
A Training details

Goal distributions. We train our goal-conditioned value function, high-level policy, and low-level
policy respectively with Equations (4), (6) and (7), using different goal-sampling distributions. For
the value function (Equation (4)), we sample the goals from either random states, futures states, or
the current state with probabilities of 0.3, 0.5, and 0.2, respectively, following Ghosh et al. [34]. We
use Geom(1− γ) for the future state distribution and the uniform distribution over the offline dataset
for sampling random states. For the hierarchical policies, we mostly follow the sampling strategy
of Gupta et al. [35]. We first sample a trajectory (s0, s1, . . . , st, . . . , sT) from the dataset DS and a
state st from the trajectory. For the high-level policy (Equation (6)), we either (i) sample g uniformly
from the future states stg (tg > t) in the trajectory and set the target subgoal to smin(t+k,tg) or (ii)
sample g uniformly from the dataset and set the target subgoal to smin(t+k,T). For the low-level
policy (Equation (7)), we first sample a state st from D, and set the input subgoal to smin(t+k,T) in
the same trajectory.

Advantage estimates. In principle, the advantage estimates for Equations (6) and (7) are respec-
tively given as

Ah(st, st+k̃, g) = γk̃VθV (st+k̃, g) +

k̃−1∑
t′=t

r(st′ , g)− VθV (st, g), (8)

Aℓ(st, at, s̃t+k) = γVθV (st+1, s̃t+k) + r(st, s̃t+k)− VθV (st, s̃t+k), (9)

where we use the notations k̃ and s̃t+k to incorporate the edge cases discussed in the previous
paragraph (i.e., k̃ = min(k, tg − t) when we sample g from future states, k̃ = min(k, T − t) when
we sample g from random states, and s̃t+k = smin(t+k,T)). Here, we note that st′ ̸= g and st ̸= s̃t+k

always hold except for those edge cases. Thus, the reward terms in Equations (8) and (9) are mostly
constants (under our reward function r(s, g) = 0 (if s = g), −1 (otherwise)), as are the third terms
(with respect to the policy inputs). As such, we practically ignore these terms for simplicity, and this
simplification further enables us to subsume the discount factors in the first terms into the temperature
hyperparameter β. We hence use the following simplified advantage estimates, which we empirically
found to lead to almost identical performances in our experiments:

Ãh(st, st+k̃, g) = VθV (st+k̃, g)− VθV (st, g), (10)

Ãℓ(st, at, s̃t+k) = VθV (st+1, s̃t+k)− VθV (st, s̃t+k). (11)

Figure 9: Full architecture of HIQL. In practice, we
use V (s, ϕ([g, s])) instead of V (s, ϕ(g)) as we found
that the former leads to better empirical performance.

State representations. We model the out-
put of the representation function ϕ(g) in
V (s, ϕ(g)) with a 10-dimensional latent vector
and normalize the outputs of ϕ(g) [53]. Empiri-
cally, we found that concatenating s to the input
(i.e., using ϕ([g, s]) instead of ϕ(g), Figure 9),
similarly to Hong et al. [39], improves perfor-
mance in our experiments. While this might
lose the sufficiency property of the representa-
tions (i.e., Proposition 5.1), we found that the
representations obtained in this way generally
lead to better performance in practice, indicating
that they still mostly preserve the goal informa-
tion for control. We believe this is due to the
imposed bottleneck on ϕ by constraining its effective dimensionality to 9 (by using normalized
10-dimensional vectors), which enforces ϕ to retain bits regarding g and to reference s only when
necessary. Additionally, in pixel-based environments, we found that allowing gradient flows from the
low-level policy loss (Equation (7)) to ϕ further improves performance. We ablate these choices and
report the results in Appendix C.

Policy execution. At test time, we query both the high-level and low-level policies at every step,
without temporal abstraction. We found that fixing subgoal states for more than one step does not
significantly affect performance, so we do not use temporal abstraction for simplicity.

