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Abstract

This work is concerned with the estimation problem of linear model when the
sample size is extremely large and the data dimension can vary with the sample
size. In this setting, the least square estimator based on the full data is not feasible
with limited computational resources. Many existing methods for this problem are
based on the sketching technique which uses the sketched data to perform least
square estimation. We derive fine-grained lower bounds of the conditional mean
squared error for sketching methods. For sampling methods, our lower bound
provides an attainable optimal convergence rate. Our result implies that when the
dimension is large, there is hardly a sampling method can have a faster convergence
rate than the uniform sampling method. To achieve a better statistical performance,
we propose a new sketching method based on data averaging. The proposed
method reduces the original data to a few averaged observations. These averaged
observations still satisfy the linear model and are used to estimate the regression
coefficients. The asymptotic behavior of the proposed estimation procedure is
studied. Our theoretical results show that the proposed method can achieve a
faster convergence rate than the optimal convergence rate for sampling methods.
Theoretical and numerical results show that the proposed estimator has good
statistical performance as well as low computational cost.

1 Introduction

Linear regression model is one of the simplest and the most fundamental models in statistics and
machine learning. Suppose one collects independent and identically distributed (i.i.d.) observations
{Zi, yi}Ni=1, where Zi ∈ Rp is the vector of the predictors and yi ∈ R is the response. The linear
model assumes

yi = β0 + Z⊤
i β1 + εi, i = 1, . . . , N, (1)

where β0 ∈ R, β1 ∈ Rp are the unknown coefficients and ε1, . . . , εN are random variables represent-
ing noise. Let Xi = (1, Z⊤

i )⊤, β = (β0,β
⊤
1 )

⊤, y = (y1, . . . , yN )⊤ and X = (X1, . . . , XN )⊤. The
classical least square estimator equals argminβ∈Rp+1 ∥y −Xβ∥2. If X has full column rank, the
least square estimator equals (

∑N
i=1 XiX

⊤
i )−1

∑N
i=1 Xiyi and the direct computation costs O(Np2)

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



time. For large scale linear models with N ≫ p, the computing time O(Np2) of the exact least
square estimator is not negligible. Faster estimators of β can largely facilitate the practical data
analysis pipelines.

Numerous research efforts have been devoted to the estimation problem for large scale linear model.
Many existing work in this area can be understood as matrix sketching methods which explicitly
or implicitly use matrix sketches as surrogates for the original observations to reduce the data size.
Specifically, sketching methods solve the sketched least square problem

min
β∈Rp+1

∥O⊤y −O⊤Xβ∥2, (2)

where O ∈ RN×n is a sketching matrix with n ≪ N . The solution to the problem (2) is the least
square estimator based on the reduced data O⊤X ∈ Rn×(p+1) and O⊤y ∈ Rn. Since n ≪ N , the
sketched least square problem can be solved much faster than the least square estimator for the full
data. In this paper, we only consider the case that O is independent of ε1, . . . , εN . That is, O may
rely on X, but not rely on y. This guarantees that the solution to (2) is an unbiased estimator of β.
Note that sampling methods are special cases of the sketching framework (2). In fact, for a sampling
method, each column of O is a vector whose elements are all 0 except one that equals 1. Sketching
methods have been intensively researched in algorithmic aspect; see Mahoney [2010], Woodruff
[2014], Drineas and Mahoney [2016] for reviews. Recently, the statistical aspect of sketching methods
also draws much attention; see, e.g., Ma et al. [2015], Raskutti and Mahoney [2016], Wang et al.
[2017], Dobriban and Liu [2019], Ma et al. [2020], Ahfock et al. [2021].

Probably the simplest sketching method is the uniform sampling method which randomly selects
n observations with equal probability to form the reduced data. Recently, Pilanci and Wainwright
[2016] provides a minimax lower bound for the mean squared prediction error of random sketching
methods. Theorem 1 of Pilanci and Wainwright [2016] shows that for a large class of random
sketching methods, including many existing data-oblivious sketching methods and sampling methods,
the convergence rate of the mean squared prediction error can not be faster than the uniform sampling
method. Hence it is a nontrivial task to construct a sketching method which has significantly better
statistical performance than the uniform sampling method.

Recently, Wang et al. [2019] initiates the study of sampling methods based on extreme values.
Motivated by the D-optimal criterion, Wang et al. [2019] proposed the information-based optimal
subdata selection (IBOSS) algorithm which successively selects informative observations based on
extreme values of variables. They showed that for fixed p, the estimator produced by the IBOSS
algorithm can have a faster convergence rate than the uniform sampling method. Meanwhile, the
computation of the IBOSS algorithm can be completed within O(Np+np2) time which has the same
order as the uniform sampling method if n = cN/p for some constant c > 0. Now the algorithm of
Wang et al. [2019] has become the building block of some recent methods for large scale problems.
For example, Wang [2019] proposed an algorithm which combines the algorithm of Wang et al.
[2019] and the divide and conquer strategy. Cheng et al. [2020] extended the algorithm of Wang
et al. [2019] to the logistic regression model. Existing asymptotic results for the IBOSS algorithm are
obtained in the setting of fixed n and p. At present, there is still a lack of theoretical understanding of
the behavior of the IBOSS algorithm in the setting of varying n and p.

