
A Proofs and Calculations Regarding the Objective

A.1 The Truncated Negative Expected Log-Likelihood Function

The negative log-likelihood that x ∈ S is a sample of pSθ (x) is

ℓ(θ,x)︸ ︷︷ ︸
− log pS

θ (x)

:= − log h(x)− θ⊤T (x) + log

∫
S

h(x′) exp(θ⊤T (x′))dx′.

Its gradient w.r.t. θ is

∇ℓ(θ,x) = −T (x) +
∫
S
T (x′)h(x′) exp(θ⊤T (x′))dx′∫
S
h(x′) exp(θ⊤T (x′))dx′

= −T (x) +
∫
S
T (x′)h(x′) exp(θ⊤T (x′)−A(θ))dx′∫
S
h(x′) exp(θ⊤T (x′)−A(θ))dx′

= −T (x) + Ez∼pS
θ
[T (z)]

The Hessian is

∇2ℓ(θ) =
(
∫
S
T (x)T (x)⊤h(x) exp(θ⊤T (x)−A(θ))dx)

(
∫
S
h(x) exp(θ⊤T (x)−A(θ))dx)

−
(
∫
S
T (x)h(x) exp(θ⊤T (x)−A(θ))dx)

(
∫
S
h(x) exp(θ⊤T (x)−A(θ))dx)

·

(
(
∫
S
T (x)h(x) exp(θ⊤T (x)−A(θ))dx)

(
∫
S
h(x) exp(θ⊤T (x)−A(θ))dx)

)⊤

= Covx∼pS
θ
[T (x), T (x)]

We can similarly define the population negative log-likelihood as

ℓ(θ) := Ex∼pS
θ∗

[
− log h(x)− θ⊤T (x)

]
+ log

∫
S

h(x) exp(θ⊤T (x))dx),

∇ℓ(θ) = Ex∼pS
θ∗

[−T (x)] + Ex∼pS
θ
[T (x)] ,

∇2ℓ(θ) = ∇2ℓ(θ)

A.2 Proof of Lemma 3.2

Proof. Define the following quantities:

R∗ = Ex∼pθ

[
(T (x)− Ex∼pθ

[T (x)]) · (T (x)− Ex∼pθ
[T (x)])

⊤
]

R′ = Ex∼pθ

[(
T (x)− Ex∼pS

θ
[T (x)]

)
·
(
T (x)− Ex∼pS

θ
[T (x)]

)⊤]
R = Ex∼pS

θ

[(
T (x)− Ex∼pS

θ
[T (x)]

)
·
(
T (x)− Ex∼pS

θ
[T (x)]

)⊤]
Claim 2. R′ ⪰ R∗. (Proof in Appendix A.4.)

Now, let ξ ∈ Rk with ∥ξ∥22 = 1 arbitrary. Then

ξ⊤R∗ξ = ξ⊤Ex∼pθ

[
(T (x)− Ex∼pθ

[T (x)]) · (T (x)− Ex∼pθ
[T (x)])⊤

]
ξ = Ex∼pθ

[pξ(x)]

ξ⊤R′ξ = Ex∼pθ

[
p′ξ(x)

]
ξ⊤Rξ = Ex∼pS

θ

[
p′ξ(x)

]
where pξ(x), p′ξ(x) are polynomials of degree at most 2d whose coefficients depend on ξ (under A3).
Furthermore, note that for any ξ ∈ Rk, pξ(x) ≥ 0 and p′ξ(x) ≥ 0 (due to the rank one matrix inside
the expectation being PSD).
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First, since R′ ⪰ R∗ ⇐⇒ ξ⊤R′ξ ≥ ξ⊤R∗ξ, we have

Ez∼pθ

[
p′ξ(z)

]
≥ Ez∼pθ

[pξ(z)] ≥ λ.

Now define the set A := {x : p′ξ(x) ≤ γ} for γ =
(

β
4Cd

)2d
λ where pθ(S) = β > 0. Theorem 8 of

[5] says

pθ(A) ≤ Cqγ1/(2d)(
Ez∼pθ

[
p′ξ(z)

]q/2d)1/q

q=2d
=

2Cdγ1/(2d)Ez∼pθ

[
p′ξ(z)

]︸ ︷︷ ︸
≥λ


1/(2d)

≤ 2Cd · γ1/(2d)

λ1/(2d)
=

β

2
.

Now we can split Ez∼pS
θ

[
p′ξ(z)

]
into the part on S ∩ A and S ∩ Ac. Note that if pθ(S) = β and

pθ(A) ≤ β
2 , this implies pθ(S ∩Ac) ≥ β

2 as

pθ(S ∩Ac) ≥ pθ(S) + pθ(A
c)− pθ(S ∪Ac) ≥ β +

(
1− β

2

)
− 1 =

β

2
.

