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Abstract

Missing data problems have many manifestations across many scientific fields. A
fundamental type of missing data problem arises when samples are truncated, i.e.,
samples that lie in a subset of the support are not observed. Statistical estimation
from truncated samples is a classical problem in statistics which dates back to
Galton, Pearson, and Fisher. A recent line of work provides the first efficient
estimation algorithms for the parameters of a Gaussian distribution [10] and for
linear regression with Gaussian noise [11, 14, 37].
In this paper we generalize these results to log-concave exponential families. We
provide an estimation algorithm that shows that extrapolation is possible for a
much larger class of distributions while it maintains a polynomial sample and time
complexity on average. Our algorithm is based on Projected Stochastic Gradient
Descent and is not only applicable in a more general setting but is also simpler
than the recent algorithms of [10, 26, 11, 14, 37]. Our work also has interesting
implications for learning general log-concave distributions and sampling given
only access to truncated data.

1 Introduction

In many statistical estimation and inference problems, we have access to only a limited part of the data
that would be necessary for the classical statistical methods to work, which motivates the development
of statistical methods that are resilient to missing data [29]. Truncation [32, 8] is a fundamental and
frequent type of missing data and arises when samples that lie outside a subset of the support are not
observed and their count is also not observed. Statistical estimation from truncated samples is the
focus of the field of truncated statistics, which was developed since the beginning of the twentieth
century starting with the work of Galton [19], Pearson and Lee [34, 35], and Fisher [16]. Truncated
statistics is widely applicable in Econometrics and many other theoretical and applied fields [32].

A recent line of work establishes the first sample optimal and computationally efficient methods for
fundamental statistical estimation problems from truncated samples [10, 26, 11, 13, 14, 24, 37]. All
the aforementioned works though heavily rely on the Gaussianity of the distribution of data or the
Gaussianity of the noise in regression problems. Gaussianity is an idealized assumption and the
question of generalizing truncated statistics beyond Gaussianity has been explored in many existing
works, e.g., [1, 22, 38]. The only results in this regime though are for single dimensional problems
and truncations that can be described as intervals.
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Figure 1: Visualizing the density and truncation set for 2-dimensional exponential distribution. The
plot on the left is the density of p(x1, x2) ∝ exp(−x1

5 −
x2

2 ). On the right is a contour plot of the
truncation set [0, 2]× [0, 2] under p(x1, x2). Note that E[X1] = 5 and E[X2] = 2, so the truncation
set excludes the mean in one direction and includes it only as a boundary point in the other.

In this work we provide statistically and computationally efficient methods for estimating the param-
eters of exponential families from truncated samples. Our results generalize the recent work of [10]
and are the first to provide an estimation algorithm for this problem for a general class of exponential
families and for a general class of truncation biases.

Exponential families are one of the most influential type of distribution classes since they include
many fundamental distributions such as normal, exponential, beta, gamma, chi-squared, and Weibull
distributions. They were first introduced by Fisher [17] and later generalized by [9, 27, 36]. The
estimation of the parameters of exponential families over continuous domains is the subject of many
classical and recent results; starting from the work of Fisher [17] until the recent results of [25, 41].
This line of work has also found applications in many areas of statistics including causal inference
[40]. Our work contributes in this line of research as well since we show how to estimate exponential
families even when we only have access to truncated samples.

1.1 Our Results

For every distribution p, we define the truncated version pS as the distribution with density that
satisfies pS(x) ∝ 1{x ∈ S}·p(x). We consider distributions pθ with supportX ⊆ Rm parameterized
by a vector of parameters θ ∈ Rk that can be written in the following form:

pθ(x) ∝ h(x) · exp(θ⊤T (x))

where h and T are known functions and T is called the sufficient statistics of the exponential family.
Our goal is to estimate the vector of parameters θ up to ϵ error in ℓ2 distance using only samples
from pSθ when we have oracle access to S, i.e., there is an oracle that for every x ∈ X can answer
whether x ∈ S or not.

Without any further assumptions estimation from truncated samples is impossible as shown in [10].
In this paper we use the following assumptions to get our estimation guarantees:

Assumption I: We assume a lower bound and an upper bound on the variance of the sufficient
statistics in any direction. This assumption is used in estimation of the parameters of
exponential families even without truncated samples, e.g., Assumption 4.1 in [41].

Assumption II: We assume that the exponential families contain log-concave distributions. We
use this assumption in two places: (1) to show our extrapolation result, our distributions
must satisfy an anti-concentration property; this is a property that is heavily utilized even in
estimating a Gaussian distribution [10], (2) we require access to a sampling oracle for the
underlying distributions; this sampling oracle can be implemented efficiently using Langevin
dynamics if we have log-concavity.

Assumption III: We assume that the sufficient statistics T are bounded degree polynomials. This
assumption combined with log-concavity provides the anti-concentration property that we
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need. Alternatively, we can assume that the sufficient statistics belongs to a function class
that satisfies anti-concentration but for simplicity of exposition we focus on the case where
T (x) is a polynomial.

Our main result is the following.
Informal Theorem 1.1 (See Theorem 3.1 for the formal statement). Under Assumptions I, II, III,
and given samples n (at least Õ(k/ϵ2) for some ϵ) from pSθ∗ , where S is a measurable set to which we
have oracle access, there exists an estimation algorithm with (expected) running time poly(m, k, n)

that outputs θ̂ such that with probability at least 99%, it holds that ∥θ̂ − θ∗∥ < ϵ.

Our main result has the following important implications:

▷ We show that our assumptions are satisfied from exponential distributions, Weibull distribu-
tions, continuous Bernoulli, continuous Poisson, Gaussian distributions, and generalized
linear models. Hence, our result implies an efficient method for estimation from truncated
samples for all these distribution classes.

▷ Another interesting corollary of our result is that we can combine it with the ideas of [12]
and get a general method for learning log-concave distributions from truncated samples. In
particular, assume that we want to learn from truncated samples a distribution that can be
written in the form p(x) ∝ exp(−f(x)) where f is a convex function. Now under mild
assumptions, we can replace f(x) with a finite Taylor approximation, i.e., we have that
f(x) ≊

∑
i aiti(x) for some polynomials ti(x). Then, using our method we can estimate

the parameters ai and output an estimation of p.
▷ In the context of sampling, the gradient of the log-likelihood is the score function that is

needed to run Langevin dynamics (e.g., see [30, 7]). Our result also says that we are able to
sample from the original distribution, given that we only observe truncated samples.

Technical Contributions. Our algorithm is projected stochastic gradient descent (PSGD) on the
negative log-likelihood function and is the same algorithm that is used in many of the recent works
in truncated statistics. As in the previous work though, the main challenge is to show that PSGD
will converge in our general setting. The previous analysis of the convergence of PSGD was based
on exact properties of the Gaussian distribution. When we move away from Gaussianity every step
of the convergence analysis becomes much more technical and we need to make sure to only use
properties that generalize to exponential families beyond Gaussian distributions. In particular, certain
results such as that of Lemma 3.6 and its related quantities in C.1 can be generalized even beyond
exponential families, holding for any density.

1.2 Related Work

Our most related literature is the recent series of works on truncated statistics which includes
the following results: estimation of multivariate normal distributions [10], linear regression with
Gaussian noise [10, 26, 11, 13, 14, 37], estimation of product distributions over the hypercube [18],
non-parametric density estimation [12]. All of these works heavily rely on properties of the Gaussian
distributions, or product distributions over the hypercube, or their dependence in the number of
dimensions is not efficient, e.g., [12]. In our work we identify the properties of exponential families
that are only required to get the efficient estimation results and we show that linear dependence on
the dimension is achievable in settings that are more general than the Gaussian case.

Another related work is that of [30] that solves parameter estimation of a truncated density given
samples through the score matching technique. To derive a tractable objective, we need appropriate
boundary conditions which are not satisfied by truncated densities, but [30] instead uses a modified
weighted Fisher distance given that the truncation set S is a Lipschitz domain (a type of open and
connected set). On the other hand, our work assumes no particular structure about S and hence our
results are more general and applicable in much more complicated settings for exponential families.

2 Preliminaries

Notation. Lowercase bold letters will denote real-valued vectors, e.g., x ∈ Rm, and uppercase
bold letters will denote matrices with real values, e.g., A ∈ Rn×m. For a random vector x ∼ ρ,

3



Cov[x] = Cov[x,x] = E[(x−E[x])(x−E[x])⊤] is its covariance matrix, and Var(x) is the trace
of the covariance matrix (a scalar value). Depending on whether it is clear from context, Cov and
Var may include subscripts to indicate the distribution ρ. The notation B(c,R) is the Euclidean ball
centered at c with radius R > 0.

Exponential Families. Let x ∈ X ⊆ Rm. We are interested in a class of densities which have the
form,

pθ(x) = h(x) exp(θ⊤T (x)−A(θ)),

where h : Rm 7→ R+ is the base or carrier measure, θ ∈ Θ with Θ = {θ ∈ Rk : A(θ) <∞} is the
natural parameter space, T : Rm 7→ Rk is the sufficient statistic for θ, and A(θ) = logZ(θ) is the
log-partition function, where Z(θ) =

∫
pθ(x)dx.