The IBOSS algorithm is a sampling method and is therefore an instance of the sketching framework (2).
Interestingly, the IBOSS algorithm can surpass the minimax lower bound of Pilanci and Wainwright
[2016]. In fact, a key condition for Theorem 1 of Pilanci and Wainwright [2016] does not hold for the
IBOSS algorithm. Thus, the IBOSS algorithm is not restricted by the minimax bound of Pilanci and
Wainwright [2016]. This fact is detailed in Section 2. Note that there are many potential sketching
methods which are not restricted by the minimax bound of Pilanci and Wainwright [2016]. To give
a more comprehensive understanding of the behavior of these sketching methods, we derive fine-
grained lower bounds for the conditional mean squared error of the sketched least square estimators
produced by (2) in the setting that Zi is a standard normal random vector. In particular, our result
provides a lower bound for any sampling method which may possibly rely on X but does not rely on
y. It turns out that if p ≪ log(N/n), then the optimal lower bound for sampling methods can have a
faster convergence rate than the uniform sampling method. On the other hand, if log(N/n) ≪ p, any
sampling method can not largely surpass the uniform sampling method. Furthermore, we derive the
asymptotic behavior of the IBOSS algorithm in the setting of varying n and p. It turns out that under
certain conditions, the IBOSS algorithm can achieve the optimal rate for sampling methods.
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Table 1: Theoretical performance of the ideal sampling method (abbreviated as ISM), the IBOSS
algorithm and the proposed method when Z1 ∼ N (0p, Ip). Assume that as N → ∞, p → ∞,
p3(log(p))4 log(N)/N → ∞, n = O(N ϵ) for some 0 < ϵ < 1/2 and p = O(n1/2−ϵ∗) for some
0 < ϵ∗ < 1/2, log(N/n) = O(p2). See Theorems 2, 3, 4. The reported computing time is under the
assumption that the multiplication of an m× n matrix and an n× p matrix costs O(mnp) time, and
the inversion of a p× p matrix costs O(p3) time.

Methods Reduced sample size E
{
∥β̂I − β∥2 | Z

}
Computing time

ISM n OP

(
p2

n(p+log(N
n ))

)
—

IBOSS n OP

(
p2

n(p+log(N
n ))

)
O(Np+ np2)

NEW 2p (1 + oP (1))
p2σ2

ε

2 log(2p)N O(Np+ p3)

For large scale linear models, it is often the case that log(N/n) ≪ p. In this case, any sampling
method can not have a significantly better statistical performance than the uniform sampling method.
Inspired by this phenomenon, we propose an alternative sketching method which can reduce the full
data to just a few observations while the resulting estimator of β may have smaller conditional mean
squared error than sampling methods. The proposed method is based on data averaging. The main
idea is to partition the observations into 2p groups such that the averages of Zi within groups are
separated. The least square estimator based on 2p averaged observations is used to estimate β. The
computation of the proposed method can be completed within O(Np + p3) time. Our theoretical
results show that the proposed method can have a faster convergence rate than any sampling methods
with comparative computing time. Also, the proposed method reduces the full data to merely 2p
averaged observations. These averaged observations also satisfy the linear model (1) and have
independent errors. Consequently, it is convenient to further compute other estimators or conduct
statistical inferences using the reduced data. The good performance of the proposed estimator is
also verified by simulation results and a real data example. Table 1 summarizes the theoretical
performance of the proposed method and compare it with the ideal sampling method implied by
Theorem 2 and the IBOSS algorithm.

The rest of the paper is organized as follows. Section 2 investigates lower bounds for the conditional
mean squared error of the sketched least square estimators produced by (2). In Section 3, we propose
a data averaging method to estimate β and investigate its asymptotic behavior. Section 4 presents the
simulation results briefly. Section 5 concludes the paper. The simulation results, a real data analysis
and all proofs are deferred to the Supplement Material.

We close this section by introducing some notations and assumptions that will be used throughout the
paper. For any real number w, let ⌊w⌋ denote the largest integer not larger than w. For any vector W ,
let ∥W∥ denote the Euclidean norm of W . For any matrix B, let ∥B∥ and ∥B∥F denote the operator
norm and the Frobenious norm of B, respectively. Moreover, denote by B:,j the jth column of B.
If B is symmetric, denote by λi(B) the ith largest eigenvalue of B. In this paper, the symmetric
matrices are equipped with Loewner partial order. That is, for two symmetric matrices B1 and B2,
B1 > B2 if and only if B1 −B2 is positive definite. For a positive semidefinite matrix B, let B1/2

denote a positive semidefinite matrix such that (B1/2)2 = B. For any set A , denote by A ∁ its
complement and Card(A ) its cardinality. Let Φ(x) and φ(x) denote the distribution function and
density function of the standard normal distribution, respectively. For random variables ξ ∈ R and
η > 0, ξ = oP (η) means that ξ/η converges to 0 in probability, and ξ = OP (η) means that ξ/η is
bounded in probability.