17

0.0 0.2 0.4 0.6 0.8 1.0
step £106

0.0

0.2

0.4

0.6

0.8

re
tu

rn

HIQL

HIQL (w/o repr.)

GC-POR

GC-IQL

HGCBC

GCBC

TAP

TT

0.0 0.5 1.0
Steps £106

0.0

0.5

1.0

R
et

u
rn

antmaze-medium-diverse

0.0 0.5 1.0
Steps £106

0.0

0.5

antmaze-medium-play

0.0 0.5 1.0
Steps £106

0.0

0.5

antmaze-large-diverse

0.0 0.5 1.0
Steps £106

0.0

0.5

R
et

u
rn

antmaze-large-play

0.0 0.5 1.0
Steps £106

0.00

0.25

0.50

antmaze-ultra-diverse

0.0 0.5 1.0
Steps £106

0.00

0.25

0.50

antmaze-ultra-play

0 2 4
Steps £105

0

2

R
et

u
rn

kitchen-partial

0 2 4
Steps £105

0

2

kitchen-mixed

0 2 4
Steps £105

0

2

calvin

Figure 10: Training curves for the results with state-based environments (Table 1). Shaded regions
denote the 95% confidence intervals across 8 random seeds.

0 2 4
Steps £105

0.00

0.25

0.50

0.75

R
et

u
rn

procgen-maze-500-train

0 2 4
Steps £105

0.00

0.25

0.50

0.75

procgen-maze-500-test

0 2 4
Steps £105

0.0

0.5

procgen-maze-1000-train

0 2 4
Steps £105

0.00

0.25

0.50

0.75

procgen-maze-1000-test

0 2 4
Steps £105

0.00

0.25

0.50

0.75

R
et

u
rn

visual-antmaze-diverse

0 2 4
Steps £105

0.00

0.25

0.50

0.75

visual-antmaze-play

0 2 4
Steps £105

0.0

0.2

0.4

0.6

visual-antmaze-navigate

0 2 4
Steps £105

0.0

0.2

0.4

0.6

roboverse0 100000 200000 300000 400000 500000
step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ev
al

u
at

io
n
/1

4
p
u
sh

b
lo

ck
cl

os
e

d
ra

w
er

/fi
n
al

.r
et

u
rn

HIQL

GC-POR (+ repr.)

GC-IQL

HGCBC (+ repr.)

GCBC

Figure 11: Training curves for the results with pixel-based environments (Table 2). Shaded regions
denote the 95% confidence intervals across 8 random seeds.

0 2 4
Steps £105

0.00

0.25

0.50

0.75

R
et

u
rn

drawer

0 2 4
Steps £105

0.0

0.2

0.4

0.6

0.8

pick and place (table)

0 2 4
Steps £105

0.0

0.2

0.4

0.6

pick and place (drawer)

0 2 4
Steps £105

0.0

0.2

0.4

0.6

push block, open drawer

0 2 4
Steps £105

0.0

0.2

0.4

0.6

push block, close drawer

0 100000 200000 300000 400000 500000
step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ev
al

u
at

io
n
/1

4
p
u
sh

b
lo

ck
cl

os
e

d
ra

w
er

/fi
n
al

.r
et

u
rn

HIQL

GC-POR (+ repr.)

GC-IQL

HGCBC (+ repr.)

GCBC

Figure 12: Training curves for the five tasks [104] in Roboverse. Shaded regions denote the 95%
confidence intervals across 8 random seeds.

We provide a pseudocode for HIQL in Algorithm 1. We note that the high- and low-level policies can
be jointly trained with the value function as well, as in Kostrikov et al. [49].

B Additional Plots

We include the training curves for Tables 1 to 3 in Figures 10, 11 and 13, respectively. We also
provide the training curves for each of the five tasks [104] in Roboverse in Figure 12. We include
the Rliable [1] plots in Figures 14 and 15. We note that the numbers in Tables 1 to 3 are normalized
scores (see Appendix D), while the returns in the figures are unnormalized ones.

