
Don’t be so Monotone: Relaxing Stochastic
Line Search in Over-Parameterized Models

Leonardo Galli, Holger Rauhut
RWTH Aachen University

Aachen
{galli, rauhut}@mathc.rwth-aachen.de

Mark Schmidt
University of British Columbia
Canada CIFAR AI Chair (Amii)

schmidtm@cs.ubc.ca

Abstract

Recent works have shown that line search methods can speed up Stochastic Gradi-
ent Descent (SGD) and Adam in modern over-parameterized settings. However,
existing line searches may take steps that are smaller than necessary since they
require a monotone decrease of the (mini-)batch objective function. We explore
nonmonotone line search methods to relax this condition and possibly accept larger
step sizes. Despite the lack of a monotonic decrease, we prove the same fast rates
of convergence as in the monotone case. Our experiments show that nonmono-
tone methods improve the speed of convergence and generalization properties
of SGD/Adam even beyond the previous monotone line searches. We propose
a POlyak NOnmonotone Stochastic (PoNoS) method, obtained by combining a
nonmonotone line search with a Polyak initial step size. Furthermore, we develop
a new resetting technique that in the majority of the iterations reduces the amount
of backtracks to zero while still maintaining a large initial step size. To the best of
our knowledge, a first runtime comparison shows that the epoch-wise advantage of
line-search-based methods gets reflected in the overall computational time.

1 Introduction

Stochastic Gradient Descent (SGD) [Robbins and Monro, 1951] is the workhorse for the whole Deep
Learning (DL) activity today. Even though its simplicity and low memory requirements seem crucial
for dealing with these huge models, the success of SGD is strongly connected to the choice of the
learning rate. In the field of deterministic optimization [Nocedal and Wright, 2006], this problem is
addressed [Armijo, 1966] by employing a line search technique to select the step size. Following this
approach, a recent branch of research has started to re-introduce the use of line search techniques
for training DL models [Mahsereci and Hennig, 2017, Paquette and Scheinberg, 2018, Bollapragada
et al., 2018, Truong and Nguyen, 2018, Vaswani et al., 2019]. These methods have been shown to
speed up SGD [Vaswani et al., 2019] and Adam [Duchi et al., 2011, Vaswani et al., 2020] in the
over-parameterized regime. However, the existing stochastic line searches may take step sizes that are
smaller than necessary since they require a monotone decrease in the (mini-)batch objective function.
In particular, the highly non-linear non-convex landscapes of DL training losses suggest that it may
be too restrictive to impose such a condition [Grippo et al., 1986]. In addition, the stochastic nature of
SGD discourages imposing a monotone requirement on a function that is not directly the one we are
minimizing [Ferris and Lucidi, 1994] (mini- vs full-batch function). Furthermore, the recent research
on the edge of stability phenomenon [Cohen et al., 2021, Nacson et al., 2022] shows that the best
performance for training DL models with Gradient Descent (GD) is obtained when large step sizes
yield a nonmonotone decrease of the loss function. In this paper, we propose the use of nonmonotone
line search methods [Grippo et al., 1986, Zhang and Hager, 2004] to possibly accept increases in the
objective function and thus larger step sizes.

In parallel with line search techniques, many other methods [Baydin et al., 2017, Luo et al., 2019,
Mutschler and Zell, 2020, Truong and Nguyen, 2021] have been recently developed to automatically

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

select the step size. In Asi and Duchi [2019], Berrada et al. [2020], Loizou et al. [2021], Gower et al.
[2021, 2022], Li et al. [2022], the Polyak step size from Polyak [1969] has been adapted to SGD
and successfully employed to train DL models. However, in this setting, the Polyak step size may
become very large and it may lead to divergence or, in more favorable cases, induce the (mini-batch)
function to decrease nonmonotonically. Starting from Berrada et al. [2020], the Polyak step size
has been upper-bounded to avoid divergence and “smoothed” to prevent large fluctuations [Loizou
et al., 2021]. However, this “smoothing” technique is a heuristic and, as we will clarify below, may
reduce the Polyak step more than necessary. In this paper, we instead combine the Polyak initial step
from Loizou et al. [2021] with a nonmonotone line search. In fact, nonmonotone methods are well
suited for accepting as often as possible a promising (nonmontone) step size, while still controlling
its growth. In the deterministic setting, the same optimization recipe has been used in the seminal
papers Raydan [1997] (for the Barzilai and Borwein [1988] (BB) step size) and Grippo et al. [1986]
(for the unitary step in the case of Newton).

In the over-parameterized regime, the number of free parameters dominates the number of training
samples. This provides modern DL models with the ability of exactly fitting the training data. In
practice, over-parameterized models are able to reduce to zero the full-batch loss and consequently
also all the individual losses. This is mathematically captured by the interpolation assumption,
which allows SGD with non-diminishing step sizes to achieve GD-like convergence rates [Vaswani
et al., 2019]. We develop the first rates of convergence for stochastic nonmonotone line search
methods under interpolation. In the non-convex case, we prove a linear rate of convergence under the
Polyak-Lojasiewicz (PL) condition. In fact in Liu et al. [2022], it has been shown that wide neural
networks satisfy a local version of the PL condition, making this assumption more realistic for DL
models than the Strong Growth Condition (SGC) [Schmidt and Le Roux, 2013].

When considering line search methods for training DL models one has to take into account that
they require one additional forward step for each backtrack (internal iteration) and each mini-batch
iteration requires an unknown amount (usually within 5) of backtracks. A single forward step may
require up to one-third the runtime of SGD (see Section E.6 of the supplementary materials), thus,
too many of them may become a computational burden. Le Roux et al. [2012] proposed a “resetting”
technique that is able to (almost) always reduce the number of backtracking steps to zero by shrinking
the initial step size [Vaswani et al., 2019]. In this paper, we will show that this technique may
have a negative impact on the speed of convergence, even when only employed as a safeguard (as
in the “smoothing” technique [Loizou et al., 2021]). As a third contribution, we develop a new
resetting technique for the Polyak step size that reduces (almost) always the number of backtracks to
zero, while still maintaining a large initial step size. To conclude, we will compare the runtime of
different algorithms to show that line search methods equipped with our new technique outperform
non-line-search-based algorithms.

