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Abstract

We study the problem of counting the number of distinct elements in a dataset
subject to the constraint of differential privacy. We consider the challenging set-
ting of person-level DP (a.k.a. user-level DP) where each person may contribute
an unbounded number of items and hence the sensitivity is unbounded.
Our approach is to compute a bounded-sensitivity version of this query, which
reduces to solving a max-flow problem. The sensitivity bound is optimized to
balance the noise we must add to privatize the answer against the error of the
approximation of the bounded-sensitivity query to the true number of unique ele-
ments.

1 Introduction

An elementary data analysis task is to count the number of distinct elements occurring in a dataset.
The dataset may contain private data and even simple statistics can be combined to leak sensitive
information about people [DN03]. Our goal is to release (an approximation to) this count in a way
that ensures the privacy of the people who contributed their data. As a motivating example, consider
a collection of internet browsing histories, in which case the goal is to compute the total number of
websites that have been visited by at least one person.

Differential privacy (DP) [DMNS06] is a formal privacy standard. The simplest method for ensuring
DP is to add noise (from either a Laplace or Gaussian distribution) to the true answer, where the scale
of the noise corresponds to the sensitivity of the true answer – i.e., how much one person’s data can
change the true value.

If each person contributes a single element to the dataset, then the sensitivity of the number of
unique elements is one. However, a person may contribute multiple elements to the dataset and our
goal is to ensure privacy for all of these contributions simultaneously. That is, we seek to provide
person-level DP (a.k.a. user-level DP2).

This is the problem we study: We have a dataset D = (u1, u2, · · · , un) of person records. Each
person i ∈ [n] contributes a finite dataset ui ∈ Ω∗, where Ω is some (possibly infinite) universe of
potential elements (e.g., all finite-length binary strings) and Ω∗ :=

⋃
`∈N Ω` denotes all subsets of

Ω of finite size. Informally, our goal is to compute the number of unique elements

DC(D) :=

∣∣∣∣∣∣
⋃
i∈[n]

ui

∣∣∣∣∣∣ (1)

∗Alphabetical author order.
2We prefer the term “person” over “user,” as the latter only makes sense in some contexts and could be

confusing in others.
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in a way that preserves differential privacy. A priori, the sensitivity of this quantity is infinite, as a
single person can contribute an unbounded number of unique elements.

In particular, it is not possible to output a meaningful upper bound on the number of distinct elements
subject to differential privacy. This is because a single person could increase the number of distinct
elements arbitrarily and differential privacy requires us to hide this contribution. It follows that
we cannot output a differentially private unbiased estimate of the number of distinct elements with
finite variance. However, it is possible to output a lower bound. Thus our formal goal is to compute
a high-confidence lower bound on the number of distinct elements that is as large as possible and
which is computed in a differentially private manner.

1.1 Our Contributions

Given a dataset D = (u1, · · · , un) ∈ (Ω∗)n and an integer ` ≥ 1, we define

DC(D; `) := max


∣∣∣∣∣∣
⋃
i∈[n]

vi

∣∣∣∣∣∣ : ∀i ∈ [n] vi ⊆ ui ∧ |vi| ≤ `

 . (2)

That is, DC(D; `) is the number of distinct elements if we restrict each person’s contribution to `
elements. We take the maximum over all possible restrictions.

It is immediate that DC(D; `) ≤ DC(D) for all ` ≥ 1. Thus we obtain a lower bound on the true
number of unique elements. The advantage of DC(D; `) is that its sensitivity is bounded by ` (see
Lemma A.1 for a precise statement) and, hence, we can estimate it in a differentially private manner.
Specifically,

M`,ε(D) := DC(D; `) + Lap (`/ε) (3)

defines an ε-DP algorithm M`,ε : (Ω∗)n → R, where Lap (b) denotes Laplace noise scaled to have
mean 0 and variance 2b2. This forms the basis of our algorithm. Two challenges remain: Setting the
sensitivity parameter ` and computing DC(D; `) efficiently.

To obtain a high-confidence lower bound on the true distinct count, we must compensate for the
Laplace noise, which may inflate the reported value. We can obtain such a lower bound fromM`(D)
using the cumulative distribution function (CDF) of the Laplace distribution: That is, ∀b > 0 ∀β ∈
(0, 1/2] P

[
Lap (b) ≥ b · log

(
1

2β

)]
= β, so

P

M`,ε(D)− `

ε
· log

(
1

2β

)
︸ ︷︷ ︸

lower bound

≤ DC(D)

 ≥ 1− β︸ ︷︷ ︸
confidence

. (4)

Choosing the sensitivity parameter `. Any choice of ` ≥ 1 gives us a lower bound: DC(D; `) ≤
DC(D). Since ∀D lim`→∞DC(D; `) = DC(D), this lower bound can be arbitrarily tight. How-
ever, the larger ` is, the larger the sensitivity of DC(D; `) is. That is, the noise we add scales linearly
with `.

Thus there is a bias-variance tradeoff in the choice of `. To make this precise, suppose we want a
lower bound on DC(D) with confidence 1 − β ∈ [ 1

2 , 1), as in Equation (4). To obtain the tightest
possible lower bound with confidence 1− β, we want ` to maximize the expectation

q(D; `) := DC(D; `)− `

ε
· log

(
1

2β

)
= E
M`,ε

[
M`,ε(D)− `

ε
· log

(
1

2β

)]
. (5)

We can use the exponential mechanism [MT07] to privately select ` that approximately maximizes
q(D; `). However, directly applying the exponential mechanism is problematic because each score
has a different sensitivity – the sensitivity of q(·; `) is `. Instead, we apply the Generalized Expo-
nential Mechanism (GEM) of Raskhodnikova and Smith [RS15] (see Algorithm 3). Note that we
assume some a priori maximum value of ` is supplied to the algorithm; this is `max.

Our main algorithm attains the following guarantees.
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Theorem 1.1 (Theoretical Guarantees of Our Algorithm). Let ε > 0 and β ∈ (0, 1
2 ) and `max ∈ N.

DefineM : (Ω∗)∗ → N×R to beM(D) = DPDISTINCTCOUNT(D; `max, ε, β) from Algorithm 1.
ThenM satisfies all of the following properties.

• Privacy:M is ε-differentially private.

• Lower bound: For all D ∈ (Ω∗)n,

P
(ˆ̀,ν̂)←M(D)

[ν̂ ≤ DC(D)] ≥ 1− β. (6)

• Upper bound: For all D ∈ (Ω∗)n,

P
(ˆ̀,ν̂)←M(D)

[
ν̂ ≥ max

`∈[`max]
DC(D; `)− 10`+ 18`∗A

ε
log

(
`max

β

)]
≥ 1− 2β, (7)

where `∗A = arg max`∈[`max] DC(D; `)− `
ε log

(
1

2β

)
.

