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In this Supplementary Material, we provide numerical results and proofs.

A Additional numerical results

A.1 Simulation results

Tables [A_THA 3] list additional simulation results which are mentioned in the main text.

A.2 Real data example

In this section, we illustrate the performance of the proposed estimator based on a real dataset,
namely Beijing multi-site air-quality data collected by [Zhang et al.|[2017]]. This dataset contains
hourly air pollutants data collected by 12 air quality monitoring sites in Beijing from March 1st, 2013
to February 28th, 2017. After discarding the observations with mising values, there are 382, 168
observations in total.

One important index of air quality is PM2.5, the concentration of particulate matter with aerodynamic
diameter of no more than 2.5 pm. We would like to fit linear models to predict PM2.5 concentration
(ug m~3) under various conditions. Our model includes the following 8 continuous predictors: PM10
(ugm~3); SO2 (ugm~—2); NO2 (ugm~3); CO (ugm~3); O3 (ug m~3); temperature (°C) pressure
(hPa); dew point temperature (°C). The proposed algorithm is designed for continuous predictors.
To break the ties of the predictors, we add independent .4 (0, 10~ 1¢) noises to all predictors. For
large scale real data, it is rare that the data follows a linear regression model strictly. Hence we only
use the predictors in this real data example. And y; is generated as follows: We compute the least
square estimator based on the original full data, and use it as the ground truth of 3. Then we define
Y = X ZT B+e¢; where €; ~ N(0,1). We randomly select half of the observations to fit the model. For
competing sketching methods, we take n = | N/p| where N is the sample size for model fitting. The
above procedure is independently repeated 1,000 times. The resulting empirical mean squared errors
for NEW, VDA, UNI, SRHT, LEV, IBOSS and FULL methods are 782.516, 4,902,110, 1,149.22,
1,224.03, 1,255.47, 920.734 and 84.2843, respectively. The results show that the proposed method
has better statistical performance than the competing sketching methods.
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Table A.1: Empirical mean squared errors (multiplied by 10%) of various algorithms with N = 8 x 10*

and g1 ~ (x%(1) — 1)/V2.

P NEW VDA UNI SRHT LEV IBOSS FULL

Casel 50 176.753 16358.3 490.582 490.759 488.958 498.165 9.42386
100 666.326 151339 2164.76 2175.63 2079.18 212549 18.1874
200 258792 14346.7 14410.1 16360.5 15540.7 15653.2  38.9494

Case2 50 7.1498 1076.89 33.6416 33.3228 33.534 25283  0.626021
100 224851 1010.59 145947 146.255 145517 121.719  1.2829
200 69.4755 994376 101837 1023.84 1023.54 915.626  2.48547

Case3 50 48162 806.811 23.3352 27.2343 36.3333 11.866 0.592169
100 10.6642 727.343 131.172 105.01 177.892 55.106  0.929276
200 19.472  827.801 924311 722.072 782354 218.543  2.00839

Case4 50 1.96697 349.656 11.988 11.6585 11.6786 2.28837 0.222879
100  4.67671 339.694 54.7945 49.4988 50.7473 7.90413 0.434104
200 11.1357 336.907 383.744 339.625 355.49 40.2336 0.864697

Case5 50 19.5341 201335 64.4977 63.4975 654009 55.5417 1.25583
100 619263 2012.47 27538 286.032 271544 265213  2.47587
200 194.656 2007.65 19469 1962.62 2037.76 1913.67 5.05518

Case 6 50 20.2014 2001.41 64.3295 63.2757 62.5513 56.1434 1.27484
100 63.9794 2077.95 287962 283.532 284.435 267.821 2.44736
200 197.052 2049.1 2054.34 2007.75 2017.92 1927.66 491178

B Technical lemmas

Lemma B.1. Forz > 0, we have
1 — ®(x) <exp(—x?/2), (B.1)
(7' =27 p(z) <1 —®(z) < 2 (). (B.2)

The inequality (B-T)) can be proved by the Cramér-Chernoff bound; see [Boucheron et al] [2013]],
Section 2.2. See Durrett [2019]], Theorem 1.2.6 for a proof of the inequality (B.2).

Lemma B.2. (Weyl’s inequality) Let B, and By be two symmetric m x m matrices. Then
maxje(1,...p} [Aj(B1) = A;(B2)| < [|By — By

See, e.g., Theorem 8.1 of |Bhatia|[2007b].
Lemma B.3. Let By and By be two matrices. Then

B1B{ —BoBj || < (2[|Baf]| + [B1 — Baf)[B1 — Bz

Proof.
|B:B{ — B3B; | =|B1B{ —B,B; +B;B; — BB, ||
<(IB1][ + [B2]))IB1 — By
<(2[|Bz[| + [[B1 — Bz)[B1 — Bal|.
O

Lemma B.4. Let B1 and By be two m x m symmetric matrices and Bs is positive definite. Suppose
B IIB1 — Ba|| < 1. Then By is positive definite and

1By [*Br — Ba||
(1= Bz "[lB1 — Ba))

By — B3| <



Table A.2: Empirical mean squared errors (multiplied by 10%) of various algorithms with N =

6.4 x 10° and g1 ~ .47(0,1).

P NEW VDA UNI SRHT LEV IBOSS FULL
Casel 100 81.9272 157709 239.974 230.171 241.03  225.048 2.41947
200 324.856  15365.4 1020.77 974.136  1000.16  945.015 4.6511
400 125591 15436.7 5093.1 4941.02 5110.64 5033.94 9.97678
Case2 100 2.73287 991.157 16.3687 16.2829 16.0081 13.6101  0.161021
200 8.76771 1022.71 67.5424 67.0934 67.4559 61.8691  0.313399
400 29.7099 994.329 334472 332531 328.551 315.948  0.633274
Case 3 100 195374 735.115 10.2444 12.6629 22.6209 4.81436  0.129786
200 3.78109  745.755 57.8812 58.1879 52.8285 22.6675  0.274122
400 8.09969 72426 267.593 283.055 278.49  78.4843  0.483496
Case4 100 0.603808 343.914 5.59336 5.46564 5.58407 0.758669 0.0531629
200 1.53723  344.041 23.4118 228189  22.85 2.69151  0.107645
400  3.6276  337.205 117.696 111.846 110.7 10.7265  0.212023
Case 5 100 7.71805 2018.53 31.5943 31.5477 31.3756 29.4129  0.308866
200 24.4975 201542 132541 13242 132.778 130.563  0.611402
400 80.2474  2004.28 667.938 661.453 660.191 646.256 1.25611
Case 6 100 798704 1974.66 31.5267 31.4872 31.1946 29.2168  0.308048
200 24.5327 1981.99 132369 134215 133.191 128.187  0.630886
400 81.4014 1997.83 672.68 672.385 676.376  658.253 1.24475

Table A.3: Empirical mean squared errors (multiplied by 10%) of various algorithms with N =
6.4 x 10° and &1 ~ (x%(1) — 1)/V/2.

D NEW VDA UNI SRHT LEV IBOSS FULL
Case 1 100 82.5572 15073.2 238.427 237.482 227.898 227.843 2.33521
200  335.829 14593  999.549 985.468 1029.66  997.179 4.7406
400 124244  14931.6 4948.67 519031 5127.05 5031.33 9.22342
Case2 100 2.76676  1020.6 154655 16.1021 16.0937 14.0472  0.160336
200 9.03052 1001.22 66.944 66.5285 66.1458 59.9584  0.308678
400 29.4599 996.876 333.189 337.005 338.663 315418  0.619093
Case3 100 1.15453 663.173 15.0485 12.8247 16.1937 5.18835  0.116118
200 3.64909  836.29 50.7558 64.229 53.7309  19.939 0.305421
400 7.93885 794.178 316.611 229.983 262.708 100.936  0.501982
Case4 100 0.612663 346.966 5.60731 5.46467 5.40086 0.804744 0.0538384
200 1.53891 340.407 23.3167 2277071 22.8374 2.73583  0.106413
400 3.56156 334397 118.763 112.567 111.384  10.943 0.210416
Case5 100 7.92053 1969.97 31.8714 31.5303 31.5133 293753  0.315144
200 24.7695 2034.25 138.096 134.546 134.965 128.695 = 0.624047
400  80.556  1990.13 672.685 668.159 655.674 631.659 1.25941
Case 6 100 7.82976 2053.86 32.4805 31.3492 31.3302 28.4122  0.309881
200  24.2661 1999.75 136.008 131.905 133.408 125.27 0.620036
400 80.16 2019.01 664.25 667.027 659313  658.417 1.24739




Proof. Since By, is positive definite, we have |[B; || = 1/\,(B2). From Lemma [Am(B1) —
An(B2)] < |B1 — Ba|| < A (Bz2). Consequently, A, (B1) > 0 and B; is positive definite. We
have

IBy' = B3| =By (B1 — B2)B, ||
<[[ByHIB; By — Byl
<(IBy' =By + B DB B1 — By

Consequently, (1 — |B; ||| B1 — Bz|))||B;* — By || < [IB5*|?||B1 — Ba||. And the conclusion
follows. O

Lemma B.5. Let A be an n X p random matrix whose entries are independent standard normal
random variables. Then for any t > 0,

Pr (H%ATA — L] > 3max ((p/m)/2 + (2t/n)2, ((p/n)"/2 + (2t/m)"/2)%) ) < 2exp(-1).

Lemma [B.5]is a direct corollary of [Vershynin| [2010], Corollary 5.35 and Lemma 5.36.

Lemma B.6. Let £ be a random variable with density function with respect to the Lebesgue measure.
Let d > 0 be a fixed number. Define set o/ = {|£| > d}. Then for any set B with Pr(#) < Pr(«),
we have

E(|€112) < E(|§1y).
Proof. We have
E(|¢12) = E(|€1mnw) + E(€1gn00) < B(E1any) +dPr(B 0 o).

But
dPr(#BN &°) =d (Pr(B) — Pr(BN o))
<d(Pr(«/) — Pr(B N ) = dPr(o/ N AB°) < E(I€|1nu0).
Combining the above two inequalities leads to the conclusion. O
Lemma B.7. Suppose &1, ... ,&, are i.i.d. random variables with continuous distribution function

Fe(x). Let )y < --- < ) be the order statistics of &1,...,&n. Then for k € {1,...,n},
Fe(&y) ~ Beta(k,n — k +1). And for 1 < ky < ky <n, Fe(§,)) — Fe(§y)) ~ Beta(ky —
ki,n — (ko — k1) + 1).