2 Related Works

The first nonmonotone technique was proposed by Grippo et al. [1986] to globalize the Newton
method without enforcing a monotonic decrease of the objective function. After that, nonmonotone
techniques have been employed to speed up various optimization methods by relaxing this monotone
requirement. A few notable examples are the spectral gradient in Raydan [1997], the spectral
projected gradient in Birgin et al. [2000], sequential quadratic programming methods in Zhou and
Tits [1993], and the Polak-Ribière-Polyak conjugate gradient in Zhou [2013].

In the pre-deep-learning era [Plagianakos et al., 2002], shallow neural networks have been trained
by combining the nonmonotone method [Grippo et al., 1986] with GD. In the context of speech
recognition [Keskar and Saon, 2015], one fully-connected neural network has been trained with a
combination of a single-pass full-batch nonmonotone line search [Grippo et al., 1986] and SGD.
The Fast Inertial Relaxation Engine (FIRE) algorithm is combined with the nonmonotone method
[Zhang and Hager, 2004] in Wang et al. [2019, 2021] for solving sparse optimization methods and
training logistic regression models, while a manually adapted learning rate is employed to train
DL models. In Krejić and Krklec Jerinkić [2015, 2019], Bellavia et al. [2021], the nonmonotone
line search by Li and Fukushima [1999] is used together with SGD to solve classical optimization
problems. In concurrent work [Hafshejani et al., 2023], the nonmonotone line search by Grippo et al.
[1986] has been adapted to SGD for training small-scale kernel models. This line search maintains a
nonmonotone window W (usually 10) of weights in memory and it computes the current mini-batch

2

function value on all of them at every iteration. The method proposed in Hafshejani et al. [2023] is
computationally very expensive and impractical to train modern deep learning models due to the
need to store previous weights. In this paper, we instead propose the first stochastic adaptation of
the nonmonotone line search method by Zhang and Hager [2004]. Thanks to this line search, no
computational overhead is introduced in computing the nonmonotone term which is in fact a linear
combination of the previously computed mini-batch function values. To the best of our knowledge,
we propose the first stochastic nonmonotone line search method to train modern convolutional neural
networks and transformers [Vaswani et al., 2017].

Our paper is the first to combine a line search technique with the Stochastic Polyak Step size (SPS)
[Loizou et al., 2021]. In fact, the existing line search methods [Vaswani et al., 2019, Paquette and
Scheinberg, 2018, Mahsereci and Hennig, 2017] do not address the problem of the selection of a
suitable initial step size. In Vaswani et al. [2019], the authors focus on reducing the amount of
backtracks and propose a “resetting” technique (3) that ends up also selecting the initial step size. In
this paper, we consider these two problems separately and tackle them with two different solutions:
a Polyak initial step size and a new resetting technique (5) to reduce the amount of backtracks.
Regarding the latter, a similar scheme was presented in Grapiglia and Sachs [2021], however we
modify it to be combined with an independent initial step size (e.g., Polyak). This modification allows
the original initial step size not to be altered by the resetting technique.

In this paper, we extend Vaswani et al. [2019] by modifying the monotone line search proposed
there with a nonmonotone line search. Our theoretical results extend the theorems presented in
Vaswani et al. [2019] to the case of stochastic nonmonotone line search methods. Previous results
in a similar context were given by Krejić and Krklec Jerinkić [2015, 2019], Bellavia et al. [2021]
that assumed 1) the difference between the nonmonotone and monotone terms to be geometrically
converging to 0 and 2) the batch-size to be geometrically increasing. In this paper, we replace both
hypotheses with a weaker assumption (i.e., interpolation) [Meng et al., 2020] and we actually prove
that the nonmonotone and monotone terms converge to the same value. In Hafshejani et al. [2023],
related convergence theorems are proved under the interpolation assumption for the use of a different
nonmonotone line search (i.e., Grippo et al. [1986] instead of Zhang and Hager [2004]). However
in Hafshejani et al. [2023], no explanation is given on how to use an asymptotic result (Lemma 4)
for achieving their non-asymptotic convergence rates (Theorem 1 and 2). Addressing this problem
represents one of the main challenges of adapting the existing nonmonotone theory [Grippo et al.,
1986, Dai, 2002, Zhang and Hager, 2004] to the stochastic case.

In Vaswani et al. [2019], the rates provided in the non-convex case are developed under an SGC,
while we here assume the more realistic PL condition [Liu et al., 2022]. In fact in Liu et al. [2022],
not only wide networks are proven to satisfy PL but also networks with skip connections (e.g., ResNet
[He et al., 2016], DenseNet [Huang et al., 2017]). For this result, we extend Theorem 3.6 of Loizou
et al. [2021] for stochastic nonmonotone line search methods by exploiting our proof technique. In
Loizou et al. [2021], various rates are developed for SGD with a Polyak step size and it is possible to
prove that they hold also for PoNoS. In fact, the step size yielded by PoNoS is by construction less
or equal than Polyak’s. However, the rates presented in this paper are more general since they are
developed for nonmonotone line search methods and do not assume the use of any specific initial
step size (e.g., they hold in combination with a BB step size).

3 Methods

Training machine learning models (e.g., neural networks) entails solving the finite sum problem
minw∈Rn f(w) = 1

M

∑M
i=1 fi(w), where w is the parameter vector and fi corresponds to a single

instance of the M points in the training set. We assume that f is lower-bounded by some value
f∗, that f is L-smooth and that it either satisfies the PL condition, convexity or strong-convexity.
Vanilla SGD can be described by the step wk+1 = wk − η∇fik (wk), where ik ∈ {1, . . . ,M} is
one instance randomly sampled at iteration k, ∇fik (wk) is the gradient computed only w.r.t. the
ik-th instance and η > 0 is the step size. The mini-batch version of this method modifies ik to be
a randomly selected subset of instances, i.e., ik ⊂ {1, . . . ,M}, with ∇fik (wk) being the averaged
gradient on this subset and |ik| = b the mini-batch size. Through the whole paper we assume that
each stochastic function fik and gradient ∇fik (w) evaluations are unbiased, i.e., Eik [fik(w)] = f(w)
and Eik [∇fik (w)] = ∇f (w), ∀w ∈ Rn. Note that Eik represents the conditional expectation w.r.t.
wk, i.e., Eik [·] = E[·|wk]. In other words, Eik is the expectation computed w.r.t. νk, that is the

3

random variable associated with the selection of the sample (or subset) at iteration k (see Bottou et al.
[2018] for more details).

