimized to6

balance the noise we must add to privatize the answer against the error of the7

approximation of the bounded-sensitivity query to the true number of unique ele-8

ments.9

1 Introduction10

An elementary data analysis task is to count the number of unique elements occurring in a dataset.11

The dataset may contain private data and even simple statistics can be combined to leak sensitive12

information about people [Dinur and Nissim, 2003]. Our goal is to release (an approximation to)13

this count in a way that ensures the privacy of the people who contributed their data. As a motivating14

example, consider a collection of internet browsing histories, in which case the goal is to compute15

the total number of websites that have been visited by at least one person.16

Differential privacy (DP) [Dwork et al., 2006b] is a formal privacy standard. The simplest method17

for ensuring DP is to add noise (from either a Laplace or Gaussian distribution) to the true answer,18

where the scale of the noise corresponds to the sensitivity of the true answer – i.e., how much one19

person’s data can change the true value.20

If each person contributes a single element to the dataset, then the sensitivity of the number of21

unique elements is one. However, a person may contribute multiple elements to the dataset and our22

goal is to ensure privacy for all of these contributions simultaneously. That is, we seek to provide23

person-level DP (a.k.a. user-level DP).24

This is the problem we study: We have a dataset D = (u1, u2, · · · , un) of person records. Each25

person i ∈ [n] contributes a finite dataset ui ∈ Ω∗, where Ω is some (possibly infinite) universe of26

potential elements (e.g., all finite-length binary strings) and Ω∗ :=
⋃
`∈N Ω` denotes all subsets of27

Ω of finite size. Informally, our goal is to compute the number of unique elements28

DC(D) :=

∣∣∣∣∣∣
⋃
i∈[n]

ui

∣∣∣∣∣∣ (1)

in a way that preserves differential privacy. A priori, the sensitivity of this quantity is infinite, as a29

single person can contribute an unbounded number of unique elements.30

In particular, it is not possible to give a meaningful upper bound on the number of distinct elements31

subject to differential privacy. However, it is possible to give a lower bound. Thus our formal goal32
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is to compute a high-confidence lower bound on the number of distinct elements that is as large as33

possible and which is computed in a differentially private manner.34

1.1 Our Contributions35

Given a dataset D = (u1, · · · , un) ∈ (Ω∗)n and an integer ` ≥ 1, we define36

DC(D; `) := max


∣∣∣∣∣∣
⋃
i∈[n]

vi

∣∣∣∣∣∣ : ∀i ∈ [n] vi ⊂ ui ∧ |vi| ≤ `

 . (2)

That is, DC(D; `) is the number of distinct element if we restrict each person’s contribution to `37

elements. We take the maximum over all possible restrictions.38

It is immediate that DC(D; `) ≤ DC(D) for all ` ≥ 1. Thus we obtain a lower bound on the true39

number of unique elements. The advantage of DC(D; `) is that its sensitivity is bounded by ` and,40

hence, we can estimate it in a differentially private manner. Specifically,41

M`,ε(D) := DC(D; `) + Lap (`/ε)

defines an ε-DP algorithm M`,ε : (Ω∗)n → R, where Lap (b) denotes Laplace noise scaled to have42

mean 0 and variance 2b2. This forms the basis of our algorithm. Two challenges remain: Setting the43

sensitivity parameter ` and computing DC(D; `) efficiently.44

Choosing the sensitivity parameter `. Any choice of ` ≥ 1 gives us a lower bound: DC(D; `) ≤45

DC(D). Since ∀D lim`→∞DC(D; `) = DC(D), this lower bound can be arbitrarily tight. How-46

ever, the larger ` is, the larger the sensitivity of DC(D; `) is. That is, the noise we add scales linearly47

with `.48

Thus there is a bias-variance tradeoff in the choice of `. To make this precise, suppose we want a49

lower bound on DC(D) with confidence 1 − β ∈ [ 1
2 , 1). We can obtain such a lower bound from50

M`(D) using the cumulative distribution function (CDF) of the Laplace distribution:51

P

M`,ε(D)− `

ε
· log

(
1

2β

)
︸ ︷︷ ︸

lower bound

≤ DC(D)

 = P
[
Lap (`/ε) ≤ cdf−1

Lap(`/ε)(1− β) + DC(D)−DC(D; `)
]

≥ P
[
Lap (`/ε) ≤ cdf−1

Lap(`/ε)(1− β) + 0
]

= 1− β︸ ︷︷ ︸
confidence

.

Thus, to obtain the tightest possible lower bound with confidence 1− β, we choose ` to maximize52

q(D; `) := DC(D; `)− `

ε
· log

(
1

2β

)
.