A regular exponential family is one where Θ is an open set. It is minimal if the θ and T (x) are each
linearly independent. Any non-minimal family can be made minimal by appropriate reparametrization.
In any regular exponential family, A(θ) is convex. It is strictly convex if the representation is minimal.
Exponential families have several nice properties (e.g., see Theorem 1 of [4]), among which are that
∇A(θ) = Epθ

[T (x)] and∇2A(θ) = Covpθ
[T (x)].

Truncated Distributions. Let ρ be a probability distribution on Rm. We represent ρ as a probability
density function with respect to the Lebesgue measure dx on Rm. Let S ⊆ Rm be such that ρ(S) = α
for some α ∈ (0, 1]. Let ρS := ρ(· | · ∈ S) be the conditional distribution of x ∼ ρ given that x ∈ S.
Concretely, the density of ρS is

ρS(x) =
ρ(x) · 1{x ∈ S}

ρ(S)
.

For exponential families, we have the truncated density pSθ (x) is:

pSθ (x) =
pθ(x)∫

S
pθ(x)dx

1{x ∈ S} = h(x) exp(θ⊤T (x))∫
S
h(x) exp(θ⊤T (x))dx

1{x ∈ S}.

See Figure 1 for an illustration.

Sub-Exponential Distributions. Although the term sub-exponential has been overloaded (e.g.,
[21] v.s.[44]), the definition we will use describes a class of distributions whose tails decay at least as
fast as an exponential, but with potentially heavier tails than Gaussians [44].

There are several equivalent characterizations of sub-exponential random variables (e.g., see Prop.
2.7.1 of [44]), one of which uses the moment generating function.
Definition (Sub-exponential random variable). A centered, real-valued random variable X ∈
SE(ν2, β) is sub-exponential with parameters ν2, β > 0 if

E[eλX ] ≤ e
ν2λ2

2 , ∀λ : |λ| < 1/β.

Membership Oracle of a Set. Let S ⊆ Rm. A membership oracle is an efficient procedure which
computes 1{x ∈ S}.

3 Projected Stochastic Gradient Descent Algorithm

Problem Setup. We are given truncated samples {xi}ni=1, with each xi ∼ pSθ∗ , where pθ∗(S) =
α > 0. Without knowledge of the truncation set S beyond access to a membership oracle, can one
recover θ∗ and thus pθ∗ efficiently?

We answer this question positively, under the following assumptions:
Assumption A1 (Strong Convexity, Smoothness of Non-truncated Negative Log-Likelihood over Θ).

λI ⪯ Covz∼pθ
[T (z), T (z)] ⪯ LI ∀θ ∈ Θ,

for some λ, L > 0. Here, we’ve abused notation for Θ which can be a subset of the entire natural pa-
rameter space. As mentioned earlier, this is always at least convex for exponential families and strictly
convex in minimal representation. Thus the negative log-likelihood (of the non-truncated density)
can be made strongly convex and smooth by restricting the natural parameter space appropriately.
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Assumption A2 (Log-Concave Density). The density pθ(x) is log-concave in x.
Assumption A3 (Sufficient Statistics T (x) is polynomial in x). T (x) ∈ Rk has components which
are polynomial in x, with degree at most d.

Assumptions A2 and A3 allow us to use the anti-concentration result needed for Lemma 3.2 which is
heavily utilized even in the Gaussian case. While A2 also allows for efficient sampling via Langevin
dynamics, the latter is only used in Lemma 3.2. Refer back to 1.1 for discussion of these assumptions.

Main Result.
Theorem 3.1 (Main). Given membership oracle access to a measurable set S whose measure is some
constant α ∈ (0, 1] under an unknown exponential family distribution pθ∗ which satisfies A1, A2,
A3, and given samples x1, . . . ,xn from pθ∗ that are truncated to this set, there exists an expected
polynomial-time algorithm that recovers an estimate θ̂. That is, for any ϵ > 0 the algorithm

• Uses an expected Õ(k/ϵ2) truncated samples and queries to the membership oracle,

• Runs in expected poly(m, k, 1/ϵ) time.

• Produces an estimate θ̂ such that with probability at least 99%,

∥θ̂ − θ∗∥ < ϵ.

In order the solve this problem, we need to define an objective whose optimum is θ∗ and we need
to be able to recover it uniquely. To use maximum likelihood estimation (or minimize the negative
log-likelihood), we have to be able to compute gradients which depend on the truncation set S, which
we cannot do directly without more knowledge about S. However, we can sample unbiased estimates
of the gradient, as long we have non-trivial mass on S at a current parameter estimate (otherwise the
truncated likelihood function at that parameter is not well-defined and rejection sampling would take
infinite time). To address all of these issues, the organization of this section is as follows:

• Section 3.1 establishes that after truncation, the negative log-likelihood remains strongly
convex and smooth (in θ) over a subset of parameters which have non-trivial mass on the
truncation set.

• In Section 3.3, we show that while we do not know the truncation set, we can solve the
non-truncated MLE problem with truncated samples to find an initial parameter θ0 which
assigns non-trivial mass to the truncation set.

• Then given this θ0, in Section 3.2 we show that we can construct a set of parameters K
which all assign non-trivial mass to the truncation set (and contains the true parameter θ∗).

• In Section 3.4, we use results from the previous sections to prove that we can efficiently
recover the true parameter θ∗ using a stochastic gradient descent procedure minimizing the
truncated negative log-likelihood, which projects to the parameter space K.

3.1 Strong Convexity and Smoothness of Truncated Negative Log-Likelihood

Without truncation, recovering the true parameter θ∗ for any parameterized distribution given samples
is a classical problem solved by maximizing the likelihood (or minimizing its negation). Here, we
state the main objective we will minimize through a stochastic gradient descent procedure as well as
the properties of this objective that will allow us to recover θ∗. Define:

ℓ(θ) := −Ex∼pS
θ∗

[
log
(
pSθ (x)

)]
∇θℓ(θ) = Ez∼pS

θ
[T (z)]− Ex∼pS

θ∗
[T (x)]

∇2
θℓ(θ) = Covz∼pS

θ
[T (z), T (z)]

Note that since the Hessian is a covariance matrix which is at least PSD, this objective is always
convex in θ. Thus θ∗ is a minimizer since it satisfies the first-order optimality condition. (These
calculations can be found in Appendix A.1.) However, if the objective is too flat, we may not be
able to recover θ∗ even after sufficiently reducing the objective value. For this, we prove that if the
original non-truncated covariance has bounded eigenvalues, the truncated one does as well under A1,
A2, and A3 at parameters which assign non-trivial mass to S.
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Lemma 3.2 (Preservation of Strong Convexity under Truncation). Assume the lower bound in A1,
A2, A3. If pθ(S) > 0, then

Covz∼pS
θ
[T (z), T (z)] ⪰ 1

2

(
pθ(S)

4Cd

)2d

λI,

where C is a universal constant guaranteed by Theorem 8 of [5] and d is the maximum degree of
T (x). See proof in Appendix A.2 which follows that of [10].
Lemma 3.3 (Preservation of Smoothness under Truncation). Assume the upper bound in A1. Suppose
pθ(S) > 0, then

Covz∼pS
θ
[T (z), T (z)] ⪯ 1

pθ(S)
LI.

See proof in Appendix A.3. The proof is simple and can be done similarly to the previous lemma.

Thus, we have shown that as long as we optimize over a parameter space where every θ assigns
non-trivial mass to the truncation set, our objective is both strongly convex and smooth. The following
sections will help us determine and then construct this set given samples.
Remark. Note that the upper bound increased and the lower bound decreased for the eigenvalues
of the truncated covariance matrix. Even in a one-dimensional simple case like N (0, 1), it is easy
to construct examples of both increasing the shrinking the variance given freedom to place mass
anywhere under N (0, 1). Thus, it may be natural that the eigenvalue range expands after truncation.
Remark. Lemma 3.2 and the log-likelihood calculations are direct generalizations of prior work in
the Gaussian case, where we can recover the results of [10] by noting that the re-parameterization
of Gaussian parameters (µ,Σ) as ν = Σ−1µ and T = Σ−1 is the natural parameterization of
multivariate Gaussian distributions in exponential family form (up to constants). The sufficient
statistics here T (x) ∝ [x,xx⊤] has components which are polynomial in x with degree at most 2,
and plugging in d = 2 to Lemma 3.2 recovers Lemma 4 in [10]. Appendix B includes other examples
beyond Gaussians which satisfy A1, A2, and A3.

3.2 Parameter Space with Non-Trivial Mass on Truncation Set

The prior section established that the strong convexity and smoothness parameter of the truncated
objective is controlled by the mass that pθ assigns to the truncation set S for any given θ. In this
section, we will prove lower bounds on the mass that pθ assigns to the truncation set, given that the
parameter distance to the optimum ∥θ − θ∗∥ is bounded.
Lemma 3.4 (Lower bound for mass on truncation set under smoothness given parameter distance).
Assume A1. Let θ,θ′ ∈ Θ. Then for two distributions from the same exponential family

pθ(S) ≥ pθ′(S)2 · exp
(
−3L

2
∥θ − θ′∥2

)
.