We interpret the over-parameterized setting in which we operate to imply the interpolation property,
i.e., let w∗ ∈ argmin

w∈Rn

f(w), then w∗ ∈ argmin
w∈Rn

fi(w) ∀1 ≤ i ≤ M . This property is crucial

for the convergence results of SGD-based methods because it can be combined either with the
Lipschitz smoothness of fik or with a line search condition to achieve the bound Eik ∥∇fik (wk)∥2 ≤
a (f(wk)− f(w∗)) with a > 0 (see Lemma 4 of the supplementary materials for the proof). This
bound on the variance of the gradient results in a r.h.s. which is independent of ik and, in the convex
and strongly convex cases, it can be used to replace the SGC (see Fan et al. [2023] for more details).

As previously stated, our algorithm does not employ a constant learning rate η, but the step size ηk is
instead determined at each iteration k by a line search method. Given an initial step size ηk,0 and
δ ∈ (0, 1), the Stochastic Line Search (SLS) condition [Vaswani et al., 2019] select the smallest
lk ∈ N such that ηk = ηk,0δ

lk satisfies the following condition

fik(wk − ηk ∇fik (wk)) ≤ fik(wk)− cηk∥∇fik (wk)∥2, (1)

where c ∈ (0, 1) and ∥ · ∥ is the Euclidean norm. Each internal step of the line search is called
backtrack since the procedure starts with the largest value ηk,0 and reduces (cuts) it until the condition
is fulfilled. Note that (1) requires a monotone decrease of fik . In this paper, we follow Zhang and
Hager [2004] and propose to replace fik with a nonmonotone term Ck,

fik(wk − ηk ∇fik (wk)) ≤ Ck − cηk∥∇fik (wk)∥2,

Ck = max
{
C̃k; fik(wk)

}
, C̃k =

ξQkCk−1 + fik(wk)

Qk+1
, Qk+1 = ξQk + 1,

(2)

where ξ ∈ [0, 1], C0 = Q0 = 0 and C−1 = fi0(w0). The value C̃k is a linear combination of
the previously computed function values fi0(w0), . . . , fik(wk) and it ranges between the strongly
nonmonotone term 1

k

∑k
j=0 fij (wj) (with ξ = 1) and the monotone value fik(wk) (with ξ = 0).

The maximum in Ck is needed to ensure the use of a value that is always greater or equal than the
monotone term fik(wk). The activation of fik(wk) instead of C̃k happens only in the initial iterations
and it is rare in deterministic problems, but becomes more common in the stochastic case. The
computation of Ck does not introduce overhead since the linear combination is accumulated in Ck.

Given γ > 1, the initial step size employed in Vaswani et al. [2019] is the following

ηk,0 = min{ηk−1γ
b/M , ηmax}. (3)

In this paper, we propose to use the following modified version of SPS [Loizou et al., 2021]

ηk,0 = min {η̃k,0, ηmax} with η̃k,0 :=
fik(wk)− f∗

ik

cp|| ∇fik (wk)||2
and cp ∈ (0, 1). (4)

In Loizou et al. [2021], (4) is not directly employed, but equipped with the same resetting technique
(3) to control the growth of η̃k,0, i.e. ηk,0 = min

{
η̃k,0, ηk−1γ

b/M , ηmax
}
.

Given lk−1 the amount of backtracks at iteration k−1, our newly introduced resetting technique stores
this value for using it in the following iteration. In particular, to relieve the line search at iteration k
from the burden of cutting the new step size lk−1 times, the new initial step size is pre-scaled by δlk−1 .
In fact, lk−1 is a good estimate for lk (see Section E.3 of the supplementary materials). However, to
allow the original ηk,0 to be eventually used non-scaled, we reduce lk−1 by one. We thus redefine ηk
as

ηk = ηk,0δ
l̄kδlk , with l̄k := max{l̄k−1 + lk−1 − 1, 0}. (5)

In Section 5, our experiments show that thanks to (5) we can save many backtracks and reduce them
to zero in the majority of the iterations. At the same time, the original ηk,0 is not modified and the
resulting step size ηk is always a scaled version of ηk,0. Moreover, the presence of the −1 in (5)
keeps pushing δl̄k towards zero, so that the initial step size is not cut more than necessary. Note that
(5) can be combined with any initial step size and it is not limited to the case of (4).

4

4 Rates of Convergence

We present the first rates of convergence for nonmonotone stochastic line search methods under inter-
polation (see Section B of the supplementary materials for the proofs). The three main theorems are
given under strong-convexity, convexity and the PL condition. Our results do not prove convergence
only for PoNoS, but more generally for methods employing (2) and any bounded initial step size, i.e.

ηk,0 ∈ [η̄min, ηmax], with ηmax > η̄min > 0. (6)

Many step size rules in the literature fulfill the above requirement [Berrada et al., 2020, Loizou et al.,
2021, Liang et al., 2019] since when applied to non-convex DL models the step size needs to be upper
bounded to achieve convergence [Bottou et al., 2018, Berrada et al., 2020].