Then

Ez∼pS∩A
θ

[
p′ξ(z)

]
+Ez∼pS∩Ac

θ

[
p′ξ(z)

]
≥ pθ(S ∩A)

pθ(S)
·0+pθ(S ∩Ac)

pθ(S)
·γ ≥ 1

2
γ ⇒ Ez∼pS

θ

[
p′ξ(z)

]
≥ 1

2

(
β

4Cd

)2d

λ

and the claim follows.

A.3 Proof of Lemma 3.3

Proof. Similar to the proof of the previous lemma, define the following quantities:

R∗ = Ex∼pθ

[
(T (x)− Ex∼pθ

[T (x)]) · (T (x)− Ex∼pθ
[T (x)])

⊤
]

R′′ = Ex∼pS
θ

[
(T (x)− Ex∼pθ

[T (x)]) · (T (x)− Ex∼pθ
[T (x)])

⊤
]

R = Ex∼pS
θ

[(
T (x)− Ex∼pS

θ
[T (x)]

)
·
(
T (x)− Ex∼pS

θ
[T (x)]

)⊤]
Claim 3. It holds that R′′ ⪰ R. (Similar proof to Claim 2.)

Let ξ ∈ Rk with ∥ξ∥22 = 1 arbitrary. Then

ξ⊤R∗ξ = Ex∼pθ
[fξ(x)]

ξ⊤R′′ξ = Ex∼pS
θ
[fξ(x)]

ξ⊤Rξ = Ex∼pS
θ
[f ′

ξ(x)]

where fξ(x), f ′
ξ(x) are some functions which depend on x and ξ (e.g., polynomials of degree at most

2d under A3). By the previous claim, we also have

Ex∼pS
θ
[fξ(x)] ≥ Ex∼pS

θ
[f ′

ξ(x)].

Note that

Ex∼pS
θ
[fξ(x)] =

∫
X
pSθ (x) · fξ(x)dx =

∫
X

1

pθ(S)
pθ(x) · fξ(x) · 1{x ∈ S}dx ≤ 1

pθ(S)

∫
pθ(x)fξ(x)dx.︸ ︷︷ ︸
=Ex∼pθ

[fξ(x)]

Since λI ⪯ R∗ ⪯ LI by A1, it holds that ξ⊤R∗ξ = Ex∼pθ
[fξ(x)] ≤ L, thus the following

inequalities hold:

ξ⊤Rξ = Ex∼pS
θ
[f ′

ξ(x)] ≤ Ex∼pS
θ
[fξ(x)] ≤

1

pθ(S)
L.
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A.4 Proof of Claim 2

We will prove a general claim which should take care of both claims in Lemmas 3.2 and 3.3.

Claim 4. Let x ∼ ρ be a random vector with mean µ. Let b be another vector such that b ̸= µ.
Then

Covx∼ρ[x,x] = Ex∼ρ[(x− µ)(x− µ)⊤] = Ex∼ρ[(x− b)(x− b)⊤]− (b− µ)(b− µ)⊤.

Proof.

E[(x− µ)(x− µ)⊤]

= E[(x− b+ b− µ)(x− b+ b− µ)⊤]

= E[(x− b)(x− b)⊤] + E[(x− b)(b− µ)⊤]︸ ︷︷ ︸
=(−1)·E[(b−µ)(b−µ)⊤]

+ E[(b− µ)(x− b)⊤]︸ ︷︷ ︸
=(−1)·E[(b−µ)(b−µ)⊤]

+E[(b− µ)(b− µ)⊤]︸ ︷︷ ︸
=E[(b−µ)(b−µ)⊤]

= E[(x− b)(x− b)⊤]− E[(b− µ)(b− µ)⊤]

As a corollary, since the second term is a rank-1 matrix (thus PSD), we have that E[(x−b)(x−b)⊤] ⪰
E[(x− µ)(x− µ)⊤].

B Examples of Other Distributions which Satisfy Assumptions

Example 1 (Exponential Distribution). The exponential distribution density can be written

pλ(x) = λ exp(−λx) = exp(−λx+ log(λ)),

defined on x ∈ R+ which is a convex set and for λ > 0. In natural form, it is

pθ(x) = exp(θx+ log(−θ))),

defined for θ < 0. Note that

• T (x) = x is a polynomial in x.

• This is log-linear in x (so log-concave in x).

• Variance of the sufficient statistic is simply the variance, which is 1/θ2 > 0 for any θ < 0.
If we restrict θ in a bounded set, the negative log-likelihood will be strongly convex and
smooth in θ.

Example 2 (Weibull Distribution with known shape k). The Weibull distribution with known shape
k > 0 has density

pλ(x) = exp((k − 1) log x+

(
− 1

λk

)
xk + log k − k log λ)

defined on x ∈ R+ and λ > 0. We can re-parameterize this in terms of θ = − 1
λk with θ < 0 as

pθ(x) = xk−1 exp(θ · xk + log k + log(−θ)).

Then

• T (x) = xk is polynomial in x.

• pθ(x) is log-concave in x if k > 1 (where recall x ∈ R+ and θ < 0).