Let N denote the size of full sample, p denote the dimension of covariates. Let Z = (Z1, . . . , ZN )⊤

be an N × p matrix of covariates. Denote by zi,j the jth element of Zi, i = 1, . . . , N , j = 1, . . . , p.
Let z(1),j ≤ · · · ≤ z(N),j denote the order statistics of {zi,j}Ni=1, j = 1, . . . , p. The following
assumption for the data distribution is assumed throughout the paper.
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Assumption 1 Suppose {Zi, yi}Ni=1 are i.i.d. and satisfy the linear model (1), where E(ε1) = 0,
Var(ε1) = σ2

ε and ε1 is independent of Z1. Suppose Z1 has a density function f(z1,1, . . . , z1,p)
with respect to the Lebesgue measure on Rp, and E(Z1) = µ, Cov(Z1) = Σ are finite. Suppose
Σ = (σi,j)

p
i,j=1 is positive definite. Suppose r > 0. As N → ∞, the dimension p is a function of N ,

while the distribution of (Z1, y1) only relies on p. Finally, assume σ2
ε is a constant which does not

depend on N .

For simplicity, our notations suppress the dependence of p on N , and the dependence of the distribu-
tion of (Z1, y1) on p.

2 Risk bounds for sketched least square estimators

Theorem 1 of Pilanci and Wainwright [2016] provides a minimax lower bound for the mean squared
prediction error of random sketching methods. Their result implies that under certain conditions,
there exists a constant C > 0 such that for any estimator β̂ which only relies on (O⊤X,O⊤y),

sup
β∈Rp

E{N−1∥X(β̂ − β)∥2 | Z} ≥ Cp

n
σ2
ε .

The optimal convergence rate p/n can be achieved by the least square estimator based on n uniformly
selected observations.A key condition for the above result is that

∥E(O(O⊤O)−1O⊤ | Z)∥ ≤ cn/N (3)

for some constant c > 0.

The result of Pilanci and Wainwright [2016] can be applied to general estimators based on
(O⊤X,O⊤y). In this paper, however, we focus on the least square estimator based on (O⊤X,O⊤y).
Let β̂O denote the solution to the sketched least square problem (2). In this paper, we use the condi-
tional mean squared error E{∥β̂O − β∥2 | Z} to measure the performance of β̂O. The following
theorem gives a lower bound for the conditional mean squared error of β̂O.

Theorem 1 Suppose Assumption 1 holds, Z ∼ N (0p, Ip), the sketching matrix O is an N × n
matrix with full column rank. Assume that O is independent of ε1, . . . , εN and with probability 1,
O⊤X has full column rank. Suppose as N → ∞, p/N → 0. Then as N → ∞,

E
{
∥β̂O − β∥2 | Z

}
≥(1 + oP (1))

∥∥E(O(O⊤O)−1O⊤ | Z)
∥∥−1 p+ 1

N
σ2
ε .

Theorem 1 gives an explicit characterization of the impact of E(O(O⊤O)−1O⊤ | Z) on the lower
bound of E{∥β̂O − β∥2 | Z}. Pilanci and Wainwright [2016] showed that the condition (3) is
satisfied by many classical sketching methods. Under the conditions of Theorem 1, for sketching
methods satisfying the condition (3), the convergence rate of E{∥β̂O − β∥2 | Z} is lower bounded
by p/n, which is the convergence rate for the uniform sampling method. Thus, in order to achieve a
faster convergence rate than the uniform sampling method, the condition (3) should be violated.

Many existing sketching methods are through sampling the observations. For sampling methods,
O is a column orthogonal matrix and each column of O has a single nonzero element with value
1. Hence O(O⊤O)−1O⊤ is a diagonal matrix whose diagonal elements are zeros and ones. For
the IBOSS algorithm of Wang et al. [2019], the selected observations are completely determined
by X and does not rely on additional randomness. Consequently ∥E(O(O⊤O)−1O⊤ | Z)∥ =
∥O(O⊤O)−1O⊤∥ = 1. In this case, the lower bound provided by Theorem 1 has rate p/N which is
too loose. The following theorem gives a tighter lower bound of the mean squared error for sampling
methods.

Theorem 2 Suppose Assumption 1 holds, Z ∼ N (0p, Ip), the sketching matrix O is an N × n
matrix with full column rank. Assume that O is independent of ε1, . . . , εN and with probability 1,
O⊤X has full column rank. Furthermore, suppose E(O(O⊤O)−1O⊤ | Z) = diag(d1, . . . , dN ).
Let dmax = maxi∈{1,...,N} di Then

E
{
∥β̂O − β∥2 | Z

}
≥ p2

6n
(
p+ log

(
Ndmax

n

))
+OP (n)

σ2
ε .
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If the matrix E(O(O⊤O)−1O⊤ | Z) = diag(d1, . . . , dN ) is diagonal, then

dmax = max
α∈RN ,∥α∥=1

α⊤ E(O(O⊤O)−1O⊤ | Z)α ≤ E( max
α∈RN ,∥α∥=1

α⊤O(O⊤O)−1O⊤α | Z) = 1.