In Theorem 1 below, we show a linear rate of convergence in the case of a strongly convex function
f , with each fik being convex. We are able to recover the same speed of convergence of Theorem 1
in Vaswani et al. [2019], despite the presence of the nonmonotone term Ck instead of fik(wk). The
challenges of the new theorem originate from studying the speed of convergence of Ck to f(w∗)
and from combining the two interconnected sequences {wk} and {Ck}. It turns out that if ξ is small
enough (i.e., such that b < (1− ηminµ)), then the presence of the nonmonotone term does not alter
the speed of convergence of {wk} to w∗, not even in terms of constants.
Theorem 1. Let Ck and ηk be defined in (2), with ηk,0 defined in (6). We assume interpolation, fik
convex, f µ-strongly convex and fik Lik -Lipschitz smooth. Assuming c > 1

2 and ξ < 1(
1+ ηmax

ηmin(2c−1)

) ,

we have

E
[
∥wk+1 − w∗∥2 + a(Ck − f(w∗))

]
≤ dk

(
∥w0 − w∗∥2 + a (f(w0)− f(w∗))

)
,

where d := max
{
(1− ηminµ), b

}
∈ (0, 1), b :=

(
1 + ηmax

ac

)
ξ ∈ (0, 1), a := ηmin

(
2− 1

c

)
> 0 with

ηmin := min{ 2δ(1−c)
Lmax

, η̄min}.

Comparing the above result with the corresponding deterministic rate (Theorem 3.1 from Zhang
and Hager [2004]), we notice that the constants of the two rates are different. In particular, the
proof technique employed in Theorem 3.1 from Zhang and Hager [2004] cannot be reused in
Theorem 1 since a few bounds are not valid in the stochastic case (e.g., ∥∇f (wk+1)∥ ≤ ∥∇f (wk)∥
or Ck+1 ≤ Ck − ∥∇fik (wk)∥). The only common aspect in these proofs is the distinction between
the two different cases defining Ck (i.e., being C̃k or fik(wk)). Moreover, in both theorems ξ needs
to be small enough to allow the final constant to be less than 1.

In Theorem 2 we show a O(1k) rate of convergence in the case of a convex function f . Interestingly, in
both Theorems 1 and 2 (and also in the corresponding monotone versions from Vaswani et al. [2019]),
c is required to be larger than 1

2 . The same lower bound is also required for achieving Q-super-linear
convergence for the Newton method in the deterministic case, but it is often considered too large in
practice and the default value (also in the case of first-order methods) is 0.1 or smaller [Nocedal and
Wright, 2006]. In this paper, we numerically tried both values and found out that c = 0.1 is too small
since it may indeed lead to divergence (see Section E.1 of the supplementary materials).
Theorem 2. Let Ck and ηk be defined in (2), with ηk,0 defined in (6). We assume interpolation, f
convex and fik Lik -Lipschitz smooth. Given a constant a1 such that 0 < a1 <

(
2− 1

c

)
and assuming

c > 1
2 and ξ < a1

2 , we have

E [f(w̄k)− f(w∗)] ≤ d1
k

(
1

ηmin ∥w0 − w∗∥2 + a1 (f(w0)− f(w∗))

)
,

where w̄k=
1
k

∑k
j=0 wj , d1 := c

c(2−a1)−1 >0, b1 :=
(
1+ 1

a1c

)
ξ ∈ (0, 1], ηmin :=min{ 2δ(1−c)

Lmax
, η̄min}.

In Theorem 3 below we prove a linear convergence rate in the case of f satisfying a PL condition.
We say that a function f : Rn → R satisfies the PL condition if there exists µ > 0 such that,
∀w ∈ Rn : ∥∇f (w)∥2 ≥ 2µ(f(w) − f(w∗)). The proof of this theorem extends Theorem 3.6 of
Loizou et al. [2021] to the use of a stochastic nonmonotone line search. Again here, the presence of a
nonmonotone term does not modify the constants controlling the speed of convergence (a2 below can
be chosen arbitrarily small) as long as ξ is small enough. The conditions on c and on ηmax are the
same as those of Theorem 3.6 of Loizou et al. [2021] (see the proof).

5

Theorem 3. Let Ck and ηk be defined in (2), with ηk,0 defined in (6). We assume interpolation, the
PL condition on f and that fik are Lik -Lipschitz smooth. Given 0 < a2 := 4µc(1−c)−Lmax

4δc(1−c) + 1
2ηmax

and assuming 2δ(1−c)
Lmax

< η̄min, ηmax < 2δc(1−c)
Lmax −4µc(1−c) , Lmax

4µ < c < 1 and ξ < a2c
a2c+Lmax

, we have

E [f(wk+1)− f(w∗) + a2η
max(Ck − f(w∗))] ≤ dk2 (1 + a2η

max) (f(w0)− f(w∗))

where d2 :=min {ν, b2}∈(0, 1), ν :=ηmax(Lmax −4µc(1−c)
2δc(1−c) +a2)∈(0, 1), b2 :=

(
1+ Lmax

a2c

)
ξ∈(0, 1).

Theorem 3 is particularly meaningful for modern neural networks because of the recent work of
Liu et al. [2022]. More precisely, their Theorem 8 and Theorem 13 prove that, respectively given
a wide-enough fully-connected or convolutional/skip-connected neural network, the corresponding
function satisfies a local version of the PL condition. As a consequence, nonmonotone line search
methods achieve linear convergence for training of non-convex neural networks if the assumptions of
both Theorem 3 above and Theorem 8 from Liu et al. [2022] hold and if the initial point w0 is close
enough to w∗.

5 Experiments

In this section, we benchmark PoNoS against state-of-the-art methods for training different over-
parametrized models. We focus on various deep learning architectures for multi-class image classifi-
cation problems, while in Section 5.3 we consider transformers for language modelling and kernel
models for binary classification. In the absence of a better estimate, we assume fik(w

∗) = 0 for all
the experiments. Indeed the final loss is in many problems very close to 0.

Concerning datasets and architectures for the image classification task, we follow the setup by Luo
et al. [2019], later employed also in Vaswani et al. [2019], Loizou et al. [2021]. In particular, we
focus on the datasets MNIST, FashionMNIST, CIFAR10, CIFAR100 and SVHN, addressed with the
architectures MLP [Luo et al., 2019], EfficientNet-b1 [Tan and Le, 2019], ResNet-34 [He et al., 2016],
DenseNet-121 [Huang et al., 2017] and WideResNet [Zagoruyko and Komodakis, 2016]. Because
of space limitation, we will not show all the experiments here, but report on the first three datasets
combined respectively with the first three architectures. We refer to the supplementary materials for
the complete benchmark (see Figures I-XII) and the implementation details (Section C). In Section
C of the supplementary materials, we also discuss the sensitivity of the results to the selection of
hyper-parameters.