Proof. Since F¢(x) is continuous, F¢(&1), ..., Fe(&,) are i.i.d. random variables uniformly dis-
tributed on the interval (0, 1). Then the conclusion follows from the fact that the order statistics of
uniform random variables and their differences have beta distributions; see, e.g.,|Arnold et al.| [2008]],
Section 2.5. O

C Conditional distributions of the selected observations

We summarize the IBOSS algorithm of |Wang et al.| [2019] in Algorithm [I} In this section, we
study the conditional distributions of the selected observations in Algorithm|I] Note that selection
procedure of Algorithm |I|is equivalent to the selection procedure of Algorithm [I|with n = V.
Hence the results in this section also hold for Algorithm[I] In Algorithm [T} the distributions of the
selected covariates {Z; };c.» are typically not independent nor identically distributed. Nevertheless,
the conditional distribution of {Z; };c.» given the thresholds {71 j,72,;}}_, has a relatively simple
characterization. To state this characterization, we need some further notations. For j = 1,...,p, let
5(1,7) and s(2, j) be the indices of 1 j and v2 ; in {2; ;} XL, , respectively. That is, z(1 j),; = 71,
and z,(2 j) j = 72,j. Let Z{ ZE | . be a uniformly random alignment of {Z; : i € %, ;, i #

Vireeon Zolin
s(1,4)}, ij, ey Zﬁ—la’ be a uniformly random alignment of {Z; : ¢ € %, ;, i # s(1,j)}, and
ZM

Lres ZIJ\‘,{QT].J be a uniformly random alignment of {Z; : i ¢ UZ:1 La Uit j=1,...,p.

Note that Z1", ..., Z) ,,; ; are the observations left by the IBOSS algorithm in step j. We have
the following theorem.



Algorithm 1: The IBOSS algorithm in/Wang et al.|[2019]

Input: Observations {Z;, yi}ijil, covariate dimension p, subdata sample size n
Output: Estimator of 3

= |3z,

L7 0

for j € {1,...,p} do
71,7 + the rth smallest element of {2; ; : i € {1,. N}\(U (Lo UZre))}
~2,; < the rth largest element of {zz jrie{l,. N}\( (Lo U R, )}
Zrg e L., N\ (U ( réUfre))~Zz,a SVLJ}
Py (i € {L .., NN(UIZ1 (Lt U ) = 205 2 725}
I Lo i ULy
7 705

By (Tiey XX (S Xi)

return 3,

Theorem C.1. Suppose Assumptlon I holds. Given {1 j,7v2,;}'_;, the conditional distributions

Jj=r

of the random vectors Z”, ZZR;, i=1,. —1Lj5=1,...,p andep, i=1,...,N —2rp, are
mutually independent. The conditional denszty of ZiLJ is
j—1
fZL H }p (Z) _ f(zl7 e 7217)( %:1 1{71,1{<21¢<'Y2,1’.})1{Zj<’71,j} (C 3)
03 1W,372,5 5 = - —1 ; .
ATl f]RP f(zh s va)(H%:l 1{')’1,£<Z£<'Y2,Z})1{2j<')’1,j} dz
the conditional density of ij is
j—1
fZR B }p (Z) _ f(217 R 7210)(1_‘[%:1 1{"/1‘1{<21{<'y2,1€})1{Zj>’Y2,j} (C 4)
ij Y1,5572,5 = - —1 ? :
' s j]Rp f(Z1, s MZP)(H%:l 1{71,£<Zé<’)’2,£})1{Zj>'Y2,j} dz
and the conditional density of Z%) is
f(21, cees zp) H?:l 1{71, <zg<7v2,0}
fZ%l{'YLJ\’YZJ}?:l(Z) = = (€5

fRF f(zla ERE zP) H?:l 1{71,e<25<'yz,e} dz’

To prove Theorem|[C.T] we need some preparations. It is known that, for independent and identically
distributed random variables, given certain order statistics, the distributions of the remaining variables
are the original distribution truncated at the given order statistics; see, e.g., |/Arnold et al.| [2008]],
Section 2.4. A similar result also holds for random vectors, and will be the basis of the proof of
Theorem[C.1] To state this result, we need to introduce some additional notations.

Fix an integer j € {1,...,p}. Let 7(i) = Zz 1 1z, <z, ;3 be the rank of z; ; in {z, j} . It can
be seen that z(+;)),; = 2i,j, ¢ = 1,..., N. Consequently, 23),5 = Zr-1(i),4> 1 = 1, N where
771 is the inverse map of 7. Thus, ZT 1(1), -+ -» Zr-1(N) 18 a rearrangement of Z1, ..., Zy such
that their jth elements are in increasing order.

On the other hand, letk € {1,...,N}and1 <my < --- <my < N,mg =0, mp41 = N+ 1. Let
{%,}5+] be permutation groups on {1,..., N'} where % is the collection of permutation 7, such that
e maps the set {my_1 +1,...,my — 1} onto itself and 7,(¢) = i fori ¢ {me_1 +1,...,my — 1}.
We define group 4 = {my o -+ oy : mp € 4, ¢ = 1,...,k}. Thus, for any permutation 7
in ¢4, we have m(my) = my, £ = 1,...,k, and 7 maps the set {m,—; + 1,...,m¢ — 1} onto
itself. The following lemma gives the distribution of Z;-1.7(1), - -, Zr~10x() Where 7 is a random
permutation uniformly sampled from ¢.

Lemma C.8. Suppose Assumption |I| holds, 7 is a random permutation uniformly sampled from
. Then given Z —1(pm,), .. Zr—1(m,), the random vectors {Z 1. biequ,.. ANP\{meemy,} @r€
independent, and for my_; < 1 < my, the conditional distribution on ~Lon(i) 8VeN Lr—1(m 1)y - -,
Zr~1(my,) has density function

1
er*ow(ﬂ‘ZT*1<m1>""’ZT*1<mk>(Z) - Fi(2(my),5) — Fj(z(mzfl)ﬂl)f(Z)l(z(mé—l)~j72("”6)’1')(Zj)’
where Fj(z) := [ (acRP:a;<x) f(a) da is the distribution function of the jth coordinate of Z.



Proof. The density function of Z.-1(qy, ..., Z,-1y(ny atay,...,ay is

N
fZT—l(l)a“~7ZT—1(N) (ar,...,an) = N!l{a1,j<--~<a1v,j} H f(aq),

i=1
where a;,...,ay € R? and q; ; is the jth element of a;. Then the density function of Z -1, (1),
cey Z‘rflo’fr(N) is
f2 oy Z e on (a1,...,an)
1
:Z k+1 fZ _1(1),'..,Z _1(N)(a7771(1>,...,aﬂ_71<N))
rew Lle=1 (mg —me—1 —1)1" 7 i
D I S Tt
T EYL Tht1E€EGp41 L1E=1 £ -1 !
fZ,-fl(l) ..... Z—1(n) (aﬂflu)a o ,awlfl(mlfl)vamuaW;l(mlJrly BRI amk,aﬂ’l:—il(mk‘+1>’ S 7a7’1:-¢{1(N))

k+1 my—1

N! k
k+1( (H H (1{111,%_1,j<ai,j<amz,j}f(ai)))(Hf(aml))l{uml,j<~~~<amk,]'}'

me —me—1 — 1)! 0=1i=m,_1+1 =1

The density function of Z~1(,5,,), -+ +s Z7=1(m,) 18

fZTfl(ml)""’Z (amla---aamk)

T*l(rnk)

:/ fZT_l(l),..A,ZT_l(N) (ala ey an) dal e daml—ldanzl-‘rl e damk—lda'rnk-i-l e daN
—o0

k+1 me—myg_1—1
—N! (11:[ (Fj(améxj) B Fj<amz—1,j)) )

(mg —mg—q — 1)!

(ﬁ f(amz)) Lamy s < <amy s}

=1 =1
Hence the conditional density function of
ZT—loﬂ-(l), ey Z‘r*107r(m171)a ZTfloﬂ—(mlJrl)’ ceey Z.,.floﬂ.(mkfl), Z‘r*%ﬂ'(m;ﬁ»l)a ey ZT—IOTK-(N)
given Z7.71(ml)7 ey ZT—l(mk) is
J2 1oy, 10y (8155 AN)
fZ.,.—l(m1),-~~7ZT—1(mk) (amu ) amk)

-1 ]ﬁ H f(ai)l{am,271,j<a7:,j<(lm[,j}
—Hamy, i< <amy 5} Fj(ame,j) _Fj(amg_l,j) .

=1 my_1<i<my

And the conclusion follows. O
Now we are ready to prove Theorem [C.1}

Proof of Theorem|[C.I} We prove the conclusion by induction on j. Precisely, we prove that for any
1 < j* < p, given {m ;, 727j}§* 1> the conditional distributions of the random vectors Z} s ng,
i=1,....,r—1,5=1,...,5% and ZZ et =1,..., N — 25", are mutually independent and their
densities are given by @, @) and

( ) - f(Zh ce ’Zp) Hi}:l 1{’11,tz<22<’)’2.£}

le\l Z - * .
e, é}[ ! f]Rp f(zlv R 7210) H%:l 1{71,e<ze<’yz,z} dz

(C.6)

The case for j* = 1 follows from Lemma|[C.8] Suppose the above statement is valid for 1 < j* < p.

Note that 7y j«41 and ¥z ;=41 only rely on ZlM] vy ZN . Hence given {'yl’j, vgyj}g*zl, the

2J rJ*
random variables 7 ;+41 and 72] +1 are independent of ZE i Zﬁ, i=1,. —-1,5=1,...,5*
Consequently, given {717] V2.5 }J 1 ! the conditional distributions of Zl i Zl o i=1,...,r=1,57 =

1,...,j*, also have density functions (C:3) and (C:4), and are independent of Z}",., ..., Z}' 5., ..



Note that given {v1,;,72, }J 1» the random vectors ZM, e e Zﬁ,{%*m* are i.i.d. with density

(C.6). Then one can apply Lemmato ZMe, o ZN 9y~ conditioning on {v; J7’Y27j}§;1.
It follows that given {1 ;, V2, ; }j t1, the random vectors ZF . eyt L i =1, — 1, and

Z3 1h ZJJ\‘ICQ(J.*H)T’].*H are independent and have density functions (C3), @]) and (C.6)

with j* replaced by j* + 1. This completes the proof.
O

D Concentration inequalities for the order statistics

The proofs of the theoretical results in the main text heavily rely on the concentration inequalities for
the order statistics. [Boucheron and Thomas|[2012]] derived an exponential Efron-Stein inequality for
order statistics. However, to apply their results, one needs to bound the expectation of certain function
of the spacing statistics, which may be a nontrivial task for concrete distributions. |Boucheron and
Thomas| [2012] remarked that Rényi’s representation of the order statistics can be used to derive
the concentration inequality of the order statistics. However, they did not provide the general
expression of the concentration inequality using this method. Here we give a thorough investigation
of concentration inequalities via Rényi’s representation. These results will play an important role in
the proofs of the main theorems.