• The variance of the sufficient statistic can also be found by taking the second derivative of
A(θ) = − log k − log(−θ) w.r.t. θ, which is also 1/θ2 > 0.
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Example 3 (Continuous Bernoulli). The continuous Bernoulli density [32] can be written

pλ(x) = exp

(
log

λ

1− λ
− log

1− 2λ

(1− λ) log 1−λ
λ

)
with support x ∈ [0, 1] and λ ∈ (0, 1). We can re-parameterize this in terms of θ = log λ

1−λ with
θ ∈ [0,∞) so

pθ(x) = exp

(
θx− log

eθ − 1

θ

)
.

Then

• T (x) = x is polynomial in x.

• pθ(x) is log-linear in x (so log-concave).

• The variance of sufficient statistic is simply the variance again, which is given by

Var(X) =

{
1/12 if λ = 1/2
(λ−1)λ
(1−2λ)2 + 1

(2tanh−1(1−2λ))2
otherwise

This is strictly positive and bounded for all values of λ (thus all values of θ).
Example 4 (Continuous Poisson). A continuous version of the Poisson distribution (although there
can be others [24]) can be written

pλ(x) =
1

Z(λ)

e−λλx

Γ(x+ 1)

with support x ∈ [0,∞) and λ ∈ (0,∞). We can write this with θ = log λ so

pθ(x) =
1

Γ(x+ 1)
exp(θx−A(θ)).

Then

• T (x) = x is polynomial in x.

• pθ(x) is log-concave in x for x ∈ R+.

• In λ parameters, the mean of this distribution is λ through usual calculations (e.g., similar
to those of the Gamma distribution). Note: we can absorb the e−λ term into the partition
function.

E[X] =
1

Z(λ)

∫ ∞

0

xλx

Γ(x+ 1)
dx

=
1

Z(λ)

∫ ∞

0

xλx

x · Γ(x)
dx Γ(x+ 1) = x · Γ(x)

=
λ

Z(λ)

∫ ∞

1

λx−1

Γ(x)
dx Partition function, change var. z = x− 1

= λ

Similarly, we should be able to show the variance is λ as usual. In θ space, this means the
variance is exp(θ) for θ ∈ R which is always positive. Again, we can make it bounded by
restricting θ to some set.

Example 5 (Multivariate Gaussian). The multivariate Gaussian also satisfies all of these properties.
Recall that the sufficient statistics of the multivariate Gaussian has

• T (x) = [x,xx⊤] is a polynomial in the components of x with degree at most 2 (where the
xx⊤ term can be thought of as the vector after standard vectorization).

• The multivariate Gaussian density is strongly log-concave.
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• The covariance matrix (of the sufficient statistics) has a complicated form, which the authors
of [10] have analyzed the lower bound for, e.g., in their Claims 1 and 2. As before, we can
restrict our parameter space to ensure upper bounds.

Example 6 (Generalized Linear Models). This example is the same as the one given in [26] for
generalized linear models. It is restated here for completeness.

Consider when we have some covariance, response pair (X,Y ) drawn from some distribution D.
Suppose that we have a family of distributions P (· | θ;X) such that, for each X , it is an exponential
family with sufficient statistic ty,X

P (y | θ;X) = h(y) exp (⟨θ, ty,X⟩ −A(θ,X)) .

We can consider a one-dimensional exponential family qν with parameterization ν = ⟨θ,X⟩, then

P (y | θ;X) = h(y) exp (y⟨θ,X⟩ − logZ(⟨θ,X⟩))

where we see that ty,X = yX and the log partition function A(θ,X) = logZ(⟨θ,X⟩). When qν is
Bernoulli family or unit variance Gaussian family, this corresponds to logistic regression or least
squares regression, respectively.

We can appropriately generalize this to beyond linear models (e.g., polynomials) provided that we
can keep the distribution log-concave.

Comment on A3. We mentioned in the main paper that this assumption combined with log-
concavity provides the anti-concentration property that we need for Lemma 3.2. We assume it for
simplicity of exposition, but it should be noted that as long as we have the type of anti-concentration
property to control how much the covariance can shrink under truncation, we do not necessarily need
T (x) to be polynomial. However, we’ve provided examples of exponential families which already
satisfy this above (and there are potentially more which can be addressed by this framework that do
not have polynomial sufficient statistics but nonetheless exhibit similar anti-concentration properties).

C Proofs Relating Truncated and Non-Truncated Quantities

C.1 General Truncated Densities

Let ρ be a probability distribution on Rd. Let S ⊆ Rd be such that ρ(S) = α for some α ∈ (0, 1].
Let ρS := ρ(· | · ∈ S) be the conditional distribution of x ∼ ρ given that x ∈ S.

ρS(x) =
ρ(x) · 1{x ∈ S}

ρ(S)
.

Note that the relative density is
ρS(x)

ρ(x)
=

1{x ∈ S}
ρ(S)

.