We can use the exponential mechanism [McSherry and Talwar, 2007] to privately select ` that ap-53

proximately maximizes q(D; `). However, directly applying the exponential mechanism is problem-54

atic because each score has a different sensitivity – the sensitivity of q(·; `) is `. Instead, we apply55

the generalized exponential mechanism of Raskhodnikova and Smith [2015] (see Algorithm 3).56

Our main algorithm attains the following guarantees.57

Theorem 1.1 (Theoretical Guarantees of Our Algorithm). Let ε > 0 and β ∈ (0, 1
2 ) and `max ∈ N.58

DefineM : (Ω∗)∗ → N×R to beM(D) = DPDISTINCTCOUNT(D; `max, ε, β) from Algorithm 1.59

ThenM satisfies all of the following properties.60

• Privacy:M is ε-differentially private.61

• Lower bound: For all D ∈ (Ω∗)n,62

P
(ˆ̀,ν̂)←M(D)

[ν̂ ≤ DC(D)] ≥ 1− β. (3)
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• Upper bound For all D ∈ (Ω∗)n,63

P
(ˆ̀,ν̂)←M(D)

[
ν̂ ≥ max

`∈[`max]
DC(D; `)− 10`+ 18`∗A

ε
log

(
`max

β

)]
≥ 1− 2β, (4)

where `∗A = arg max`∈[`max] DC(D; `)− `
ε log

(
1

2β

)
.64

• Computational efficiency: M(D) has running time O
(
|D|1.5 · `2max

)
, where |D| :=65 ∑

i |ui|.66

In particular, if D = (u1, · · · , un) ∈ (Ω∗)n satisfies maxi∈[n] |ui| ≤ `∗ ≤ `max, then combining67

the upper and lower bounds of Theorem 1.1 gives68

P
(ˆ̀,ν̂)←M(D)

[
DC(D) ≥ ν̂ ≥ DC(D)− 28`∗

ε
log

(
`max

β

)]
≥ 1− 3β. (5)

In addition to proving the above theoretical guarantees, we perform an experimental evaluation of69

our algorithm.70

Algorithm 1 Distinct Count Algorithm

1: procedure SENSITIVEDISTINCTCOUNT(D=(u1, · · · , un)∈(Ω∗)n; `∈N) . DC(D; `)
2: Let U` =

⋃
i∈[n]

(
{i} × [min{`, |ui|}]

)
⊂ [n]× [`].

3: Let V =
⋃
i∈[n] ui ⊂ Ω.

4: Define E` ⊆ U × V by ((i, j), v) ∈ E ⇐⇒ v ∈ ui.
5: Let G` be a bipartite graph with vertices partitioned into U` and V and edges E`.
6: m` ← MAXIMUMMATCHINGSIZE(G). . [Hopcroft and Karp, 1973, Karzanov, 1973]
7: return m` ∈ N
8: end procedure
9: procedure DPDISTINCTCOUNT(D=(u1, · · · , un)∈(Ω∗)n; `max∈N, ε>0, β∈(0, 12 ))

10: for ` ∈ [`max] do
11: Define q`(D) := SENSITIVEDISTINCTCOUNT(D; `)− 2`

ε · log
(

1
2β

)
.

12: end for
13: ˆ̀← GEM(D; {q`}`∈[`max], {`}`∈[`max], ε/2, β). . Algorithm 3

14: ν̂ ← qˆ̀(D) + Lap
(

2ˆ̀/ε
)

.

15: return (ˆ̀, ν̂) ∈ [`max]× R.
16: end procedure

Efficient computation. The main computational task for our algorithm is to compute DC(D; `).71

By definition (2), this is an optimization problem. For each person i ∈ [n], we must select a subset72

vi of that person’s data ui of size at most ` so as to maximize the size of the union of the subsets73 ∣∣∣⋃i∈[n] vi

∣∣∣.74

We can view the datasetD = (u1, · · · , un) ∈ (Ω∗)n as a bipartite graph. On one side we have the n75

people and on the other side we have the elements of the data universe Ω.1 There is an edge between76

i ∈ [n] and x ∈ Ω if and only if x ∈ ui.77

We can reduce computing DC(D; `) to a max-flow problem: Each edge in the bipartite graph has78

capacity one. We add a source vertex s which is connected to each person i ∈ [n] by an edge with79

capacity `. Finally we add a sink t that is connected to each x ∈ Ω by an edge with capacity 1. The80

max flow through this graph is precisely DC(D; `).81

Alternatively, we can reduce computing DC(D; `) to bipartite maximum matching. For ` = 1,82

DC(D; 1) is exactly the maximum cardinality of a matching in the bipartite graph described above.83

1The data universe Ω may be infinite, but we can restrict the computation to the finite set
⋃

i∈[n] ui. Thus
there are at most n + DC(D) ≤ n + |D| item vertices in the graph.
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For ` ≥ 2, we simply create ` copies of each person vertex i ∈ [n] and then DC(D; `) is the84

maximum cardinality of a matching in this new bipartite graph.285

Using this reduction, standard algorithms for bipartite maximum matching [Hopcroft and Karp,86

1973, Karzanov, 1973] allow us to compute DC(D; `) with O(|D|1.5 · `) operations. We must87

repeat this computation for each ` ∈ [`max].88

Algorithm 2 Linear-Time Approximate Distinct Count Algorithm

1: procedure APPROXDPDISTINCTCOUNT(D=(u1,· · ·, un)∈(Ω∗)n; `max∈N, ε>0, β∈(0, 12 ))
2: S ← ∅.
3: for ` ∈ [`max] do
4: for i ∈ [n] with ui \ S 6= ∅ do
5: Choose lexicographically first v ∈ ui \ S. . Match (i, `) to v.
6: Update S ← S ∪ {v}.
7: end for
8: Define q`(D) := |S| − 2`

ε · log
(

1
2β

)
. . This loop computes {q`(D)}`∈[`max].