• Computational efficiency: M(D) has running time O
(
|D|1.5 · `2max

)
, where |D| :=∑

i |ui|.

The upper bound guarantee (7) is somewhat difficult to interpret. However, if the number of items
per person is bounded by `∗, then we can offer a clean guarantee: If D = (u1, · · · , un) ∈ (Ω∗)n

satisfies maxi∈[n] |ui| ≤ `∗ ≤ `max, then combining the upper and lower bounds of Theorem 1.1
gives

P
(ˆ̀,ν̂)←M(D)

[
DC(D) ≥ ν̂ ≥ DC(D)− 28`∗

ε
log

(
`max

β

)]
≥ 1− 3β. (8)

Note that `∗ is not assumed to be known to the algorithm, but the accuracy guarantee is able to adapt.
We only assume `∗ ≤ `max, where `max is the maximal sensitivity considered by the algorithm.

In addition to proving the above theoretical guarantees, we perform an experimental evaluation of
our algorithm.

Algorithm 1 Distinct Count Algorithm

1: procedure SENSITIVEDISTINCTCOUNT(D=(u1, · · · , un)∈(Ω∗)n; `∈N) . DC(D; `)
2: Let U` =

⋃
i∈[n]

(
{i} × [min{`, |ui|}]

)
⊂ [n]× [`].

3: Let V =
⋃
i∈[n] ui ⊂ Ω.

4: Define E` ⊆ U × V by ((i, j), v) ∈ E ⇐⇒ v ∈ ui.
5: Let G` be a bipartite graph with vertices partitioned into U` and V and edges E`.
6: m` ← MAXIMUMMATCHINGSIZE(G). . [HK73; Kar73]
7: return m` ∈ N
8: end procedure
9: procedure DPDISTINCTCOUNT(D=(u1, · · · , un)∈(Ω∗)n; `max∈N, ε>0, β∈(0, 12 ))

10: for ` ∈ [`max] do
11: Define q`(D) := SENSITIVEDISTINCTCOUNT(D; `)− 2`

ε · log
(

1
2β

)
.

12: end for
13: ˆ̀← GEM(D; {q`}`∈[`max], {`}`∈[`max], ε/2, β). . Algorithm 3

14: ν̂ ← qˆ̀(D) + Lap
(

2ˆ̀/ε
)

.

15: return (ˆ̀, ν̂) ∈ [`max]× R.
16: end procedure

Efficient computation. The main computational task for our algorithm is to compute DC(D; `).
By definition (2), this is an optimization problem. For each person i ∈ [n], we must select a subset
vi of that person’s data ui of size at most ` so as to maximize the size of the union of the subsets∣∣∣⋃i∈[n] vi

∣∣∣.
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We can view the datasetD = (u1, · · · , un) ∈ (Ω∗)n as a bipartite graph. On one side we have the n
people and on the other side we have the elements of the data universe Ω.3 There is an edge between
i ∈ [n] and x ∈ Ω if and only if x ∈ ui.
We can reduce computing DC(D; `) to a max-flow problem: Each edge in the bipartite graph has
capacity one. We add a source vertex s which is connected to each person i ∈ [n] by an edge with
capacity `. Finally we add a sink t that is connected to each x ∈ Ω by an edge with capacity 1. The
max flow through this graph is precisely DC(D; `).

Alternatively, we can reduce computing DC(D; `) to bipartite maximum matching. For ` = 1,
DC(D; 1) is exactly the maximum cardinality of a matching in the bipartite graph described above.
For ` ≥ 2, we simply create ` copies of each person vertex i ∈ [n] and then DC(D; `) is the
maximum cardinality of a matching in this new bipartite graph.4

Using this reduction, standard algorithms for bipartite maximum matching [HK73; Kar73] allow
us to compute DC(D; `) with O(|D|1.5 · `) operations. We must repeat this computation for each
` ∈ [`max].

Algorithm 2 Linear-Time Approximate Distinct Count Algorithm

1: procedure DPAPPROXDISTINCTCOUNT(D=(u1,· · ·, un)∈(Ω∗)n; `max∈N, ε>0, β∈(0, 12 ))
2: S ← ∅.
3: for ` ∈ [`max] do
4: for i ∈ [n] with ui \ S 6= ∅ do
5: Choose lexicographically first v ∈ ui \ S. . Match (i, `) to v.
6: Update S ← S ∪ {v}.
7: end for
8: Define q`(D) := |S| − 2`

ε · log
(

1
2β

)
. . This loop computes {q`(D)}`∈[`max].

9: end for
10: ˆ̀← GEM(D; {q`}`∈[`max], {`}`∈[`max], ε/2, β). . Algorithm 3

11: ν̂ ← qˆ̀(D) + Lap
(

2ˆ̀/ε
)

.

12: return (ˆ̀, ν̂) ∈ [`max]× R.
13: end procedure

Linear-time algorithm. Our algorithm above is polynomial-time. However, for many applica-
tions the dataset size |D| is enormous. Thus we also propose a linear-time variant of our algorithm.
However, we must trade accuracy for efficiency.

There are two key ideas that differentiate our linear-time algorithm (Algorithm 2) from our first
algorithm (Algorithm 1) above: First, we compute a maximal bipartite matching instead of a
maximum bipartite matching.5 This can be done using a linear-time greedy algorithm and gives
a 2-approximation to the maximum matching. (Experimentally we find that the approximation is
better than a factor of 2.) Second, rather than repeating the computation from scratch for each
` ∈ [`max], we incrementally update our a maximal matching while increasing `. The main chal-
lenge here is ensuring that the approximation to DC(D; `) has low sensitivity – i.e., we must ensure
that our approximation algorithm doesn’t inflate the sensitivity. Note that DC(D; `) having low
sensitivity does not automatically ensure that the approximation to it has low sensitivity.

Theorem 1.2 (Theoretical Guarantees of Our Linear-Time Algorithm). Let ε > 0 and
β ∈ (0, 1

2 ) and `max ∈ N. Define M : (Ω∗)∗ → N × R to be M̂(D) =

3The data universe Ω may be infinite, but we can restrict the computation to the finite set
⋃

i∈[n] ui. Thus
there are at most n + DC(D) ≤ n + |D| item vertices in the graph.

4We need only create min{`, |ui|} copies of the person i ∈ [n]. Thus the number of person vertices is at
most min{n`, |D|}.