Then we can compute that the Rényi divergence is a constant for any order 1 ≤ q ≤ ∞.

KL(ρS∥ρ) = EρS

[
log

ρS

ρ

]
= EρS

[
log

1

ρ(S)

]
= log

1

α
.

χ2(ρS∥ρ) = EρS

[
ρS

ρ

]
− 1 =

1

ρ(S)
− 1 =

1

α
− 1.

Rq(ρ
S∥ρ) = 1

q − 1
logEρS

[(
ρS

ρ

)q−1
]
=

1

q − 1
log

1

ρ(S)q−1
= log

1

ρ(S)
= log

1

α
.

R∞(ρS∥ρ) = log sup
x

ρS(x)

ρ(x)
= log

1

ρ(S)
= log

1

α
.

Note R2(ρ
S∥ρ) = log(1 + χ2(ρS∥ρ)).

We recall the following general estimates.
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Lemma C.1. For any probability distributions ρ, π (such that the quantities below are finite):

1. ∥Eρ[x]− Eπ[x]∥ ≤
√
χ2(ρ∥π) ·

√
Varπ(x).

2. |Eρ[∥x∥2]− Eπ[∥x∥2]| ≤
√
χ2(ρ∥π) ·

√
Eπ[∥x∥4].

3. |Varρ(x)−Varπ(x)| ≤
√
(χ2(ρ∥π) + 1)2 − 1 ·

√
2Eπ[∥x− Eπ[x]∥4].

Proof. The first two claims are immediate by Cauchy-Schwarz. For the third one, recall we can write

Varρ(x) =
1

2
Eρ⊗2 [∥x− y∥2].

Then by applying part (1) to ρ⊗2 and (π)⊗2, we get

|Varρ(x)−Varπ(x)| ≤
1

2

√
χ2(ρ⊗2∥π⊗2) ·

√
Eπ⊗2 [∥x− y∥4]

=
1

2

√
(χ2(ρ∥π) + 1)2 − 1 ·

√
2Eπ[∥x− Eπ[x]∥4] + 6Eπ[∥x− Eπ[x]∥2]2

≤ 1

2

√
(χ2(ρ∥π) + 1)2 − 1 ·

√
8Eπ[∥x− Eπ[x]∥4].

For our application, we have the following. Given a probability distribution ρ on Rd, we let
µ(ρ) = Eρ[x] be its mean, and for k ∈ N,

Mk(ρ) := Eρ[∥x− µ(ρ)∥k]1/k.

So for example we have M2(ρ) =
√
Varρ(x). We also have Mk(ρ) ≤Mℓ(ρ) if k ≤ ℓ.

Lemma C.2. Let ρ be a probability distribution on Rd. Let S ⊆ Rd with ρ(S) = α ∈ (0, 1]. Then

1. ∥EρS [x]− Eρ[x]∥ ≤
√

1−α
α ·

√
Varρ(x).

2. |VarρS (x)−Varρ(x)| ≤
√

2(1−α2)

α M4(ρ)
2.

In particular, if α ∈ (0, 1] is such that 1
α2 ≤ 1 + c2M2(ρ)

4

2M4(ρ)4
for some 0 ≤ c < 1, then

VarρS (x) ≥ (1− c)Varρ(x).

Note that the constraint on α above implies 1
α2 ≤ 3

2 , so α ≥
√

2/3. But if M2(ρ)≪ M4(ρ), then
1− α will be very small.

Recall also that under some conditions, e.g. if ρ is log-concave, then we have the reverse bound that

M2(ρ) ≥ C2,4M4(ρ)

for a universal constant C2,4, so the constraint above is not too restrictive, as it allows 1 − α of
constant size.

C.2 Exponential Families with Strongly Convex and Smooth Log-Partition Functions are
Sub-Exponential

Let θ ∈ Θ such that θ+ 1
βu ∈ Θ for some β > 0 for all unit vectors u and such that Assumption A1

holds for pθ. Then X := u⊤(T (x)− Ex∼pθ
[T (x)]) is SE(L, β).

Proof. WLOG, consider pθ in the transformed space x 7→ T (x) so that

pθ(t) = h(t) exp(θ⊤t−A(θ))dt,
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where θ ∈ Θ and A(θ) = log(Z(θ)) = log
(∫

T (X )
h(t) exp(θ⊤t)dt

)
is the log-partition function.

Note that∇2A(θ) = Covt∼pθ(t)[t] = Covx∼pθ(x)[T (x)], and by A1, A(θ) is a λ-strongly convex
and L-smooth function in θ.

To show that pθ(t) is sub-exponential with parameters (ν2, β) we need to show that its moment
generating function satisfies E[eγu⊤(t−µ)] ≤ eγ

2ν2/2, where µ = Epθ
[t], u is a unit vector, for

|γ| < 1/β.