Under the conditions of Theorem 2, the optimal convergence rate for sampling methods is lower
bounded by

p2

n
(
p+ log

(
N
n

)) . (4)

Note that if p ≪ log(N/n), then the rate (4) is faster than the uniform sampling method. Theorem 4
in Section 3.2 will show that under certain conditions, the method of Wang et al. [2019] can achieve
the optimal rate (4).

It is worth mentioning that Theorems 1 and 2 are obtained under the condition Zi ∼ N (0p, Ip).
Perhaps, these results can be extended to the case that Zi has a general multivariate distribution.
However, such results may not be valid if the distribution of Zi has heavier tail than normal distribution.
In fact, our numerical results imply that a faster convergence rate may be achieved when the
distribution of Zi has heavy tail.

3 An estimator via data averaging

In this section, we would like to propose a new sketching method which can hopefully have good
statistical performance with low computational cost. To be simple, when considering computation
time, it is understood that the multiplication of an m × n matrix and n × p matrix costs O(mnp)
time, and the inversion of a p× p matrix costs O(p3) time. Note that the computation time O(Np)
is essential if each observation is accessed at least once, e.g., to be loaded into the memory. The
sketched least square problem (2) involves n reduced observations and the direct computation
costs O(np2 + p3) computation time. The computation time O(p3) comes from the inversion of a
(p+ 1)× (p+ 1) matrix which is essential no matter how n is chosen. Hence the direct computation
of any reasonable estimator which uses the information of the full data requires at least O(Np+ p3)
time. Thus, we restrict our attention to algorithms that can be completed within O(Np+ p3) time.

To complete the computation within O(Np+p3) time, one needs to take n = O(N/p+p). Theorem
2 implies that if n = c1N/p+ c2p where c1, c2 > 0 are constants, then the optimal convergence rate
for sampling methods reduces to p/n which is equal to the convergence rate for the uniform sampling
method. Also, for large N , the reduced sample size n = c1N/p+ c2p may still be large. To achieve
a faster convergence rate and a better reduction of data, we would like to consider sketching methods
other than sampling methods. This motivates us to propose a new data averaging method.

3.1 Methodology

Let J1, . . . ,Jk ⊂ {1, . . . , N} be k mutually disjoint index sets, each containing r indices, and⋃k
i=1 Ji = {1, . . . , N}. To use the information of the full data, we assume N = kr. Let Z̄j =

r−1
∑

i∈Jj
Zi and ȳj = r−1

∑
i∈Jj

yi be the averaged observation within the jth index set, j =

1, . . . , k. It can be seen that

ȳj = β0 + Z̄⊤
j β1 + ε̄j ,

where ε̄j = r−1
∑

i∈Jj
εi. Suppose that the choice of the index sets J1, . . . ,Jk is based on

the covariates {Zi}Ni=1 and does not rely on the responses {yi}Ni=1. Then ε̄1, . . . , ε̄k are mutually
independent and are independent of {Z̄j}kj=1. Also, ε̄j has mean 0 and variance σ2

ε/r. Thus, the
averaged observations also satisfy the linear model and one can estimate β by the least square
estimator base on k reduced observations as β̂ = (

∑k
j=1 X̄jX̄

⊤
j )−1(

∑k
j=1 X̄j ȳj), where X̄j =

r−1
∑

i∈Jj
Xi, j = 1, . . . , k. We would like to choose J1, . . . ,Jk such that β̂ is a fast and

accurate estimator of β. Let H =
∑k

ℓ=1(Z̄ℓ − Z̄)(Z̄ℓ − Z̄)⊤ and Z̄ = N−1
∑N

i=1 Zi. The
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conditional mean squared error of β̂ is

E(∥β̂ − β∥2 | Z) =kσ2
ϵ

N
tr


 k

∑k
j=1 Z̄

⊤
j

k∑
j=1

Z̄j

k∑
j=1

Z̄jZ̄
⊤
j


−1

=
kσ2

ϵ

N
tr

{(
1
k + Z̄⊤H−1Z̄ −Z̄⊤H−1

−H−1Z̄ H−1

)}
=
(
k
(
tr(H−1) + Z̄⊤H−1Z̄

)
+ 1
) σ2

ε

N
.

In order to achieve a good statistical accuracy, we would like to choose the index sets such that
tr(H−1) + Z̄⊤H−1Z̄ is minimized.

First we consider the simplest case of p = 1. In this case, the matrix H reduces to a real number.
Since β ∈ R2, one needs at least two observations to estimate β. To achieve maximum reduction of
data, we take k = 2. Then H takes its maximum when J1 = {i ∈ {1, . . . , N} : zi,1 ≤ z(N/2),1}
and J2 = {i ∈ {1, . . . , N} : zi,1 ≥ z(N/2+1),1}. The least square estimator of β based on the

averaged observations is β̂ =
(
(Z̄2ȳ1 − Z̄1ȳ2)/(Z̄2 − Z̄1), (ȳ2 − ȳ1)/(Z̄2 − Z̄1)

)⊤
. The above

estimator (ȳ2 − ȳ1)/(Z̄2 − Z̄1) of β1 is considered in Barton and Casley [1958] as a quick estimate
of β1, which only considered the case of p = 1. To the best of our knowledge, no previous study
generalized this estimator of Barton and Casley [1958] to the case p > 1.