Lemma D.9. Let {1) < {2) < -+ < () be the order statistics of N i.i.d. standard exponential

random variables with density function f(x) = exp(—x)1lj o) (). Then forany 1 <k < N and
t>0,

k
1 2% 1/2 1
_ = 3\~ _
Pr{f(k) ;N—iﬂ><(N—k+1/2)(N+1/2)t) +z\f—1<;+1t}—eXp( ),

and

b 1 2k 1/2
Pr{&’“) 2 1 _((N—k+1/2)(N+1/2)t) } < exp(—1).

i=1

Proof. From Rényi’s representation of the order statistics (see, e.g., /Arnold et al.| [2008]], Theorem
4.6.1), we can write £,y = Zle n/(N—i+1),k=1,...,N,wheren,...,ny are independent

with standard exponential distributions. We have E({;)) = Zle 1/(N — i+ 1). From Rényi’s
representation, it can be seen that for A < N — k + 1,

k
logE(exp(A(f(k) - Ef(k)))) = —Zlog (1 - Z—|-1> Z N_i+tl (D.7)
i=1

ForO0 < A < N — k + 1, we have
)\2

- (V=i (“%m)

Mr-

log E(exp(AM(§r) — E&r))))

IN

1 1 Az
Z;((N_”W) - (N—i+3/2)> 2(1—@)
k A2

:(N—k+1/2)(N+1/2)2<17m)’

where the first inequality follows from (D.7) and the fact that for v € (0,1), —log(l —u) —u <
u?/(2(1 — w)). It follows that £y — E&(, is sub-Gamma on the right tail with variance factor
kE/((N —k+1/2)(N +1/2)) and scale parameter 1/(N — k + 1); see Boucheron et al.| [2013]],
Section 2.4. Thus, for any ¢ > 0,

2%k 1/2 1
Pr{g“‘f) ~Béw > ((N—k+1/2)(]\7+1/2)t> TN r 1t} < exp(—1).




Hence the first claim holds.

Now we prove the second claim. For A < 0,

k
1 A2
log E(exp(A(§x) — E€my))) < Z (N—i+1)22
=1
k
1 1 A\
_ B A
—;(N—z’+1/2 N—z‘+3/2)2
k A?

(N—k+1/2)(N+1/2) 2°

where the first inequality follows from and the fact that for v < 0, —log(l — u) —
u < u?/2. Tt follows that §k)y — E&x) is sub-Gamma on the left tail with variance factor
k/((N —k+1/2)(N +1/2)) and scale parameter 0; see Boucheron et al.| [2013]], Section 2.4.
Thus, for any t > 0,

k 1/2
Pr {5(’“ ~B(&w) < _<(N “k+ 132)(N ¥ 1/2)t) } < exp(—).

This completes the proof of the second claim.

O

Lemma D.10. Let {1y < §9) < -+ < &) be the order statistics of N i.i.d. random variables with
common distribution function F(x). Suppose F(x) has density function f(x) with respect to the
Lebesgue measure and the support of f(x) is an interval (a,b), —oo < a < b < +00. Then F(x)
maps (a,b) onto (0,1). Let F~1 : (0,1) — (a,b) be the inverse of F(x). For x € (0,00), define
FT(x) = F71(1 —e™®), for v <0, define FT(x) =a. Then forany1 < k < N andt > 0,

)
Pr{¢w > FT(; NorTt (7= 12/];13(N+ 1/2))1/2 i) S e,

and

k

Pr{f(’“) < FT(; N—1i+1 - ((N—k+12/k2t)(N+1/2))1/2)} < exp(—1).

Proof. Tt can be seen that F'(z) is a strict increasing function from (0,00) onto (a,b). Let
N(1),-- - 7(n) be the order statistics of N independent and identically distributed random vari-
ables with standard exponential population. Then (5(1), cs € ~)) has the same distribution as

(FT(na)),---» FT(nv))). Hence Lemmaimplies that

k
Pr{fw >FT(;N—11'+1 * ((N—k+12/k2t)(N+1/2)>1/2+N—tkz+1)}

k
1 2kt 1/2 t
=P
r{’”k) >;N—i+1 + ((N—k+1/2)(N+1/2)> +N—k+1}
<exp(—t).

This proves the first claim. The second claim can be proved similarly. O

The following lemma gives a concentration inequality of beta random variable using Lemma

Lemma D.11. Ler € be a random variable with distribution Beta(a, b), where a and b are two
positive integers. Then for any t > 0,

a1/
Pr{5<a+b7i12/2e’<p<_ ((a—l/?)(a+b—1/2

2 )t)l/z - ét)} < exp(—t);

Prie> e (o 1/2)(Zb+ b 1/2)t)1/2)} < ().




Proof. Let 1) < -+ < §44p—1) be order statistics of independent standard exponential random
variables. Then exp(—&)) ~ Beta(a, b). From Lemma|[D.9] for any ¢ > 0,

b 1/2
Pr{eXp(_g(“) < eXp ( B ; a—|—2 —i <(a - 1/2)(Zb+b— 1/2)t) = %)} < exp(—),
and

b

Pr { exp(—&)) > exp ( — Z

=1

1/2
a—&—z—i + ((a— 1/2)((21b—|—b_ 1/2)t) )} < exp(—t).

The above inequalities, combined with the facts

b

1 “th a+b
> Sdr=1
Za—l—b—i_/a xdx og( a )’

i=1

b a+b—1/2
1 1 b—1/2
Ziéf Ly = log (4212
a+b—1i as1/2 T a—1/2

i=1

leads to the conclusion. O

Now we consider the order statistics of i.i.d. standard normal random variables, that is, F'(x) is the
standard normal distribution ®(z). Define ®'(z) = ®~!(1—exp(—x)) forz > 0, and ' (z) = —c
for z < 0. Then for x > 0,

z=—log(1— <I>(<I>T(x))) .
Lemma D.12. For x > log(2),

0< %qﬂ(:p) < (2m)V2.

Proof. The inequality (B-T) implies that for any 2 > 0, ®~ (1 — exp(—z)) < (2x)'/2. Hence for
x > log(2),

i tip) — exp(—x) exp(—z) — (97)1/2
i = e e D) = a7

where the inequality holds since ® (1 — e=%) > 0 for # > log(2) and ¢(t) is decreasing in ¢ for
t>0. O

Lemma D.13. For z > log(2), let g(x) be the function of x such that
df(x) = {22 — log(2z) — log(27) + g(z)}'/*.
Then g(x) — 0 as x — +o0.

Proof. The inequality (B-T)) implies that for z > 0, 2 < {—21log(1 — ®(x))}'/2. Then for z > 1,

1) > (1 - 1) L@ > (1 - ;) {~2log(1 - B(x))}2p(a),

2 ) x

where the first inequality follows from (B:2). The above inequality implies that for z > 1,

1
22 > —2log(1 — ®(x)) — log(—2log(1 — ®(z))) — log(2r) + 2log <1 - $2> .
Thus, as £ — +o0,

x> {—2log(1 — ®(x)) — log(—2log(1 — ®(x))) — log(2) + o(1)}*/>. (D.8)



Now we prove the other direction of the inequality. The inequality (D-8) implies that as x — 400,

x> (1+0(1)) {—2log(1 — ®(x))}'/%. Combine this inequality and the inequality (B:2), we have
as r — 400,

1— &(z) §égp(x) < (14 0(1))( - 2log(1 — @(x)))*”(zﬁ)fw exp(—z2/2).

That is, as ¢ — 400, ¢ < (—2log(l — ®(x)) — log(—21log(1l — ®(z))) — log(27) + 0(1))1/2

Thus, as + — 400, x (—2log(1 — ®(z)) — log(—21log(1l — ®(z))) — log(27) + 0(1))1/2,
which is equivalent to the conclusion. O

Lemma D.14. Let {1y < {2y < -+ < &) be the order statistics of N independent standard
normal random variables. Suppose k is an integer and (N + 1)/2 < k < N. Then for any t > 0,

e 1 > 2kt 1/2 t
Pr{&w ¢(;N—i+1)>(2”) (((N—k+1/2)(N+1/2)) +N—k+1)}

<exp(—t);
and for

we have
k

Pr {5““) - @T(; N%m) < _((N —k+ 4117/r§)t(1v + 1/2)>1/2} < exp(—t).

Proof. For (N +1)/2 <k < N, we have

k N+1

1 1 N+1
Y — Lae=1og [~ ) > 10g(2).
i_lN—z’+1>/Nka v Og(N—k+1)_0g()

Then from Taylor’s theorem and Lemma[D.12] for any ¢ > 0,

: 1 2kt 1/2 t
@! (;Nz‘Jrl * ((N—k+1/2)(N+1/2)) +Nk+1>

- 1 1/2 2kt 1/2 t

The above inequality, together with Lemma[D.10} leads to the first conclusion.
Similarly, for k > (N +1)/2 and

we have

1/2
log(N]iZ-ly 1) - ((N—k+12/k2t)(N+1/2)) Z log(2),

which leads to

k /
‘PT(;N—Iz'H - ((N—/~c+12/k2t)(J\7+1/2))1 2)

k T /
Z‘I’T(;N—liﬂ) - ((N—k+;1/§;(N+1/2)>1 E

The above inequality, together with Lemma[D.I0} leads to the second conclusion.
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Lemma D.15. Let §q) < §2) < -+ < §(n ) be the order statistics of N independent standard
normal random variables. Suppose m/ (N +1) <1/(2e). Then for

N 1 N +1
0<t< - log( +> (27—;),

i

Pr{‘ Z € — XN: qﬂ( N%Mﬂ>(271')1/2(4(mt)1/2—|—log(3m)t)}
=1

1=N—m+1 1=N—m+1

we have

<2mexp(—t),
and

Pr{’ EN: & - f: {@T(iﬁ]_lﬂl)ﬂ>87r(21og(3m)t+t2)
l=1

i=N—m+1 i=N—m+1

raen {3 {‘I’*(iM)}Q}lmuzlogwm)t)“?+t>}szmexp<—t>.
=1

i=N—m+1

Proof. To apply Lemma|[D.T4] we need to give a lower bound of

(Ni+1/22i)(N+1/2)<10g(2(]\?/;+i11))>27 i=N-m+1,.. . .N

For N —m+1 <73 <N, we have

Vit 1/22i)(N +1/2) <log (M))Q

N—it1 N+l N\ (N1
=Ty o —i+n) %\ 2m

2(N—i+1) N+1 N+1 N+1
= log - log .
N+1 2(N—-i+1) 8 2m
To lower bound the terms within curly braces, we note that the function x log(1/x) is increasing for
€ (0,e ] and for N —m +1 <i < N, we have
2 <2(N—z+1)< 2m <ol
N+1— N+1 — N+17
Hence for N —m+1<i <N,

(N —i+1/2)(N +1/2) (1og (2(N+1)>>2

21 N—-i+1
>{ 2 10g<N+1>}N+1log(N+1)
“IN+1 2 8 2m
_Liog (NH) log <N+1) .

4 2 2m

Then Lemma implies that for N —m +1 <4 < N and

1 N+1 N+1
t< -1 — 1 —_—
0< _40g( 5 )og( 2m)’

Pf{’% - ‘I’T(; vl e (=) N—t+1>}

i 1/2 i 1/2
Pf{’&i) - qﬂ(;m» > (2m (((N—iJrl?Zt)(NJrl/Q)) + NfH 1)}
<2exp(—t). (D.9)

we have

11



By union bound, for

2 2m
we have
N N i 1
N T -
rf] S - 3 o (N)
i=N-—-m-+1 1=N—m-+1 =1
1y t 1/2 t
< —1).
> (2m) Z <2<N—i+1> +N—i+1) < 2m exp(~t)
i=N—m+1
Note that

m t m+1/2 t
- — <
E N _ir1 E ; /1 - dz <log(3m)t,

i=N—m+1 =1 /2
N 12 P 4\ 1/2 moy1/2
> (vorr) =)= () s am
i=N—m-+1 -t =1 ¢ x

Hence the first claim holds.