9: end for
10: ˆ̀← GEM(D; {q`}`∈[`max], {`}`∈[`max], ε/2, β). . Algorithm 3

11: ν̂ ← qˆ̀(D) + Lap
(

2ˆ̀/ε
)

.

12: return (ˆ̀, ν̂) ∈ [`max]× R.
13: end procedure

Linear-time algorithm. Our algorithm above is polynomial-time. However, for many applica-89

tions the dataset size |D| is enormous. Thus we also propose a linear-time variant of our algorithm.90

However, we must trade accuracy for efficiency.91

There are two key ideas that differentiate our linear-time algorithm (Algorithm 2) from our first92

algorithm (Algorithm 1) above: First, we compute a maximal bipartite matching instead of a93

maximum bipartite matching. This can be done using a linear-time greedy algorithm and gives a94

2-approximation to the maximal matching. (Experimentally we find that the approximation is better95

than a factor of 2.) Second, rather than repeating the computation from scratch for each ` ∈ [`max],96

we incrementally update our a maximal matching while increasing `. The main challenge here is97

ensuring that the approximation to DC(D; `) has low sensitivity – i.e., we must ensure that our98

approximation algorithm doesn’t inflate the sensitivity. Note that DC(D; `) having low sensitivity99

does not automatically ensure that the approximation has low sensitivity.100

Theorem 1.2 (Theoretical Guarantees of Our Linear-Time Algorithm). Let ε > 0 and101

β ∈ (0, 1
2 ) and `max ∈ N. Define M : (Ω∗)∗ → N × R to be M̂(D) =102

APPROXDPDISTINCTCOUNT(D; `max, ε, β) from Algorithm 2. Then M̂ satisfies all of the fol-103

lowing properties.104

• Privacy: M̂ is ε-differentially private.105

• Lower bound: For all D ∈ (Ω∗)n,106

P
(ˆ̀,ν̂)←M̂(D)

[ν̂ ≤ DC(D)] ≥ 1− β. (6)

• Upper bound: If D = (u1, · · · , un) ∈ (Ω∗)n satisfies maxi∈[n] |ui| ≤ `∗ ≤ `max, then107

P
(ˆ̀,ν̂)←M̂(D)

[
ν̂ ≥ 1

2
DC(D)−O

(
`∗
ε

log

(
`max

β

))]
≥ 1− 2β. (7)

• Computational efficiency:M(D) has running time O (|D|), where |D| :=
∑
i |ui|.108

2We need only create min{`, |ui|} copies of the person i ∈ [n]. Thus the number of person vertices is at
most min{n`, |D|}.
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Figure 1: Performance of different algorithms estimating distinct count assuming that each person
can contribute at most ` elements.

2 Related Work109

Counting the number of distinct elements in a collection is one of the most fundamental operations.110

Hence, unsurprisingly, the problem of computing the number of unique elements in a differentially111

private way has been extensively investigated.112

In the case where we assume each person contributes only one element (a.k.a. event-level privacy),113

the number of distinct elements has sensitivity 1 and, hence, we can simply use Laplace (or Gaus-114

sian) noise addition to release. However, it may not be possible to compute the number of distinct115

elements exactly (e.g. in the local model of DP [Kasiviswanathan et al., 2011]).116

Most efforts have been focused on creating differentially private approximation schemes for count-117

ing distinct elements. Desfontaines et al. [2019] proved that a number of existing approximate118

algorithms allow an attacker to test whether a particular individual is in the collection; therefore,119

creation of a differentially private scheme requires care. Nonetheless, Smith et al. [2020] proved120

that Flajolet-Martin Sketch is private by itself and Dickens et al. [2022] proved that several other121

cardinality estimators can be tweaked to make them private. In case of local and shuffle models122

the only known results are communication complexity bounds [Chen et al., 2021]. Counting unique123

elements has been considered in the streaming setting [Dwork et al., 2010, Ghazi et al., 2023].124
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A closely related problem is that of identifying as many elements as possible (rather than just count-125

ing them); this is known as “ partition selection,” “set union,” and “key selection” [Swanberg et al.,126

2023, Desfontaines et al., 2022, Korolova et al., 2009, Carvalho et al., 2022, Rivera Cardoso and127

Rogers, 2022, Gopi et al., 2020, Zhang et al., 2023]. Note that, by design, DP prevents us from128

identifying elements that only appear once in the dataset, or only a few times. Thus we can only129

output items that appear frequently.130

For our problem of counting the number of unique elements under person-level/user-level privacy,131

the only known algorithm is the algorithm where each user independently samples a subset of their132

elements to reduce the sensitivity. We use this as a baseline in our experiments and show that our133

algorithm outperforms it.134

3 Technical Background on Differential Privacy135

For detailed background on differential privacy, see the survey by Vadhan [2017] or the book by136

Dwork and Roth [2014]. We briefly define pure DP and some basic mechanisms and results.137

Algorithm 3 Generalized Exponential Mechanism [Raskhodnikova and Smith, 2015]

1: procedure GEM(D∈X ∗; qi :X ∗→R for i∈ [m], ∆i>0 for i∈ [m], ε>0, β>0)
2: Require: qi has sensitivity sup x,x′∈X∗

neighboring
|q(x)− q(x′)| ≤ ∆i for all i ∈ [m].