E[eγu
⊤(t−µ)] =

∫ (
eγu

⊤t−γu⊤µ
)
h(t)eθ

⊤t−A(θ)dt

=
exp(−γu⊤µ)

Z(θ)

∫
h(t) exp((γu+ θ)⊤t)dt

=
Z(γu+ θ)

Z(θ)
· exp(−γu⊤µ)

The inequality we need to show is equivalent to proving

E[eγu
⊤(t−µ)] ≤ eγ

2ν2/2

⇐⇒ Z(γu+ θ)

Z(θ)
· e−γu⊤µ ≤ eγ

2ν2/2

⇐⇒ Z(γu+ θ)

Z(θ)
≤ eγu

⊤µ · eγ
2ν2/2

⇐⇒ A(γu+ θ)−A(θ) ≤ γu⊤µ+
γ2ν2

2

Since A(θ) is L-smooth, we have that

A(γu+ θ)−A(θ) ≤ ⟨∇A(θ)︸ ︷︷ ︸
=µ

, γu⟩+ L

2
∥γu∥2 = γu⊤µ+

γ2L

2

where we’ve used the property of exponential families that the gradient of the log partition function is
the mean sufficient statistic. Now we can see that the appropriate parameter for ν2 is L and γ must
be small enough so that γu+ θ ∈ Θ, i.e., |γ| < 1

β for some β > 0. This is possible if θ is bounded
away from the boundary of Θ.

Remark. In the above, we only needed to use that pθ is an exponential family distribution and that its
log-partition function A(θ) is smooth. It is also possible to show that pθ has exponentially decreasing
tails (in quantities involving x rather than T (x)) if it is log-concave in x (assumption A2), e.g., by
[40].

C.3 Proof of Lemma 3.4

Let pθ(x) = h(x) exp(⟨θ, T (x)⟩ −A(θ)) and A : Θ→ R is the log-partition function:

A(θ) =

∫
X
h(x) exp(⟨θ, T (x)⟩)dx.

Lemma C.3. For any q > 1, θ,θ′ ∈ Θ:

Epθ

[(
pθ′

pθ

)q]
= exp

(
(q − 1)A(θ)− qA(θ′) +A

(
qθ′ − (q − 1)θ

))
.

Proof.

Epθ

[(
pθ′

pθ

)q]
=

∫
X
h(x) exp (⟨θ, T (x)⟩ −A(θ)) · exp

(
q⟨θ′ − θ, T (x)⟩ − qA(θ′) + qA(θ)

)
dx

= exp
(
(q − 1)A(θ)− qA(θ′) +A

(
qθ′ − (q − 1)θ

))
.
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Lemma C.4. Assume A is convex and L-smooth on Θ. For any S ⊆ X , and θ,θ′ ∈ Θ:

pθ(S) ≥ pθ′(S)2 · exp
(
−3L

2
∥θ − θ′∥2

)
.

Proof. By Cauchy-Schwarz,

pθ′(S)2 = Epθ

[
pθ′

pθ
1S

]2
≤ pθ(S) · Epθ

[(
pθ′

pθ

)2
]

= pθ(S) · exp
(
A(θ)− 2A(θ′) +A

(
2θ′ − θ

))
.

Since A is convex and L-smooth,

A(θ) ≤ A(θ′) + ⟨∇A(θ),θ − θ′⟩

A(2θ′ − θ) ≤ A(θ′) + ⟨∇A(θ′),θ′ − θ⟩+ L

2
∥θ′ − θ∥2

Therefore,

A(θ)− 2A(θ′) +A
(
2θ′ − θ

)
≤ ⟨∇A(θ′)−∇A(θ),θ′ − θ⟩+ L

2
∥θ′ − θ∥2

≤ 3L

2
∥θ′ − θ∥2.

Compare this to the Gaussian case (e.g., see H.8 of [38]) where this was pθ(S) ≥
α
2 exp

(
−r ·

√
2 log 1/α− 1

2r
2
)

for ∥θ − θ′∥ < r.

C.4 Proof of Lemma 3.7

Let T = 1
n

∑n
i=1 T (xi) be the empirical mean sufficient statistics given our samples {xi}ni=1 each

xi ∼ pSθ∗ .

Let ϵS > 0. For n ≥ Ω
(

2β
ϵS

log
(
1
δ

))
,

∥T − Epθ∗ [T (x)]∥ ≤ ϵS +O(log 1/α)

with probability at least 1− δ.

Proof. Let ν∗ = Ex∼pθ∗ [T (x)].

For any event A, we have that

PpS
θ∗
[A] =

∫
1{ω ∈ A}dpSθ∗(ω) =

1

α

∫
1{ω ∈ A}1{ω ∈ S}dpθ∗(ω) ≤ 1

α
Ppθ∗ [A]

and for the product measure with n independent components PΠi∈[n]p
S
θ∗
[A] ≤

(
1
α

)n PΠi∈[n]pθ∗ [A].
So we can bound the probability of events on pSθ∗ with those on pθ∗ . In particular, by Claim 1 and by
the composition property of independent sub-exponential random variables, we have that

Ppθ∗

(
1

n

∣∣∣∣∣u⊤

(∑
i

T (xi)− ν∗

)∣∣∣∣∣ ≥ t

)
≤ exp

(
− nt

2β

)
for any unit vector u

⇒Ppθ∗

(∥∥∥∥∥ 1n∑
i

T (xi)− ν∗

∥∥∥∥∥ ≥ t

)
≤ exp

(
− nt

2β

)
.