Now we prove the second claim. Note that for real numbers a, b, ¢, if |a — b| < |¢|, then |a? — b%| <
(a—b)2+2Jblla — b|] < c®+ 2|b]|c|. Conversely, if |a® — b%| > % + 2|b||c|, then |a — b] > |c|. Asa
consequence of this simple fact and the inequality (D.9), for N —m + 1 <7 < N and

1 N+1 N +1
< =1 — | I _
<t 4og( 2 )og( 2m>’

we have

eef - (o (L )} | ) )
2o (3 i o) )

<re{ - (0 5| > 00 ) )}

Then by union bound and Cauchy-Schwarz inequality, for

1 N+1 N+1
< — - -
0<t4log( 5 )log( 2m)’
we have

ol & e > (Set) P

i=N—m+1 i=N—m+1
N
> Qﬂizszﬂ (2(N—ti+ 1)1/2 + N—ti—f— 1)2
N . i 1 5 N . 1/2 . 5 1/2
afed S (S T G )
<2mexp(—t).

12



But
N

t 1/2 t 2 q U |
2( ) ) <gtS 422y =
> ( N_i+1) Twn—iy1) = §z+ ;ﬂ

i=N—m+1
m+1/2 1 m+1/2 1

§8t/ fdx+2t2/ — dz
1/2 € 1/2 €

<8log(3m)t + 4t>.

The above two inequalities lead to the second conclusion. O

E Proofs of Theorems [ and 2

Lemma E.16. Suppose Assumption[I|holds, the sketching matrix O is an N x n matrix with full
column rank. Assume that O is independent of €1, . . . ,en and with probability 1, O X has full
column rank. Then

E {IIBo - B* | Z} >o? tr{(xT E(O(0TO)'0" | Z)X)_l} ,

Proof. The solution to the sketched least square problem (2) is Bo = (XTO00™X)"'XT00 "y
which is an unbiased estimator of 3. It can be seen that

E {Hﬁo — B |z, o} —02 tr { (XT007X) 'XT00"00"X (xTooTx)‘l}
=02 tr(B{ By),

where B; = (0T0)/20TX(XTOO"X)~!. Define B, = (OTO)~'/20TX. Note that the
matrix By(BJ By) !B is a projection matrix. Hence

E{Bo ~ B? 12,0} =02 tr (B] B2(BI B;) 'BIB))
—o? tr{(XTO(OTO)_loTX)_l} .

It is known that the function B +~ tr(B~1) is a convex function for positive definite B; see, e.g.,
Bhatia|[2007a], Section 1.5. Thus, Jensen’s inequality implies that

E [tr{(XTO(oTO)*loTX)’l} | z} ztr{(XT E(O(0T0)"'07 | Z)x)’l},

which completes the proof.

Proof of Theorem[l} From Lemmal[E.T6]and the fact that

XTEOMO'0)'0" |Z)X < [E(0(0T0)'0" | Z2)[| XX,
we have
L {(XTX)"1} o2
~[E(O(0TO)'OT | Z)||

e{I80 - 8I° | 2}
Note that

tww1 [N NZT !
(X X)™ = (NZ NZZT+ 3N (Zi — 2)(Zi - Z)T>

_ (}V + 7T (SN - -2)) 2 2T (S - 2 - Z)T)1>
N\ -(CLE-2@-2T) 2 (@ -2@-27) " )

13



Hence
tr {(XTX)_I} - % +Z7 <Z(Zi — Z)(Zi — Z)T> 7 +tr { (Z(Zi — ) (Zi - Z)T> } .

The matrix Zi\;l (Z; — Z)(Z; — Z) T has Wishart distribution with parameter I, and N — 1 degrees
of freedom. Lemmaimplies that [[((N — 1)1 Zf\;l(Zi - 2)(Zi—Z)" —1,|| = 0op(1). Then
Lemma [B-4]implies that

N -1
(N -1 (Z(zi - 2)(Zi - zf) ~L|| = op(1).

i=1
The above equation, combined with Lemma[B.2] yields
1 1 -+ =
w{(XTX)"} =+ (Lt op(D) 2T Z+(1+ 0p(1))%
Hence the conclusion follows.

O

Proof of Theorem[2] From Lemma [EJ6] we only need to lower bound the trace of
(XTE(O(OT0O) 'O | Z)X)_l. From Cauchy-Schwarz inequality,
2

t{xTEooTo—loT zx‘1}> p :
r{(X"E(0(070) 12)X) > (XTE(O(0T0)-10T | Z)X)
We have

tr(XTE(O(0T0)'0T | 2)X Zd 11X —n+Zd 1Z:]|2.
Let (1) < -+ < () be the order statistics of || Z1[?, ..., ||Z,||>. Note that d; > 0 and SN di =
trE(O(0T0)~'0" | Z) = n. Thus,
N N N [n/dmax]+1
SNodillzilP < sup D dilllZilP < sup D dibpy Sdmax Y, Evksn)-
i=1 Sl di=n, o S di=n, =1 k=1

di>0,i=1,....N d;>0,i=1,... N

Note that || Zj||? has x?(p) distribution. Then Lemma implies that for any 1 < k¥ < N and
t>0,

P {s-aen > Pl (S 3 +2(5) '+ )} 2ot

i=k

where F;Q(p)( ) =F. (p)( — e~ ") and F\2(,)(z) is the distribution function of a x*(p) random
variable. From Lemma 1 of Laurent and Massart [2000], for any ¢ > 0,

Fly)(8) <p+2v/pl+2t < 2p+3t.
It follows that
1/2 t

Pr {§(N_k+1> > 2+ 3(% + 2(k) n %)} < exp(—t).
i=k

We replace ¢ by ¢ + log(|1/dmax | + 1) in the above inequality. Note that [n/dmax | + 1 < 2n/dmax-
Then the union bound implies that for any ¢ > 0,

[1/dmax|+1 [n/dmax]+1 N
2 : 4np 1 t+log(2n/dmax) \ /2
k=1 max k=1 i=k

N t+ 1og(i’n/dmax) ) } < exp(—t).
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We have

[n/dmax 41 N/ dmax |41 Ln/de+1 ] el N 1
>l D SR Vi
k=1 i=k k=1 i= k k=1 i=|n/dmax|+2
— ([n/dma] + 1)
i= \_n/dmaxj-‘r?
< (0] + 1 + / o da
[n/dmax |+1
Ndmax
S2n/dmax (1 + IOg <)> .
n
Also,
[n/dmax |+1 1 [n/dmax|+1
> iz S / a2 de = 2y/[n/dmax] + 1 < 4y/n/dmax.
k=1 0
And
L7/ dmax ] +1 1 [n/dmax ) +3/2
Z - < / rlde = log(2|n/dmax] + 3) < log(5n/dmax)-
Pt 1/2

Combining the above bounds yields

[n/dmax|+1
4np 6n Ndmax
g _ <— 1+1 —_—
—1 g(N k+1) _dmax + dmax ( + Og ( n ))

n 1/2
+0p (( y log(2n/dmax)> +(10g(2n/dmax))2>

67’l Ndmax n

< 1 _— .

< (s (M) ) on ()
Thus,

T TA\-1AT Ndmax
tr(X'E(O(0'0)~"0" | Z)X)<6n(p+log| —— + Op (n).
n

The conclusion follows. O

F Proof of Theorem 3

In this section, we provide a proof of Theorem [3|of the main text. We approach this goal by proving
some more general results and showing that they can imply Theorem 3]

Define sets A; = ﬂzzl {Z :y10 <z <.}, j=1,...,p. Let G; denote the distribution function
of z; given that Z € A;_;. That is,

fz' x N _1f(Z)dZ
Gji(x) = {'7; A}(Z)dZ , TER

Here we emphasis that G relies on the random variables {1 ¢, V2, [}z;i . Hence Gj itself may be
random. Let 73 ; and 4,; denote the ( 1)th smallest element and the (r + 1)th largest element

among {z;; :i € {1,...,N}\(UjZ ( 0 UZrq))}. Define sets

A]L ={Z:2z; <3}t NA;_1, .Af ={Z:z;j >yt NA;_1.
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Proposition 1. Suppose Assumption holds.  Then the 2-dimensional random vectors
(G1(11), G2(v21) " oo (Gp(v1p), Gp(y2,p)) T are mutually independent. And the distributions
of Gi(11,5), Gj(V2,5), Gi(3,5), G (1a,5) and G(v2,5) — G(,5) are Beta(r, N —r(2j — 1) +1),
Beta(N — r(2j — 1) + 1,7), Beta(r + 1,N — r(25 — 1)), Beta(N — r(2j — 1),r + 1) and
Beta(N — 2rj + 1, 2r), respectively.

Proof. The definition of ~y; ; implies that given {; 0 : 1 = 1,2, £ =1,...,j — 1}, the thresholds y; ;
and vy, ; are the rth and the (N —r(2j—1)41)th order statistics of N —2r(j—1) i.i.d. random variables
with distribution G;. Then given {v; ,: i =1,2, { =1,...,j — 1}, Gj(71,;) and G;(2, ;) are the
rth and the (N —r (25 — 1)+ 1)th order statistics of N —2r(j—1) i.i.d. random variables with uniform
distribution on the interval (0, 1), which does notrelyon {v; ¢ :i=1,2, £ =1,...,5 — 1}. Thus,
the 2-dimensional random vectors (G1(v1.1), G2(v2.1)) ", -+ -, (Gp(71.p), Gp(72,)) | are mutually
independent. The distributions of Gj(v1,;), G;(72,5), Gj(73,5), Gj(Va,5) and G (v2,5) — G (7,5)
follow from Lemma [B.7] U

Proposition 2. Suppose Assumptlonlholds Then | A, Z)dZ has distribution Beta(N — 2rj +
1,2rj).

Proof. It can be seen that fAj f(Z)dz = Ll{Gg(yu) — Ge(y1,0)}. Letmy,...,nn be iid.

standard exponential random variables. From Proposition[T|and Rényi’s representation of the order
statistics (see, e.g.,/Arnold et al.|[2008], Theorem 4.6.1), for £ =1, ..., p, G¢(v2.¢) — Ge(71,¢) has

the same distribution as
2r(t—1)+s
eXp{ ZN or E—l)—s—i—l}'

Thus, Hiﬂ{Gé(’YM) — Gy(71,0)} has the same distribution as

j 2rj
7727‘ —1)+s . . Ns
o N e S
Then the conclusion follows from another application of Rényi’s representation. O

Proposition 3. Suppose Assumption[l| holds, r = N/(2p) is an integer and log(p)/r is bounded.