5To clarify the confusing terminology: A matching is a subset of edges such that no two edges have a
vertex in common. A maximum matching is a matching of the largest possible size. A maximal matching
is a matching such that no edge could be added to the matching without violating the matching property. A
maximum matching is also a maximal matching, but the reverse is not true.
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Data Set Vocabulary Size Estimated Vocabulary Size

10th Percentile Median 90th Percentile

Amazon Fashion 1450 1220.6 1319.1 1394.2
Amazon Industrial and Scientific 36665 35970.5 36198.9 36326.7
Reddit 102835 102379.7 102512.6 102643.9
IMDB 98726 98555.6 98670.4 98726.8

Table 1: True and estimated (using DPDistinctCount with ε = 1, β = 0.05 and `max = 100)
counts per data set.

DPAPPROXDISTINCTCOUNT(D; `max, ε, β) from Algorithm 2. Then M̂ satisfies all of the fol-
lowing properties.

• Privacy: M̂ is ε-differentially private.

• Lower bound: For all D ∈ (Ω∗)n,

P
(ˆ̀,ν̂)←M̂(D)

[ν̂ ≤ DC(D)] ≥ 1− β. (9)

• Upper bound: If D = (u1, · · · , un) ∈ (Ω∗)n satisfies maxi∈[n] |ui| ≤ `∗ ≤ `max, then

P
(ˆ̀,ν̂)←M̂(D)

[
ν̂ ≥ 1

2
DC(D)− 28`∗

ε
log

(
`max

β

)]
≥ 1− 2β. (10)

• Computational efficiency: M(D) has running time O (|D|+ `max log `max), where
|D| :=

∑
i |ui|.

The factor 1
2 in the upper bound guarantee (10) is the main loss compared to Theorem 1.1. (The win

is O(|D|) runtime.) This is a worst-case bound and our experimental result show that for realistic
data the performance gap is not so bad.

The proofs of Theorems 1.1 and 1.2 are in Appendix A.

2 Related Work

Counting the number of distinct elements in a collection is one of the most fundamental database
computations. This is supported as the COUNT(DISTINCT ...) operation in SQL. Hence, unsur-
prisingly, the problem of computing the number of unique elements in a differentially private way
has been extensively investigated.

In the case where we assume each person contributes only one element (a.k.a. event-level privacy
or item-level privacy), the number of distinct elements has sensitivity 1 and, hence, we can simply
use Laplace (or Gaussian) noise addition to release. However, it may not be possible to compute the
number of distinct elements exactly due to space, communication, or trust constraints (e.g. in the
local model of DP [KLNRS11]).

Most efforts have been focused on creating differentially private algorithms for counting distinct
elements under space constraints (and assuming each person contributes a single element). To save
space, we wish to compute a small summary of the dataset (called a sketch) that allows us to estimate
the number of distinct elements and which can be updated as more elements are added. Smith, Song,
and Thakurta [SST20] proved that a variant of the Flajolet-Martin sketch is private and Pagh and
Stausholm [PS20] analyzed a sketch over the binary finite field. Dickens, Thaler, and Ting [DTT22]
proved a general privacy result for order-invariant cardinality estimators. Hehir, Ting, and Cormode
[HTC23] provided a mergeable private sketch (i.e. two sketches can be combined to obtain a sketch
of the union of the two datasets). In contrast, Desfontaines, Lochbihler, and Basin [DLB19] proved
an impossibility result for mergeable sketches, which shows that privacy or accuracy must degrade
as we merge sketches.
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Figure 1: Performance of different algorithms estimating distinct count assuming that each person
can contribute at most ` elements (e.g., these algorithms are estimating DC(D; `)). (These algo-
rithms have bounded sensitivity, but we do not add noise for privacy yet.)

Counting unique elements has been considered in the pan-private streaming setting [DNPRY10]
(the aforementioned algorithms also work in the pan-private setting) and in the continual release
streaming setting [GKNM23]. (In the continual release setting the approximate count is continually
updated, while in the pan-private setting the approximate count is only revealed once, but at an
unknown point in time.) Kreuter, Wright, Skvortsov, Mirisola, and Wang [KWSMW20] give private
algorithms for counting distinct elements in the setting of secure multiparty computation. In the local
and shuffle models, the only known results are communication complexity bounds [CGKM21].

A closely related problem is that of identifying as many elements as possible (rather than just count-
ing them); this is known as “partition selection,” “set union,” or “key selection” [SDH23; DVGM22;
KKMN09; CWG22; RCR22; GGKSSY20; ZDKSTMAS23]. Note that, by design, DP prevents us
from identifying elements that only appear once in the dataset, or only a few times. Thus we can
only output items that appear frequently.

The most closely related work to ours is that of Dong, Fang, Yi, Tao, and Machanavajjhala
[DFYTM22] and Fang, Dong, and Yi [FDY22]. These papers present two different algorithms for
privately approximating the distinct count (and other statistics). We discuss these below and present
an experimental comparison in Table 2. We also remark that both papers prove instance optimality
guarantees for their algorithms.
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Figure 2: Performance of different algorithms estimating distinct count in a differentially private
way for different values of ε; for all of them β = 0.05 and `max = 100. The values between 10th
and 90th percentile of each algorithms estimation are shaded into corresponding colors. For the
shifted inverse algorithm, the first two plots contain the results for β = 0.05 and D equal to the true
number of distinct elements in the dataset. The later two datasets are lacking the results for shifted
inverse algorithm due to the computational constraints.
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User Supplier Customer

Attribute PS.AQ L.EP O.OD L.RD

R2T [DFYTM22] 0.0658 0.1759 0.0061 0.150
(Approx)ShiftedInverse [FDY22] 0.0553 0.0584 0.005 0.0061
DPApproxDistinctCount 0.0140 0.0110 0.0008 0.0037
DPDistinctCount 0.0100 0.0096 0.0008 0.0001

Table 2: Average relative absolute error of algorithms described in this paper and in [DFYTM22;
FDY22] on the TPC-H dataset. For each algorithm we executed it 100 times, removed 20 top and
20 bottom values and computed average error for the rest of 60 values.

Most similar to our algorithm is the Race-to-the-Top (R2T) algorithm [DFYTM22]; R2T is a generic
framework and the original paper did not specifically consider counting distinct elements, but the
approach can easily be applied to DC(D; `). While we use the generalized exponential mechanism
[RS15] to select the sensitivity `, R2T computes multiple lower bounds with different sensitivities
` and then outputs the maximum of the noisy values. This approach incurs the cost of composition
across the multiple evaluations. To manage this cost, R2T only evaluates ` = 2, 4, 8, · · · , 2log `max .
Compared to our guarantee (8) with an error O

(
`∗
ε log

(
`max

β

))
, R2T has a slightly worse theoret-

ical error guarantee of O
(
`∗
ε log(`max) log

(
log `max

β

))
[DFYTM22, Theorem 5.1].