Proof is provided in Appendix C.3, and only needs smoothness. Thus, we can lower bound the
mass that a parameter θ assigns to S given its distance ∥θ − θ∗∥ from θ∗ which is assumed to have
pθ∗(S) = α.

Thus, to make use of this property we want to establish a procedure to initialize a parameter θ0 such
that its distance to the optimum θ∗ is bounded. Then during the optimization procedure we will make
sure to make progress toward θ∗. The following is the result we will be able to prove after proving
some results between truncated and non-truncated quantities in the following Section 3.3.
Corollary 3.5 (Parameter space with non-trivial mass on truncation set). Given θ0 such that
Epθ0

[T (x)] = T where T = 1
n

∑n
i=1 T (xi) is the empirical mean sufficient statistics given our

samples {xi}ni=1 for each xi ∼ pSθ∗ , if we define

K = B

(
θ0,

ϵS +O(log 1/α)
λ

)
∩Θ

then pθ(S) ≥ α2 exp
(
− 6L

λ2 (ϵS +O(log 1/α))2
)
> 0 holds ∀θ ∈ K (with probability at least 1− δ

for n ≥ Ω(log(1/δ))). Furthermore, θ∗ ∈ K (as long as θ∗ ∈ Θ satisfies conditions of Claim 1).

This result will follow from Lemma 3.4, Claim 1, Lemma 3.7, and Lemma 3.9 in the next section.
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3.3 Initialization with Empirical Samples and Non-truncated MLE

Given samples from the truncated density pSθ∗ , one may first try to solve the non-truncated empirical
MLE problem to find a parameter θ0 without truncation and hope that it is good enough. (We will
show that it is.) In order to understand how good this initial guess is, we need to establish some
relationships between the truncated and non-truncated density.
Lemma 3.6 (Truncated vs. Non-truncated Mean Sufficient Statistics for General Densities). Let ρ
be a probability distribution on Rd (not necessarily from an exponential family). Let S ⊆ Rd with
ρ(S) > 0. Then

∥EρS [x]− Eρ[x]∥ ≤

√
1− ρ(S)

ρ(S)
·
√
Varρ(x).

Proof of this lemma and several related quantities for general truncated densities is in Appendix C.1.
In low dimensions, this variance term may effectively be a constant; however, in high-dimensional
settings this term can grow with dimension (which is undesirable if we want an efficient algorithm).
Given more assumptions about the density, we can get better dimension-free bounds which generalize
the results from the Gaussian case.
Claim 1. Let θ ∈ Θ such that θ + 1

βu ∈ Θ for some β > 0 for all unit vectors u and such that
Assumption A1 holds for pθ from an exponential family. Then X := u⊤(T (x)− Ex∼pθ

[T (x)]) is
SE(L, β). (Proof provided in Appendix C.2.)
Remark. This claim allows us to have concentration of the empirical mean sufficient statistics to
its population mean for the non-truncated distribution. The prior work [10] analyzed the mean and
covariance of a Gaussian separately, but for instance to establish bounds on distances between the
truncated and non-truncated mean parameter, it made use of Gaussian concentration inequalities
(which are tighter than sub-exponential ones). The relationship between the truncated density and the
non-truncated one will allow us to say that the empirical truncated mean sufficient statistics is also
somewhat close to the non-truncated population mean.
Lemma 3.7 (Concentration of Empirical vs. Non-truncated Mean Sufficient Statistics). Suppose
θ∗ satisfies the conditions of Claim 1 and pθ∗(S) = α > 0. Let T = 1

n

∑n
i=1 T (xi) be the

empirical mean sufficient statistics given our samples {xi}ni=1 each xi ∼ pSθ∗ . Let ϵS > 0. For

n ≥ Ω
(

2β
ϵS

log
(
1
δ

))
, with probability at least 1− δ,

∥T − Epθ∗ [T (x)]∥ ≤ ϵS +O(log 1/α).

It should be noted that it suffices to consider ϵS as some independent constant (and not related to the
ϵ accuracy parameter in the main theorem). However, by taking n at least Õ(k/ϵ2) as stated in the
main theorem, this will be small. See proof in Appendix C.4.
Remark. At a high level, the truncated samples can be thought of as O(n/α) samples from the
non-truncated distribution (keeping only those in S), and each are “not too far” (depending on how
much mass the set S has under the non-truncated distribution) from the non-truncated mean due to
concentration. Note that the O(log 1/α) term will never disappear even as we increase n, which
quantifies the inherent bias that the truncated mean sufficient statistics will have with respect to the
non-truncated one (and is large if the mass α is small). From this, we can also say something about the
population mean sufficient statistics, one on the truncated distribution and one on the non-truncated.
Corollary 3.8 (Truncated vs. Non-truncated Mean Sufficient Statistics). Let θ satisfy the conditions
of Claim 1 and pθ(S) > 0. Then

∥EpS
θ
[T (x)]− Ex∼pθ

[T (x)]∥ ≤ O(log 1/pθ(S)).

The proof follows from the preceding lemma, replacing α with pθ(S) and taking n→∞. Compare
this to the Gaussian case [10], where the mean and truncated means were bounded as ∥µ− µS∥ ≤
O(
√
log 1/pθ(S)) and separately the covariances were bounded as ∥Σ−1/2ΣSΣ

−1/2 − I∥F ≤
O(log 1/pθ(S)). Note the smaller O(

√
log 1/pθ(S)) quantity due to tighter Gaussian concentration

vs. the sub-exponential rate.

Once we have bounds on the norm of the difference between the truncated and non-truncated mean
sufficient statistics, we can bound distance in parameter space. The following completes this.
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Lemma 3.9 (Non-truncated MLE Solution Distance to θ∗). Suppose θ∗ satisfies the conditions of
Claim 1 and pθ∗(S) = α > 0. Let θ0 be such that Epθ0

[T (x)] = T where T = 1
n

∑n
i=1 T (xi) given

each xi ∼ pSθ∗ . Let ϵS > 0 and n > Ω
(

2β
ϵS

log(1/δ)
)

. Then w.p. at least 1− δ,

∥θ0 − θ∗∥ ≤ 1

λ
(O(log 1/α) + ϵS).

Proof. Define ℓ
untr

(θ) := Ex∼pθ0
[− log pθ(x)]. Its gradient and Hessian calculations can be done

similarly to ℓ(θ), the truncated version, but with S = X the full support of the distribution.

Since Ez∼pθ∗ [T (z)] − Ex∼pθ0
[T (x)] = ∇ℓ(θ∗)untr is the gradient of the untruncated negative

log-likelihood whose optimum is at θ0, by A1 this gives

∥∇ℓuntr
(θ∗)−∇ℓuntr

(θ0)︸ ︷︷ ︸
0

∥ ≥ λ∥θ0 − θ∗∥ ⇒ ∥θ0 − θ∗∥ ≤ 1

λ
∥∇ℓuntr

(θ∗)∥

where the result follows from the fact that Ez∼pθ0
[T (z)] = T and ∥Ez∼pθ∗ [T (z)] − T∥ ≤

O(log 1/α+ ϵS) w.p. 1− δ from Lemma 3.7.

Note that this result combined with Lemma 3.4 gives Corollary 3.9.

3.4 Analysis of Projected Stochastic Gradient Descent Algorithm

Now we have all the tools we need to analyze the main algorithm. For ease of notation, define
d(α) := ϵS + O(log 1/α) which is a constant that depends on α. The following describes the
projected stochastic gradient descent algorithm referenced by Theorem 3.1.

Algorithm 1 Projected SGD Algorithm Given Truncated Samples
Given {xi}ni=1, each xi ∼ pSθ∗

Initial θ0 ∈ Rk s.t. Ez∼pθ0
[T (z)] = T , where T = 1

n

∑
i T (xi).

for i = 0, . . . , N do
vi = SampleGradient(xi,θi)
θi+1 ← θi − ηvi

Project θi+1 onto K = B(θ0,
d(α)
λ ) ∩Θ.

end for
Return θT

Algorithm 2 SampleGradient
Input: x,θ
while True do

Sample z ∼ pθ
if 1{z ∈ S} via membership oracle then

Return T (z)− T (x)
end if

end while

Given the results from the previous sections, we can now prove the main result. The analysis is based
on that of Chapter 5 (Theorem 5.7) of [20] which we modify and state below:
Theorem 3.10 (SGD Convergence). Let f be a λ-strongly convex function. Let θ∗ ∈
argminθ∈K f(θ). Consider the sequence {θt}Nt=1 generated by SGD (Algorithm 3) and {vt}Nt=1

the sequence random vectors satisfying E[vt | θt] = ∇f(θt) and E[∥vt∥2 | θt] < ρ2 for all t, with
a constant step size η satisfying 0 < η < 1

λ . It follows that for t ≥ 0,

E∥θt − θ∗∥2 ≤ (1− 2ηλ)t∥θ0 − θ∗∥2 + η

λ
ρ2.
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The proof is adapted and reproduced in Appendix D.1 for completeness. To apply the above theorem
we need to take care of statistical problems:

(i) strong convexity f is a strongly convex function over K a convex set

(ii) smoothness f is a Lipschitz-smooth function over K

(iii) feasibility of optimal solution θ∗ ∈ K.