18

0.0 0.2 0.4 0.6 0.8 1.0
step £106

0.0

0.2

0.4

0.6

0.8

re
tu

rn

HIQL (action-limited)

HIQL (full)

GC-POR (full)

GC-IQL (full)
0.0 0.5 1.0

Steps £106

0.0

0.5

R
et

u
rn

antmaze-large-diverse

0.0 0.5 1.0
Steps £106

0.0

0.2

0.4

0.6

antmaze-ultra-diverse

0 2 4
Steps £105

0

1

2

3

kitchen-mixed

0 2 4
Steps £105

0

1

2

3

R
et

u
rn

calvin

0 2 4
Steps £105

0.00

0.25

0.50

0.75

procgen-maze-500-train

0 2 4
Steps £105

0.0

0.2

0.4

0.6

procgen-maze-500-test

Figure 13: Training curves for the results with action-free data (Table 3). Shaded regions denote the
95% confidence intervals across 8 random seeds.

0.30 0.45 0.60 0.75

GCBC
HGCBC
GC-IQL

GC-POR
HIQL (w/o repr.)

HIQL
Median

0.30 0.45 0.60 0.75

IQM

0.45 0.60

Mean

0.30 0.45 0.60

Optimality Gap

Normalized Score

Figure 14: Rliable plots for state-based environments.

0.2 0.4 0.6 0.8

GCBC
HGCBC (+ repr.)

GC-IQL
GC-POR (+ repr.)

HIQL
Median

0.2 0.4 0.6 0.8

IQM

0.30 0.45 0.60 0.75

Mean

0.30 0.45 0.60 0.75

Optimality Gap

Normalized Score

Figure 15: Rliable plots for pixel-based environments.

0.0 0.5 1.0
Steps £106

0.0

0.5

R
et

u
rn

antmaze-large-diverse (w/o repr.)

0.0 0.5 1.0
Steps £106

0.0

0.5

antmaze-large-play (w/o repr.)

0.0 0.5 1.0
Steps £106

0.0

0.5

antmaze-large-diverse (w/ repr.)

0.0 0.5 1.0
Steps £106

0.0

0.5

antmaze-large-play (w/ repr.)

0 2 4
Steps £105

0

1

2

R
et

u
rn

kitchen-partial (w/ repr.)

0 2 4
Steps £105

0

1

2

3
kitchen-mixed (w/ repr.)

0 2 4
Steps £105

0

1

2

3

calvin (w/ repr.)

0.0 0.2 0.4 0.6 0.8 1.0
step £106

0.0

0.2

0.4

0.6

0.8

re
tu

rn

Subgoal steps

1

5

15

25

50

100

Figure 16: Ablation study of the subgoal steps k. HIQL generally achieves the best performances
when k is between 25 and 50. Even when k is not within this range, HIQL mostly maintains
reasonably good performance unless k is too small (i.e., ≤ 5). Shaded regions denote the 95%
confidence intervals across 8 random seeds.

19

0.0 0.2 0.4 0.6 0.8 1.0
step £106

0.0

0.2

0.4

0.6

0.8

re
tu

rn

¡([g, s])

¡(g ° s)

¡(g)

w/o repr.
0.0 0.5 1.0

Steps £106

0.00

0.25

0.50

0.75

R
et

u
rn

antmaze-large-diverse

0 2 4
Steps £105

0

1

2

kitchen-partial

0 2 4
Steps £105

0

1

2

3

calvin

Figure 17: Ablation study of different parameterizations of the representation function. Passing s
and g together to ϕ improves performance in general. Shaded regions denote the 95% confidence
intervals across 8 random seeds.

0 100000 200000 300000 400000 500000
step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
re

tu
rn

w/ policy grad.

w/o policy grad.