21



To translate this to the probability of the same event on pSθ∗ , note that(
1

α

)n

exp

(
− nt

2β

)
≤ δ ⇐⇒ exp

(
n ·
(
log 1/α− t

2β

))
≤ δ

which holds when t = 2β
(
log 1/α+ 1

n log 1/δ
)
. Thus for n > 2β

ϵS
log 1/δ samples from the

truncated pSθ∗ we have that with probability at least 1−δ, the quantity ∥T −ν∗∥ ≤ 2β(log 1/α)+ ϵS .

D Additional Proofs for Algorithm Analysis

Algorithm 3 Stochastic Gradient Descent
Initialize some θ0 ∈ K.
for iteration t = 1, 2, . . . , T do

Compute vt such that E[vt | θt] = ∇f(θt)

θ̃t+1 ← θt − ηvt

θ̃t+1 = ΠK(θ̃t+1) (Project onto K)
end for
Return θT

D.1 SGD Algorithm and its Analysis

Although the setting of Theorem 5.7 of [21] is when the objective is a sum of many functions, the
proof and its result can be easily adapted to our setting.

Theorem. Let f be a λ-strongly convex function. Let θ∗ ∈ argminθ∈K f(θ). Consider the
sequence {θt}Nt=1 generated by SGD (Algorithm 3) and {vt}Nt=1 the sequence random vectors
satisfying E[vt | θt] = ∇f(θt) and E[∥vt∥2 | θt] < ρ2 for all t, with a constant step size η
satisfying 0 < η < 1

λ . It follows that for t ≥ 0,

E∥θt − θ∗∥2 ≤ (1− 2ηλ)t∥θ0 − θ∗∥2 + η

λ
ρ2.

Proof. At any iteration i,

θ̃i+1 = θi − ηvi

θ̃i+1 − θ∗ = θi − θ∗ − ηvi (1)

∥θ̃i+1 − θ∗∥2 = ∥θi − θ∗∥2 − 2η⟨vi,θi − θ∗⟩+ η2∥vi∥2

where the last line comes from multiplying the line (1) with the transpose of the same equation on
either side. After projecting to the set K to obtain θi+1 = argminθ∈K ∥θ̃i+1 − θ∥2 and given that
θ∗ ∈ K, we have that ∥θ̃i+1 − θ∗∥2 ≥ ∥θi+1 − θ∗∥2, so

∥θi+1 − θ∗∥2 ≤ ∥θi − θ∗∥2 − 2η⟨vi,θi − θ∗⟩+ η2∥vi∥2 (2)

Fixing θi in the ith iteration and taking the conditional expectation in (2) gives
E[∥θi+1 − θ∗∥2 | θi] ≤ ∥θi − θ∗∥2 − 2η⟨∇f(θi),θi − θ∗⟩+ η2E[∥vt∥2 | θi]

≤ (1− 2ηλ)∥θi − θ∗∥2 + η2E[∥vt∥2 | θi]

where the last line is due to strong convexity, ⟨∇f(θi),θi − θ∗⟩ ≥ λ∥θi − θ∗∥2. By taking iterated
expectations and recursively applying the above, we get that

E[∥θT − θ∗∥2] ≤ (1− 2ηλ)T ∥θ0 − θ∗∥2 + η2ρ2
T−1∑
i=0

(1− 2ηλ)i

≤ (1− 2ηλ)T ∥θ0 − θ∗∥2 + η2
1

ηλ
ρ2

= (1− 2ηλ)T ∥θ0 − θ∗∥2 + η

λ
ρ2
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where in the second line we used that
∑T−1

i=0 (1−2ηλ)i = 1−(1−2ηλ)T

1−(1−2ηλ) < 2
2ηλ provided η < 1/λ.

We can derive the complexity (number of iterations) to get E[∥θT − θ∥2] < ϵ using the following
Lemma from [21].
Lemma D.1 (Lemma A.2 of [21]). Consider the recurrence given by

αk ≤ (1− ηµ)tα0 +Aη,

where µ > 0, and A,C ≥ 0 are given constants and η < 1/C. If

η = min

{
ϵ

2A
,
1

C

}
then

t ≥ max

{
1

ϵ

2A

µ
,
C

µ

}
log

(
2α0

ϵ

)
⇒ αk ≤ ϵ.