3: Let t = 2
ε log

(
m
β

)
.

4: for i ∈ [m] do
5: si ← minj∈[m]

(qi(D)−t∆i)−(qj(D)−t∆j)
∆i+∆j

.
6: end for
7: Sample î ∈ [m] from the Exponential Mechanism using the normalized scores si; i.e.,

∀i ∈ [m] P
[̂
i = i

]
=

exp
(

1
2εsi

)∑
k∈[m] exp

(
1
2εsk

) .
8: return î ∈ [m].
9: end procedure

Definition 3.1 (Differential Privacy (DP) [Dwork et al., 2006b] ). A randomized algorithm M :138

X ∗ → Y satisfies ε-DP if, for all inputs D,D′ ∈ X ∗ differing only by the addition or removal of an139

element and for all measurable S ⊂ Y , we have P [M(D) ∈ S] ≤ eε · P [M(D′) ∈ S].140

We refer to pairs of inputs that differ only by the addition or removal of one person’s data as neigh-141

boring. Note that it is common to also consider replacement of one person’s data; for simplicity,142

we do not do this. We remark that there are also variants of DP such as approximate DP [Dwork143

et al., 2006a] and concentrated DP [Dwork and Rothblum, 2016, Bun and Steinke, 2016], which144

quantitatively relax the definition, but these are not relevant in our application. A key property of145

DP is that it composes and is invariant under postprocessing.146

Lemma 3.2 (Composition & Postprocessing). Let M1 : X ∗ → Y be ε1-DP. Let M2 : X ∗×Y → Z147

be such that, for all y ∈ Y , the restriction M(·, y) : X ∗ → Z is ε2-DP. Define M12 : X ∗ → Z by148

M12(D) = M2(D,M1(D)). Then M12 is (ε1 + ε2)-DP.149

A basic DP tool is the Laplace mechanism [Dwork et al., 2006b]. Note that we could also use the150

discrete Laplace mechanism [Ghosh et al., 2009, Canonne et al., 2020].151

Lemma 3.3 (Laplace Mechanism). Let q : X ∗ → R. We say q has sensitivity ∆ if |q(D)−q(D′)| ≤152

∆ for all neighboring D,D′ ∈ X ∗. Define M : X ∗ → R by M(D) = q(D) + Lap (∆/ε),153

where Lap (b) denotes laplace noise with mean 0 and variance 2b2 – i.e., P
ξ←Lap(b)

[ξ > t] =154

P
ξ←Lap(b)

[ξ < −t] = 1
2 exp

(
t
b

)
for all t > 0. Then M is ε-DP.155

Another fundamental tool for DP is the exponential mechanism [McSherry and Talwar, 2007]. It156

selects the approximately best option from among a set of options, where each option i has a quality157

function qi with sensitivity ∆. The following result generalizes the exponential mechanism by158

allowing each of the quality functions to have a different sensitivity.159
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Data Set Size Words per Person Vocabulary Size
People Records Min Median Max

Amazon Fashion 404 8533 1 14.0 139 1450
Amazon Industrial and Scientific 11041 1446031 0 86 2059 36665
Reddit 223388 7117494 0 18.0 1724 102835
IMDB 50000 6688844 5 110.0 925 98726

Table 1: Data sets details.

Theorem 3.4 (Generalized Exponential Mechanism [Raskhodnikova and Smith, 2015, Theorem160

1.4]). For each i ∈ [m], let qi : X ∗ → R be a query with sensitivity ∆i. Let ε, β > 0. The161

generalized exponential mechanism (GEM(·; {qi}i∈[m], {∆i}i∈[m], ε, β) in Algorithm 3) is ε-DP162

and has the following utility guarantee. For all D ∈ X ∗, we have163

P
î←GEM(D;{qi}i∈[m],{∆i}i∈[m],ε,β)

[
qî(D) ≥ max

j∈[m]
qj(D)−∆j ·

4

ε
log

(
m

β

)]
≥ 1− β.

4 Experimental Results164

We empirically validate the performance of our algorithms using data sets of various sizes from165

different text domains. We focus on the problem of computing vocabulary size with person-level166

DP. Section 4.1 describes the data sets and Section 4.2 discusses the algorithms we compare.167

4.1 Datasets168

We used four publicly available datasets to assess the accuracy of our algorithms compared to base-169

lines. Two small datasets were used: Amazon Fashion 5-core [Ni et al., 2019] (reviews of fashion170

products on Amazon) and Amazon Industrial and Scientific 5-core [Ni et al., 2019] (reviews of in-171

dustrial and scientific products on Amazon). Two large data sets were also used: Reddit [Shen,172

2020] (a data set of posts collected from r/AskReddit) and IMDb [N, 2020, Maas et al., 2011] (a set173

of movie reviews scraped from IMDb). See details of the datasets in Table 1.174

4.2 Comparisons175

Computing the number of distinct elements using a differentially private mechanism involves two176

steps: selecting a contribution bound (` in our algorithms) and counting the number of distinct177

elements in a way that restricts each person to only contribute the given number of elements.178

Selection: We examine three algorithms for determining the contribution limit:179