0 2 4
Steps £105

0.0

0.2

0.4

0.6

0.8

R
et

u
rn

procgen-maze-500-train

0 2 4
Steps £105

0.0

0.2

0.4

0.6

procgen-maze-500-test

Figure 18: Ablation study of the auxiliary gradient flow from the low-level policy loss to ϕ on
pixel-based ProcGen Maze. This auxiliary gradient flow helps maintain goal information in the
representations. Shaded regions denote the 95% confidence intervals across 8 random seeds.

C Ablation Study

Subgoal steps. To understand how the subgoal steps k affect performance, we evaluate HIQL with
six different k ∈ {1, 5, 15, 25, 50, 100} on AntMaze, Kitchen, and CALVIN. On AntMaze, we test
both HIQL with and without representations (Section 5.2). Figure 16 shows the results, suggesting
that HIQL generally achieves the best performance with k between 25 and 50. Also, HIQL still
maintains reasonable performance even when k is not within this optimal range, unless k is too small.

Representation parameterizations. We evaluate four different choices of the representation
function ϕ in HIQL: ϕ([g, s]), ϕ(g − s), ϕ(g), and without ϕ. Figure 17 shows the results, indicating
that passing g and s together to ϕ generally improves performance. We hypothesize that this is
because ϕ, when given both g and s, can capture contextualized information about the goals (or
subgoals) with respect to the current state, which is often easier to deal with for the low-level policy.
For example, in AntMaze, the agent only needs to know the relative position of the subgoal with
respect to the current position.

Auxiliary gradient flows for representations. We found that in pixel-based environments (e.g.,
Procgen Maze), allowing gradient flows from the low-level policy loss to the representation function
improves performance (Figure 18). We believe this is because the additional gradients from the policy
loss further help maintain the information necessary for control. We also (informally) found that this
additional gradient flow occasionally slightly improves performances in the other environments as
well, but we do not enable this feature in state-based environments to keep our method as simple as
possible.

D Implementation details

We implement HIQL based on JaxRL Minimal [32]. Our implementation is available at the following
repository: https://github.com/seohongpark/HIQL. We run our experiments on an internal
GPU cluster composed of TITAN RTX and A5000 GPUs. Each experiment on state-based environ-
ments takes no more than 8 hours and each experiment on pixel-based environments takes no more
than 16 hours.

20

https://github.com/seohongpark/HIQL

D.1 Environments

AntMaze [9, 87] We use the ‘antmaze-medium-diverse-v2’, ‘antmaze-medium-play-v2’, ‘antmaze-
large-diverse-v2’, and ‘antmaze-large-play-v2’ datasets from the D4RL benchmark [28]. For
AntMaze-Ultra, we use the ‘antmaze-ultra-diverse-v0’ and ‘antmaze-ultra-play-v0’ datasets pro-
posed by Jiang et al. [43]. The maze in the AntMaze-Ultra task is twice the size of the largest maze
in the original D4RL dataset. Each dataset consists of 999 length-1000 trajectories, in which the Ant
agent navigates from an arbitrary start location to another goal location, which does not necessarily
correspond to the target evaluation goal. At test time, to specify a goal g for the policy, we set the
first two state dimensions (which correspond to the x-y coordinates) to the target goal given by the
environment and the remaining proprioceptive state dimensions to those of the first observation in the
dataset. At evaluation, the agent gets a reward of 1 when it reaches the goal.

Kitchen [35]. We use the ‘kitchen-partial-v0’ and ‘kitchen-mixed-v0’ datasets from the D4RL
benchmark [28]. Each dataset consists of 136950 transitions with varying trajectory lengths (approxi-
mately 227 steps per trajectory on average). In the ‘kitchen-partial-v0’ task, the goal is to achieve the
four subtasks of opening the microwave, moving the kettle, turning on the light switch, and sliding
the cabinet door. The dataset contains a small number of successful trajectories that achieve the four
subtasks. In the ‘kitchen-mixed-v0’ task, the goal is to achieve the four subtasks of opening the
microwave, moving the kettle, turning on the light switch, and turning on the bottom left burner. The
dataset does not contain any successful demonstrations, only providing trajectories that achieve some
subset of the four subtasks. At test time, to specify a goal g for the policy, we set the proprioceptive
state dimensions to those of the first observation in the dataset and the other dimensions to the target
kitchen configuration given by the environment. At evaluation, the agent gets a reward of 1 whenever
it achieves a subtask.