For the general case of p ≥ 1, the exact minimizer of E(∥β̂ − β∥2 | Z) may not be easy to obtain. A
simpler criterion to choose the index sets is to maximize the trace tr(H) =

∑k
ℓ=1 ∥Z̄ℓ − Z̄∥2. This

problem is equivalent to minimizing
∑k

ℓ=1

∑
i∈Jℓ

∥Zi − Z̄ℓ∥2 and is an instance of the balanced k-
means clustering problem; see Lin et al. [2019] and the references therein. Unfortunately, algorithms
for the k-means clustering problem are computationally intensive. In fact, for the vanilla k-means
algorithm, each iteration takes O(Npk) time which even exceeds the computing time of the least
square estimator based on the full data. To achieve a balance between the statistical accuracy and
the computing time, we deal with each variable in turn. We take k = 2p and for j = 1, . . . , p, we
determine two index sets, namely Lr,j and Rr,j , based on the jth variable. Hence the set {1, . . . , N}
is partitioned into 2p index sets Lr,1, . . . ,Lr,p and Rr,1, . . . ,Rr,p, each containing r = N/(2p)
indices. The choice of these index sets is based on the following lower bound of tr(H),

tr(H) =

p∑
j=1

p∑
ℓ=1

{(
1

r

∑
i∈Lr,ℓ

zi,j −
1

N

N∑
i=1

zi,j

)2

+

(
1

r

∑
i∈Rr,ℓ

zi,j −
1

N

N∑
i=1

zi,j

)2}

≥
p∑

j=1

[
j−1∑
ℓ=1

{(
1

r

∑
i∈Lr,ℓ

zi,j −
1

N

N∑
i=1

zi,j

)2

+

(
1

r

∑
i∈Rr,ℓ

zi,j −
1

N

N∑
i=1

zi,j

)2}

+

{(
max(z̃j −

1

r

∑
i∈Lr,j

zi,j , 0)

)2

+

(
max(

1

r

∑
i∈Rr,j

zi,j − z̃j , 0)

)2}]
,

where z̃j = (2r(p − j + 1))−1
∑

i/∈
⋃j−1

ℓ=1 (Lr,ℓ∪Rr,ℓ)
zi,j . For j = 1, . . . , p, we choose Lr,j and

Rr,j to maximize the jth term of the above lower bound. Specifically, the first term of the above
lower bound is {max(z̃1 −

∑
i∈Lr,1

zi,1/r, 0)}2 + {max(
∑

i∈Rr,1
zi,1/r− z̃1, 0)}2, which takes its

maximum when Lr,1 = {i ∈ {1, . . . , N} : zi,1 ≤ γ1,1} and Rr,1 = {i ∈ {1, . . . , N} : zi,1 ≥ γ2,1}
where γ1,1 = z(r),1 and γ2,1 = z(N−r+1),1. After obtaining the index sets Lr,1, . . . ,Lr,j−1 and
Rr,1, . . . ,Rr,j−1, we choose Lr,j and Rr,j to maximize the jth term of the above lower bound,
which is equivalent to maximizing {max(z̃j −

∑
i∈Lr,j

zi,j/r, 0)}2 + {max(
∑

i∈Rr,j
zi,j/r −

z̃j , 0)}2. Hence we choose Lr,j and Rr,j to be the indices of the remaining observations whose
jth variable is no larger than γ1,j and no less than γ2,j , respectively, where γ1,j and γ2,j are the rth
smallest and the rth largest element of {zi,j : i ∈ {1, . . . , N}\(

⋃j−1
ℓ=1(Lr,ℓ ∪ Rr,ℓ))}, respectively.

We average the observations within the groups Lr,1, . . . ,Lr,p and Rr,1, . . . ,Rr,p. Finally, we
use the least square estimator based on the 2p averaged observations to estimate β. The proposed
estimation procedure is summarized in Algorithm 1.
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Algorithm 1: Data averaging algorithm

Input: Observations {Zi, yi}Ni=1, covariate dimension p
Output: Estimator of β
r = N

2p
is assumed to be an integer

for j ∈ {1, ..., p} do
γ1,j ← the rth smallest element of {zi,j : i ∈ {1, . . . , N}\

(⋃j−1
ℓ=1(Lr,ℓ ∪Rr,ℓ)