The shifted inverse mechanism [FDY22] takes a different approach to the problem. Rather than
relying on adding Laplace noise (as we do), it applies the exponential mechanism with an ingenious
loss function (see [Ste23] for additional discussion). When applied to counting distinct elements, the
shifted inverse mechanism gives an accuracy guarantee comparable to ours (8). The downside of the
shifted inverse mechanism is that computing the loss function is, in general, NP-hard. Fang, Dong,
and Yi [FDY22] propose polynomial-time variants for several specific tasks, including counting
distinct elements. However, the algorithm is still relatively slow.

3 Technical Background on Differential Privacy

For detailed background on differential privacy, see the survey by Vadhan [Vad17] or the book by
Dwork and Roth [DR14]. We briefly define pure DP and some basic mechanisms and results.

Algorithm 3 Generalized Exponential Mechanism [RS15]

1: procedure GEM(D∈X ∗; qi :X ∗→R for i∈ [m], ∆i>0 for i∈ [m], ε>0, β>0)
2: Require: qi has sensitivity sup x,x′∈X∗

neighboring
|q(x)− q(x′)| ≤ ∆i for all i ∈ [m].

3: Let t = 2
ε log

(
m
β

)
.

4: for i ∈ [m] do
5: si ← minj∈[m]

(qi(D)−t∆i)−(qj(D)−t∆j)
∆i+∆j

.
6: end for
7: Sample î ∈ [m] from the Exponential Mechanism using the normalized scores si; i.e.,

∀i ∈ [m] P
[̂
i = i

]
=

exp
(

1
2εsi

)∑
k∈[m] exp

(
1
2εsk

) .
8: return î ∈ [m].
9: end procedure

Definition 3.1 (Differential Privacy (DP) [DMNS06] ). A randomized algorithm M : X ∗ → Y
satisfies ε-DP if, for all inputs D,D′ ∈ X ∗ differing only by the addition or removal of an element
and for all measurable S ⊂ Y , we have P [M(D) ∈ S] ≤ eε · P [M(D′) ∈ S].

We refer to pairs of inputs that differ only by the addition or removal of one person’s data as neigh-
boring. Note that it is common to also consider replacement of one person’s data; for simplicity, we

8



Data Set Size Words per Person Vocabulary Size
People Records Min Median Max

Amazon Fashion 404 8533 1 14.0 139 1450
Amazon Industrial and Scientific 11041 1446031 0 86 2059 36665
Reddit 223388 7117494 0 18.0 1724 102835
IMDB 50000 6688844 5 110.0 925 98726

Table 3: Data sets details.

do not do this. We remark that there are also variants of DP such as approximate DP [DKMMN06]
and concentrated DP [DR16; BS16], which quantitatively relax the definition, but these are not
relevant in our application. A key property of DP is that it composes and is invariant under postpro-
cessing.

Lemma 3.2 (Composition & Postprocessing). Let M1 : X ∗ → Y be ε1-DP. Let M2 : X ∗×Y → Z
be such that, for all y ∈ Y , the restriction M(·, y) : X ∗ → Z is ε2-DP. Define M12 : X ∗ → Z by
M12(D) = M2(D,M1(D)). Then M12 is (ε1 + ε2)-DP.

A basic DP tool is the Laplace mechanism [DMNS06]. Note that we could also use the discrete
Laplace mechanism [GRS09; CKS20].

Lemma 3.3 (Laplace Mechanism). Let q : X ∗ → R. We say q has sensitivity ∆ if |q(D)−q(D′)| ≤
∆ for all neighboring D,D′ ∈ X ∗. Define M : X ∗ → R by M(D) = q(D) + Lap (∆/ε),
where Lap (b) denotes laplace noise with mean 0 and variance 2b2 – i.e., P

ξ←Lap(b)
[ξ > t] =

P
ξ←Lap(b)

[ξ < −t] = 1
2 exp

(
t
b

)
for all t > 0. Then M is ε-DP.

Another fundamental tool for DP is the exponential mechanism [MT07]. It selects the approximately
best option from among a set of options, where each option i has a quality function qi with sensitivity
∆. The following result generalizes the exponential mechanism by allowing each of the quality
functions to have a different sensitivity.

Theorem 3.4 (Generalized Exponential Mechanism [RS15, Theorem 1.4]). For each i ∈ [m], let
qi : X ∗ → R be a query with sensitivity ∆i. Let ε, β > 0. The generalized exponential mechanism
(GEM(·; {qi}i∈[m], {∆i}i∈[m], ε, β) in Algorithm 3) is ε-DP and has the following utility guarantee.
For all D ∈ X ∗, we have

P
î←GEM(D;{qi}i∈[m],{∆i}i∈[m],ε,β)

[
qî(D) ≥ max

j∈[m]
qj(D)−∆j ·

4

ε
log

(
m

β

)]
≥ 1− β.

4 Experimental Results

We empirically validate the performance of our algorithms using data sets of various sizes from
different text domains. We focus on the problem of computing vocabulary size with person-level
DP. Section 4.1 describes the data sets and Section 4.2 discusses the algorithms we compare.

4.1 Datasets

We used four publicly available datasets to assess the accuracy of our algorithms compared to base-
lines. Two small datasets were used: Amazon Fashion 5-core [NLM19] (reviews of fashion products
on Amazon) and Amazon Industrial and Scientific 5-core [NLM19] (reviews of industrial and sci-
entific products on Amazon). Two large data sets were also used: Reddit [She20] (a data set of posts
collected from r/AskReddit) and IMDb [N20; MDPHNP11] (a set of movie reviews scraped from
IMDb). See details of the datasets in Table 3.
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4.2 Comparisons

Computing the number of distinct elements using a differentially private mechanism involves two
steps: selecting a contribution bound (` in our algorithms) and counting the number of distinct
elements in a way that restricts each person to only contribute the given number of elements.

Selection: We examine four algorithms for determining the contribution limit:

1. Choosing the true maximum person contribution (due to computational restrictions this was
only computed for Amazon Fashion data set).

2. Choosing the 90th percentile of person contributions.
3. Choosing the person contribution that exactly maximizes the utility function q`(D) =

DC(D; `)− `
ε log( 1

2β ), where ε = 1, and β = 0.001.

4. Choosing the person contribution that approximately maximizes the utility function using
the generalized exponential mechanism with ε = 1.

Note that only the last option is differentially private, but we consider the other comparison points
nonetheless.