CALVIN [63]. We use the offline dataset provided by Shi et al. [84], which is based on the
teleoperated demonstrations from Mees et al. [63]. The task is to achieve the four subtasks of opening
the drawer, turning on the lightbulb, sliding the door to the left, and turning on the LED. The dataset
consists of 1204 length-499 trajectories. In each trajectory, the agent achieves some of the 34 subtasks
in an arbitrary order, which makes the dataset highly task-agnostic [84]. At test time, to specify a
goal g for the policy, we set the proprioceptive state dimensions to those of the first observation in the
dataset and the other dimensions to the target configuration. At evaluation, the agent gets a reward of
1 whenever it achieves a subtask.

Procgen Maze [16]. We collect an offline dataset of goal-reaching behavior on the Procgen Maze
suite. For each maze level, we pre-compute the optimal goal-reaching policy using an oracle, and
collect a trajectory of 1000 transitions by commanding a goal, using the goal-reaching policy to reach
this goal, then commanding a new goal and repeating henceforth. The ‘procgen-maze-500’ dataset
consists of 500000 transitions collected over the first 500 levels and ‘procgen-maze-1000’ consists of
1000000 transitions over the first 1000 levels. At test time, we evaluate the agent on “challenging”
levels that contain at least 20 leaf goal states (i.e., states that have only one adjacent state in the
maze). We use 50 such levels and goals for each evaluation, where they are randomly sampled either
between Level 0 and Level 499 for the “-train” tasks or between Level 5000 and Level 5499 for the
“-test” tasks. The agent gets a reward of 1 when it reaches the goal.

Visual AntMaze. We convert the original state-based AntMaze environment into a pixel-based
environment by providing both a 64× 64× 3-dimensional camera image (as shown in the bottom row
of Figure 6b) and 27-dimensional proprioceptive states without global coordinates. For the datasets,
we use the converted versions of the ‘antmaze-large-diverse-v2’ and ‘antmaze-large-play-v2’ datasets
from the D4RL benchmark [28] as well as a newly collected dataset, ‘antmaze-large-navigate-v2’,
which consists of diverse navigation behaviors that visit multiple goal locations within an episode.
The task and the evaluation scheme are the same as the original state-based AntMaze environment.

Roboverse [25, 104]. We use the same dataset and tasks used in Zheng et al. [104]. The dataset
consists of 3750 length-300 trajectories,1 out of which we use the first 3334 trajectories for training

1While Zheng et al. [104] separate each length-300 trajectory into four length-75 trajectories, we found that
using the original length-300 trajectories improves performance in general.

21

(which correspond to approximately 1000000 transitions), while the remaining trajectories are used
as a validation set. Each trajectory in the dataset features four random primitive behaviors, such as
pushing an object or opening a drawer, starting from randomized initial object poses. At test time,
we employ the same five goal-reaching tasks used in Zheng et al. [104]. We provide a precomputed
goal image, and the agent gets a reward of 1 upon successfully completing the task by achieving the
desired object poses.

In Tables 1 to 3, we report the normalized scores with a multiplier of 100 (AntMaze, Procgen Maze,
Visual AntMaze, and Roboverse) or 25 (Kitchen and CALVIN).