(iv) bounded variance step for all t, E[∥vt∥2 | θt] < ρ2 for some ρ2

and algorithmic ones:

(a) initial feasible point efficiently compute an initial feasible point θ0

(b) unbiased gradient estimation efficiently sample an unbiased estimate of∇f (=∇ℓ)
(c) efficient projection efficiently project to parameter space K

Statistical problems. Firstly, (iii) is assumed. (i-ii) is addressed by Lemmas 3.2, 3.3, 3.6, 3.9, 3.7,
3.4. In particular, we can initialize with θ0 such that ∥θ0 − θ∗∥ ≤ d(α)

λ by Lemmas 3.6, 3.9, 3.7,
with probability at least 1− δ. Given this θ0, we can construct K = B(θ0,

d(α)
λ ) ∩Θ which has the

property that

∥θ − θ∗∥ ≤ 2

λ
d(α), ∀θ ∈ K.

Thus by Lemma 3.4, we will also have

pθ(S) ≥ α2 exp
(
−6κ

λ
· (d(α))2

)
> 0, ∀θ ∈ K

where κ = L/λ is the condition number. Since we are projecting to K in which all parameters have
non-trivial mass, our objective remains strongly convex. In particular, our objective ℓ(θ) has

λSI ⪯ ∇2ℓ(θ) ⪯ LSI, ∀θ ∈ K,

where λS = 1
2

(
α2 exp(−6κ

λ ·(d(α))2)
4Cdeg

)2deg

λ and LS =
exp(6κ

λ ·(d(α))2)
α2 L are some constants which

depend on α, λ, L, and the maximum degree, deg, of the sufficient statistics. It remains to address
(iv), which is done by the following lemma.

Lemma 3.11 (Bounded variance step). Let vi denote the output of SampleGradient(xi,θi) at any
iteration i ∈ [N ]. Provided that ∥ES

pθ
[T (x)]− Epθ

[T (x)]∥ ≤ O(log 1/pθ(S)) for all θ ∈ K,

E[∥vi | θi∥2] ≤ kLS + kL+ (1 + 2κ)2(O(log 1/pθi
(S)))2.

Proof. At any iteration i (arbitrary),

E[∥vi∥2 | θi] = E(z,x)∼pS
θi

⊗pS
θ∗

[
∥T (z)− T (x)∥2

]
= E(z,x)∼pS

θi
⊗pS

θ∗

[
∥T (z)∥2 − 2⟨T (z), T (x)⟩+ ∥T (x)∥2

]
= Tr (Cov[T (z)]) + (E[∥T (z)∥])2 + Tr (Cov[T (x)]) + (E[∥T (x)∥])2 − 2⟨E[T (z)],E[T (x)]⟩
= Tr (Cov[T (z)]) + Tr (Cov[T (x)]) + ∥EpS

θi

[T (z)]− EpS
θ∗
[T (x)]∥2

≤ kLS + kL+ (1 + 2κ)2(O(log 1/pθi
(S)))2

In the last step, we’ve used the fact that

∥EpS
θi

[T (z)]− EpS
θ∗
[T (x)]∥ ≤ ∥EpS

θi

[T (z)]− Epθi
[T (z)]∥+ ∥Epθi

[T (z)]− EpS
θ∗
[T (z)]∥

= ∥EpS
θi

[T (z)]− Epθi
[T (z)]∥+ ∥Epθi

[T (z)]− Epθ0
[T (z)]∥

≤ O(log 1/pθi
(S)) + (2L/λ)(O(log 1/pθi

(S)) + ϵS)

by assumption, smoothness, Cor. 3.8 and Lemma 3.9.
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Algorithmic problems. For the algorithmic problems, by Cor. 3.8 and Lemmas 3.9, 3.7, we can
address (a) by solving the empirical MLE problem with no truncation. Given that we can efficiently
sample exactly (or approximately see Appendix D.2) from the non-truncated pθ for any θ, we
can sample unbiased gradients via Algorithm 2 with expected O(1/pθi

(S)) = O
(

exp(6κ·(d(α))2)
α2

)
samples at each step t to address (b). Point (c) can be done efficiently, since our parameter space is a
simple intersection of Euclidean balls if we choose Θ to be a Euclidean ball that sits inside the whole
parameter space which contains θ∗.

Let D(k, L, λ, α) = k(LS+L)+(1+2κ)2(6κ(d(α))2−2 logα)2

λ2
Sϵ2

. Putting everything together, to get

E∥θN − θ∗∥2 ≤ ϵ2, the number of iterations and samples should be

N ≥ max

{
D(k, L, λ, α),

1

2

}
log

(
2d(α)

λϵ2

)
,

provided that η = min{λSϵ2

2ρ2 , 1
λS
}, applying Lemma D.1 to the bound from Theorem 3.10 with

A = ρ2

λS
, C = λS , µ = 2λS , and ρ2 = kLS + kL+ (1 + 2κ)2(O(log 1/pθ(S)))2 by Lemma 3.11.

Further, Lemma 3.4 guarantees O(log 1/pθ(S)) ≤ O
(
log exp(6κ·(d(α))2)

α2

)
for all θ ∈ K.

In probability, we get P(∥θN − θ∗∥2 ≥ 3ϵ2) ≤ 1/3 by Markov’s inequality. Then we can amplify
the probability of success to 1 − δ by repeating the procedure from scratch log 1/δ times, as in
[10]. Given a polynomial time (poly(m, k, 1/ϵ)) algorithm AS to sample from pθ for all θ, each

iteration takes expected O(1/pθi(S)) = O
(

exp(6κ
λ ·(d(α))2)
α2

)
times the running time of AS plus the

projection step (which is also efficient). This completes the result of Theorem 3.1.
Remark. In the Gaussian case, the sample complexity was given in terms of m, the dimension of
the x and was stated in [10] as Õ(m2/ϵ2). For multivariate Gaussian, the dimension k of θ is the
dimension of [x,xx⊤] (vectorized) which is m+m2, thus we can recover the previous result.

Numerical example. While a lot of the analyses shown can seem complicated, they give some
guarantees for a rather simple algorithm: simply initialize your parameters using MLE as if there is
no truncation at all, then run projected stochastic gradient descent using rejection sampling. We do
not even need to describe the truncation set S as long as we can query whether a point is inside S or
not efficiently. As a proof of concept for the use of this algorithm, we’ve implemented our simple
projected SGD algorithm to learn the parameters of multivariate exponential distributions, given
truncated samples. To save space in the main body for exposition of the theoretical results, we’ve
included the results and details in Appendix E.

4 Discussion

To our knowledge, this work is the first which develops a computationally and statistically efficient
algorithm for learning from samples truncated to very general sets S of the form in [10] in high di-
mensions whose distribution does not rely on Gaussianity. This work also has interesting implications
for learning general log-concave distributions through applying the Taylor theorem to the log density
as in [12] and for sampling (e.g., as in [30]). Through generalizing the previous Gaussian results to
general exponential families, we also extract the broader abstract properties (e.g., concentration and
anti-concentration) of distributions for which the previously proposed projected stochastic gradient
descent procedure still applies. It would be interesting to understand how much these results can be
generalized to densities beyond exponential families, or even to extend the current work presented
from expected polynomial running time to deterministic polynomial running time. We hope that our
work provides the foundation for future work in this direction.
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A Proofs and Calculations Regarding the Objective

A.1 The Truncated Negative Expected Log-Likelihood Function

The negative log-likelihood that x ∈ S is a sample of pSθ (x) is

ℓ(θ,x)︸ ︷︷ ︸
− log pS

θ (x)

:= − log h(x)− θ⊤T (x) + log

∫
S

h(x′) exp(θ⊤T (x′))dx′.

Its gradient w.r.t. θ is

∇ℓ(θ,x) = −T (x) +
∫
S
T (x′)h(x′) exp(θ⊤T (x′))dx′∫
S
h(x′) exp(θ⊤T (x′))dx′

= −T (x) +
∫
S
T (x′)h(x′) exp(θ⊤T (x′)−A(θ))dx′∫
S
h(x′) exp(θ⊤T (x′)−A(θ))dx′

= −T (x) + Ez∼pS
θ
[T (z)]

The Hessian is

∇2ℓ(θ) =
(
∫
S
T (x)T (x)⊤h(x) exp(θ⊤T (x)−A(θ))dx)

(
∫
S
h(x) exp(θ⊤T (x)−A(θ))dx)

−
(
∫
S
T (x)h(x) exp(θ⊤T (x)−A(θ))dx)

(
∫
S
h(x) exp(θ⊤T (x)−A(θ))dx)

·

(
(
∫
S
T (x)h(x) exp(θ⊤T (x)−A(θ))dx)

(
∫
S
h(x) exp(θ⊤T (x)−A(θ))dx)

)⊤

= Covx∼pS
θ
[T (x), T (x)]

We can similarly define the population negative log-likelihood as

ℓ(θ) := Ex∼pS
θ∗

[
− log h(x)− θ⊤T (x)

]
+ log

∫
S

h(x) exp(θ⊤T (x))dx),

∇ℓ(θ) = Ex∼pS
θ∗

[−T (x)] + Ex∼pS
θ
[T (x)] ,

∇2ℓ(θ) = ∇2ℓ(θ)

A.2 Proof of Lemma 3.2

Proof. Define the following quantities:

R∗ = Ex∼pθ

[
(T (x)− Ex∼pθ

[T (x)]) · (T (x)− Ex∼pθ
[T (x)])

⊤
]

R′ = Ex∼pθ

[(
T (x)− Ex∼pS

θ
[T (x)]

)
·
(
T (x)− Ex∼pS

θ
[T (x)]

)⊤]
R = Ex∼pS

θ

[(
T (x)− Ex∼pS

θ
[T (x)]

)
·
(
T (x)− Ex∼pS

θ
[T (x)]

)⊤]
Claim 2. R′ ⪰ R∗. (Proof in Appendix A.4.)