1. Choosing the true maximum person contribution (due to computational restrictions this was180

only computed for Amazon Fashion data set).181

2. Choosing the 90th percentile of person contributions.182

3. Choosing the person contribution that maximizes the utility function q`(D) = DC(D; `)−183
`
ε log( 1

2β ), where ε = 1, and β = 0.001.184

4. Choosing the person contribution that maximizes the utility function using generalized185

exponential mechanism with ε = 1.186

Note that only the last option is differentially private, but we consider the other comparison points187

nonetheless.188

Counting: We also consider three algorithms for estimating the number of distinct elements for a189

given sensitivity bound `:190

1. For each person, we independently sample ` elements and count the number of distinct191

elements in the union of the samples.192
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Selection Counting Person Contribution Bound Distinct Count

10th PC Median 90th PC 10th PC Median 90th PC

Max Contrib DP Sampling – 139 – 1196.8 1407.5 1649.1
Max Contrib DP Greedy – 139 – 1174.2 1439.2 1646.5
Max Contrib DP Matching – 139 – 1222.2 1460.9 1631.0

90th PC Contrib DP Sampling – 48 – 1225.4 1296.2 1377.9
90th PC Contrib DP Greedy – 48 – 1367.0 1432.6 1516.3
90th PC Contrib DP Matching – 48 – 1365.3 1444.7 1524.8

Max Utility Sampling – 41 – 1247.0 1259.0 1270.0
Max Utility Greedy – 20 – – 1376 –
Max Utility Matching – 17 – – 1428 –

DP Max Utility Sampling 8.9 16.0 28.0 661.6 892.5 1124.5
DP Max Utility Greedy 8.0 11.0 17.0 1148.0 1241.0 1348.0
DP Max Utility Matching 7.0 9.0 14.0 1252.0 1317.0 1400.0

DP Max Utility DP Sampling 9.0 16.0 27.1 702.4 899.1 1145.1
DP Max Utility DP Greedy 8.0 10.0 19.0 1128.5 1224.4 1370.8
DP Max Utility DP Matching 6.9 9.0 13.1 1220.6 1319.1 1394.2

Table 2: Amazon Fashion: the comparison is for `max = 100.

Selection Counting Person Contribution Bound Distinct Count

10th PC Median 90th PC 10th PC Median 90th PC

90th PC Contrib DP Sampling – 297 – 32458.1 32943.8 33452.6
90th PC Contrib DP Greedy – 297 – 36270.3 36669.5 37019.0
90th PC Contrib DP Matching – 297 – 36236.2 36651.7 37102.7

Max Utility Sampling – 99 – 24967.0 25039.0 25121.2
Max Utility Greedy – 79 – – 36246 –
Max Utility Matching – 42 – – 36364 –

DP Max Utility Sampling 85.9 96.0 99.0 23852.8 24739.0 25049.8
DP Max Utility Greedy 34.0 49.0 66.1 35393.0 35839.0 36116.9
DP Max Utility Matching 22.9 30.5 43.2 36026.8 36243.5 36371.2

DP Max Utility DP Sampling 87.0 95.0 99.0 23997.6 24701.1 25067.7
DP Max Utility DP Greedy 32.9 47.5 68.0 35336.6 35776.2 36136.6
DP Max Utility DP Matching 22.0 28.0 38.0 35970.5 36198.9 36326.7

Table 3: Amazon Industrial and Scientific: the comparison is for `max = 100.

2. The linear-time greedy algorithm (Algorithm 2) with ε = 1 and β = 0.001.193

3. The matching-based algorithm (Algorithm 1) with ε = 1 and β = 0.001.194

All of these can be converted into DP algorithms by adding Laplace noise to the result.195

In all our datasets “true maximum person contribution” and “90th percentile of person contributions”196

output bounds that are much larger than necessary to obtain true distinct count; hence, we only197

consider DP versions of the estimation algorithm for these selection algorithms.198

4.3 Results199

Figure 1 shows the dependency of the result on the contribution bound for each of the algorithms for200

computing the number of distinct elements with fixed person contribution. It is clear that matching201

and greedy algorithms vastly outperform the sampling approach that is currently used in practice.202

Tables 2 to 5 show the performance of algorithms for selecting optimal person contribution bounds203

on different data sets. For all bound selection algorithms and all data sets, the sampling approach to204
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Selection Counting Person Contribution Bound Distinct Count

10th PC Median 90th PC 10th PC Median 90th PC

90th PC Contrib DP Sampling – 75 – 92480.7 92654.8 92812.1
90th PC Contrib DP Greedy – 75 – 102544.8 102665.7 102817.7
90th PC Contrib DP Matching – 75 – 102651.1 102784.1 102907.8

Max Utility Sampling – 99 – 95606.9 95692.0 95750.3
Max Utility Greedy – 52 – – 102543 –
Max Utility Matching – 32 – – 102685 –

DP Max Utility Sampling 89.0 96.0 99.0 94549.9 95394.5 95656.5
DP Max Utility Greedy 26.0 33.0 50.0 102015.0 102253.0 102527.0
DP Max Utility Matching 14.0 18.5 30.0 102357.0 102501.5 102671.0

DP Max Utility DP Sampling 88.8 96.0 99.0 94665.2 95375.5 95693.5
DP Max Utility DP Greedy 27.0 34.0 53.0 102053.2 102289.6 102531.2
DP Max Utility DP Matching 14.9 18.5 28.0 102379.7 102512.6 102643.9

Table 4: Reddit: the comparison is for `max = 100.