In Figure 1 we compare SGD [Robbins and Monro, 1951], Adam [Kingma and Ba, 2015], SLS
[Vaswani et al., 2019], SPS [Loizou et al., 2021] and PoNoS. We present train loss (log scale), test
accuracy and average step size within the epoch (log scale). Note that the learning rate of SGD and
Adam has been chosen through a grid-search as the one achieving the best performance on each
problem. Based on Figure 1, we can make the following observations:

• PoNoS achieves the best performances both in terms of train loss and test accuracy. In particular, it
often terminates by reaching a loss of 10−6 and it always achieves the highest test accuracy.

• SLS does not always achieve the same best accuracy as PoNoS. In terms of training loss, SLS is
particularly slow on mnist|mlp and fashion|effb1, while competitive on the others. On these
two problems, both SLS and SPS employ a step size that is remarkably smaller than that of PoNoS.
On the same problems, SPS behaves similarly as SLS because the original Polyak step size is
larger than the “smoothing/resetting” value (3), i.e., η̃k,0 > ηk−1γ

b/M and thus the step size is
controlled by (3). On the other hand, the proposed nonmonotone line search selects a larger step
size, achieving faster convergence and better generalization [Nacson et al., 2022].

• SLS encounters some cancellation errors (e.g., around epoch 120 in cifar10|resnet34) that
lead the step size to be reduced drastically, sometimes reaching values below 10−7. These events
are caused by the fact that fik(wk) and fik(wk+1) became numerically identical. Thanks to the
nonmonotone term Ck replacing fik(wk), PoNoS avoids cancellations errors by design.

• SGD, Adam and SPS never achieve the best test accuracy nor the best training loss. In accordance
with the results in Vaswani et al. [2019], the line-search-based algorithms outperform the others.

Because of space limitation, we defer the comparison between PoNoS and its monotone counterpart
to the supplementary materials (Section E.2). There we show that PoNoS outperforms the other line
search techniques, including a tractable stochastic adaptation of the method by Grippo et al. [1986].

6

0 25 50 75 100 125 150 175 200
epoch

10 6

10 5

10 4

10 3

10 2

10 1

100

tra
in

 lo
ss

 (l
og

)

mnist | mlp
Adam
SPS
SGD
SLS
PoNoS

0 25 50 75 100 125 150 175 200
epoch

10 6

10 5

10 4

10 3

10 2

10 1

100

tra
in

 lo
ss

 (l
og

)

cifar10 | resnet34
Adam
SPS
SGD
SLS
PoNoS

0 25 50 75 100 125 150 175 200
epoch

10 6

10 5

10 4

10 3

10 2

10 1

100

tra
in

 lo
ss

 (l
og

)

fashion | efficientnet-b1
Adam
SPS
SGD
SLS
PoNoS

0 25 50 75 100 125 150 175 200
epoch

0.950

0.955

0.960

0.965

0.970

0.975

0.980

0.985

0.990

te
st

 a
cc

ur
ac

y

mnist | mlp

Adam
SPS
SGD
SLS
PoNoS

0 25 50 75 100 125 150 175 200
epoch

0.86

0.88

0.90

0.92

0.94

te
st

 a
cc

ur
ac

y

cifar10 | resnet34

Adam
SPS
SGD
SLS
PoNoS

0 25 50 75 100 125 150 175 200
epoch

0.88

0.89

0.90

0.91

0.92

0.93

te
st

 a
cc

ur
ac

y

fashion | efficientnet-b1

Adam
SPS
SGD
SLS
PoNoS

0 25 50 75 100 125 150 175 200
epoch

10 1

100

101

av
er

ag
e

st
ep

 si
ze

 (l
og

)

mnist | mlp

Adam
SPS
SGD
SLS
PoNoS

0 25 50 75 100 125 150 175 200
epoch

10 9

10 7

10 5

10 3

10 1

101
av

er
ag

e
st

ep
 si

ze
 (l

og
)

cifar10 | resnet34

Adam
SPS
SGD
SLS
PoNoS

0 25 50 75 100 125 150 175 200
epoch

10 9

10 7

10 5

10 3

10 1

101

av
er

ag
e

st
ep

 si
ze

 (l
og

)

fashion | efficientnet-b1

Adam
SPS
SGD
SLS
PoNoS

Figure 1: Comparison between the proposed method (PoNoS) and the-state-of-the-art. Each
column focus on a dataset. First row: train loss. Second row: test accuracy. Third row: step size.

5.1 A New Resetting Technique

In this subsection, we compare different initial step sizes and resetting techniques. We fix the line
search to be (2), but similar comments can be made on (1) (see the Section D.2 of the supplementary
materials). In Figure 2 we compare PoNoS and PoNoS_reset0 (without (5)) with zhang_reset2 (initial
step size (3)) and:

• zhang_reset3: ηk,0 = ηk−1
||∇fik−1

(wk−1)||2

|| ∇fik (wk)||2 , adapted to SGD from Nocedal and Wright [2006],

• zhang_reset4: ηk,0 =
2(fik−1

(wk−1)−fik−1
(wk))

||∇fik−1
(wk−1)|| . adapted to SGD from Nocedal and Wright [2006],

• zhang_every2: same as PoNoS_reset0, but a new step is computed only every 2 iterations.

In Figure 2, we report train loss (log scale), the total amount of backtracks per epoch and the average
step size within the epoch (log scale). From Figure 2, we can make the following observations:

• PoNoS and PoNoS_reset0 achieve very similar performances. In fact, the two algorithms yield
step sizes that are almost always overlapping. An important difference between PoNoS_reset0 and
PoNoS can be noticed in the amount of backtracks that the two algorithms require. The plots show a
sum of M

b elements, with M
b = 391 or 469 depending on the problem and PoNoS’s line hits exactly

this value. This means that PoNoS employs a median of 1 backtrack per iteration for the first 5-25
epochs, while PoNoS_reset0 needs more backtracks in this stage (around 1500-3000 per-epoch,
see Section D.2 of the supplementary materials). After this initial phase, both PoNoS_reset0 and
PoNoS reduce the amount of backtracks until it reaches a (almost) constant value of 0.