Now, let ξ ∈ Rk with ∥ξ∥22 = 1 arbitrary. Then

ξ⊤R∗ξ = ξ⊤Ex∼pθ

[
(T (x)− Ex∼pθ

[T (x)]) · (T (x)− Ex∼pθ
[T (x)])⊤

]
ξ = Ex∼pθ

[pξ(x)]

ξ⊤R′ξ = Ex∼pθ

[
p′ξ(x)

]
ξ⊤Rξ = Ex∼pS

θ

[
p′ξ(x)

]
where pξ(x), p′ξ(x) are polynomials of degree at most 2d whose coefficients depend on ξ (under A3).
Furthermore, note that for any ξ ∈ Rk, pξ(x) ≥ 0 and p′ξ(x) ≥ 0 (due to the rank one matrix inside
the expectation being PSD).
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First, since R′ ⪰ R∗ ⇐⇒ ξ⊤R′ξ ≥ ξ⊤R∗ξ, we have

Ez∼pθ

[
p′ξ(z)

]
≥ Ez∼pθ

[pξ(z)] ≥ λ.

Now define the set A := {x : p′ξ(x) ≤ γ} for γ =
(

β
4Cd

)2d
λ where pθ(S) = β > 0. Theorem 8 of

[5] says

pθ(A) ≤ Cqγ1/(2d)(
Ez∼pθ

[
p′ξ(z)

]q/2d)1/q

q=2d
=

2Cdγ1/(2d)Ez∼pθ

[
p′ξ(z)

]︸ ︷︷ ︸
≥λ


1/(2d)

≤ 2Cd · γ1/(2d)

λ1/(2d)
=

β

2
.

Now we can split Ez∼pS
θ

[
p′ξ(z)

]
into the part on S ∩ A and S ∩ Ac. Note that if pθ(S) = β and

pθ(A) ≤ β
2 , this implies pθ(S ∩Ac) ≥ β

2 as

pθ(S ∩Ac) ≥ pθ(S) + pθ(A
c)− pθ(S ∪Ac) ≥ β +

(
1− β

2

)
− 1 =

β

2
.

Then

Ez∼pS∩A
θ

[
p′ξ(z)

]
+Ez∼pS∩Ac

θ

[
p′ξ(z)

]
≥ pθ(S ∩A)

pθ(S)
·0+pθ(S ∩Ac)

pθ(S)
·γ ≥ 1

2
γ ⇒ Ez∼pS

θ

[
p′ξ(z)

]
≥ 1

2

(
β

4Cd

)2d

λ

and the claim follows.

A.3 Proof of Lemma 3.3

Proof. Similar to the proof of the previous lemma, define the following quantities:

R∗ = Ex∼pθ

[
(T (x)− Ex∼pθ

[T (x)]) · (T (x)− Ex∼pθ
[T (x)])

⊤
]

R′′ = Ex∼pS
θ

[
(T (x)− Ex∼pθ

[T (x)]) · (T (x)− Ex∼pθ
[T (x)])

⊤
]

R = Ex∼pS
θ

[(
T (x)− Ex∼pS

θ
[T (x)]

)
·
(
T (x)− Ex∼pS

θ
[T (x)]

)⊤]
Claim 3. It holds that R′′ ⪰ R. (Similar proof to Claim 2.)

Let ξ ∈ Rk with ∥ξ∥22 = 1 arbitrary. Then

ξ⊤R∗ξ = Ex∼pθ
[fξ(x)]

ξ⊤R′′ξ = Ex∼pS
θ
[fξ(x)]

ξ⊤Rξ = Ex∼pS
θ
[f ′

ξ(x)]

where fξ(x), f ′
ξ(x) are some functions which depend on x and ξ (e.g., polynomials of degree at most

2d under A3). By the previous claim, we also have

Ex∼pS
θ
[fξ(x)] ≥ Ex∼pS

θ
[f ′

ξ(x)].

Note that

Ex∼pS
θ
[fξ(x)] =

∫
X
pSθ (x) · fξ(x)dx =

∫
X

1

pθ(S)
pθ(x) · fξ(x) · 1{x ∈ S}dx ≤ 1

pθ(S)

∫
pθ(x)fξ(x)dx.︸ ︷︷ ︸
=Ex∼pθ

[fξ(x)]

Since λI ⪯ R∗ ⪯ LI by A1, it holds that ξ⊤R∗ξ = Ex∼pθ
[fξ(x)] ≤ L, thus the following

inequalities hold:

ξ⊤Rξ = Ex∼pS
θ
[f ′

ξ(x)] ≤ Ex∼pS
θ
[fξ(x)] ≤

1

pθ(S)
L.
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A.4 Proof of Claim 2

We will prove a general claim which should take care of both claims in Lemmas 3.2 and 3.3.

Claim 4. Let x ∼ ρ be a random vector with mean µ. Let b be another vector such that b ̸= µ.
Then

Covx∼ρ[x,x] = Ex∼ρ[(x− µ)(x− µ)⊤] = Ex∼ρ[(x− b)(x− b)⊤]− (b− µ)(b− µ)⊤.

Proof.

E[(x− µ)(x− µ)⊤]

= E[(x− b+ b− µ)(x− b+ b− µ)⊤]

= E[(x− b)(x− b)⊤] + E[(x− b)(b− µ)⊤]︸ ︷︷ ︸
=(−1)·E[(b−µ)(b−µ)⊤]

+ E[(b− µ)(x− b)⊤]︸ ︷︷ ︸
=(−1)·E[(b−µ)(b−µ)⊤]

+E[(b− µ)(b− µ)⊤]︸ ︷︷ ︸
=E[(b−µ)(b−µ)⊤]

= E[(x− b)(x− b)⊤]− E[(b− µ)(b− µ)⊤]

As a corollary, since the second term is a rank-1 matrix (thus PSD), we have that E[(x−b)(x−b)⊤] ⪰
E[(x− µ)(x− µ)⊤].

B Examples of Other Distributions which Satisfy Assumptions

Example 1 (Exponential Distribution). The exponential distribution density can be written

pλ(x) = λ exp(−λx) = exp(−λx+ log(λ)),

defined on x ∈ R+ which is a convex set and for λ > 0. In natural form, it is

pθ(x) = exp(θx+ log(−θ))),

defined for θ < 0. Note that

• T (x) = x is a polynomial in x.

• This is log-linear in x (so log-concave in x).

• Variance of the sufficient statistic is simply the variance, which is 1/θ2 > 0 for any θ < 0.
If we restrict θ in a bounded set, the negative log-likelihood will be strongly convex and
smooth in θ.

Example 2 (Weibull Distribution with known shape k). The Weibull distribution with known shape
k > 0 has density

pλ(x) = exp((k − 1) log x+

(
− 1

λk

)
xk + log k − k log λ)

defined on x ∈ R+ and λ > 0. We can re-parameterize this in terms of θ = − 1
λk with θ < 0 as

pθ(x) = xk−1 exp(θ · xk + log k + log(−θ)).

Then

• T (x) = xk is polynomial in x.

• pθ(x) is log-concave in x if k > 1 (where recall x ∈ R+ and θ < 0).

• The variance of the sufficient statistic can also be found by taking the second derivative of
A(θ) = − log k − log(−θ) w.r.t. θ, which is also 1/θ2 > 0.
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Example 3 (Continuous Bernoulli). The continuous Bernoulli density [31] can be written

pλ(x) = exp

(
log

λ

1− λ
− log

1− 2λ

(1− λ) log 1−λ
λ

)
with support x ∈ [0, 1] and λ ∈ (0, 1). We can re-parameterize this in terms of θ = log λ

1−λ with
θ ∈ [0,∞) so

pθ(x) = exp

(
θx− log

eθ − 1

θ

)
.

Then

• T (x) = x is polynomial in x.

• pθ(x) is log-linear in x (so log-concave).

• The variance of sufficient statistic is simply the variance again, which is given by

Var(X) =

{
1/12 if λ = 1/2
(λ−1)λ
(1−2λ)2 + 1

(2tanh−1(1−2λ))2
otherwise

This is strictly positive and bounded for all values of λ (thus all values of θ).
Example 4 (Continuous Poisson). A continuous version of the Poisson distribution (although there
can be others [23]) can be written

pλ(x) =
1

Z(λ)

e−λλx

Γ(x+ 1)

with support x ∈ [0,∞) and λ ∈ (0,∞). We can write this with θ = log λ so

pθ(x) =
1

Γ(x+ 1)
exp(θx−A(θ)).

Then

• T (x) = x is polynomial in x.