Counting: We also consider three algorithms for estimating the number of distinct elements for a
given sensitivity bound `:

1. For each person, we uniformly sample ` elements without replacement and count the num-
ber of distinct elements in the union of the samples.

2. The linear-time greedy algorithm (Algorithm 2) with ε = 1 and β = 0.001.
3. The matching-based algorithm (Algorithm 1) with ε = 1 and β = 0.001.

All of these can be converted into DP algorithms by adding Laplace noise to the result.

In all our datasets “true maximum person contribution” and “90th percentile of person contributions”
output bounds that are much larger than necessary to obtain true distinct count; hence, we only
consider DP versions of the estimation algorithm for these selection algorithms.

4.3 Results

Figure 1 shows the dependency of the result on the contribution bound for each of the algorithms for
computing the number of distinct elements with fixed person contribution. It is clear that matching
and greedy algorithms vastly outperform the sampling approach that is currently used in practice.

Tables 4 to 7 show the performance of algorithms for selecting optimal person contribution bounds
on different data sets. For all bound selection algorithms and all data sets, the sampling approach to
estimating the distinct count performs much worse than the greedy and matching-based approaches.
The greedy approach performs worse than the matching-based approach, but the difference is about
10% for Amazon Fashion and is almost negligible for other data sets since they are much larger. As
for the matching-based algorithm, it performs as follows on all the data sets:

1. The algorithm that uses the bound equal to the maximal person contribution overestimates
the actual necessary bound. Therefore, we only consider the DP algorithms for counts
estimation. It is easy to see that while the median of the estimation is close to the actual
distinct count, the amount of noise is somewhat large.

2. The algorithm that uses the bound equal to the 99th percentile of person contributions
also overestimates the necessary bound and behaves similarly to the one we just described
(though the spread of the noise is a bit smaller).

3. The algorithms that optimize the utility function are considered: one non-private and one
private. The non-private algorithm with non-private estimation gives the answer that is
very close to the true number of distinct elements. The private algorithm with non-private
estimation gives the answer that is worse, but not too much. Finally, the private algorithm
with the private estimation gives answers very similar to the results of the non-private
estimation.
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Selection Counting Person Contribution Bound Distinct Count

10th PC Median 90th PC 10th PC Median 90th PC

Max Contrib DP Sampling – 139 – 1196.8 1407.5 1649.1
Max Contrib DP Greedy – 139 – 1174.2 1439.2 1646.5
Max Contrib DP Matching – 139 – 1222.2 1460.9 1631.0

90th PC Contrib DP Sampling – 48 – 1225.4 1296.2 1377.9
90th PC Contrib DP Greedy – 48 – 1367.0 1432.6 1516.3
90th PC Contrib DP Matching – 48 – 1365.3 1444.7 1524.8

Max Utility Sampling – 41 – 1247.0 1259.0 1270.0
Max Utility Greedy – 20 – – 1376 –
Max Utility Matching – 17 – – 1428 –

DP Max Utility Sampling 8.9 16.0 28.0 661.6 892.5 1124.5
DP Max Utility Greedy 8.0 11.0 17.0 1148.0 1241.0 1348.0
DP Max Utility Matching 7.0 9.0 14.0 1252.0 1317.0 1400.0

DP Max Utility DP Sampling 9.0 16.0 27.1 702.4 899.1 1145.1
DP Max Utility DP Greedy 8.0 10.0 19.0 1128.5 1224.4 1370.8
DP Max Utility DP Matching 6.9 9.0 13.1 1220.6 1319.1 1394.2

Table 4: Amazon Fashion: the comparison is for `max = 100.

Selection Counting Person Contribution Bound Distinct Count

10th PC Median 90th PC 10th PC Median 90th PC

90th PC Contrib DP Sampling – 297 – 32458.1 32943.8 33452.6
90th PC Contrib DP Greedy – 297 – 36270.3 36669.5 37019.0
90th PC Contrib DP Matching – 297 – 36236.2 36651.7 37102.7

Max Utility Sampling – 99 – 24967.0 25039.0 25121.2
Max Utility Greedy – 79 – – 36246 –
Max Utility Matching – 42 – – 36364 –

DP Max Utility Sampling 85.9 96.0 99.0 23852.8 24739.0 25049.8
DP Max Utility Greedy 34.0 49.0 66.1 35393.0 35839.0 36116.9
DP Max Utility Matching 22.9 30.5 43.2 36026.8 36243.5 36371.2

DP Max Utility DP Sampling 87.0 95.0 99.0 23997.6 24701.1 25067.7
DP Max Utility DP Greedy 32.9 47.5 68.0 35336.6 35776.2 36136.6
DP Max Utility DP Matching 22.0 28.0 38.0 35970.5 36198.9 36326.7

Table 5: Amazon Industrial and Scientific: the comparison is for `max = 100.

A Proofs

Lemma A.1 (Sensitivity of DC(D; `)). As in Equation (2), for D ∈ (Ω∗)n and ` ∈ N, define

DC(D; `) := max


∣∣∣∣∣∣
⋃
i∈[n]

vi

∣∣∣∣∣∣ : ∀i ∈ [n] vi ⊆ ui ∧ |vi| ≤ `

 .

Let D,D′ ∈ (Ω∗)∗ be neighboring. That is, D and D′ differ only by the addition or removal of one
entry. Then |DC(D; `)−DC(D′; `)| ≤ ` for all ` ∈ N.

Proof. Without loss of generality D = (u1, · · · , un) ∈ (Ω∗)n and D′ = (u1, · · · , un−1) ∈
(Ω∗)n−1. I.e., D′ is D with person n removed. Let ` ∈ N.
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Selection Counting Person Contribution Bound Distinct Count

10th PC Median 90th PC 10th PC Median 90th PC

90th PC Contrib DP Sampling – 75 – 92480.7 92654.8 92812.1
90th PC Contrib DP Greedy – 75 – 102544.8 102665.7 102817.7
90th PC Contrib DP Matching – 75 – 102651.1 102784.1 102907.8

Max Utility Sampling – 99 – 95606.9 95692.0 95750.3
Max Utility Greedy – 52 – – 102543 –
Max Utility Matching – 32 – – 102685 –

DP Max Utility Sampling 89.0 96.0 99.0 94549.9 95394.5 95656.5
DP Max Utility Greedy 26.0 33.0 50.0 102015.0 102253.0 102527.0
DP Max Utility Matching 14.0 18.5 30.0 102357.0 102501.5 102671.0

DP Max Utility DP Sampling 88.8 96.0 99.0 94665.2 95375.5 95693.5
DP Max Utility DP Greedy 27.0 34.0 53.0 102053.2 102289.6 102531.2
DP Max Utility DP Matching 14.9 18.5 28.0 102379.7 102512.6 102643.9

Table 6: Reddit: the comparison is for `max = 100.