• zhang_every2 does not achieve the same good performance as PoNoS or PoNoS_reset0. The
common belief that step sizes can be used in many subsequent iterations does not find confirmation
here. In fact, zhang_every2 shows that we cannot skip the application of a line search if we want to
maintain the same good performances.

• All the other initial step sizes achieve poor performances on both train loss and test accuracy. In
many cases, the algorithms yield step sizes (also before the line search) that are too small w.r.t. (4).

5.2 Time Comparison

In this subsection, we show runtime comparisons corresponding to Figure 1. In the first row of Figure
3, we plot the train loss as in the first row of Figure 1. However, the x-axis of Figure 3 measures
the cumulative epoch time of the average of 5 different runs of the same algorithm with different
seeds. In the second row of Figure 3, we report the runtime per-epoch (with shaded error bars) on

7

0 25 50 75 100 125 150 175 200
epoch

10 6

10 5

10 4

10 3

10 2

10 1

100

tra
in

 lo
ss

 (l
og

)

mnist | mlp
zhang_reset2
zhang_reset3
zhang_reset4
zhang_every2
PoNoS
PoNoS_reset0

0 25 50 75 100 125 150 175 200
epoch

10 6

10 5

10 4

10 3

10 2

10 1

100

tra
in

 lo
ss

 (l
og

)

cifar10 | resnet34
zhang_reset2
zhang_reset3
zhang_reset4
zhang_every2
PoNoS
PoNoS_reset0

0 25 50 75 100 125 150 175 200
epoch

10 6

10 5

10 4

10 3

10 2

10 1

100

tra
in

 lo
ss

 (l
og

)

fashion | efficientnet-b1
zhang_reset2
zhang_reset3
zhang_reset4
zhang_every2
PoNoS
PoNoS_reset0

0 25 50 75 100 125 150 175 200
epoch

0

100

200

300

400

500

ba

ck
tra

ck
s

mnist | mlp
zhang_reset2
zhang_reset3
zhang_reset4
zhang_every2
PoNoS
PoNoS_reset0

0 25 50 75 100 125 150 175 200
epoch

0

100

200

300

400

500

ba

ck
tra

ck
s

cifar10 | resnet34
zhang_reset2
zhang_reset3
zhang_reset4
zhang_every2
PoNoS
PoNoS_reset0

0 25 50 75 100 125 150 175 200
epoch

0

100

200

300

400

500

ba

ck
tra

ck
s

fashion | efficientnet-b1
zhang_reset2
zhang_reset3
zhang_reset4
zhang_every2
PoNoS
PoNoS_reset0

0 25 50 75 100 125 150 175 200
epoch

10 3

10 2

10 1

100

101

av
er

ag
e

st
ep

 si
ze

 (l
og

)

mnist | mlp

zhang_reset2
zhang_reset3
zhang_reset4
zhang_every2
PoNoS
PoNoS_reset0

0 25 50 75 100 125 150 175 200
epoch

10 3

10 2

10 1

100

101
av

er
ag

e
st

ep
 si

ze
 (l

og
)

cifar10 | resnet34

zhang_reset2
zhang_reset3
zhang_reset4
zhang_every2
PoNoS
PoNoS_reset0

0 25 50 75 100 125 150 175 200
epoch

10 7

10 5

10 3

10 1

101

av
er

ag
e

st
ep

 si
ze

 (l
og

)

fashion | efficientnet-b1

zhang_reset2
zhang_reset3
zhang_reset4
zhang_every2
PoNoS
PoNoS_reset0

Figure 2: Comparison between different initial step sizes and resetting techniques. Each column
focus on a dataset. First row: train loss. Second row: # backtracks. Third row: step size.

the y-axis and epochs on the x-axis. From Figures 1 and 3, it is clear that PoNoS is not only faster
than the other methods in terms of epochs but also in terms of total computational time. In particular,
PoNoS is faster than SGD, despite the fact the second achieves the lowest per-epoch time. Again
from the second row of Figure 3, we can observe that PoNoS’s per-epoch time makes a transition
from the phase of a median of 1 backtrack (first 5-25 epochs) to the phase of a median of 0 backtracks
where its time is actually overlapping with that of SLS (always a median of 0 backtracks). In the first
case, PoNoS requires less than twice the time of SGD, and in the second, this time is lower than 1.5
that of SGD. Given these measures, PoNoS becomes faster than SGD/Adam in terms of per-epoch
time as soon as a grid-search (or any other hyper-parameter optimization) is employed to select the
best-performing learning rate.

To conclude, let us recall that any algorithm based on a stochastic line search always requires one
additional forward pass if compared with SGD. In fact, both fik(wk) and fik(wk+1) are computed at
each k and each backtrack requires one additional forward pass. On the other hand, if we consider
that one backward pass costs roughly two forward passes and that SGD needs one forward and one
backward pass, any additional forward pass costs roughly one-third of SGD. These rough calculations
have been verified in Section E.6 of the supplementary materials, where we profiled the single
iteration of PoNoS. Following these calculations and referring to the two phases of Figure 3, one
iteration of PoNoS only costs 5

3 that of SGD in the first phase and 4
3 in the second.