• pθ(x) is log-concave in x for x ∈ R+.

• In λ parameters, the mean of this distribution is λ through usual calculations (e.g., similar
to those of the Gamma distribution). Note: we can absorb the e−λ term into the partition
function.

E[X] =
1

Z(λ)

∫ ∞

0

xλx

Γ(x+ 1)
dx

=
1

Z(λ)

∫ ∞

0

xλx

x · Γ(x)
dx Γ(x+ 1) = x · Γ(x)

=
λ

Z(λ)

∫ ∞

1

λx−1

Γ(x)
dx Partition function, change var. z = x− 1

= λ

Similarly, we should be able to show the variance is λ as usual. In θ space, this means the
variance is exp(θ) for θ ∈ R which is always positive. Again, we can make it bounded by
restricting θ to some set.

Example 5 (Multivariate Gaussian). The multivariate Gaussian also satisfies all of these properties.
Recall that the sufficient statistics of the multivariate Gaussian has

• T (x) = [x,xx⊤] is a polynomial in the components of x with degree at most 2 (where the
xx⊤ term can be thought of as the vector after standard vectorization).

• The multivariate Gaussian density is strongly log-concave.
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• The covariance matrix (of the sufficient statistics) has a complicated form, which the authors
of [10] have analyzed the lower bound for, e.g., in their Claims 1 and 2. As before, we can
restrict our parameter space to ensure upper bounds.

Example 6 (Generalized Linear Models). This example is the same as the one given in [25] for
generalized linear models. It is restated here for completeness.

Consider when we have some covariance, response pair (X,Y ) drawn from some distribution D.
Suppose that we have a family of distributions P (· | θ;X) such that, for each X , it is an exponential
family with sufficient statistic ty,X

P (y | θ;X) = h(y) exp (⟨θ, ty,X⟩ −A(θ,X)) .

We can consider a one-dimensional exponential family qν with parameterization ν = ⟨θ,X⟩, then

P (y | θ;X) = h(y) exp (y⟨θ,X⟩ − logZ(⟨θ,X⟩))

where we see that ty,X = yX and the log partition function A(θ,X) = logZ(⟨θ,X⟩). When qν is
Bernoulli family or unit variance Gaussian family, this corresponds to logistic regression or least
squares regression, respectively.

We can appropriately generalize this to beyond linear models (e.g., polynomials) provided that we
can keep the distribution log-concave.

Comment on A3. We mentioned in the main paper that this assumption combined with log-
concavity provides the anti-concentration property that we need for Lemma 3.2. We assume it for
simplicity of exposition, but it should be noted that as long as we have the type of anti-concentration
property to control how much the covariance can shrink under truncation, we do not necessarily need
T (x) to be polynomial. However, we’ve provided examples of exponential families which already
satisfy this above (and there are potentially more which can be addressed by this framework that do
not have polynomial sufficient statistics but nonetheless exhibit similar anti-concentration properties).

C Proofs Relating Truncated and Non-Truncated Quantities

C.1 General Truncated Densities

Let ρ be a probability distribution on Rd. Let S ⊆ Rd be such that ρ(S) = α for some α ∈ (0, 1].
Let ρS := ρ(· | · ∈ S) be the conditional distribution of x ∼ ρ given that x ∈ S.

ρS(x) =
ρ(x) · 1{x ∈ S}

ρ(S)
.

Note that the relative density is
ρS(x)

ρ(x)
=

1{x ∈ S}
ρ(S)

.

Then we can compute that the Rényi divergence is a constant for any order 1 ≤ q ≤ ∞.

KL(ρS∥ρ) = EρS

[
log

ρS

ρ

]
= EρS

[
log

1

ρ(S)

]
= log

1

α
.

χ2(ρS∥ρ) = EρS

[
ρS

ρ

]
− 1 =

1

ρ(S)
− 1 =

1

α
− 1.

Rq(ρ
S∥ρ) = 1

q − 1
logEρS

[(
ρS

ρ

)q−1
]
=

1

q − 1
log

1

ρ(S)q−1
= log

1

ρ(S)
= log

1

α
.

R∞(ρS∥ρ) = log sup
x

ρS(x)

ρ(x)
= log

1

ρ(S)
= log

1

α
.

Note R2(ρ
S∥ρ) = log(1 + χ2(ρS∥ρ)).

We recall the following general estimates.
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Lemma C.1. For any probability distributions ρ, π (such that the quantities below are finite):

1. ∥Eρ[x]− Eπ[x]∥ ≤
√
χ2(ρ∥π) ·

√
Varπ(x).

2. |Eρ[∥x∥2]− Eπ[∥x∥2]| ≤
√
χ2(ρ∥π) ·

√
Eπ[∥x∥4].

3. |Varρ(x)−Varπ(x)| ≤
√
(χ2(ρ∥π) + 1)2 − 1 ·

√
2Eπ[∥x− Eπ[x]∥4].

Proof. The first two claims are immediate by Cauchy-Schwarz. For the third one, recall we can write

Varρ(x) =
1

2
Eρ⊗2 [∥x− y∥2].

Then by applying part (1) to ρ⊗2 and (π)⊗2, we get

|Varρ(x)−Varπ(x)| ≤
1

2

√
χ2(ρ⊗2∥π⊗2) ·

√
Eπ⊗2 [∥x− y∥4]

=
1

2

√
(χ2(ρ∥π) + 1)2 − 1 ·

√
2Eπ[∥x− Eπ[x]∥4] + 6Eπ[∥x− Eπ[x]∥2]2

≤ 1

2

√
(χ2(ρ∥π) + 1)2 − 1 ·

√
8Eπ[∥x− Eπ[x]∥4].

For our application, we have the following. Given a probability distribution ρ on Rd, we let
µ(ρ) = Eρ[x] be its mean, and for k ∈ N,

Mk(ρ) := Eρ[∥x− µ(ρ)∥k]1/k.

So for example we have M2(ρ) =
√
Varρ(x). We also have Mk(ρ) ≤Mℓ(ρ) if k ≤ ℓ.

Lemma C.2. Let ρ be a probability distribution on Rd. Let S ⊆ Rd with ρ(S) = α ∈ (0, 1]. Then

1. ∥EρS [x]− Eρ[x]∥ ≤
√

1−α
α ·

√
Varρ(x).

2. |VarρS (x)−Varρ(x)| ≤
√

2(1−α2)

α M4(ρ)
2.

In particular, if α ∈ (0, 1] is such that 1
α2 ≤ 1 + c2M2(ρ)

4

2M4(ρ)4
for some 0 ≤ c < 1, then

VarρS (x) ≥ (1− c)Varρ(x).

Note that the constraint on α above implies 1
α2 ≤ 3

2 , so α ≥
√

2/3. But if M2(ρ)≪ M4(ρ), then
1− α will be very small.

Recall also that under some conditions, e.g. if ρ is log-concave, then we have the reverse bound that

M2(ρ) ≥ C2,4M4(ρ)

for a universal constant C2,4, so the constraint above is not too restrictive, as it allows 1 − α of
constant size.

C.2 Exponential Families with Strongly Convex and Smooth Log-Partition Functions are
Sub-Exponential

Let θ ∈ Θ such that θ+ 1
βu ∈ Θ for some β > 0 for all unit vectors u and such that Assumption A1

holds for pθ. Then X := u⊤(T (x)− Ex∼pθ
[T (x)]) is SE(L, β).

Proof. WLOG, consider pθ in the transformed space x 7→ T (x) so that

pθ(t) = h(t) exp(θ⊤t−A(θ))dt,
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where θ ∈ Θ and A(θ) = log(Z(θ)) = log
(∫

T (X )
h(t) exp(θ⊤t)dt

)
is the log-partition function.

Note that∇2A(θ) = Covt∼pθ(t)[t] = Covx∼pθ(x)[T (x)], and by A1, A(θ) is a λ-strongly convex
and L-smooth function in θ.

To show that pθ(t) is sub-exponential with parameters (ν2, β) we need to show that its moment
generating function satisfies E[eγu⊤(t−µ)] ≤ eγ

2ν2/2, where µ = Epθ
[t], u is a unit vector, for

|γ| < 1/β.

E[eγu
⊤(t−µ)] =

∫ (
eγu

⊤t−γu⊤µ
)
h(t)eθ

⊤t−A(θ)dt

=
exp(−γu⊤µ)

Z(θ)

∫
h(t) exp((γu+ θ)⊤t)dt

=
Z(γu+ θ)

Z(θ)
· exp(−γu⊤µ)

The inequality we need to show is equivalent to proving

E[eγu
⊤(t−µ)] ≤ eγ

2ν2/2

⇐⇒ Z(γu+ θ)

Z(θ)
· e−γu⊤µ ≤ eγ

2ν2/2

⇐⇒ Z(γu+ θ)

Z(θ)
≤ eγu

⊤µ · eγ
2ν2/2

⇐⇒ A(γu+ θ)−A(θ) ≤ γu⊤µ+
γ2ν2

2

Since A(θ) is L-smooth, we have that

A(γu+ θ)−A(θ) ≤ ⟨∇A(θ)︸ ︷︷ ︸
=µ

, γu⟩+ L

2
∥γu∥2 = γu⊤µ+

γ2L

2

where we’ve used the property of exponential families that the gradient of the log partition function is
the mean sufficient statistic. Now we can see that the appropriate parameter for ν2 is L and γ must
be small enough so that γu+ θ ∈ Θ, i.e., |γ| < 1

β for some β > 0. This is possible if θ is bounded
away from the boundary of Θ.