Selection Counting Person Contribution Bound Distinct Count

10th PC Median 90th PC 10th PC Median 90th PC

90th PC Contrib DP Sampling – 238 – 95264.5 95593.5 95966.1
90th PC Contrib DP Greedy – 238 – 98411.0 98734.0 99120.0
90th PC Contrib DP Matching – 238 – 98354.2 98729.4 99164.2

Max Utility Sampling – 29 – 49907.8 50036.5 50195.3
Max Utility Greedy – 29 – – 98459 –
Max Utility Matching – 19 – – 98712 –

DP Max Utility Sampling 29.0 29.0 29.0 49899.6 50070.5 50220.9
DP Max Utility Greedy 22.0 25.0 29.0 98244.0 98364.0 98459.0
DP Max Utility Matching 13.0 16.0 21.0 98586.0 98674.0 98721.0

DP Max Utility DP Sampling 29.0 29.0 29.0 49924.2 50053.7 50211.9
DP Max Utility DP Greedy 20.0 26.0 29.0 98126.7 98369.6 98451.8
DP Max Utility DP Matching 12.0 16.0 21.0 98555.6 98670.4 98726.8

Table 5: IMDB: the comparison is for `max = 30.

estimating the distinct count performs much worse than the greedy and matching-based approaches.205

The greedy approach performs worse than the matching-based approach, but the difference is about206

10% for Amazon Fashion and is almost negligible for other data sets since they are much larger. As207

for the matching-based algorithm, it performs as follows on all the data sets:208

1. The algorithm that uses the bound equal to the maximal person contribution overestimates209

the actual necessary bound. Therefore, we only consider the DP algorithms for counts210

estimation. It is easy to see that while the median of the estimation is close to the actual211

distinct count, the amount of noise is somewhat large.212

2. The algorithm that uses the bound equal to the 99th percentile of person contributions213

also overestimates the necessary bound and behaves similarly to the one we just described214

(though the spread of the noise is a bit smaller).215

3. The algorithms that optimize the utility function are considered: one non-private and one216

private. The non-private algorithm with non-private estimation gives the answer that is217

very close to the true number of distinct elements. The private algorithm with non-private218

estimation gives the answer that is worse, but not too much. Finally, the private algorithm219

with the private estimation gives answers very similar to the results of the non-private220

estimation.221
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A Proofs339

Proof of Theorem 1.1. First note that q`(D) = DC(D; `)− 2`
ε log(1/2β) has sensitivity `. Since the340

generalized exponential mechanism is ε/2-DP and adding Laplace noise is also ε/2-DP, the overall341

algorithm is ε-DP by composition.342

Since ν̂ ← qˆ̀(D) + Lap
(

2ˆ̀/ε
)

, we have343

P̂
ν

[
ν̂ ≤ qˆ̀(D) +

2ˆ̀

ε
log

(
1

2β

)]
= P̂

ν

[
ν̂ ≥ qˆ̀(D)− 2ˆ̀

ε
log

(
1

2β

)]
= 1− β. (8)

Substituting q`(D) = DC(D; `)− 2`
ε log(1/2β) into Equation (8) gives344

P̂
ν

[
ν̂ ≤ DC(D; ˆ̀)

]
= (9)

P̂
ν

[
ν̂ ≥ DC(D; ˆ̀)− 4ˆ̀

ε
log

(
1

2β

)]
= 1− β. (10)

Combining Equation (9) with DC(D; ˆ̀) ≤ DC(D) yields the guarantee in Equation (3) that ν̂ is a345

lower bound on DC(D) with probability ≥ 1− β.346

The accuracy guarantee of the generalized exponential mechanism (Theorem 3.4) is347

P̂
`

[
qˆ̀(D) ≥ max

`∈[`max]
q`(D)− ` · 4

ε/2
log(`max/β)

]
≥ 1− β

or, equivalently,348

P̂
`

[
DC(D; ˆ̀)− 2ˆ̀

ε
log

(
1

2β

)
≥ max
`∈[`max]

DC(D; `)− 2`

ε
log

(
1

2β

)
− 8`

ε
log

(
`max

β

)]
≥ 1− β.

(11)
Combining Equations (10) and (11) with a union bound yields349

P
(ˆ̀,ν̂)←M(D)

[
ν̂ ≥ max

`∈[`max]
DC(D; `)− 2`+ 2ˆ̀

ε
log

(
1

2β

)
− 8`

ε
log

(
`max

β

)]
≥ 1− 2β. (12)
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To interpret Equation (12) we need a high-probability upper bound on ˆ̀. Let A > 0 be determined350

later and define351

`∗A := arg max
`∈[`max]

DC(D; `)− A`

ε
, (13)

so that DC(D; `) ≤ DC(D; `∗A) + (`− `∗A)Aε for all ` ∈ [`max]. Assume the event in Equation (11)352

holds. We have353

DC(D; ˆ̀)− 2ˆ̀

ε
log

(
1

2β

)
≤ DC(D; `∗A) + (ˆ̀− `∗A)

A

ε
− 2ˆ̀

ε
log

(
1

2β

)
, (by Equation (13))

DC(D; ˆ̀)− 2ˆ̀

ε
log

(
1

2β

)
≥ max
`∈[`max]

DC(D; `)− 2`

ε
log

(
1

2β

)
− 8`

ε
log

(
`max

β

)
(by assumption)

≥ DC(D; `∗A)− 2`∗A
ε

log

(
1

2β

)
− 8`∗A

ε
log

(
`max

β

)
.