Then
o ayp o 2T] / £(2)dZ —1| =0p ((logT(P)>1/2) 7
o N - 27;(1 - I)Gj(%j) _1| =0, <<logr(P)>1/2) |
om0 60 -1 o ((ZE2) ).
Proof. From Proposmonl f A, Z)dZ has distribution Beta(N — 2rj + 1, 2rj). From Lemma
[D.T1]and some algebra, for any t > 0
Pr / f(z)az < X NQEJ;/Q exp | - (;)1/2 - ;}} < exp(=1),
el 17 N;:ﬂ“exp{ef”}}sexm—t»

The first conclusion follows from the above inequalities and the union bound.

From Proposmon' 1l Gj(vij),i=1,...,4,7=1,...,p, have beta distributions. Then the second
and third conclusions can be 31m11arly derlved from Lemma|[D.TT]and the union bound. O
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Let

1

1 R_lz 1 _cipye L .
)}ﬂAj_l, Bj —{Zl GJ(Z]) < 2(p_j+1)}ﬂ./4]_1.

! 2(p—j+1

BL:{Z:Gj(zj) <

Define matrices

(fBlL(Z -~wf(2)dz  [5(Z = w)f(2) dZ)
L - b)

Jsp £(Z)dz 70 [ f(2)dZ
oo (f@(z ~wH2)dZ  [en(Z - W f(2) dZ)
P\ T f@az T [ 12z

Let A=D;D] + DpD},. Let

pL = max /
Je{1,....,p} Jrp

Proposition 4. Suppose Assumption|l|holds, r = N/(2p) is an integer and log(p)/r — 0. Then

e _ log(p)>1/2
Jellop} /]RP f(2)dz = Or (( Np '

Proof. Recall that by definition, AJL ={Z : 2z < 3¢} NAj_1 and BJL ={Z : Gj(z) <

1
W} N Ajfl. We have

/.

1y —1pe| f(Z)dZ.
J J

141
ar —1lpr

1,0—-1
ap =~ lop

ECESESY

Z‘Gj(vg,j)—w‘AJ_lf(Z)dZ'

Proposition [3]implies that uniformly for j = 1,...,p,

1 B r log(p) \ ""*
G0.0) = 50, =551 ~9F <N—2r(j— 1) < r ) ) ’

f[(z)dz :/R ’1{Zj<"fs,j} N l{Gj(Z£)< L }’ 1a,.,f(2)dZ

N —-2r(j—1
/ f(Z)dz :#(1—#013(1)).
.Aj71
Combining the above equalities yields the conclusion. O

Proposition 5. Suppose Assumptionholds, r = N/(2p) is an integer and log(p)/r — 0. Then
uniformly for j =1,...,p,

F(2)dZ == (1 +0p (1)), f(2)dz = =

= 1 1)).
p N s 1+ 0p(1))

Proof. It can be seen that [ ,, f(Z)dZ = G(y3,5) fA,-,l f(Z)dZ. From Proposition uniformly
forj=1,...,p— 1, ’

fzyaz =21 (1 Loy ((log?fp))“)) |

Also, uniformly for j = 1,...,p,

Gi(vs) = m (1 +0p <(loi(p))l/2>) .

Then the first conclusion follows.

Aj
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It follows from Proposition 4] that uniformly for j = 1,...,p,

—0p ((10]%%))1/2) —or (%)

where the last equality follows from the assumption log(p)/r — 0. This, combined with the first
conclusion, leads to the second conclusion.

f2)az- | f(z)dz
ar

L
Bj

[
Proposition 6. Suppose Assumptionholds, r = N/(2p) is an integer and p* /N — 0. Then

2\ 1/2
v |y ar 2(2)d2 2 o
> =O0r | yiz sup E(Z = pll"14)) ~
=1 {APr(ZeA) <L}

Z Zi— i
r Z Jar f(2)dZ
J
Proof. Without loss of generality, we can assume = 0,,. From Theorem [C.T] we have

€L,
NI | | e 2@z
rief | il V115 V1,5 —15,7Y2,15 - - -5 V2,5—15 73,5 f—fALf Z)dZ )

Ve 227 f(2)dZ

Var ¢ — Z Z; | Vs V1,5—1572,15 -+ -5 V2,515 73,5 <
= " fAL
It follows that
) ) L 21(2)dz
S WEiirred P w e

tr Var (% Eiegm Zi | Y1155 Y15-1,72,15 - - - ,72,3'717’734')
fAJL 1Z112f(Z)dZ

=E

1 1
STE(Igiuadz>‘

Note that [, f(Z)dZ = Gj(v3) 4, f(Z)dZ. Then from Propositionsand we have

E ! _N-2(-1) N N
S f(2)dz ) r N-2(j—1) 1’

Thus,

. fAJLZf(Z)dZQ No
ZIALnan @iz v 2 AT T <F-o(%):

€L

The above inequality, combined with Proposition 5] leads to

Ju Z2f(2)dZ

2|7 Z TR f@)dz

162’

Jae Zf(2)az

2
1 : )
§<e?%f"x,p}/ 121742 > Z " B Pk L 1) 02

1€Ly
p3 2
—op (5 s E(1ZPLa)) ).
{A:Pr(ZeA)<L}

This completes the proof. O
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Proposition 7. Suppose Assumptionholds, r = N/(2p) is an integer and p*> /N — 0. Then

1/2
S Zf (2)dZ  [g 21(2)dZ 2\ Y
J
L 1(2)dZ [ [(2)dZ
J
2 1/2
p” (log(p))
=0p | p*? sup  B(1Z - pll 14) + =75 sup  E(|Z —pl14) ).
{A:Pr(ZeA)<p1} {A:Pr(ZcA)< %}

Proof. Without loss of generality, we can assume p = 0,. We have
fAL Zf(Z)dz fBjL Zf(Z)dZ
fAL Z)dz fBL

HfALZf )dZ — fBLZf dZH

1

- Jar 1€ f ar [(2)dZ st ALY Z2f(Z)dz
Jao 1215(2)dz Jeo [1az = 152| £(2) a2

: Jar 1(2)d2 fAL 2)dZ [, f(2)dZ /B]L 121l f(2)dz

Note that uniformly for j = 1,...,p,
| e —1sfizis@azssw o E(Z)L0),
RP 7 ’ {A:Pr(Z€cA)<p1}

It follows from the above fact and Propositions 4] and [3] that
fALZf zZ)dz fBLZf(Z)dZ
fAL AKYA Jse f(2)dZ
J
3 lo 1/2
—op(p s Bz + (20 ap  B(IZ110) ).
N {A:Pr

{A:Pr(ZEA)<p1} (zZeA)<i}

36{17 ,p}

Then the conclusion follows from the above equality and the fact that
XP: fAL Zf(Z2)dZ fB.L Zf(2)dZ 2 fAL Zf(Z)dz fB.L Zf(Z)dz
j=1 fAL dZ fB]L f(Z) dz fAL dZ fB]L f(Z) dZ

2

=p
j€{1 ..... p
O]

The following theorem gives the asymptotic behavior of the conditional mean squared error of f‘)’ A-

Theorem F.2. Suppose that Assumptlonlholds r = N/(2p) is an integer, N > 2p?, p*>/N — 0,
|Al| = op(N/p?), ||A~Y| = Op(1) and there exist constants Cy, Cy > 0 such that Cy < M\,(E) <
A1 (X) < Cs. Also, suppose that

N1/2
A2 sup  (B(|Z = u|*14)"? =0p <3/2> ) (F.10)
{A:Pr(ZEA)S%} p

3/2 N1/2
N sup E(|Z - pl| 1) = op () , E1D)
{APr(zeA)<1} p?(log(p))'/2
and for any M > 0,
1
TG sup B(I1Z -l 14) = op (/) | (E12)
{A:Pr(ZGA)SM(%)lM} p

Then as N — oo,
2

E{HBA - B* | Z} =(1+op(1) (2p (tr(A™") + " A7 ) +1) % (F.13)
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Remark 1. In Theorem@ we allow that both N and p tend to infinity, and the primary condition
on the dimension is p> /N — 0. Since the varying p setting is considered, the tail behavior of Z
should be controlled. Hence we impose conditions (E10)-(E12) for the tail behavior of Z.

Proof of Theorem[F:2] We have

2 7 -
. ol (2p . 2pZ o
Var(B, | Z) = == (zpz S ZPZFT Y ZRZET)

It can be seen that
p p
NZ[Z[T+> ZF 72T =227 + CLC| + CrCl —2p(Z — p)(Z — )",
o =

ZF—p,... . ZF —p),and Cp = (ZF—p,... . ZF —p). Let A = C,C] +

where C;, = P

CrC} —2p(Z — )(Z — 1) . Then it can be seen that

> o2 (L4 ZTA'Z —ZTA!
V(g |2)= % (2700 AT
Consequently,
2 o (1 ST 15 -
B{1By -8 12} = % (5 +2TA 7 Z4u(A ). ®14)
r p

From Propositions [6} [7]and the conditions (E10), (E1T), (F12), we have

1
C,—-D.| = — .
€2~ Dull = or (517 )
It follows from the above equation, Lemmaand the fact | D | = [|D.D] [|V/2 < ||A[|*/? that

1
|CLCL ~ DLDL|| <(2[A|"* + |Cr ~ Dy|)|Cs - DL”‘”’(HAH)'

Similarly, it can be shown that |[CrCf — DrD}|| = op (1/ (||A]])). Hence |C,C] + CrCL —
Al = op(1/||A]]). On the other hand,

QCEP

El2p(Z = p)(Z = ) "|| = tx(2) /7 < = o(1/[|A);

where the last equality follows from the condition ||A || = O(N/p ). Thus, ||A — A|| = op(1/||A])).
This fact, combined with Lemma[B.4] leads to

- 1
[A™' — A7 =o0p () (E15)
Al
From (F.I3)) and Lemma|[B-2] we have

<.
—

=op(tr(A™Y)).
That is, tr(A~1) = (1 + 0p(1)) tr(A~"). On the other hand, we have
ZTAZ - Ay <

ZTA1Z - ZTA‘lZ‘ +(Z+ W ANZ - )|
<A™ = ATHIZIP + Cllpll + 12 = wDIATHZ = pl)-
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It follows from (F.15) and the fact || Z — u|| = Op((p/N)'/?) that

B _ 2
A= A2 = op (PR ) = or (AT A ).
We have

@l +1Z = ) A 1Z = il = Or il /37N +p/).
Note that p/N = op(p/||Al|) = op(tr(A~1)). And

[l > < ol 1 ||M2) <1 T A1 )
/n/N = o =0 + =0 + A .
ullv/p/ P < 1/2 P ( [A]] P % w 2

(pllAl) Pl AIDY2 2p

Hence
ZTA'Z = luTAillu—FOp (
Thus,

1 . ~ 1
—+ZTA7'Z Ah=( D) =—
= Fr(A) = (14 or(1) 5

Then the conclusion follows from (FI4) and the above equality.

+ AT tr(Al)) .