)
}

γ2,j ← the rth largest element of {zi,j : i ∈ {1, . . . , N}\
(⋃j−1

ℓ=1(Lr,ℓ ∪Rr,ℓ)
)
}

Lr,j ← {i ∈ {1, . . . , N}\
(⋃j−1

ℓ=1(Lr,ℓ ∪Rr,ℓ)
)
: zi,j ≤ γ1,j}

Rr,j ← {i ∈ {1, . . . , N}\
(⋃j−1

ℓ=1(Lr,ℓ ∪Rr,ℓ)
)
: zi,j ≥ γ2,j}

Z̄L
j ← r−1 ∑

i∈Lj
Zi , X̄L

j = (1, Z̄L⊤
j )⊤ , ȳL

j ← r−1 ∑
i∈Lj

yi

Z̄R
j ← r−1 ∑

i∈Rj
Zi , X̄R

j = (1, Z̄R⊤
j )⊤ , ȳR

j ← r−1 ∑
i∈Rj

yi

β̂A ←
(∑p

j=1 X̄
L
j X̄

L⊤
j +

∑p
j=1 X̄

R
j X̄R⊤

j

)−1 (∑p
j=1 X̄

L
j ȳ

L
j +

∑p
j=1 X̄

R
j ȳR

j

)
return β̂A

In Algorithm 1, our strategy to select the index sets Lr,j and Rr,j is closely related to the IBOSS
algorithm of Wang et al. [2019]. In fact, the index sets in Algorithm 1 is exactly the index sets
selected by IBOSS algorithm with subdata size n := N . Of course, for IBOSS algorithm, taking
n = N is unreasonable since the sample size is not reduced. In fact, for IBOSS algorithm, one needs
to take n = O(N/p+ p) to complete the computation within O(Np+ p3) time. Thus, the selection
procedures of the proposed method and the IBOSS algorithm have different behavior. Theorem 4
will show that under certain conditions, IBOSS can achieve the optimal convergence rate (4) among
all sampling methods. We shall see that the statistical performance of Algorithm 1 is even better than
the IBOSS algorithm.

Now we give an analysis of the computing time of Algorithm 1. Note that γ1,j and γ2,j are order
statistics of no more than N elements. It is known that the selection of an order statistic among m
elements can be completed within O(m) time even in the worst case; see Paterson [1996]. Hence
the computation of γ1,1, . . . , γ1,p and γ2,1, . . . , γ2,p can be completed within O(Np) time in total. It
takes only one scan of the full data to compute the averaged observations, which takes O(Np) time.
Finally, the computation of β̂A based on 2p averaged observations can be completed within O(p3)
time. In summary, Algorithm 1 can be completed within O(Np+ p3) time and reduces the full data
to merely 2p observations.

3.2 Asymptotic results

Now we investigate the asymptotic behavior of the conditional mean squared error of β̂A. In our
asymptotic results, we treat p as a function of N , and N tends to infinity. Let Z = (z1, . . . , zp)

⊤ be
a random vector which is independent of Z and y and has the same distribution as Z1. The following
theorem gives the exact limit of E{∥β̂A − β∥2 | Z} when Z is a standard normal random vector.

Theorem 3 Suppose that Assumption 1 holds, r = N/(2p) is an integer, N > 2p2, and Z ∼
N (0p, Ip). Also suppose that as N → ∞, p → ∞ and p3(log(p))4 log(N)/N → 0. Then as
N → ∞,

E
{
∥β̂A − β∥2 | Z

}
= (1 + oP (1))

p2σ2
ε

2 log(2p)N
.

Theorem 3 implies that when Z is a standard normal random vector, the conditional mean squared
error of β̂A has convergence rate p2/(log(2p)N). On the other hand, for sampling methods with
n = c1N/p+c2p for constants c1, c2 > 0 such that the computing time may be comparable, Theorem
2 implies that the optimal convergence rate of the conditional mean squared error is p2/N . In this
view, the convergence rate of the proposed estimator is faster than sampling methods for p → ∞.

The proposed algorithm is closely related to the IBOSS algorithm. We would like to derive the
asymptotic behavior of the conditional mean squared error of β̂I. Theorem 6(i) of Wang et al. [2019]
gives an asymptotic expression of the conditional covariance of β̂I under the assumption that Z is
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normally distributed. It is implied that if n and p are fixed, then as N → ∞,

E
{
∥β̂I − β∥2 | Z

}
= (1 + oP (1))

(
p

2 log(N)
tr(Σ−1 diag(Σ)Σ−1) + 1

)
σ2
ε

n
. (5)

Now we derive the fine-grained limiting behavior of E
{
∥β̂I − β∥2 | Z

}
for varying n and p. Let

ρi,j = σi,j/(σi,iσj,j)
1/2 denote the correlation coefficient between zi and zj , i, j = 1, . . . , p. Define

αN =
p

p+ 2 log (N/r)
, WN = αNΣ+ (1− αN )Σdiag(Σ)−1Σ.

We have the following theorem.