Selection Counting Person Contribution Bound Distinct Count

10th PC Median 90th PC 10th PC Median 90th PC

90th PC Contrib DP Sampling – 238 – 95264.5 95593.5 95966.1
90th PC Contrib DP Greedy – 238 – 98411.0 98734.0 99120.0
90th PC Contrib DP Matching – 238 – 98354.2 98729.4 99164.2

Max Utility Sampling – 29 – 49907.8 50036.5 50195.3
Max Utility Greedy – 29 – – 98459 –
Max Utility Matching – 19 – – 98712 –

DP Max Utility Sampling 29.0 29.0 29.0 49899.6 50070.5 50220.9
DP Max Utility Greedy 22.0 25.0 29.0 98244.0 98364.0 98459.0
DP Max Utility Matching 13.0 16.0 21.0 98586.0 98674.0 98721.0

DP Max Utility DP Sampling 29.0 29.0 29.0 49924.2 50053.7 50211.9
DP Max Utility DP Greedy 20.0 26.0 29.0 98126.7 98369.6 98451.8
DP Max Utility DP Matching 12.0 16.0 21.0 98555.6 98670.4 98726.8

Table 7: IMDB: the comparison is for `max = 30.

Let v1 ⊆ u1, · · · , vn ⊆ un and v′1 ⊆ u1, · · · , v′n−1 ⊆ un−1 satisfy

∀i ∈ [n] |vi| ≤ ` and

∣∣∣∣∣∣
⋃
i∈[n]

vi

∣∣∣∣∣∣ = DC(D; `)

and

∀i ∈ [n− 1] |v′i| ≤ ` and

∣∣∣∣∣∣
⋃

i∈[n−1]

v′i

∣∣∣∣∣∣ = DC(D′; `).
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We can convert the “witness” v′1, · · · , v′n−1 for D′ into a “witness” for D simply by adding the
empty set. Define v′n = ∅, which satisfies v′n ⊆ un and |v′n| ≤ `. Then

DC(D; `) = max


∣∣∣∣∣∣
⋃
i∈[n]

vi

∣∣∣∣∣∣ : ∀i ∈ [n] vi ⊆ ui ∧ |vi| ≤ `


≥

∣∣∣∣∣∣
⋃
i∈[n]

v′i

∣∣∣∣∣∣
= DC(D′; `).

Similarly, we can convert the “witness” v1, · · · , vn for D into a “witness” for D′ simply by discard-
ing vn:

DC(D′; `) = max


∣∣∣∣∣∣
⋃

i∈[n−1]

v′i

∣∣∣∣∣∣ : ∀i ∈ [n− 1] v′i ⊆ ui ∧ |v′i| ≤ `


≥

∣∣∣∣∣∣
⋃

i∈[n−1]

vi

∣∣∣∣∣∣
≥

∣∣∣∣∣∣
⋃
i∈[n]

vi

∣∣∣∣∣∣− |vn|
≥ DC(D; `)− `.

Thus |DC(D; `)−DC(D′; `)| ≤ `, as required.

Proof of Theorem 1.1. Privacy: First note that q`(D) = DC(D; `) − 2`
ε log(1/2β) has sensitivity

`. Algorithm 1 accesses the dataset via q`(D) in two ways: First it runs the generalized exponential
mechanism to select ˆ̀ and second it computes ν̂ ← qˆ̀(D) + Lap

(
2ˆ̀/ε

)
. Since the generalized

exponential mechanism is ε/2-DP and adding Laplace noise is also ε/2-DP, the overall algorithm is
ε-DP by composition.

Lower bound: Since ν̂ ← qˆ̀(D) + Lap
(

2ˆ̀/ε
)

, we have

P̂
ν

[
ν̂ ≤ qˆ̀(D) +

2ˆ̀

ε
log

(
1

2β

)]
= P̂

ν

[
ν̂ ≥ qˆ̀(D)− 2ˆ̀

ε
log

(
1

2β

)]
= 1− β. (11)

Since DC(D; ˆ̀) ≤ DC(D) and q`(D) = DC(D; `)− 2`
ε log(1/2β), Equation (11) gives

P̂
ν

[ν̂ ≤ DC(D)] ≥ P̂
ν

[
ν̂ ≤ DC(D; ˆ̀)

]
= 1− β.

This is the guarantee of Equation (6); ν̂ is a lower bound on DC(D) with probability ≥ 1− β.

Upper bound: The accuracy guarantee of the generalized exponential mechanism (Theorem 3.4) is

P̂
`

[
qˆ̀(D) ≥ max

`∈[`max]
q`(D)− ` · 4

ε/2
log(`max/β)

]
≥ 1− β. (12)

Combining Equations (11) and (12) with a union bound yields

P
(ˆ̀,ν̂)←M(D)

[
ν̂ ≥ max

`∈[`max]
DC(D; `)− 2`+ 2ˆ̀

ε
log

(
1

2β

)
− 8`

ε
log

(
`max

β

)]
≥ 1− 2β. (13)

To interpret Equation (13) we need a high-probability upper bound on ˆ̀. Let A > 0 be determined
later and define

`∗A := arg max
`∈[`max]

DC(D; `)− A`

ε
, (14)
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so that DC(D; `) ≤ DC(D; `∗A) + (`− `∗A)Aε for all ` ∈ [`max].

Assume the event in Equation (12) happens. We have

DC(D; ˆ̀)− 2ˆ̀

ε
log

(
1

2β

)
≤ DC(D; `∗A) + (ˆ̀− `∗A)

A

ε
− 2ˆ̀

ε
log

(
1

2β

)
,

(by Equation (14))

DC(D; ˆ̀)− 2ˆ̀

ε
log

(
1

2β

)
= qˆ̀(D) ≥ max

`∈[`max]
q`(D)− ` · 4

ε/2
log(`max/β) (by assumption)

= max
`∈[`max]

DC(D; `)− 2`

ε
log

(
1

2β

)
− 8`

ε
log

(
`max

β

)
≥ DC(D; `∗A)− 2`∗A

ε
log

(
1

2β

)
− 8`∗A

ε
log

(
`max

β

)
.