5.3 Experiments for Convex Losses and for Transformers

As a last benchmark, we take into account a set of convex problems from Vaswani et al. [2019],
Loizou et al. [2021] and the transformers [Vaswani et al., 2017] trained from scratch in Kunstner
et al. [2023]. In Figure 4 we show one convex problem (first column) and two transformers (last two
column). We leave the fine-tuning of transformers to future works. Our experiments take into account
binary classification problems addressed with a RBF kernel model without regularization. We show
the results achieved on the dataset mushrooms, while leaving those on ijcnn, rcv1 and w8a to Section
D.4 of the supplementary materials. Given the high amount of iterations, the smoothed version of the
train loss will be reported. The test accuracy is also only reported in Section D.4 since (almost) all the
methods achieve the best test accuracy in all the problems within the first few iterations. From the left
subplot of Figure 4, we can observe that PoNoS obtains very good performances also in this setting
(see supplementary materials). In Figure 4, PoNoS achieves a very low train loss (10−4) within the
first 200 iterations. Only SLS is able to catch up, but this takes 6 times the iterations of PoNoS. On
this problem, SLS is the only method reaching the value (10−6). The methods SLS and SPS behave

8

0 100 200 300 400 500 600
cumulative runtime (s)

10 6

10 5

10 4

10 3

10 2

10 1

100

tra
in

 lo
ss

 (l
og

)

mnist | mlp
Adam
SPS
SGD
SLS
PoNoS

0 500 1000 1500 2000 2500 3000 3500
cumulative runtime (s)

10 6

10 5

10 4

10 3

10 2

10 1

100

tra
in

 lo
ss

 (l
og

)

cifar10 | resnet34
Adam
SPS
SGD
SLS
PoNoS

0 2000 4000 6000 8000 10000
cumulative runtime (s)

10 6

10 5

10 4

10 3

10 2

10 1

100

tra
in

 lo
ss

 (l
og

)

fashion | efficientnet-b1
Adam
SPS
SGD
SLS
PoNoS

0 25 50 75 100 125 150 175 200
epoch

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

ru
nt

im
e

(s
)

mnist | mlp

Adam
SPS
SGD
SLS
PoNoS

0 25 50 75 100 125 150 175 200
epoch

12

14

16

18

20

22

ru
nt

im
e

(s
)

cifar10 | resnet34

Adam
SPS
SGD
SLS
PoNoS

0 25 50 75 100 125 150 175 200
epoch

30

35

40

45

50

55

60

65

70

ru
nt

im
e

(s
)

fashion | efficientnet-b1

Adam
SPS
SGD
SLS
PoNoS

Figure 3: Time comparison (s) between the proposed method (PoNoS) and the-state-of-the-art.
Each column focus on a dataset. First row: train loss vs runtime. Second row: epoch runtime.

very similarly on all the datasets (see the supplementary materials) since in both cases (3) controls
the step size. As clearly shown by the comparison with PoNoS, this choice is suboptimal and the
Polyak step size is faster. Because of (3), both SLS and SPS encounter slow convergence issues in
many of problems of this setting. As in Figure 1, SGD and Adam are always slower than PoNoS.

We consider training transformers on language modeling datasets. In particular, we train a Transformer
Encoder [Vaswani et al., 2017] on PTB [Marcus et al., 1993] and a Transformer-XL [Dai et al., 2019]
on Wikitext2 [Merity et al., 2017]. In contrast to the case of convolutional neural networks, the
most popular method for training transformers is Adam and not SGD [Pan and Li, 2022, Kunstner
et al., 2023]. For this reason, we use a preconditioned version of PoNoS, SLS, and SPS (respectively
PoNoS_prec, SLS_prec, and SPS_prec, see Section D.5 of the supplementary materials for details).
In fact, Adam can be considered a preconditioned version of SGD with momentum [Vaswani et al.,
2020]. As in Kunstner et al. [2023], we focus on the training procedure and defer the generalization
properties to the supplementary materials. From Figure 4, we can observe that the best algorithms in
this setting are preconditioned-based and not SGD-based, in accordance with the literature. Moreover,
PoNoS_prec achieves similar performances as Adam’s. In particular from the central subplot of
Figure 4, we observe that PoNoS_prec is the only algorithm as fast as Adam, while all the others
have difficulties achieving loss below 1. Taking the right subplot of Figure 4 into account, we can
notice that PoNoS_prec is slower than Adam on this problem. On the other hand, there is not one
order of difference between the two final losses (i.e., ∼ 1.5 points). Moreover, we should keep in
mind that Adam’s learning rate has been fine-tuned separately for each problem, while PoNoS_prec
has been used off-the-shelf.

0 250 500 750 1000 1250 1500 1750 2000
iter

10 6

10 5

10 4

10 3

10 2

10 1

100

tra
in

 lo
ss

 (l
og

)

mushrooms | RBF kernel
Adam
SPS
SGD
SLS
PoNoS

0 20 40 60 80 100
epoch

100

101

tra
in

 lo
ss

 (l
og

)

ptb | transformer_xl
Adam
SPS
SGD
SLS
SLS_prec
SPS_prec
PoNoS_prec
PoNoS

0 20 40 60 80 100
epoch

101

3 × 100

4 × 100

6 × 100

tra
in

 lo
ss

 (l
og

)

wikitext2 | transformer_encoder
Adam
SPS
SGD
SLS
SLS_prec
SPS_prec
PoNoS_prec
PoNoS

Figure 4: Train loss comparison between the new method (PoNoS) and the state-of-the-art on
convex kernel models (first column) and transformers (last two columns).

6 Conclusion

In this work, we showed that modern DL models can be efficiently trained by nonmonotone line
search methods. More precisely, nonmonotone techniques have been shown to outperform the
monotone line searches existing in the literature. A stochastic Polyak step size with resetting has been
employed as the initial step size for the nonmonotone line search, showing that the combined method
is faster than the version without line search. Moreover, we presented the first runtime comparison

9

between line-search-based methods and SGD/Adam. The results show that the new line search is
overall computationally faster than the state-of-the-art. A new resetting technique is developed to
reduce the amount of backtracks to almost zero on average, while still maintaining a large initial step
size. To conclude, the similar behavior of SLS_prec and Adam on the rightmost subplot of Figure 4
suggests that other initial step sizes might also be suited for training transformers. We leave such
exploration (e.g., a stochastic BB like in Tan et al. [2016], Liang et al. [2019]) to future works.

We proved three convergence rate results for stochastic nonmonotone line search methods under
interpolation and under either strong-convexity, convexity, or the PL condition. Our theory matches
its monotone counterpart despite the use of a nonmonotone term. In the future, we plan to explore the
conditions of the theorems in Liu et al. [2022] and to study a bridge between their local PL results
and our global PL assumption. To conclude, it is worth mentioning that nonmonotone line search
methods might be connected to the edge of stability phenomenon described in Cohen et al. [2021],
because of the very similar behavior they induce in the decrease of (deterministic) objective functions.
However, a rigorous study remains for future investigations.