Note that to get bounds on ∥θT − θ∗∥ rather than ∥θT − θ∗∥2, we can solve the number of iterations
we need to get ϵ2 on the right hand side, and we will get the number of iterations for ∥θT − θ∗∥ < ϵ.
Then the resulting complexity bounds will replace 1/ϵ with 1/ϵ2.

D.2 Approximate Sampling of Non-Truncated Distribution

Many analyses of stochastic gradient descent assume unbiased directions at every iteration of the
algorithm, but since we need to be able to sample from pθi

multiple times at each iteration i until we
get a sample in S, our directions are only unbiased if we can indeed sample exactly from pθi

each
time for all i.

However if pθi is complicated, exact sampling can be difficult or take too long. Since we assume that
pθ is log-concave in x for all θ ∈ Θ, we can at least approximately sample from it efficiently via
Langevin Monte Carlo, MALA, or other algorithms with convergence guarantees for log-concave
densities.
Lemma D.2 (SGD Analysis with Biased Directions). Let f be a λ-strongly convex function. Let
θ∗ ∈ argminθ∈K⊆B(θ∗,D) f(θ). Consider the sequence {θt}Nt=1 generated by SGD but with
{ṽt}Nt=1 the sequence random vectors satisfying E[ṽt | θt] = bt − ∇f(θt) with ∥bt∥ < B and
E[∥ṽt∥2 | θt] < ρ′2 for all t, with a constant step size η satisfying 0 < η < 1

λ . It follows that for
t ≥ 0,

E∥θt − θ∗∥2 ≤ (1− 2ηλ)t∥θ0 − θ∗∥2 + η

λ
ρ2 +

2BD

λ
.

Proof. Define bt := E[bt | θt]−∇f(θt) the bias for each t ≥ 0. The analysis of Theorem 3.10 can
be applied generically to get Eq. (2):

∥θi+1 − θ∗∥2 ≤ ∥θi − θ∗∥2 − 2η⟨ṽi,θi − θ∗⟩+ η2∥ṽi∥2

Now when taking the conditional expectation, we get
E[∥θi+1 − θ∗∥2 | θt] ≤ ∥θi − θ∗∥2 − 2η⟨bt,θi − θ∗⟩ − 2η⟨∇f(θi),θi − θ∗⟩ − η2E[∥ṽi∥2 | θi]

≤ (1− 2ηλ)∥θi − θ∗∥2 + η2ρ′2 + 2η∥bi∥∥θi − θ∗∥
Taking iterated expectations and recursively applying this gives now

E[∥θT − θ∗∥2] ≤ (1− 2ηλ)T ∥θ0 − θ∗∥2 +
T−1∑
i=0

(1− 2ηλ)i ·
(
η2ρ′2 + 2η∥bi∥∥θi − θ∗∥

)
≤ (1− 2ηλ)T ∥θ0 − θ∗∥2 + η2ρ′2 + 2ηBD

ηλ

= (1− 2ηλ)T ∥θ0 − θ∗∥2 + ηρ′2

λ
+

2BD

λ
where the second line holds if ∥bi∥ ≤ B, ∥θi − θ∗∥ < D,∀i (which holds under the assumptions).

Note that in our Algorithm 1, D here is simply 2
λd(α) by construction. We can also control B through

the following.
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Bounding the bias. Fix some t. Let ṽt := T (z) − T (x) where z ∼ p̃Sθi
and x ∼ pSθ∗ . Then we

can write
bt = Ez∼p̃S

θi

[T (z)]− Ex∼pS
θ∗
[T (x)] + Ez∼pS

θi

[T (z)]− Ex∼pS
θ∗
[T (x)]

= Ez∼p̃S
θi

[T (z)]− Ez∼pS
θi

[T (z)]

=

∫
X
T (x) · (p̃Sθi

(x)− pSθi
(x))dx (3)

If we know that T (x) is bounded over S, we can upper-bound this given the TV distance between
p̃Sθi

and pSθi
:

∥bt∥ ≤ sup
x∈S
∥T (x)∥

∥∥p̃Sθi
− pSθi

∥∥
TV

.

Since we assume that Epθi
[T (x)] is finite, it should be the case that T (x) is bounded over its support

except potentially on some negligible sets. In that case, we can replace T (x) with T̃ (x) which
replaces those potentially infinite values on negligible sets with 0 and the integral expression in (3)
would be equal to one which uses T̃ (x) instead of T (x), and the bound on its norm holds given that
T̃ (x) is bounded.

Otherwise we can use bounds from Lemma C.1 to bound this as

∥bt∥ ≤
√
χ2(p̃Sθi

||pSθi
) ·
√

VarpS
θi

(T (x))

if we have control over the chi-square divergence (see Section C.1 for definitions).

If we know that T (x) is a 1-Lipschitz, real-valued function (e.g., when T (x) = x), we can use the
dual representation of W1 distance to bound this as

bt =

∫
S

T (x)dp̃Sθi
−
∫
S

T (x)dpSθi
≤ sup

f∈F1Lip

∫
f(x)dp̃Sθi

−
∫

f(x)dpSθi
= W1(p̃

S
θi
, pSθi

).