Theorem 4 Suppose Assumption 1 holds and Z ∼ N (µ,Σ), r = n/(2p) is an integer, there exist
constants C1, C2, C3 > 0 such that C1 < λp(Σ) < λ1(Σ) < C2 and ∥µ∥ < C3, there exists a
constant 0 < ρ < 1/

√
2 such that max1≤i<j≤p |ρi,j | ≤ ρ, there exist ϵ1, ϵ2 ∈ (0, 1) such that for

sufficiently large N , 4r ≤ N ϵ1 , p ≤ N ϵ2 and

(1 + 2ϵ2)
1/2|ρ|+ {(ϵ1 + 2ϵ2)(1− ρ2)}1/2 < (1− ϵ1)

1/2. (6)

Furthermore, suppose as N → ∞,

r

N
→ 0 and

p2(log(n))4

max (n, r log (N/r))
→ 0. (7)

Then as N → ∞,

E
{
∥β̂I − β∥2 | Z

}
= (1 + oP (1))

(
αN tr(W−1

N ) + αNµ⊤W−1
N µ+ 1

) σ2
ε

n
.

Remark 1 If n and p are fixed, then the condition (6) is satisfied for sufficiently large N . On the
other hand, if ρi,j = 0 for all 1 ≤ i < j ≤ p, that is, the variables are independent, then the
condition (6) becomes ϵ1 + ϵ2 < 1/2. In this case, the condition (6) holds for n = O(N ϵ) for some
0 < ϵ < 1/2.

Remark 2 The condition (7) is satisfied if r/N → 0 and p = O(n1/2−ϵ) for some ϵ > 0. Also, the
condition (7) can be satisfied for arbitrary n, p provided N is sufficiently large.

Compared with Theorem 6(i) in Wang et al. [2019], our Theorem 4 gives a more comprehensive
characterization of the asymptotics of Var(β̂I | X). If µ = 0p and αN → 0, then Theorem 4 implies
that

E
{
∥β̂I − β∥2 | Z

}
= (1 + oP (1))

(
p

2 log (N/r)
tr(Σ−1 diag(Σ)Σ−1) + 1

)
σ2
ε

n
. (8)

If we further assume that log(r)/ log(N) → 0, then the expressions (5) and (8) are equivalent.
However, Theorem 4 implies that the expression (8) is not valid if αN does not converge to 0.

Now we consider the special case that Z ∼ N (0p, Ip). In this case, Theorem 4 implies that if
r/N → 0, n = O(N ϵ) for some 0 < ϵ < 1/2 and p = O(n1/2−ϵ∗) for some 0 < ϵ∗ < 1/2, then
E{∥β̂I − β∥2 | Z} has convergence rate (αNp+ 1)/n. We have

αN =
p

p+ 2 log(2p) + 2 log(N/n)
= O

(
p

p+ log(N/n)

)
.

Hence if log(N/n) = O(p2), then E
{
∥β̂I − β∥2 | Z

}
= OP (p

2/(n(p + log(N/n))) which

matches (4). In this case, β̂I achieves the optimal rate of sampling methods given by Theorem
2, and hence the optimal rate given by Theorem 2 is tight.
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4 Simulation results

In this section, we conduct simulations to examine the performance of the proposed estimator β̂A.
For comparison, the simulations also include the vanilla data averaging algorithm (abbreviated as
VDA) where the full data is uniformly divided into k := 2p groups in random and the observations
are averaged within groups, the least square estimator based on the uniform sampling method
(abbreviated as UNI), the leverage score sampling estimator (abbreviated as LEV) as described in Ma
et al. [2015], the sketched least square estimator based on the subsampled randomized Hadamard
transform (abbreviated as SRHT), the estimator β̂I produced by the IBOSS algorithm, and the least
square estimator based on the full data (abbreviated as FULL). The methods VDA, UNI, LEV, SRHT
and IBOSS are instances of the sketching framework (2). For these three methods, we take n = N/p.
For SRHT, if N is a power of 2, then the sketching matrix O = (PHD)⊤, where P is an n ×N
matrix whose rows are uniformly sampled from the standard bases of RN , H is an N ×N Walsh-
Hadamard matrix (see, e.g., Dobriban and Liu [2019]) and D is an N ×N diagonal matrix whose
diagonal elements are i.i.d. Rademacher random variables; and if N is not a power of 2, we pad zeros
to the original data to make N reach a power of 2. The computation of the proposed method and the
IBOSS estimator rely on certain order statistics. For these two methods, the algorithm SELECT of
Floyd and Rivest [1975] is used to select the order statistics. The algorithms are implemented by C++.
To be fair, for all algorithms, the estimators of β are solved by Gaussian elimination. The simulations
are performed on a CPU with 3.30 GHz.

The statistical performance of an estimator β̂ of β is evaluated by the empirical mean squared error
based on 100 independent replications. Specifically, the empirical mean squared error is defined as

100−1
∑100

i=1 ∥β̂
(i)

− β∥2, where β̂
(i)

is the estimator in the ith replication. In all simulations, the
ground truth of β is a vector with all elements equal to 1. We consider two distributions of ε1: the
normal distribution ε1 ∼ N (0, 1) and the normalized chi-squared distribution ε1 ∼ (χ2(1)−1)/

√
2.

We consider the following distributions of Z.

• Case 1: {zj}pj=1 are i.i.d. with uniform distribution Uniform(0, 1).

• Case 2: {zj}pj=1 are i.i.d. with normal distribution N (0, 1).