O

The expression (F.13) gives the asymptotic behavior of the conditional mean squared error of B A
Note that the (7, j)th element of Dy, is

Jaliz:6,e0 <1/t (35 — 1) 4G5 (%)
Jo Lz <1/ -1y 4G5 (2))
It can be expected that at the tail region of G; where G,(z;) < 1/(2(p — j + 1)), z; is largely
deviated from p;. Consequently, the diagonal elements of A may be large, which may result in
the fast convergence of E{||3, — 3||> | Z}. However, the matrix A in (FI3) is random which
makes it hard to rigorously derive the general convergence rate of ﬁ A~ In fact, A may rely on ; ;,

1=1,2,7=1,...,p— 1. If pis fixed, ; ; may have a fixed limit and the matrix A in Theorem
may be replaced by certain nonrandom matrix. However, such nonrandom matrix may not have a

tractable form in general. To understand the convergence rate of B A» we consider the special case
that 2y, ..., 2z, are mutually independent and the distribution of z; — ; is symmetric. Denote by
F; the distribution function of z;. Let AT be the p x p diagonal matrix whose (7, j)th element is
2{E(z; — uj | Fj(z;) <1/(2(p—j+1)))}* j =1,...,p. We have the following theorem.

Theorem F.3. Suppose that Assumption (I| holds, z1,...,z, are mutually independent and the
distribution of z; — i; is symmetric about 0. Suppose there exists C' > 0 such that
jemmin {B(z; =y | Fi(zy) <1/ —j + D) > C. (F.16)

Also suppose that

~

log(p
ri/2

| max
J€{L,....p}

1 1 | 1
5 (se=r7m) | = () 1

4= AT =or (277

Under the conditions of Theorem one can replace the matrix A by AT in the expression (F13).
Then the performance of 3, relies on the squared conditional expectations

{E(zj — 1y | Fi(z) <1/ -7+ 1)NY i=1,...,p.

Then
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For a fixed j, if the distribution of z; does not depend on p and has unbounded support, then as
p % CX)’

{B(z — s | Fj(z;) <1/2(p—j + 1))} — oo.

In this case, it can be expected that tr(AT~1) = o(p) and B A has a faster convergence rate than
the uniform sampling method. However, the exact convergence rate relies on the tail properties of

%=y =1, ,p.

Proof of Theorem|F:3| The (i, j)th element of Dy, is
fBL Zi — ;) (Z) dz

Jor 17
The mutual independence of z1, .. ., z, implies that G (x) equals to F};(x), the marginal distribution
of z;, and
Jpr (zi — i) f(2) dZ oot (@ = i) dF;(2)/(Fi(y2.0) = Fi(ma)) fori <,
: fo(Z)dZ = E{Zj_ﬂj‘Fj(zj)<1/(2(p_j+1))} fori =j,
B; 0 fori > j.
Thus,

IIDL —diag (E(z1 — | Fi(z1) < 1/(27?)), o Bz =y | Fplz) < 1/2)5

_ (S (@ = ) dF (=)
§Zp* < ('72,3) FJ(’YLJ) )

Since the distribution of z; — y; is symmetric about 0, we have fff‘fﬁJ (z — ;) dF;(z) = 0.
»J
Thus,

l ™ (@ = ) dFs ()

1,5

~1[" w-wan

Hj—71,5

<max(|ye; = pyls 2 — mDIF (v2,5) + Fi() — 1
From Proposition [3] uniformly for j = 1,...,p —1,

_ 1 1 log(p) /2
Fm)_wwp(ﬁ( -) )

B 1 1 (log(p)\ "
Fj(72,5) —1_W+0P (py( r ) )

It follows that uniformly for j =1,...,p — 1,

02 (g — ) dFy () \ 2 .
(p—j>< s 1) ”) = 0p (max((n — % G = 1)) 200 )

Fi(h2,5) = Fj(75) r(p —j)
Also note that with probability tending to 1, uniformly for j =1,...,p — 1,

max((y1,; — )% (2,5 — 1)) < <FJ‘_1 (4(19—1j+1)> - M)Q'

Thus,
DL — diag(B(z1 — 1 | Fi(21) < 1/(2p)), - Elzp — pip | Fo(2) < 1/2))II3

-1 2
log ( X ( 1 ) )
E max F; T -, ] My
p—j ) actiom U7 \2p—j+1)) "

o (“g@”?} (5" (s=5sm) - “J)Q) |
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It follows from the above equation and Lemma B3 that

|DLD] — diag({E(z1 — pa | Fi(z1) < 1/2p)}, . {E(zp — pp | Fp(zp) < 1/2)})]]
:Op< max |E(z; —p; | Fi(z) <1/(2(p—j+1)))|

Jj€{1,...,p}
1
Fll——m ) —
d <4<p—j+1)> "J)

1
=Or (maxje{l,.u,p}{E(Zj =y | Fyi(z) <1/2(p—j+ 1)))}2> ’

where the last equality follows from the conditions (F16) and (FI7). Since z; — 1, is symmetric
about 0, we have

{B(zj —pj | Fi(z) >1=1/Q(p—j+ 1)} = {E(z; —u; | Fi(z) <1/2(p—j+ 1))}

Hence one can similarly obtain

IDrD; — diag({E(21 — i1 | Fi(21) < 1/(20))}, . AE(zp — 1y | Fyp(2p) < 1/2)}?)]|

loglp)
rl/2 je{1,...p}

1
max;e1,.. pp{E(z; — p; | Fj(z) <1/(2(p —j +1)))}?
The conclusion follows.
O

Proof of Theorem 3] First we show that the conditions of Theorem [F.2] and Theorem [F.3]hold. To
verify the conditions of Theorem [F.3] we note that
Bzj = py | Fj(z) <1/2(p =7 +1)))
=E(z |21 <27H(1/2(p -+ 1))

= (1/(2(p—5+1)))
=2(p—j+ 1)/ (2m) Y2t exp(—t2/2) dt

— 00

=—(2/m)"2(p - j+ Dexp{—(271(1/(2(p - j +1))))*/2}.
Lemma [D.T3|implies that if p — j — oo, then
(@71 (1/(2(p— j +1))))" = 2log(2(p — j +1)) — log(2log(2(p — j +1))) — log(2m) + o(1).
It follows from the above two equations that if p — j — oo, then
E(zj — p | Fi(z3) <1/(2(p = j +1)) = =1+ o(1)) (2log(2(p —j + 1)))'/*.  (E18)

Note that the right hand side of (F.I8) tends to —oco as p — j — oo. As a consequence, the condition
holds. Now we verify the condition (F.17). From (F.18)), we have

max Bz =y | Fy() < 1/ =+ D) = (1+o(1)(2log(2p)) /%

And from Lemma [D:13} we have
ax

1
max |F (—— ) —p
je{l,..p}| 7 (4(1)—] + 1)) Hi
Thus, the condition is equivalent to (log(p))®/r'/? — 0. Thus, Theorem [F.3|implies that
|A — Af|| = op(1/log(p)). As a consequence, |A|| = (1 + op(1))4log(2p) and ||AT| =
(1+ op(1))4log(2p).
Now we verify the conditions of Theorem [F2] From Lemma|[B.6] for any 0 < § < 1, we have

— —® 1 (1/(4p)) = (1 + o(1))(2log(4p)) /2.

p

sup E(|Z]*1) SZ sup E(zi1y) = pE(27 12y >0-1(1-6/2)})-
{o:Pr(Zeod)<d} =1 {o:Pr(Zed )<}
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‘We note that

“+o0
B(211(jz >0 (1-5/2))) :/0 2 Pr([a Lz >0-11-5/2)) > 1) dt

&~ 1(1-6/2) +oo
:/ 26tdt+/ 2% Pr(|z1] > ) dt.
0 d-1(1-5/2)

From Lemma|D.13] there exists an € € (0, 1) such that for 0 < § < e,

2log(2/6) — log(21log(2/6)) — log(3m) < (®7'(1 — 5/2))2 < 2log(2/9).
Hence for 0 < § < e,

&~ 1(1-6/2) 9
/ 26tdt =6 (®71(1—6/2))" < 25log(2/6).
0
On the other hand,

—+oo —+oo
/ 2t Pr(|z1| > t) dt §4/ texp(—t%/2)dt

D-1(1-6/2) D-1(1-5/2)
=4exp{—(®71(1 - 6/2))*/2}
1
<50(6m log(2/6))*/2.

Thus, there exists an absolute constant C' > 0 such that for 0 < 6 < e,
E(z{1(.,5a-1(1-5/2)}) < Cdlog(2/6).
Consequently,

wp  E(|Z17L) <Cpolog(2/).
{o:Pr(Zea )<}

On the other hand,

sup  B(|Z|L,) < swp (B(|Z]P1) Pr()? < (Cplog(2/6)) 2.
{ot:Pr(Zed)<5} {ot:Pr(Zeod)<5}

Thus, the conditions (F-10), (F11) and (F12) hold provided p?(log(p))* log(N)/N — 0.
We have shown that the conditions of Theorem [F2]and Theorem [F3]hold. Consequently,

R 2
E{HﬁA - Bl | Z} = (L+op(1))tr (AT71) QPTE

From Stolz-Cesaro theorem (See, e.g., Muresan| [2009], Chapter 3, Theorem 1.22), we have

p 1
X ISR
p—oo p/log(2p)  p—oo p/ log(2p)

1
lim 2{EGAE (1) <1/ ) ] .
p—oe p/log(2p) — (p —1)/log(2(p — 1))
From (EI8), 2{E(z1 | ®(21) < 1/(2p))}? = (1 + o(1))4 log(2p). On the other hand, it can be seen
that as p — oo, p/log(2p) — (p — 1)/ log(2(p — 1)) = 1/log(2p) + O(1/(log(2p))?). Thus,

tr (A1) 1

poo p/log(2p)  4°
It follows that

2

R o2 o
{8y~ 81712} = (1 + op()r (A1) 2% = 1 +or() g oy

™ N

which completes the proof.
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G Proof of Theoremd

First we outline the proof structure of Theorem A key idea of the proof is to couple Algo-
rithm [T] with Algorithm [2] which is a variant of Algorithm [I] In Algorithm [2] the thresholds are
{ 2(r),jr Z(N—r+1), J} i, which are more tractable. We prove that under certain conditions, with high
probability, Algonthmsﬂ] and 2 produce exactly the same results. Thus, the statistical properties of
Algorithm|T]inherits from that of Algorithm 2]

Algorithm 2: A variant of Algorithm T]

Input: Observations {Z;, yi}fil, covariate dimension p, subdata sample size n
Output: Estimator of 3
< lz5]
for j € {1,.. ,p}do
L <—{z€{1 SN}z <z}
‘“], —{ie{l,... N} 2y > 2(vort1) 5}
I 2’ u %’
BI ( = Zze,]/ X XT) (Z§:1 Eieyj{ Xiyi)

return Bl

The following theorem shows the equivalence of Algorithms [T]and2]in the setting that Z is normally
distributed.