Proposition D.3 (Bounds on truncated total variation, given bounds on non-truncated). Suppose
∥p̃θi

− pθi
∥TV ≤ ϵTV for some ϵTV > 0. Then

∥p̃Sθi
− pSθi

∥TV ≤
ϵ2TV

pθi
(S)− ϵTV

.

Proof. First, given that ∥p̃θi − pθi∥TV ≤ ϵTV , we have by one characterization of the total variation
distance (the supremum of the difference in mass over all measurable sets)

p̃θi(S) ≥ pθi(S)− ϵTV .

Now for the truncated densities,

∥p̃Sθi
− pSθi

∥TV =
1

2

∫
|p̃Sθi

(x)− psθi
(x)|dx

=
1

2

∫
1{x ∈ S} ·

∣∣∣∣ p̃θi
(x)

p̃θi
(S)
− pθi

(x)

pθi
(S)

∣∣∣∣ dx
≤ ϵTV

pθi
(S)− ϵTV

· 1
2

∫
|p̃θi

(x)− pθi
(x)|dx

≤ ϵ2TV

pθi
(S)− ϵTV

Efficient, Approximate Sampling. There exist several results in sampling which give bounds
in TV distance in polynomial time (mixing time bounds) for log-concave distributions, e.g., [16],
[3], [34] but which also usually require that the log density is also smooth (in x, not θ). There are
also proofs for Langevin Monte Carlo when the log density is convex and Lipschtiz, not necessarily
smooth (e.g., see Chapter 4 of [7]), or under LSI (which is implied by strong log-concavity) with
convergence in Renyi divergence (e.g., Chapter 5 of [7]). We can also use the proximal sampler
to achieve convergence in KL divergence under log-concavity (e.g., Chapter 8.4 of [7]), which by
Pinsker’s inequality can bound the TV distance.
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Proposition D.4 (Bounded variance step with bias). If E[∥vi∥ | θi] ≤ ρ2 where vi = T (z)− T (x)
with z ∼ ppS

θi

and x ∼ pSθ∗ ,then E[∥ṽi∥ | θi] ≤ ρ′2 for ṽi = T (z̃) − T (x) with z̃ ∼ p̃pS
θi

and

x ∼ pSθ∗ , where
ρ′2 = Varp̃S

θi

(T (z))−VarpS
θi

(T (z)) + ρ2 +B2,

where ∥bi∥ = ∥Ez̃∼p̃S
θi

[T (z̃)]− Ez∼pS
θi

[T (z)]∥ < B.

Proof. As in the proof of the exact sampling version, we can write

E[∥ṽi∥ | θi] = Varp̃S
θi

(T (z)) +VarpS
θ∗
(T (x)) + ∥Ep̃S

θi

[T (z)]− EpS
θ∗
[T (x)]∥2

≤ Varp̃S
θi

(T (z)) +VarpS
θ∗
(T (x)) + ∥EpS

θi

[T (z)]− EpS
θ∗
[T (x)]∥2 + ∥bi∥2

= Varp̃S
θi

(T (z))−VarpS
θi

(T (z))

+VarpS
θi

(T (z)) +VarpS
θ∗
(T (x)) + ∥EpS

θi

[T (z)]− EpS
θ∗
[T (x)]∥2︸ ︷︷ ︸

≤ρ2

+ ∥bi∥2︸ ︷︷ ︸
≤B2

≤ Varp̃S
θi

(T (z))−VarpS
θi

(T (z)) + ρ2 +B2

We can bound the difference Varp̃S
θi

(T (z)) − VarpS
θi

(T (z)) if have bounds on Varp̃S
θi

(T (z)),
through bounds like in Lemma C.1 if we can say something about the chi-square divergence, or
through similar arguments to the bias bound if we assume some bounds on ∥T (x)∥2 over its support.

E Numerical Example

To illustrate how the algorithm performs in different dimensions, we implemented our algorithm
for 2-, 5-, 10-, and 20-dimensional exponential distributions. In all cases, the truncation set is the
(hyper-)cube [0, 2]d. We chose true parameters in all cases which resulted in an initial error at most
2.5. In all cases, we use 1500 iterations and step size 0.01, each repeated 10 times. In the end, all
have (average) L2 error at most 0.15. For stability (and to bypass repeating the algorithm multiple
times as stated in the analysis), we instead calculated gradients using the average of 10 samples which
was sufficient to have stable training results. See Figure 2.

Figure 2: Learning 2-, 5-, 10-, and 20-dimensional truncated exponential distributions. In all cases,
the truncation set is the (hyper-)cube [0, 2]d.
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The wall clock time to finish all 1500 iterations of training for 5-, 10-, and 20-dimensions was
42.9± 2.2, 49.1± 6.5, and 61.2± 3.0 seconds, respectively. We can see that the running time is not
doubling with the doubling of dimensions.
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