Remark. In the above, we only needed to use that pθ is an exponential family distribution and that its
log-partition function A(θ) is smooth. It is also possible to show that pθ has exponentially decreasing
tails (in quantities involving x rather than T (x)) if it is log-concave in x (assumption A2), e.g., by
[39].

C.3 Proof of Lemma 3.4

Let pθ(x) = h(x) exp(⟨θ, T (x)⟩ −A(θ)) and A : Θ→ R is the log-partition function:

A(θ) =

∫
X
h(x) exp(⟨θ, T (x)⟩)dx.

Lemma C.3. For any q > 1, θ,θ′ ∈ Θ:

Epθ

[(
pθ′

pθ

)q]
= exp

(
(q − 1)A(θ)− qA(θ′) +A

(
qθ′ − (q − 1)θ

))
.

Proof.

Epθ

[(
pθ′

pθ

)q]
=

∫
X
h(x) exp (⟨θ, T (x)⟩ −A(θ)) · exp

(
q⟨θ′ − θ, T (x)⟩ − qA(θ′) + qA(θ)

)
dx

= exp
(
(q − 1)A(θ)− qA(θ′) +A

(
qθ′ − (q − 1)θ

))
.
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Lemma C.4. Assume A is convex and L-smooth on Θ. For any S ⊆ X , and θ,θ′ ∈ Θ:

pθ(S) ≥ pθ′(S)2 · exp
(
−3L

2
∥θ − θ′∥2

)
.

Proof. By Cauchy-Schwarz,

pθ′(S)2 = Epθ

[
pθ′

pθ
1S

]2
≤ pθ(S) · Epθ

[(
pθ′

pθ

)2
]

= pθ(S) · exp
(
A(θ)− 2A(θ′) +A

(
2θ′ − θ

))
.

Since A is convex and L-smooth,

A(θ) ≤ A(θ′) + ⟨∇A(θ),θ − θ′⟩

A(2θ′ − θ) ≤ A(θ′) + ⟨∇A(θ′),θ′ − θ⟩+ L

2
∥θ′ − θ∥2

Therefore,

A(θ)− 2A(θ′) +A
(
2θ′ − θ

)
≤ ⟨∇A(θ′)−∇A(θ),θ′ − θ⟩+ L

2
∥θ′ − θ∥2

≤ 3L

2
∥θ′ − θ∥2.

Compare this to the Gaussian case (e.g., see H.8 of [37]) where this was pθ(S) ≥
α
2 exp

(
−r ·

√
2 log 1/α− 1

2r
2
)

for ∥θ − θ′∥ < r.

C.4 Proof of Lemma 3.7

Let T = 1
n

∑n
i=1 T (xi) be the empirical mean sufficient statistics given our samples {xi}ni=1 each

xi ∼ pSθ∗ .

Let ϵS > 0. For n ≥ Ω
(

2β
ϵS

log
(
1
δ

))
,

∥T − Epθ∗ [T (x)]∥ ≤ ϵS +O(log 1/α)

with probability at least 1− δ.

Proof. Let ν∗ = Ex∼pθ∗ [T (x)].

For any event A, we have that

PpS
θ∗
[A] =

∫
1{ω ∈ A}dpSθ∗(ω) =

1

α

∫
1{ω ∈ A}1{ω ∈ S}dpθ∗(ω) ≤ 1

α
Ppθ∗ [A]

and for the product measure with n independent components PΠi∈[n]p
S
θ∗
[A] ≤

(
1
α

)n PΠi∈[n]pθ∗ [A].
So we can bound the probability of events on pSθ∗ with those on pθ∗ . In particular, by Claim 1 and by
the composition property of independent sub-exponential random variables, we have that

Ppθ∗

(
1

n

∣∣∣∣∣u⊤

(∑
i

T (xi)− ν∗

)∣∣∣∣∣ ≥ t

)
≤ exp

(
− nt

2β

)
for any unit vector u

⇒Ppθ∗

(∥∥∥∥∥ 1n∑
i

T (xi)− ν∗

∥∥∥∥∥ ≥ t

)
≤ exp

(
− nt

2β

)
.
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To translate this to the probability of the same event on pSθ∗ , note that(
1

α

)n

exp

(
− nt

2β

)
≤ δ ⇐⇒ exp

(
n ·
(
log 1/α− t

2β

))
≤ δ

which holds when t = 2β
(
log 1/α+ 1

n log 1/δ
)
. Thus for n > 2β

ϵS
log 1/δ samples from the

truncated pSθ∗ we have that with probability at least 1−δ, the quantity ∥T −ν∗∥ ≤ 2β(log 1/α)+ ϵS .

D Additional Proofs for Algorithm Analysis

Algorithm 3 Stochastic Gradient Descent
Initialize some θ0 ∈ K.
for iteration t = 1, 2, . . . , T do

Compute vt such that E[vt | θt] = ∇f(θt)

θ̃t+1 ← θt − ηvt

θ̃t+1 = ΠK(θ̃t+1) (Project onto K)
end for
Return θT

D.1 SGD Algorithm and its Analysis

Although the setting of Theorem 5.7 of [20] is when the objective is a sum of many functions, the
proof and its result can be easily adapted to our setting.

Theorem. Let f be a λ-strongly convex function. Let θ∗ ∈ argminθ∈K f(θ). Consider the
sequence {θt}Nt=1 generated by SGD (Algorithm 3) and {vt}Nt=1 the sequence random vectors
satisfying E[vt | θt] = ∇f(θt) and E[∥vt∥2 | θt] < ρ2 for all t, with a constant step size η
satisfying 0 < η < 1

λ . It follows that for t ≥ 0,

E∥θt − θ∗∥2 ≤ (1− 2ηλ)t∥θ0 − θ∗∥2 + η

λ
ρ2.

Proof. At any iteration i,

θ̃i+1 = θi − ηvi

θ̃i+1 − θ∗ = θi − θ∗ − ηvi (1)

∥θ̃i+1 − θ∗∥2 = ∥θi − θ∗∥2 − 2η⟨vi,θi − θ∗⟩+ η2∥vi∥2

where the last line comes from multiplying the line (1) with the transpose of the same equation on
either side. After projecting to the set K to obtain θi+1 = argminθ∈K ∥θ̃i+1 − θ∥2 and given that
θ∗ ∈ K, we have that ∥θ̃i+1 − θ∗∥2 ≥ ∥θi+1 − θ∗∥2, so

∥θi+1 − θ∗∥2 ≤ ∥θi − θ∗∥2 − 2η⟨vi,θi − θ∗⟩+ η2∥vi∥2 (2)

Fixing θi in the ith iteration and taking the conditional expectation in (2) gives
E[∥θi+1 − θ∗∥2 | θi] ≤ ∥θi − θ∗∥2 − 2η⟨∇f(θi),θi − θ∗⟩+ η2E[∥vt∥2 | θi]

≤ (1− 2ηλ)∥θi − θ∗∥2 + η2E[∥vt∥2 | θi]

where the last line is due to strong convexity, ⟨∇f(θi),θi − θ∗⟩ ≥ λ∥θi − θ∗∥2. By taking iterated
expectations and recursively applying the above, we get that

E[∥θT − θ∗∥2] ≤ (1− 2ηλ)T ∥θ0 − θ∗∥2 + η2ρ2
T−1∑
i=0

(1− 2ηλ)i

≤ (1− 2ηλ)T ∥θ0 − θ∗∥2 + η2
1

ηλ
ρ2

= (1− 2ηλ)T ∥θ0 − θ∗∥2 + η

λ
ρ2
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where in the second line we used that
∑T−1

i=0 (1−2ηλ)i = 1−(1−2ηλ)T

1−(1−2ηλ) < 2
2ηλ provided η < 1/λ.

We can derive the complexity (number of iterations) to get E[∥θT − θ∥2] < ϵ using the following
Lemma from [20].
Lemma D.1 (Lemma A.2 of [20]). Consider the recurrence given by

αk ≤ (1− ηµ)tα0 +Aη,

where µ > 0, and A,C ≥ 0 are given constants and η < 1/C. If

η = min

{
ϵ

2A
,
1

C

}
then

t ≥ max

{
1

ϵ

2A

µ
,
C

µ

}
log

(
2α0

ϵ

)
⇒ αk ≤ ϵ.

Note that to get bounds on ∥θT − θ∗∥ rather than ∥θT − θ∗∥2, we can solve the number of iterations
we need to get ϵ2 on the right hand side, and we will get the number of iterations for ∥θT − θ∗∥ < ϵ.
Then the resulting complexity bounds will replace 1/ϵ with 1/ϵ2.

D.2 Approximate Sampling of Non-Truncated Distribution

Many analyses of stochastic gradient descent assume unbiased directions at every iteration of the
algorithm, but since we need to be able to sample from pθi

multiple times at each iteration i until we
get a sample in S, our directions are only unbiased if we can indeed sample exactly from pθi

each
time for all i.