Combining inequalities yields

DC(D; `∗A)− 2`∗A
ε

log

(
1

2β

)
− 8`∗A

ε
log

(
`max

β

)
≤ DC(D; `∗A) + (ˆ̀− `∗A)

A

ε
− 2ˆ̀

ε
log

(
1

2β

)
,

(15)
which simplifies to

ˆ̀·
(

2 log

(
1

2β

)
−A

)
≤ `∗A ·

(
2 log

(
1

2β

)
+ 8 log

(
`max

β

)
−A

)
. (16)

Now we set A = log
(

1
2β

)
to obtain

ˆ̀· log

(
1

2β

)
≤ `∗A ·

(
log

(
1

2β

)
+ 8 log

(
`max

β

))
. (17)

Substituting Equation (17) into Equation (13) gives

P
(ˆ̀,ν̂)←M(D)

[
ν̂ ≥ max

`∈[`max]
DC(D; `)− 2`+ 2`∗A

ε
log

(
1

2β

)
− 8`+ 16`∗A

ε
log

(
`max

β

)]
≥ 1−2β.

(18)
We simplify Equation (18) using log

(
1

2β

)
≤ log

(
`max

β

)
to obtain Equation (7).

Computational efficiency: Finally, the runtime of DPDISTINCTCOUNT(D) is dominated by `max

calls to the SENSITIVEDISTINCTCOUNT(D) subroutine, which computes the maximum size of a
bipartite matching on a graph with |E| =

∑
i∈[n] |ui| ·min{`, |ui|} ≤ |D| · `max edges and |V | +

|U | = DC(D) +
∑
i∈[n] min{`, |ui|} ≤ 2|D| vertices. The Hopcroft-Karp-Karzanov algorithm

runs in time O(|E| ·
√
|V |+ |U |) ≤ O(|D|1.5 · `max) time.

Proof of Theorem 1.2. Privacy: For convenience we analyze Algorithm 4, which produces the
same result as Algorithm 2. (The difference is that Algorithm 4 is written to be efficient,
while Algorithm 2 is written in a redundant manner to make the subroutine we are analyzing
clear.) The privacy of the algorithm follows by composing the privacy guarantees of the gener-
alized exponential mechanism and Laplace noise addition. The only missing part is to prove that
SENSITIVEAPPROXDISTINCTCOUNT(·, `) has sensitivity `.

Note that

SENSITIVEAPPROXDISTINCTCOUNT((u1, · · · , un), `)

= SENSITIVEAPPROXDISTINCTCOUNT((u1, · · · , un, · · · , u1, · · · , un︸ ︷︷ ︸
` times

), 1);

therefore, it is enough to prove that SENSITIVEAPPROXDISTINCTCOUNT(·, 1) has sensitivity 1.

Assume D = (u1, · · · , un) and D′ = (u1, · · · , uj−1, uj+1, · · · , un). Let S1, · · · , Sn
and v1, · · · , vn be the states of S and v (vi =⊥ if ui \ Si−1 = ∅), respectively, when
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Algorithm 4 Approximate Distinct Count Algorithm

1: procedure SENSITIVEAPPROXDISTINCTCOUNT(D=(u1, · · · , un)∈(Ω∗)n; `∈N)
2: S ← ∅.
3: for `′ ∈ [`] do
4: for i ∈ [n] with ui \ S 6= ∅ do
5: Choose lexicographically first v ∈ ui \ S. . Match (i, `′) to v.
6: Update S ← S ∪ {v}.
7: end for
8: end for
9: return |S|

10: end procedure
11: procedure DPAPPROXDISTINCTCOUNT(D = (u1, · · · , un) ∈ (Ω∗)n; `max ∈ N, ε > 0, β ∈

(0, 12 ))
12: for ` ∈ [`max] do
13: Define q`(D) := SENSITIVEAPPROXDISTINCTCOUNT(D; `)− 2`

ε · log
(

1
2β

)
.

14: end for
15: ˆ̀← GEM(D; {q`}`∈[`max], {`}`∈[`max], ε/2, β). . Algorithm 3

16: ν̂ ← qˆ̀(D) + Lap
(

2ˆ̀/ε
)

.

17: return (ˆ̀, ν̂) ∈ [`max]× R.
18: end procedure

we run APPROXSENSITIVEDISTINCTCOUNT(D, 1). Similarly, let S′1, · · · , S′j−1, S
′
j+1, · · · , S′n,

v′1, · · · , v′j−1, v
′
j+1, · · · , v′n be the states of S and v (v′i =⊥ if ui \ S′i−1 = ∅),6 respectively, when

we run APPROXSENSITIVEDISTINCTCOUNT(D′, 1). Our goal is to show that ||Sn| − |S′n|| ≤ 1.
Define S′j = S′j−1 and v′j = ⊥. Clearly S′i = Si and v′i = vi for all i < j. For i ≥ j, we claim that
S′i ⊆ Si and |Si| ≤ |S′i|+1. This is true for i = j, since S′j = S′j−1 = Sj−1 and Sj = Sj−1∪{vj}.
We prove the claim for i > j by induction. I.e., assume Si−1 = S′i−1∪{v∗i−1} for some v∗i−1 (possi-
bly v∗i−1 = ⊥, whence Si−1 = S′i−1). Now vi is the lexicographically first element of ui \Si−1 and
v′i is the lexicographically first element of ui \ S′i−1 (or ⊥ if these sets are empty). By the induction
assumption, ui \ Si−1 ⊆ ui \ S′i−1 ⊆ (ui \ Si−1) ∪ {v∗i−1}. Thus either v′i = vi or v′i = v∗i−1.
If v′i = vi, then S′i = S′i−1 ∪ {v′i} ⊂ Si−1 ∪ {vi} = Si and S′i ∪ {v∗i−1} = S′i−1 ∪ {v′i, v∗i−1} ⊃
Si−1 ∪ {vi} = Si. If v′i = v∗i−1, then S′i = S′i−1 ∪ {v∗i−1} ⊂ Si−1 ∪ {v∗i−1} = Si−1 ⊂ Si and
S′i ∪ {vi} = S′i−1 ∪ {vi, v∗i−1} ⊃ Si−1 ∪ {vi} = Si, so the claim holds with v∗i = vi.

The sensitivity bound implies that q`(D) = |S| − 2`
ε log(1/2β) has sensitivity `. Since the gen-

eralized exponential mechanism is ε/2-DP and adding Laplace noise is also ε/2-DP, the overall
algorithm is ε-DP by composition.