Theorem G.4. Suppose Assumption|l|holds and Z ~ N (u, ). Suppose there exists a constant
0 < p < 1//2 such that maxi<i<;<p |pi,j| < p, where p; ; = Ui,j/(ai,iaj,j)l/Q. Suppose there
exist €1, €z € (0,1) such that for sufficiently large N, 4r < N, p < N and the condition (6)
holds. Then as N — oo, with probability tending to 1, Algorithms[I|and 2| produce exactly the same
results.

Remark 2. Although Theoremassumes Z1, ..., ZN are normally distributed, it can be directly
generalized to a more general class of distributions. Note that the index sets % and fj’ are invariant
if the covariates are transformed by monotone functions. Hence the conclusion of Theorem
also holds if z; ; = gj(zz J) where g; is a monotone function and (Z;1,..., %) ~ N (1, 2),
i=1,...,N,j=1,.

Remark 3. In some theorettcal analyses of\Wang et al.|[2019], the algorithm actually studied is in
fact Algorithm 2| rather than Algorithm[I} In the proof of Theorem 3 in[Wang et al.| [2019], it was
claimed that if r is fixed as N goes to infinity, using Algorithm2instead of Algorithm[I|will not affect
the final result. However, this claim was not proved. Theorem fills this theoretical gap.

Theorem allows us to transfer the statistical properties of Algorithm[2|to Algorithm [T} Now we
deal with the estimator B}L in Algorithm Let

N
Dy = diag (n, (n + 4rlog (r)) Ip> .

The following theorem gives the asymptotic behavior of Var(D N,@}L | Z) in Algorithmfor varying
n and p under the assumption that Z is normally distributed.

Theorem G.5. Suppose Assumption|l|holds and Z ~ N (u,X). Suppose there exist constants
C1,Cs,C5 > 0such that C1 < Ap(X) < M(X) < Cq and ||p]] < Cs. Suppose n/(2p) is an integer.
Furthermore, suppose as N — oo, the condition[?]holds Then as N — oo, satisfies

T+any Wiln —ay?n Wy
Var(Dx By | Z) = ( Aty Ngger V) +E
N N H N

where ||E|| = op(1).
Theorem [ follows from Theorems [G.4]and[G.5] as indicated by the following proof.

Proof of TheoremH] From Theorems|G.4]and[G.5] we have

P 1+anp' W _1M 1/2 Wy
Var(DyB; | Z) = o2 ( i - N - +E,
5 - / VV VVN
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where ||E|| = op(1). Then from Weyl’s inequality (Lemma|B.2)),

R 2
E((Box — £0)* | 2) =(1+ awp" Wy'n) 2=,
E(||5 2 tr(Wy! % = ay (W)
(||ﬁ1,1—ﬁ1H | Z) = tx( )WO‘S(N/T)_QN (Wy )Z’

where BOJ and BLI are the first element and the last p elements of BI, respectively. The conclusion
follows. O

Below we give the detailed proofs of Theorems|[G.4]and [G.5]

Lemma G.17. Suppose {(&;,n;)}., are independent and identically distributed bivariate normal
random variables with distribution

()~ () (oes 22))
i Hn O¢n  9nn

Suppose ¢ ¢ > 0, opy > 0. For 1 < r < N, let £, ¢ and Xy ¢ be the indices of the first r
smallest and largest observations of {&;} Y|, respectively. Similarly, let %L and Xy, denote the
indices of the first r smallest and largest observations of {n;}_,, respectively. Suppose |p¢ ,;| < 1

where pe, = 0¢n/(0ec0n,)? Suppose there exist €,€3,0 € (0,1) such that 4r < N<,
0 <t <2elog(N)and

(14 8) (1 + 262)|pe gl + (€1 +262)/2(1 = p2 )2 < (1= 6)(1 — 1)/ (G.19)
Then there is an N* only depending on 0, €1 and €5 such that for N > N*,
Pr{(L e UZre) N (LU Sry) # 0} < dexp(—t).

Proof of Lemma|G.17] Note that the conditional distribution of 7; given &; is

2

o o
771“571NJV(UnJrﬂ(fi*NE)vUnm* Em)'

O¢¢ O¢¢

Let wy,...,wy be independent standard normal random variables which are independent of
§1, ce ,§N. Then

(6 Z { (66 o+ 206 — ) + (0 — 222) )L

0¢.¢ O¢¢ i=1
Hence without loss of generality, we assume 7; = p, + (0en/0ee)& — pe) +
(onn — 0217/0515)1/2%. Then
|7 — b [$ M£| 2 \1/2
—ip = = (- / | G.20
ie,,s,ﬂr,.r,l?d(%ng 071]/7? 12X 11<na<>§v 51/52 +( Pg,n) iexrrr’liﬁ(%n{ |wil ( )

For ¢t > 0, define set

_ € — pel 1/2
= {121;3\] T < (2log(2N) + 2t) .

Then

Pr(«%qt) < NPr { S| 1/55‘ > (2log(2N) + 2t)1/2} < 2Nexp{—(log(2N) 4+ t)} = exp(—t),
Tee

where the first inequality follows from the union bound, and the second inequality follows from the

inequality (B:T).

For t > 0, define

= | < (2log(4r) 4 2t)1/2 ¢ .
s ={ e, I < (2loglar) + 20)
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Note that the sets .%. ¢ and %, ¢ only depend on {&; } ;. Hence given {¢;}}¥ ,, the random variables
{wi 11 € 2L ¢ U, ¢} are independent standard normal random variables. Thus, for any ¢ > 0,

Pr(ey) =E{Pr{ _max || > (2log(4r) +20)2 &1, 6w} }

<2rPr {\wl\ > (2log(4r) + 2t)1/2}
< exp(~1).
The inequality (G.20) implies that on <7 ; N < ¢,

i — W
P
i€Lr e UZ,

nESTTE Opiy

<|pen|(2log(2N) +26)/2 + {(1 = p?, )(2log(4r) + 26} /2. (G21)

For t > 0, define sets

N
7](]\}'_7'4,-1) - ,ut'r] + 1 ( 2(N —-r—+ ].)t )1/2
oy, =4 ANZrtD) T g -
o { ail2 = (Z i \(r—1/2)(N +1/2) ’
N
N(r) — Mn + 1 2(N —r+ 1)t 1/2
Hyy = ——— < - - - :
bt { RV (Zz ((r71/2)(N+1/2))
From Lemma , forany ¢t > 0, Pr(;zfgft) < exp(—t). Note that (1) — p)) Z —(M(N—rt1) = Hn)-
Hence for any ¢ > 0, Pr(%qt) < exp(—t). On @75 4 N 2y 4, we have
N
P, 1 2N—rr 12
g et (S ) G22
i, o7 = Z:: oo 1) (G.22)

Note that if

i r—1/2)(N +1/2

N
P! (Zl. - (< SveCEa >)1/2> > |pe.q|(210g(2N) +20)"* + {(1 - p2 ) (2log(4r) + 2)}'/2,

=

(G.23)
then the inequalities (G.21)) and (G.22) imply that
m,t N JZ{Q,t N %,t N 42{4,t C {(fr,g U %r,f) N (gr,n U %r,n) == ®} 5

which leads to

4
Pr{(Loe URrg) N (B U Bry) # 0} < Y Pr(ely) < dexp(—t).

i=1

Now we prove that under the assumptions of the lemma, (G.23)) holds for N > N*, where N* only
depends on 4, €1, and €5.

First we deal with the left hand side of (G.23). Note that

N N .
Zl 3 i N+ N+1

- > —dz = Zdx =1 AT ) s (1= 1 N
‘/ saae= [ g Og( ; >_< 1) log(N),

where the last inequality follows from the assumption 47 < N1. On the other hand,
2(N—r+1)t < 2t

(r—1/2)(N+1/2) = (r—1/2)

Hence there exists N;* only depending on 6, €; and €5 such that for N > N7,

" (Zi (it )1t/2))1/2> 20" (1 - ) Iog(V) = (Bez log(N)) /)

i=r

< 4t < 8eg log(N).

20" ((1—6)(1 — e1) log(N)).
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From Lemma [D.13} for large x, ®(x) > {(1 — §)22}'/2. Then there exists N; > N; only
depending on 0, €; and €5 such that for N > NJ,

N

1=r

Now we deal with the right hand side of (G:23). There exists N5 > N only depending on 4, €; and
€2 such that for N > Ny,

|pe.ql(210g(2N) + 26)'/% + {(1 = pZ ) (2log(4r) + 2t)}'/?
< ((140)(1 +26) 2|pe | + (2 + 2e0) (1= p2,)2) log(N)2. (G259

It can be seen that the inequalities (G.24), (G.23) and the condition (G.19) lead to (G:23). This
completes the proof.

O

Proof of Theorem|[G.4} Note that the left hand side and the right hand side of (€) are continuous
functions of €1 and e5. Hence there exists a0 < 6 < 1 and €5 < €}, < 1 only depending on €; and ey
such that

(1+6)(1 +26)?|p| + {(e1 +26) (1 = p*)}/* < (1 = 6)(1 —en) /2. (G.26)

It can be seen that the left hand side of (G.26) is increasing in |p| for 0 < [p| < 27!/2. Then (G.26)
implies that forany 1 <7 < j < p,

(14 6)(1 +265)?|pig| + {(er +265) (1 = p7 )}? < (1= 8)(1 —en)'/2.

Then Lemma implies that there exists an N* only depending on §, ¢; and €/, which in turn only
depends on €; and €9, such that forany 1 <1 < 57 < p,

Pr{.7/ N7} # 0} < 2exp(—2e;log(N)).
Thus, for N > N*,

1 — Pr{Algorithm[I]and Algorithm 2] give exactly the same result}
< Pr{There exist 1 <i < j < p such that .#/ N jj’ £ 0}

< Y P{gng £0}

1<i<j<p
<p” exp(—2¢; log(N))
<exp(—2(e5 — €2) log(N)),

which converges to 0 as N — oo. This completes the proof. O

The following proposition contains essential results for the proof of Theorem [G.5]
Proposition 8. Under the assumptions of Theorem|G.3] we have

p
ZZZiZnM+E17

j=lies]
where ||E1 | = op((n(n + rlog (N/r)))l/Q) , and
£ N
N> ZZ] =n(un + %) + 4rlog (r) ¥ diag(Z) 'S + Eo,
j=lies]

where |Ez|| = op (n + rlog (N/7)).
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Proof. Fori=1,...,Nandj =1,...,p, the conditional distribution of Z; given z; ; is
Zi|zig ~ N (n+ (i — )05 ;2050 B5)

where Z}; =X - 0_12 2 ; 18 a positive semidefinite but singular matrix. Fori =1,..., N and
i=1....p, wecan wrlte

Zi=p+ (zij — pi)os B + ()2 Wi,

where {W; ;})¥ | are independent p-dimensional standard normal random vectors and are independent
of {z;;}Y,. Here we emphasize that for j # j’, the random vectors {W; ;}~ , may not be
independent of {W; ;/}V ;.