However if pθi is complicated, exact sampling can be difficult or take too long. Since we assume that
pθ is log-concave in x for all θ ∈ Θ, we can at least approximately sample from it efficiently via
Langevin Monte Carlo, MALA, or other algorithms with convergence guarantees for log-concave
densities.
Lemma D.2 (SGD Analysis with Biased Directions). Let f be a λ-strongly convex function. Let
θ∗ ∈ argminθ∈K⊆B(θ∗,D) f(θ). Consider the sequence {θt}Nt=1 generated by SGD but with
{ṽt}Nt=1 the sequence random vectors satisfying E[ṽt | θt] = bt − ∇f(θt) with ∥bt∥ < B and
E[∥ṽt∥2 | θt] < ρ′2 for all t, with a constant step size η satisfying 0 < η < 1

λ . It follows that for
t ≥ 0,

E∥θt − θ∗∥2 ≤ (1− 2ηλ)t∥θ0 − θ∗∥2 + η

λ
ρ2 +

2BD

λ
.

Proof. Define bt := E[bt | θt]−∇f(θt) the bias for each t ≥ 0. The analysis of Theorem 3.10 can
be applied generically to get Eq. (2):

∥θi+1 − θ∗∥2 ≤ ∥θi − θ∗∥2 − 2η⟨ṽi,θi − θ∗⟩+ η2∥ṽi∥2

Now when taking the conditional expectation, we get
E[∥θi+1 − θ∗∥2 | θt] ≤ ∥θi − θ∗∥2 − 2η⟨bt,θi − θ∗⟩ − 2η⟨∇f(θi),θi − θ∗⟩ − η2E[∥ṽi∥2 | θi]

≤ (1− 2ηλ)∥θi − θ∗∥2 + η2ρ′2 + 2η∥bi∥∥θi − θ∗∥
Taking iterated expectations and recursively applying this gives now

E[∥θT − θ∗∥2] ≤ (1− 2ηλ)T ∥θ0 − θ∗∥2 +
T−1∑
i=0

(1− 2ηλ)i ·
(
η2ρ′2 + 2η∥bi∥∥θi − θ∗∥

)
≤ (1− 2ηλ)T ∥θ0 − θ∗∥2 + η2ρ′2 + 2ηBD

ηλ

= (1− 2ηλ)T ∥θ0 − θ∗∥2 + ηρ′2

λ
+

2BD

λ
where the second line holds if ∥bi∥ ≤ B, ∥θi − θ∗∥ < D,∀i (which holds under the assumptions).

Note that in our Algorithm 1, D here is simply 2
λd(α) by construction. We can also control B through

the following.
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Bounding the bias. Fix some t. Let ṽt := T (z) − T (x) where z ∼ p̃Sθi
and x ∼ pSθ∗ . Then we

can write
bt = Ez∼p̃S

θi

[T (z)]− Ex∼pS
θ∗
[T (x)] + Ez∼pS

θi

[T (z)]− Ex∼pS
θ∗
[T (x)]

= Ez∼p̃S
θi

[T (z)]− Ez∼pS
θi

[T (z)]

=

∫
X
T (x) · (p̃Sθi

(x)− pSθi
(x))dx (3)

If we know that T (x) is bounded over S, we can upper-bound this given the TV distance between
p̃Sθi

and pSθi
:

∥bt∥ ≤ sup
x∈S
∥T (x)∥

∥∥p̃Sθi
− pSθi

∥∥
TV

.

Since we assume that Epθi
[T (x)] is finite, it should be the case that T (x) is bounded over its support

except potentially on some negligible sets. In that case, we can replace T (x) with T̃ (x) which
replaces those potentially infinite values on negligible sets with 0 and the integral expression in (3)
would be equal to one which uses T̃ (x) instead of T (x), and the bound on its norm holds given that
T̃ (x) is bounded.

Otherwise we can use bounds from Lemma C.1 to bound this as

∥bt∥ ≤
√
χ2(p̃Sθi

||pSθi
) ·
√

VarpS
θi

(T (x))

if we have control over the chi-square divergence (see Section C.1 for definitions).

If we know that T (x) is a 1-Lipschitz, real-valued function (e.g., when T (x) = x), we can use the
dual representation of W1 distance to bound this as

bt =

∫
S

T (x)dp̃Sθi
−
∫
S

T (x)dpSθi
≤ sup

f∈F1Lip

∫
f(x)dp̃Sθi

−
∫

f(x)dpSθi
= W1(p̃

S
θi
, pSθi

).

Proposition D.3 (Bounds on truncated total variation, given bounds on non-truncated). Suppose
∥p̃θi

− pθi
∥TV ≤ ϵTV for some ϵTV > 0. Then

∥p̃Sθi
− pSθi

∥TV ≤
ϵ2TV

pθi
(S)− ϵTV

.

Proof. First, given that ∥p̃θi − pθi∥TV ≤ ϵTV , we have by one characterization of the total variation
distance (the supremum of the difference in mass over all measurable sets)

p̃θi(S) ≥ pθi(S)− ϵTV .

Now for the truncated densities,

∥p̃Sθi
− pSθi

∥TV =
1

2

∫
|p̃Sθi

(x)− psθi
(x)|dx

=
1

2

∫
1{x ∈ S} ·

∣∣∣∣ p̃θi
(x)

p̃θi
(S)
− pθi

(x)

pθi
(S)

∣∣∣∣ dx
≤ ϵTV

pθi
(S)− ϵTV

· 1
2

∫
|p̃θi

(x)− pθi
(x)|dx

≤ ϵ2TV

pθi
(S)− ϵTV

Efficient, Approximate Sampling. There exist several results in sampling which give bounds
in TV distance in polynomial time (mixing time bounds) for log-concave distributions, e.g., [15],
[3], [33] but which also usually require that the log density is also smooth (in x, not θ). There are
also proofs for Langevin Monte Carlo when the log density is convex and Lipschtiz, not necessarily
smooth (e.g., see Chapter 4 of [7]), or under LSI (which is implied by strong log-concavity) with
convergence in Renyi divergence (e.g., Chapter 5 of [7]). We can also use the proximal sampler
to achieve convergence in KL divergence under log-concavity (e.g., Chapter 8.4 of [7]), which by
Pinsker’s inequality can bound the TV distance.
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Proposition D.4 (Bounded variance step with bias). If E[∥vi∥ | θi] ≤ ρ2 where vi = T (z)− T (x)
with z ∼ ppS

θi

and x ∼ pSθ∗ ,then E[∥ṽi∥ | θi] ≤ ρ′2 for ṽi = T (z̃) − T (x) with z̃ ∼ p̃pS
θi

and

x ∼ pSθ∗ , where
ρ′2 = Varp̃S

θi

(T (z))−VarpS
θi

(T (z)) + ρ2 +B2,

where ∥bi∥ = ∥Ez̃∼p̃S
θi

[T (z̃)]− Ez∼pS
θi

[T (z)]∥ < B.

Proof. As in the proof of the exact sampling version, we can write

E[∥ṽi∥ | θi] = Varp̃S
θi

(T (z)) +VarpS
θ∗
(T (x)) + ∥Ep̃S

θi

[T (z)]− EpS
θ∗
[T (x)]∥2

≤ Varp̃S
θi

(T (z)) +VarpS
θ∗
(T (x)) + ∥EpS

θi

[T (z)]− EpS
θ∗
[T (x)]∥2 + ∥bi∥2

= Varp̃S
θi

(T (z))−VarpS
θi

(T (z))

+VarpS
θi

(T (z)) +VarpS
θ∗
(T (x)) + ∥EpS

θi

[T (z)]− EpS
θ∗
[T (x)]∥2︸ ︷︷ ︸

≤ρ2

+ ∥bi∥2︸ ︷︷ ︸
≤B2

≤ Varp̃S
θi

(T (z))−VarpS
θi

(T (z)) + ρ2 +B2

We can bound the difference Varp̃S
θi

(T (z)) − VarpS
θi

(T (z)) if have bounds on Varp̃S
θi

(T (z)),
through bounds like in Lemma C.1 if we can say something about the chi-square divergence, or
through similar arguments to the bias bound if we assume some bounds on ∥T (x)∥2 over its support.

E Numerical Example

To illustrate how the algorithm performs in different dimensions, we implemented our algorithm
for 2-, 5-, 10-, and 20-dimensional exponential distributions. In all cases, the truncation set is the
(hyper-)cube [0, 2]d. We chose true parameters in all cases which resulted in an initial error at most
2.5. In all cases, we use 1500 iterations and step size 0.01, each repeated 10 times. In the end, all
have (average) L2 error at most 0.15. For stability (and to bypass repeating the algorithm multiple
times as stated in the analysis), we instead calculated gradients using the average of 10 samples which
was sufficient to have stable training results. See Figure 2.

Figure 2: Learning 2-, 5-, 10-, and 20-dimensional truncated exponential distributions. In all cases,
the truncation set is the (hyper-)cube [0, 2]d.
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The wall clock time to finish all 1500 iterations of training for 5-, 10-, and 20-dimensions was
42.9± 2.2, 49.1± 6.5, and 61.2± 3.0 seconds, respectively. We can see that the running time is not
doubling with the doubling of dimensions.
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