Lower bound: Let us denote by D̂C(D; `) = SENSITIVEAPPROXDISTINCTCOUNT(·, `) the value
of |S| we obtain on Line 8 in Algorithm 2. Note that D̂C(D; `) is the size of a maximal matching in
G`, where G` is the bipartite graph corresponding to the input D with ` copies of each person (see
Algorithm 1 for a formal description of the graph). Since a maximal matching is a 2-approximation
to a maximum matching [God], we have

1

2
DC(D; `) ≤ D̂C(D; `) ≤ DC(D; `) ≤ DC(D). (19)

Since ν̂ ← qˆ̀(D) + Lap
(

2ˆ̀/ε
)

, we have

P̂
ν

[
ν̂ ≤ qˆ̀(D) +

2ˆ̀

ε
log

(
1

2β

)]
= P̂

ν

[
ν̂ ≥ qˆ̀(D)− 2ˆ̀

ε
log

(
1

2β

)]
= 1− β. (20)

6For notational convenience, we define {⊥} = ∅.
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Substituting q`(D) = D̂C(D; `)− 2`
ε log(1/2β) into Equations (19) and (20) gives Equation (9)

P̂
ν

[ν̂ ≤ DC(D)] ≥ P̂
ν

[
ν̂ ≤ D̂C(D; ˆ̀)

]
= 1− β.

Upper bound: The accuracy guarantee of the generalized exponential mechanism (Theorem 3.4) is

P̂
`

[
qˆ̀(D) ≥ max

`∈[`max]
q`(D)− ` · 4

ε/2
log(`max/β)

]
≥ 1− β. (21)

Combining Equations (20) and (21) and the definition of q`(D) with a union bound yields

P
(ˆ̀,ν̂)←M(D)

[
ν̂ ≥ max

`∈[`max]
D̂C(D; `)− 2`+ 2ˆ̀

ε
log

(
1

2β

)
− 8`

ε
log

(
`max

β

)]
≥ 1− 2β. (22)

Now we assume maxi∈[n] |ui| ≤ `∗ ≤ `max for some `∗. This implies DC(D) = DC(D; `). We
have

max
`∈[`max]

D̂C(D; `)− 2`+ 2ˆ̀

ε
log

(
1

2β

)
− 8`

ε
log

(
`max

β

)
(23)

≥ D̂C(D; `∗)−
2`∗ + 2ˆ̀

ε
log

(
1

2β

)
− 8`∗

ε
log

(
`max

β

)
(24)

≥ 1

2
DC(D)− 2`∗ + 2ˆ̀

ε
log

(
1

2β

)
− 8`∗

ε
log

(
`max

β

)
. (25)

As in the proof of Theorem 1.1, if the event in Equation (21) happens, we can show that

ˆ̀· log

(
1

2β

)
≤ `∗A ·

(
log

(
1

2β

)
+ 8 log

(
`max

β

))
, (26)

where

`∗A := arg max
`∈[`max]

D̂C(D; `)− `

ε
log

(
1

2β

)
(27)

Note that `∗A ≤ `∗, since D̂C(D; `) ≤ D̂C(D; `∗) for all ` ∈ [`max]. (That is simply to say that the
size of the maximal matching cannot be increased by making more copies of a vertex once there is
one copy for each neighbor.) Combining bounds yields

P
(ˆ̀,ν̂)←M(D)

[
ν̂ ≥ 1

2
DC(D)− 4`∗

ε
log

(
1

2β

)
− 24`∗

ε
log

(
`max

β

)]
≥ 1− 2β. (28)

Since log
(

1
2β

)
≤ log

(
`max

β

)
, this implies Equation (10).

Computational efficiency: It only remains to verify that Algorithm 2 can be implemented in
O(|D| + `max log `max) time. We can implement S using a hash table to ensure that we can add
an element or query membership of an element in constant time. (We can easily maintain a counter
for the size of S.) We assume D is presented as a linked list of linked lists representing each ui
and furthermore that the linked lists ui are sorted in lexicographic order. The outer loop proceeds
through the linked list for D = (u1, · · · , un). For each ui, we simply pop elements from the linked
list and check if they are in S until either we find v ∈ ui \ S (and add v to S) or ui becomes empty
(in which case we remove it from the linked list for D.) Since each iteration decrements |D|, the
runtime of the main loop is O(|D|). Running the generalized exponential mechanism (Algorithm 3)
takes O(`max log `max) time.

B Implementing the Generalized Exponential Mechanism

We conclude with some remarks about implementing the generalized exponential mechanism of
Raskhodnikova and Smith [RS15] given in Algorithm 3. There are two parts to this; first we must
compute the normalized scores and then we must run the standard exponential mechanism.
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Implementing the standard exponential mechanism is well-studied [Ilv20] and can be performed in
linear time (with some caveats about randomness and precision). We remark that, instead of the
exponential mechanism, we can use report-noisy-max or permute-and-flip [MS20; DKSWXZ+21;
DDKPWWXZ23]. These variants may be easier to implement and may provide better utility too.

The normalized scores are given by

∀i ∈ [m] si = min
j∈[m]

(qi(D)− t∆i)− (qj(D)− t∆j)

∆i + ∆j
, (29)

where qi(D) is the value of the query on the dataset, ∆i > 0 is the sensitivity of qi, and t is a
constant. Naı̈vely it would take Θ(m2) time to compute all the normalized scores. However, a more
complex algorithm can compute the scores in O(m logm) time.

Observe that, for each i ∈ [m], we have

si = min
j∈[m]

(qi(D)− t∆i)− (qj(D)− t∆j)

∆i + ∆j
⇐⇒ min

j∈[m]

(qi(D)− t∆i)− (qj(D)− t∆j)− si(∆i + ∆j)

∆i + ∆j
= 0

⇐⇒ min
j∈[m]

(qi(D)− t∆i)− (qj(D)− t∆j)− si(∆i + ∆j) = 0

⇐⇒ qi(D)− (si + t)∆i = max
j∈[m]

qj(D) + (si − t)∆j︸ ︷︷ ︸
f(si−t)

.

That is, we can compute si by solving the equation qi(D)− (si + t)∆i = f(si − t).

Since f(x) := maxj∈[m] qj(D) + x∆j is the maximum of increasing linear functions, we have that
f is a convex, increasing, piecewise-linear function, with at most m pieces. We can represent f by
a sorted list of the points where the linear pieces connect, along with the linear function on each of
the pieces. We can compute this representation of f as a pre-processing step in O(m logm) time;
we sort the lines y(x) = qj(D) + x∆j by their slope ∆j and then compute the intersection points
between consecutive lines (we delete lines that never realize the max).

Given the above representation of f and the values qi(D),∆i, t, we can compute si in O(logm)
time. We must solve qi(D) − (si + t)∆i = f(si − t) for si. We can perform binary search on
the pieces of f to identify j such that f(si − t) = qj(D) + (si − t)∆j . Once we have this we can
directly compute si =

(qi(D)−t∆i)−(qj(D)−t∆j)
∆i+∆j

. The binary search takes O(logm) time and we
must compute m scores. Thus the overall runtime (including the pre-processing) is O(m logm).
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