Combining inequalities and simplifying yields354

ˆ̀·
(

2 log

(
1

2β

)
−A

)
≤ `∗A ·

(
2 log

(
1

2β

)
+ 8 log

(
`max

β

)
−A

)
. (14)

Now we set A = log
(

1
2β

)
to obtain355

ˆ̀· log

(
1

2β

)
≤ `∗A ·

(
log

(
1

2β

)
+ 8 log

(
`max

β

))
. (15)

Substituting Equation (15) into Equation (12) gives356

P
(ˆ̀,ν̂)←M(D)

[
ν̂ ≥ max

`∈[`max]
DC(D; `)− 2`+ 2`∗A

ε
log

(
1

2β

)
− 8`+ 16`∗A

ε
log

(
`max

β

)]
≥ 1−2β.

(16)
We simplify Equation (16) using log

(
1

2β

)
≤ log

(
`max

β

)
to obtain Equation (4).357

Finally, the runtime of DPDISTINCTCOUNT(D) is dominated by `max calls to the358

SENSITIVEDISTINCTCOUNT(D) subroutine, which computes the maximum size of a bipartite359

matching on a graph with |E| =
∑
i∈[n] |ui| · min{`, |ui|} ≤ |D| · `max edges and |V | + |U | =360

DC(D) +
∑
i∈[n] min{`, |ui|} ≤ 2|D| vertices. The Hopcroft-Karp-Karzanov algorithm runs in361

time O(|E| ·
√
|V |+ |U |) ≤ O(|D|1.5 · `max) time.362

Proof of Theorem 1.2. We start from proving privacy guarantees. Note that Algo-363

rithm 2 produces the same result as Algorithm 4. Hence, it is enough to prove that364

SENSITIVEAPPROXDISTINCTCOUNT(·, `) has sensitivity `. In addition, note that365

SENSITIVEAPPROXDISTINCTCOUNT((u1, · · · , un), `) =

SENSITIVEAPPROXDISTINCTCOUNT((u1, · · · , un, · · · , u1, · · · , un︸ ︷︷ ︸
` times

), 1);

therefore, it is enough to prove that SENSITIVEAPPROXDISTINCTCOUNT(·, 1) has sensitivity 1.366

Assume D′ = (u1, ·, uj−1, uj+1, . . . , un) and let S1, . . . , Sn, v1, . . . , vn be states of S and367

v (vi =⊥ if i is skipped), respectively, when run APPROXSENSITIVEDISTINCTCOUNT(D) and368

S′1, . . . , S′n, v′1, . . . , v′n be states of S and v (vi =⊥ if i is skipped), respectively, when run369

APPROXSENSITIVEDISTINCTCOUNT(D′). Let {i1, . . . , ik} = {i : Si 6= S′i}. It is clear that370

i1 ≥ j and v′i1 = vj ; similarly v′i2 is either ⊥ or v′i2 = vi1 etc. As a result |S′n| ≤ |Sn| ≤ |S′n|+ 1.371

The sensitivity bound implies that q`(D) = |S| − 2`
ε log(1/2β) has sensitivity `. Since the gen-372

eralized exponential mechanism is ε/2-DP and adding Laplace noise is also ε/2-DP, the overall373

algorithm is ε-DP by composition.374
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Algorithm 4 Approximate Distinct Count Algorithm

1: procedure SENSITIVEAPPROXDISTINCTCOUNT(D=(u1, · · · , un)∈(Ω∗)n; `∈N)
2: S ← ∅.
3: for `′ ∈ [`] do
4: for i ∈ [n] with ui \ S 6= ∅ do
5: Choose lexicographically first v ∈ ui \ S. . Match (i, `) to v.
6: Update S ← S ∪ {v}.
7: end for
8: end for
9: return |S|

10: end procedure
11: procedure DPAPPROXDISTINCTCOUNT(D = (u1, · · · , un) ∈ (Ω∗)n; `max ∈ N, ε > 0, β ∈

(0, 12 ))
12: for ` ∈ [`max] do
13: Define q`(D) := SENSITIVEAPPROXDISTINCTCOUNT(D; `)− 2`

ε · log
(

1
2β

)
.

14: end for
15: ˆ̀← GEM(D; {q`}`∈[`max], {`}`∈[`max], ε/2, β). . Algorithm 3

16: ν̂ ← qˆ̀(D) + Lap
(

2ˆ̀/ε
)

.