• Case 3: {zj}pj=1 are i.i.d. with lognormal distribution, that is, log(zi) ∼ N (0, 1).

• Case 4: {zj}pj=1 are i.i.d. with student t distribution with 3 degrees of freedom t3.

• Case 5: Z ∼ N (0p,Σ), where the diagonal elements of Σ all equals 1 and the off diagonal
elements all equals 0.5.

• Case 6: Z is distributed as a mixture of N (µ,Σ) and N (−µ,Σ) where µ has all 1 entries,
Σ is defined as in Case 5, and the mixing proportions of the two component distributions
are both 0.5.

Table 2 and Tables A.1-A.3 in Supplementary Material list the empirical mean squared errors of
various estimators, where the proposed method is referred to as NEW. Among the implemented
methods, VDA, UNI and SRHT are data-oblivious sketching methods while NEW, LEV and IBOSS
are data-aware sketching methods. It can be seen that VDA has the worst performance. This implies
that the selection procedure is necessary for the proposed method. The simulation results show that
UNI, SRHT, LEV have similar statistical performance. It can be seen that the proposed estimator can
achieve substantial improvement over the competing sketching methods. Especially, the proposed
method shows superiority when p is large.

We also evaluate the computing time for various algorithms. Table 3 lists the computing time for
Case 1 with ϵ1 ∼ N (0, 1). Results for other settings are similar. It can be seen that the proposed
method is slower than VDA and UNI. Compared with VDA and UNI, however, the proposed method
has significantly better statistical performance and can achieve better data reduction. Compared
with IBOSS, the proposed method has a comparable computing time but a much better statistical
performance. In summary, the new estimator has good performance in both speed and statistical
performance.
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Table 2: Empirical mean squared errors (multiplied by 103) of various algorithms with N = 8× 104

and ε1 ∼ N (0, 1).

p NEW VDA UNI SRHT LEV IBOSS FULL

Case 1 50 182.438 16134 492.376 497.665 488.99 507.642 9.38737
100 651.596 14751.4 2149.19 2163 2114.55 2186.94 19.2125
200 2469.56 15014 15398.1 15788.1 14584.2 15159.2 38.0159

Case 2 50 6.95906 1039.08 33.6247 33.5017 32.9702 27.03 0.624944
100 21.9735 1039.08 144.342 144.579 141.629 125.218 1.28266
200 69.4913 1034.62 1033.37 1021.28 1035.9 926.762 2.54829

Case 3 50 5.99607 1008.38 28.2232 32.817 34.4454 13.635 0.465752
100 11.6466 998.573 105.39 126.361 168.775 40.3553 1.00904
200 23.0075 866.214 920.989 1003.37 982.843 235.444 1.95179

Case 4 50 2.00812 345.559 12.0477 11.2138 11.6838 2.36205 0.213812
100 4.66736 346.259 53.6057 49.8285 50.3076 7.96878 0.439798
200 10.658 345.624 372.099 346.143 344.283 37.7542 0.856995

Case 5 50 19.8421 2127.66 65.1897 63.4604 61.4904 59.3276 1.21801
100 62.2782 1922.4 284.473 281.714 275.586 264.896 2.4893
200 192.085 2015.87 2022.8 2031.46 1979.68 1973.69 5.00354

Case 6 50 19.5601 1987.22 62.558 65.5263 62.6909 55.7036 1.22561
100 60.9593 2022.88 282.951 286.522 280.046 263.008 2.47379
200 194.566 2007.68 1988.91 2022.94 2000.11 1938.25 5.09764

Table 3: Computing time (in seconds) of various algorithms.

N p NEW VDA UNI SRHT LEV IBOSS FULL

8× 104 50 0.05127 0.00302 0.00204 0.06567 0.12722 0.03279 0.05261
8× 104 100 0.10580 0.00635 0.00332 0.15607 0.52488 0.07127 0.22732
8× 104 200 0.21261 0.01618 0.00653 0.32740 2.14122 0.16388 0.90082
6.4× 105 100 1.32952 0.05715 0.03292 1.75414 4.51072 1.16810 1.95327
6.4× 105 200 2.47827 0.10503 0.05132 3.31281 17.8339 2.31180 7.56397
6.4× 105 400 4.88818 0.25092 0.12785 6.86445 85.0793 4.71242 36.3755

5 Conclusion

In this paper, we presented a new sketching method which is based on data averaging. The com-
putation of the proposed method can be completed within O(Np + p3) time. We proved that the
proposed method can achieve a faster convergence rate than sampling methods.

In the proposed algorithm, we need to select certain order statistics of variables. This selection
procedure is adapted from the IBOSS algorithm and thus allows us to compare the performance of
these two methods in a fair manner. In theory, the selection of order statistics can be completed within
O(Np) time. However, this procedure may cost a lot of time in practice. It is interesting to investigate
other selection procedures for data averaging. Also, this work focuses on the data averaging method
for the linear model. It is interesting to apply the data averaging method to regularized linear models
and generalized linear models. We leave these topics for possible future research.

6 Supplementary Material

The Supplementary Material includes additional numerical results, all proofs and codes.
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