D.2 Hyperparameters

We present the hyperparameters used in our experiments in Table 4, where we mostly follow the
network architectures and hyperparameters used by Ghosh et al. [34]. We use layer normalization [5]
for all MLP layers. For pixel-based environments, we use the Impala CNN architecture [21] to handle
image inputs, mostly with 512-dimensional output features, but we use normalized 10-dimensional
output features for the goal encoder of HIQL’s value function to make them easily predictable by the
high-level policy, as discussed in Appendix A. We do not share encoders between states and goals,
or between different components. As a result, in pixel-based environments, we use a total of five
separate CNN encoders (two for the value function, two for the high-level policy, and two for the
low-level policy, but the goal encoder for the value function is the same as the goal encoder for the
low-level policy (Figure 1a)). In Visual AntMaze and Roboverse, we apply a random crop [48] (with
probability 0.5) to prevent overfitting, following Zheng et al. [104].

During training, we periodically evaluate the performance of the learned policy at every 100K (state-
based) or 50K (pixel-based) steps, using 52 (AntMaze, Kitchen, CALVIN, and Visual AntMaze),
50 (Procgen Maze), or 110 (Roboverse, 22 per each task) rollouts2. At evaluation, we use argmax
actions for environments with continuous action spaces and ϵ-greedy actions with ϵ = 0.05 for
environments with discrete action spaces (i.e., Procgen Maze). Following Zheng et al. [104], in
Roboverse, we add Gaussian noise with a standard deviation of 0.15 to the argmax actions.

To ensure fair comparisons, we use the same architecture for both HIQL and four baselines (GCBC,
HGCBC, GC-IQL, and GC-POR). The discount factor γ is chosen from {0.99, 0.995}, the AWR
temperature β from {1, 3, 10}, the IQL expectile τ from {0.7, 0.9} for each method.

For HIQL, we set (γ, β, τ) = (0.99, 1, 0.7) across all environments. For GC-IQL and GC-POR, we
use (γ, β, τ) = (0.99, 3, 0.9) (AntMaze-Medium, AntMaze-Large, and Visual AntMaze), (γ, β, τ) =
(0.995, 1, 0.7) (AntMaze-Ultra), or (γ, β, τ) = (0.99, 1, 0.7) (others). For the subgoal steps k in
HIQL, we use k = 50 (AntMaze-Ultra), k = 3 (Procgen Maze and Roboverse), or k = 25 (others).
HGCBC uses the same subgoal steps as HIQL for each environment, with the exception of AntMaze-
Ultra, where we find it performs slightly better with k = 25. For HIQL, GC-IQL, and GC-POR, in
state-based environments and Roboverse, we sample goals for high-level or flat policies from either
the future states in the same trajectory (with probability 0.7) or the random states in the dataset (with
probability 0.3). We sample high-level goals only from the future states in the other environments
(Procgen Maze and Visual AntMaze).

E Proofs

E.1 Proof of Proposition 4.1

For simplicity, we assume that T/k is an integer and k ≤ T .

2These numbers include two additional rollouts for video logging (except for Procgen Maze).

22

Table 4: Hyperparameters.

Hyperparameter Value

gradient steps 1000000 (AntMaze), 500000 (others)
Batch size 1024 (state-based), 256 (pixel-based)
Policy MLP dimensions (256, 256)
Value MLP dimensions (512, 512, 512)
Representation MLP dimensions (state-based) (512, 512, 512)
Representation architecture (pixel-based) Impala CNN [21]
Nonlinearity GELU [37]
Optimizer Adam [47]
Learning rate 0.0003
Target network smoothing coefficient 0.005

Proof. Defining z1 := z1,T and z2 := z−1,T , the probability of the flat policy π selecting an incorrect
action can be computed as follows:

E(π) = P[V̂ (s+ 1, g) ≤ V̂ (s− 1, g)] (12)

= P[V̂ (1, T) ≤ V̂ (−1, T)] (13)
= P[−(T − 1)(1 + σz1) ≤ −(T + 1)(1 + σz2)] (14)
= P[z1σ(T − 1)− z2σ(T + 1) ≤ −2] (15)

= P[zσ
√
T 2 + 1 ≤ −

√
2] (16)

= Φ

(
−

√
2

σ
√
T 2 + 1

)
, (17)

where z is a standard Gaussian random variable, and we use the fact that the sum of two independent
Gaussian random variables with standard deviations of σ1 and σ2 follows a normal distribution with
a standard deviation of

√
σ2
1 + σ2

2 .