We have
p p
> DN DIl Eavie> +Z D m
1/2 7 i,j
j=1 zeﬂ; Jj=1 \ies] 054 i€d]
Note that

Zig = Hj N~ [ 20— M i 1
¥ -y (0w (S )
(=1

i€d] 9.3 i=1 J:3
N ( 2(i),5 — Hj ( 1
7 7 t
— E —— - E ))
1/2
A ajé N—-t+1

The distribution of Z(;) ;j — 1 is the same as the distribution of —(Z(x_;41),; — 7). Hence from
Lemma|[D.15]and the union bound, if /(N + 1) < 1/(2e), then for

1 N+1 N+1
< — - -
0<t4log( 5 )log( o ),
we have

2 — s
Pr{ max ‘ E 17]17/2/@
P} 'Lef; Uj’

je{1,...,

> 2(2m)1/? (él(rt)l/2 + log(3r)t) } < 2nexp(—t).

b

We would like to replace ¢ by ¢ + log(n). Note that for fixed ¢ > 0, we have

1 N+1 N+1
1 < -1 — 1 —_—
O<t+0g(n)_4og( 5 )og( 5 )

for sufficiently large N. Hence for any ¢ > 0, there exists an N} such that for N > N/,

Pr{JE?llaxp} ’ Z %‘ > 2 27r)1/2( (r(t+ log(n)))l/2 + log(3r)(t + log(n)))} <2exp(—t).

It follows that

Rij — M]‘ _ 1/2 _ 1/2
je?ll,a.h.}.(,p} Z;/ jl/f Op (max ((r log(n))*/=, log(r) log(n)>) Op (r log(n)) .
(G.27)
Thus,

p
Zig =M\ _—1/2¢1 Cap Zij — M
H > ( > g )‘Tj,j E:JH S V] ok e p}‘ Z 1/2 ‘

j=1 ies] Tjj
=0p (pr1/2 log(n)>
=op ((n(n + rlog (N/r))"/2)
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where the last equality follows from the fact 71/2 < n'/2 and the condition (). On the other hand,

HZ () <c“2zH SR (cszH Py e

Note that } ;o Wi j ~ </V(Op7 2rL,),j =1,...,p. Then EZ]’=1 1> ies W”|| = np. Hence
the condition (7)) implies that

HZ D2 W) | = Ortot ) = or (@4 riog () ). @2

J

Hence the first claim holds.

Now we turn to the second claim. For 7 € ﬂj’, we have
ZiZ) =ppt + (215 — 1) 0 8B+ (B PW WL (ENDY?
+ (215 — 1j)o; (23:,juT +HEL> + (21,5 — )0, (E WLENY2+ (2 ;)WWLJ'EL)
WT( )1/2 (E;)1/2Wi,j,uf—r~

Thus,
p p
SN zz] =npp” +> 0N (2 — )0 8,80+ 27«22*
j=lies] j=lics]
+AI+A A A A AL+ A,
where
p
A= Z(Z;)l/z Z (W'LJWZTJ - Ip)(z;f)l/?’ Ay = Z ( Z (21, NJ))U;;E:J,“i
j=1 i€.d] Jj=1 iey]
T p
Aj 720_12 ( > (25— M)Wi,j) SOV Ar=pd (D> Wit (B)2
ies! j=1 ics]

First we investigate the behavior of 3% _, Zieﬂ (zi; — uj)Qa;?2:7j2Tj. We have
2 T
P
Z(m“ﬂy) :Z(()J.M)”L Z )
i€s] Tj.d i=1 7> i=N—r+1 5.3

Note that the distribution of Z;) ; — ju; is the same as the distribution of —(Z(n_;41),; — #45)s
i=1,...,7. Then from Lemma and the union bound, if r/(N + 1) < 1/(2e), then for

1 N +1 N +1
<
0<t 410g( 2 >log( 2r )’

we have
N i
(e, | 2O 2 3 (0 () | voeisn e
s S (S )} ) (o ) 22t

Note that we have assumed that /N — 0. Then for any fixed ¢ > 0, there exists an N;* such that for
N > N/,
1 N+1 N+1
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By replacing ¢ by t + log(n), we have, for N > N/,

N i
e, | S (0 (S Y]

""" i=N—r+1

> 16m (210g(37‘)(t+10g(n)) (t +log(n))?)

+ 8{27r ﬁ’: {<I>Jr ( Z %M) }2}1/2 ((2 log(3r)(t + log(n)))l/2 +t+ log(n)) }

i=N-—r+1
<2exp(—t).
It follows that

i

N
s | 2 B2 8 {0 (ST

je{l,....p} ics! =N r1
) N ; i 1 2\ 1/2
i=N—r+ =1
To deal with 3" . {®T(3)_, 1/(N - £+1)) }2, we note that uniformly fori € {N —r +
N},

! 1 Y& N+l N+1

o s g =tog (211
;N—ﬂ—i—l_ —~ N—E—i—l_/r z " 0g< r >—>OO

From Lemma - for any € € (0,1), there is an N such that for N > N/, uniformly for
ie{N—-r+1,...,N},

ZZ%M = {‘I’*(Zﬁﬂz . (1+€>2;N_lul-

Note that
Y1
DD PR SRR D ILED ) ILED SD VLT (K1) oh 3}
i=N—r+1£¢=1 =1 {=1 i=1 f=1 =1 4= 1"+1 l=r+1
Since r/N — 0, we have Zév:TH 1/¢ =1+ 0(1))log(N/r). Thus,
N i 1 ) N
3 {@T(Z m)} = (1+ 0(1))2rlog <T> .
i=N—r+1 =1
Combining (G:29) and the above equality yields
z7 — 1) N
je?llaxp}‘ EZ,;, L - 2L _4rlog (r) ‘
/
=op (r log (g)) +Op ((log(n))2 + (1og(n))<r log (§)>1 2).

1/2

It can be seen that log(n) = o (n + rlog (N/r))'“. Hence we have

)2 N N
e |3 Gy () o <n+r10g ()) G
je{L,....p} . B "

g
[ ; ’ 2,3
ZEJ].

Note that

N
> (215 — p;)°0; 28, ;8] — 4rlog <) ¥ diag(2) 'S
j T

Jj=liey]
p 2
s N
:Z ( (zig —Hi)” 4rlog () )crj_;E:,jE_Tj.
;i r ’ )
=\ Jsd
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But (G-30) implies that for any € > 0,

N (215 — 145)° N -1 T
p {— ( 1 (—))Ed < ( d T W g (7)) >>00>)
T el n + rlog - 1ag _; ZEZ]/ oy rlog - 0524524 5

< e(n + rlog (g))ﬁdiag(Z)_ﬁl} -1

It follows that

HiZ(Zz‘J—uj J_]QE ET 4rlog(N)2d1ag( )’1EH:oP(n+r10g<¥)).

j=lics]

Thus,

XP:ZZZT ( n(up +E)+4rlog<N)2d1ag( )~ 12)H

Jj=lies]
. N
Z | A; H-l—oP(n—i—rlog( ))

It remains to show that ||A;|| = op(n + rlog(N/r)),i=1,...,4.

If\Iote that fé’ only relies on {z; ;};,. Hence .#] is independent of {W; ;}} ;. From Lemma
orany ¢ > 0,

Pr([| 2 v - 1)
ies]

=E { Pr (H Z (Wi,jWi—,rj - Ip)
i€S]

<2exp(—t).

<(2Tp)1/2 + (47,01/2, (p1/2 + (2t)1/2)2))

> 3max ((27“17)1/2 + (4rt)1/2, (p1/2 + (2t)1/2)2) | 215,

Then from the union bound and the fact || X}[| < [|X]| < Cq, for t > 0,
Pr <||A1|| > 3Cypmax ((27’;0)1/2 + (4rt)1/2, (p1/2 + (215)1/2)2)) < 2pexp(—t).

By replacing ¢ by t 4 log(p), we obtain || A+ | = Op(max(pn'/2,p?)) = o (n + rlog (N/r)).

For A5, we have

Z Zi, 1 —H1
ies] 1/2

. ~1/2 Dicss oE T
[Az]] = || Z{diag(%)} R

e 7 .Zi;;?;p
. | (N Zig — 15?2
<|lpll HE{dlag(E)} H (Z ( > W) )

i=1 ies! 4

>

ics] 94

02 CB 1/2 max

<
e LTS )

Then from (G27), | Az|| = Op (n'/?log(n)) = op(n + rlog (N/r)).
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For A3, we have
Zi,1—H1 T 1/2
Yiesy EATWL(EDY

J1.1
Sies z/;EWT (35)1/2
|As| = | S{diag(z)} /2 | T 2l

Yiesy 172“1? W, (25)12
Zieﬂ’ Zi, 11/2;11 WT (21)1/2
||| Zies jﬁz L2 Wl (25)1/2

2,21/2]
e :
e, Wl )|
Zw MJ T 1/2 1/2
1/2{2\\2 wis )
Jj=1 ied] j
3/2 p 1/2
Zig — Ky
1/2{ ‘Z 1/2 Wi ‘} :
j=1 zef’

Note thatforj =1,...,p,
2
Zij — Hj (zij — 1)
Z 01/2 Wijl 2, 2N, Nf/V<0p7 Z TIP)‘
i€I] J,J i€y )
From [Laurent and Massart: [2000] Lemma 1, for ¢t > 0,

Pr{H Z & 1/2LLJW7J 2 ( Z M) (p+2(pt)1/2 +2t)} < exp(—t).

€S i€s] J:d

By the union bound, for ¢ > 0,

PT{ZHZZH HJW,J’ Z(izw) <p+2(pt)1/2+2t>}§pexp(ft).

g
j=1"ies; 9 j=li€.s] I

By replacing t by ¢ + log(p), we obtain

p
ZHZZ“%/QM’W,J\ —op (pyo 3 L pt

Jj=1 ies] j=liceys]

It follows from the above equation and @) that

b
Z H Z & 1/2MJW,] =0Op (nplog (N>> + op(np?).

Jj=1ies; 045

sl = 0 ((mptog (V) + op(nV/2p) = 00 (n T rlog (N)) .

For A4, we have

Then

Al = Dl Z 1/2( Z W)

Then from (G.28), ||A4|| = op (n + rlog (N/r)). This completes the proof.
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Proof of Theorem|[G.5| From Proposition 8] we have

1/2 Z Z XXT ]—\]1/2

j=lies]
.
_ 1 (n(n+4rlog(N/r )))Li/2 Z] 1 ZZE I Z
- 1 D
T s 2=t icsr Di i TogN) =1 ey Zi z7

1/2
= 1}2 A{ MT +E*a
aypanpp’ + Wy

where ||[E*|| = op(1). It can be seen that the matrix

1 aJlV/QuT
ay’u anpn” + Wy

is positive definite and its eigenvalues are bounded from 0 and infinity. And

—1
1 a}v”u 1+alz%tTWNu —a W
ozN/ 7 OéN,U,U + Wy —QnN W_ Wﬁl
Then from Lemma|[B.4}

-1

p Tyw-—1 A2 Tyw—1
DY (Y% x.x7| DY - (1 oy W oy i Wy ) = op(1),
j=lies! oy Wyn Wy

which completes the proof.
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