17: return (ˆ̀, ν̂) ∈ [`max]× R.
18: end procedure

Let us denote by D̂C(D; `) the value of |S| we obtain on Line 8 in Algorithm 2. Note that D̂C(D; `)375

is size of a maximal matching in G`, where G` is the bipartite graph corresponding to the input D376

with ` copies of each person (see Algorithm 1 for a formal description of the graph). Since a maximal377

matching is a 2-approximation to a maximum matching, we have D̂C(D; `) ≥ 1
2DC(D; `). Also378

D̂C(D; `) ≤ DC(D; `).379

Since ν̂ ← qˆ̀(D) + Lap
(

2ˆ̀/ε
)

, we have380

P̂
ν

[
ν̂ ≤ qˆ̀(D) +

2ˆ̀

ε
log

(
1

2β

)]
= P̂

ν

[
ν̂ ≥ qˆ̀(D)− 2ˆ̀

ε
log

(
1

2β

)]
= 1− β. (17)

Substituting q`(D) = D̂C(D; `)− 2`
ε log(1/2β) into Equation (17) gives381

P̂
ν

[
ν̂ ≤ D̂C(D; ˆ̀)

]
= (18)

P̂
ν

[
ν̂ ≥ D̂C(D; ˆ̀)− 4ˆ̀

ε
log

(
1

2β

)]
= 1− β. (19)

Combining Equation (18) with D̂C(D; ˆ̀) ≤ DC(D) yields the guarantee in Equation (6) that ν̂ is a382

lower bound on DC(D) with probability ≥ 1− β.383

The accuracy guarantee of the generalized exponential mechanism (Theorem 3.4) is384

P̂
`

[
qˆ̀(D) ≥ max

`∈[`max]
q`(D)− ` · 4

ε/2
log(`max/β)

]
≥ 1− β

or, equivalently,385

P̂
`

[
D̂C(D; ˆ̀)− 2ˆ̀

ε
log

(
1

2β

)
≥ max
`∈[`max]

D̂C(D; `)− 2`

ε
log

(
1

2β

)
− 8`

ε
log

(
`max

β

)]
≥ 1− β.

(20)
Combining Equations (19) and (20) with a union bound yields386

P
(ˆ̀,ν̂)←M(D)

[
ν̂ ≥ max

`∈[`max]
D̂C(D; `)− 2`+ 2ˆ̀

ε
log

(
1

2β

)
− 8`

ε
log

(
`max

β

)]
≥ 1− 2β. (21)
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To interpret Equation (21) we need a high-probability upper bound on ˆ̀. Let A > 0 be determined387

later and define388

`∗A := arg max
`∈[`max]

D̂C(D; `)− A`

ε
, (22)

so that D̂C(D; `) ≤ D̂C(D; `∗A) + (`− `∗A)Aε for all ` ∈ [`max]. Assume the event in Equation (20)389

holds. We have390

D̂C(D; ˆ̀)− 2ˆ̀

ε
log

(
1

2β

)
≤ D̂C(D; `∗A) + (ˆ̀− `∗A)

A

ε
− 2ˆ̀

ε
log

(
1

2β

)
, (by Equation (22))

D̂C(D; ˆ̀)− 2ˆ̀

ε
log

(
1

2β

)
≥ max
`∈[`max]

D̂C(D; `)− 2`

ε
log

(
1

2β

)
− 8`

ε
log

(
`max

β

)
(by assumption)

≥ D̂C(D; `∗A)− 2`∗A
ε

log

(
1

2β

)
− 8`∗A

ε
log

(
`max

β

)
.

Combining inequalities and simplifying yields391

ˆ̀·
(

2 log

(
1

2β

)
−A

)
≤ `∗A ·

(
2 log

(
1

2β

)
+ 8 log

(
`max

β

)
−A

)
. (23)

Now we set A = log
(

1
2β

)
to obtain392

ˆ̀· log

(
1

2β

)
≤ `∗A ·

(
log

(
1

2β

)
+ 8 log

(
`max

β

))
. (24)

Substituting Equation (15) into Equation (21) gives393

P
(ˆ̀,ν̂)←M(D)

[
ν̂ ≥ max

`∈[`max]
D̂C(D; `)− 2`+ 2`∗A

ε
log

(
1

2β

)
− 8`+ 16`∗A

ε
log

(
`max

β

)]
≥ 1−2β.

(25)
We simplify Equation (25) using log

(
1

2β

)
≤ log

(
`max

β

)
to obtain394

P
(ˆ̀,ν̂)←M̂(D)

[
ν̂ ≥ max

`∈[`max]
D̂C(D; `)− 10`+ 18`∗A

ε
log

(
`max

β

)]
≥ 1− 2β. (26)

Note that D̂C(D; `) ≥ 1
2DC(D; `); hence,395

P
(ˆ̀,ν̂)←M̂(D)

[
ν̂ ≥ max

`∈[`max]

1

2
DC(D; `)− 10`+ 18`∗A

ε
log

(
`max

β

)]
≥ 1− 2β.

Finally, note that `∗A ≤ `∗; therefore, we proved Equation (7).396

It only remains to verify that Algorithm 2 can be implemented in O(|D|) time. We can implement397

S using a hash table to ensure that we can add an element or query membership of an element in398

constant time. (We can easily maintain a counter for the size of S.) We assume D is presented as399

a linked list of linked lists representing each ui and furthermore that the linked lists ui are sorted400

in lexicographic order. The outer loop proceeds through the linked list for D = (u1, · · · , un). For401

each ui, we simply pop elements from the linked list and check if they are in S until either we find402

v ∈ ui \ S (and add v to S) or ui becomes empty (in which case we remove it from the linked list403

for D.) Since each iteration decrements |D|, the runtime is O(|D|).404
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