Similarly, the probability of the hierarchical policy πℓ ◦ πh selecting an incorrect action is bounded
using a union bound as

E(πℓ ◦ πh) ≤ E(πh) + E(πℓ) (18)

= P[V̂ (s+ k, g) ≤ V̂ (s− k, g)] + P[V̂ (s+ 1, s+ k) ≤ V̂ (s− 1, s+ k)] (19)

= P[V̂ (k, T) ≤ V̂ (−k, T)] + P[V̂ (1, k) ≤ V̂ (−1, k)] (20)

= Φ

(
−

√
2

σ
√
(T/k)2 + 1

)
+Φ

(
−

√
2

σ
√
k2 + 1

)
. (21)

E.2 Proof of Proposition 5.1

We first formally define some notations. For s ∈ S, a ∈ A, g ∈ S, and a representation function
ϕ : S → Z , we denote the goal-conditioned state-value function as V (s, g), the action-value
function as Q(s, a, g), the parameterized state-value function as Vϕ(s, z) with z = ϕ(g), and the
parameterized action-value function as Qϕ(s, a, z). We assume that the environment dynamics are
deterministic, and denote the deterministic transition kernel as p(s, a) = s′. Accordingly, we have
Q(s, a, g) = V (p(s, a), g) = V (s′, g) and Qϕ(s, a, z) = Vϕ(p(s, a), z) = Vϕ(s

′, z). We denote
the optimal value functions with the superscript “∗”, e.g., V ∗(s, g). We assume that there exists a
parameterized value function, which we denote V ∗

ϕ (s, ϕ(g)), that is the same as the true optimal
value function, i.e., V ∗(s, g) = V ∗

ϕ (s, ϕ(g)) for all s ∈ S and g ∈ S.

23

Proof. For π∗, we have

π∗(a | s, g) = argmax
a∈A

Q∗(s, a, g) (22)

= argmax
s′∈Ns

V ∗(s′, g) (23)

= argmax
s′∈Ns

V ∗
ϕ (s

′, z), (24)

where Ns denotes the neighborhood sets of s, i.e., Ns = {s′ | ∃a, p(s, a) = s′}. For π∗
ϕ, we have

π∗
ϕ(a | s, z) = argmax

a∈A
Q∗

ϕ(s, a, z) (25)

= argmax
s′∈Ns

V ∗
ϕ (s

′, z). (26)

By comparing Equation (24) and Equation (26), we can see that they have the same argmax action
sets for all s and g.

F Subgoal Visualizations

We visualize learned subgoals in Figures 19 and 20 (videos are available at https://seohong.me/
projects/hiql/). For AntMaze-Large, we train HIQL without representations and plot the x-y
coordinates of subgoals. For Procgen Maze, we train HIQL with 10-dimensional representations and
find the maze positions that have the closest representations (with respect to the Euclidean distance)
to the subgoals produced by the high-level policy. The results show that HIQL learns appropriate
k-step subgoals that lead to the target goal.

24

https://seohong.me/projects/hiql/
https://seohong.me/projects/hiql/

Figure 19: Subgoal visualization in AntMaze-Large. The red circles denote the target goal and the
blue circles denote the learned subgoals. Videos are available at https://seohong.me/projects/
hiql/.

25

https://seohong.me/projects/hiql/
https://seohong.me/projects/hiql/

Figure 20: Subgoal visualization in Procgen Maze. The red circles denote the target goal, the blue
circles denote the learned subgoals, and the white blobs denote the agent. Videos are available at
https://seohong.me/projects/hiql/.

26

https://seohong.me/projects/hiql/