Acknowledgments

The work was conducted within the KI-Starter project “Robustness and Generalization in Train-
ing Deep Neural Networks” funded by the Ministry of Culture and Science Nordrhein-Westfalen,
Germany and partially supported by the Canada CIFAR AI Chair Program.

References
Larry Armijo. Minimization of functions having lipschitz continuous first partial derivatives. Pacific

Journal of Mathematics, 16(1):1–3, 1966. Cited on 1

Hilal Asi and John C Duchi. The importance of better models in stochastic optimization. Proceedings
of the National Academy of Sciences, 116(46):22924–22930, 2019. Cited on 2

Jonathan Barzilai and Jonathan M Borwein. Two-point step size gradient methods. IMA Journal of
Numerical Analysis, 8(1):141–148, 1988. Cited on 2

Atilim Gunes Baydin, Robert Cornish, David Martinez Rubio, Mark Schmidt, and Frank Wood.
Online learning rate adaptation with hypergradient descent. In International Conference on
Learning Representations, 2017. Cited on 1

Stefania Bellavia, Natasa Krejic, Benedetta Morini, and Simone Rebegoldi. A stochastic first-
order trust-region method with inexact restoration for finite-sum minimization. arXiv preprint
arXiv:2107.03129, 2021. Cited on 2, 3

Leonard Berrada, Andrew Zisserman, and M Pawan Kumar. Training neural networks for and by
interpolation. In International Conference on Machine Learning, pages 799–809. PMLR, 2020.
Cited on 2, 5

E. G. Birgin, J. M. Martínez, and M. Raydan. Nonmonotone spectral projected gradient methods on
convex sets. SIAM Journal on Optimization, 10(4):1196–1211, 2000. Cited on 2

R. Bollapragada, D. Mudigere, J. Nocedal, H.-J.M. Shi, and P.T.P. Tang. A progressive batching L-
BFGS method for machine learning. In International Conference on Machine Learning, volume 2,
pages 989–1013, 2018. Cited on 1

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. SIAM Review, 60(2):223–311, 2018. Cited on 4, 5

Jeremy Cohen, Simran Kaur, Yuanzhi Li, J Zico Kolter, and Ameet Talwalkar. Gradient descent on
neural networks typically occurs at the edge of stability. In International Conference on Learning
Representations, 2021. Cited on 1, 10

Yu-Hong Dai. On the nonmonotone line search. Journal of Optimization Theory and Applications,
112(2):315–330, 2002. Cited on 3

10

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G Carbonell, Quoc Le, and Ruslan Salakhutdinov.
Transformer-xl: Attentive language models beyond a fixed-length context. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, pages 2978–2988, 2019.
Cited on 9

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(7), 2011. Cited on 1

Chen Fan, Christos Thrampoulidis, and Mark Schmidt. Fast convergence of random reshuffling under
over-parameterization and the polyak-\l ojasiewicz condition. arXiv preprint arXiv:2304.00459,
2023. Cited on 4

MC Ferris and S Lucidi. Nonmonotone stabilization methods for nonlinear equations. Journal of
Optimization Theory and Applications, 81(1):53–71, 1994. Cited on 1

Robert M Gower, Aaron Defazio, and Michael Rabbat. Stochastic Polyak stepsize with a moving
target. arXiv preprint arXiv:2106.11851, 2021. Cited on 2

Robert M Gower, Mathieu Blondel, Nidham Gazagnadou, and Fabian Pedregosa. Cutting some slack
for SGD with adaptive polyak stepsizes. arXiv preprint arXiv:2202.12328, 2022. Cited on 2

Geovani N Grapiglia and Ekkehard W Sachs. A generalized worst-case complexity analysis for
non-monotone line searches. Numerical Algorithms, 87:779–796, 2021. Cited on 3

Luigi Grippo, Francesco Lampariello, and Stefano Lucidi. A nonmonotone line search technique for
Newton’s method. SIAM Journal on Numerical Analysis, 23(4):707–716, 1986. Cited on 1, 2, 3, 6

Sajad Fathi Hafshejani, Daya Gaur, Shahadat Hossain, and Robert Benkoczi. Fast armijo line
search for stochastic gradient descent. Research Square preprint https://doi.org/10.21203/rs.3.rs-
2285238/v1, 2023. Cited on 2, 3

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016. Cited on 3, 6

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 4700–4708, 2017. Cited on 3, 6

Nitish Shirish Keskar and George Saon. A nonmonotone learning rate strategy for sgd training of
deep neural networks. In 2015 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 4974–4978. IEEE, 2015. Cited on 2

D.P. Kingma and J.L. Ba. Adam: A method for stochastic optimization. In International Conference
on Learning Representations, 2015. Cited on 6

Nataša Krejić and Nataša Krklec Jerinkić. Nonmonotone line search methods with variable sample
size. Numerical Algorithms, 68(4):711–739, 2015. Cited on 2, 3

Nataša Krejić and Nataša Krklec Jerinkić. Spectral projected gradient method for stochastic opti-
mization. Journal of Global Optimization, 73(1):59–81, 2019. Cited on 2, 3

Frederik Kunstner, Jacques Chen, Jonathan Wilder Lavington, and Mark Schmidt. Noise is not the
main factor behind the gap between sgd and adam on transformers, but sign descent might be. In
The Eleventh International Conference on Learning Representations, 2023. Cited on 8, 9

Nicolas Le Roux, Mark Schmidt, and Francis Bach. A stochastic gradient method with an exponential
convergence _rate for finite training sets. Advances in neural information processing systems, 25,
2012. Cited on 2

Donghui Li and Masao Fukushima. A globally and superlinearly convergent Gauss–Newton-based
BFGS method for symmetric nonlinear equations. SIAM Journal on Numerical Analysis, 37(1):
152–172, 1999. Cited on 2

11

Shuang Li, William J Swartworth, Martin Takáč, Deanna Needell, and Robert M Gower. SP2: A
second order stochastic Polyak method. arXiv preprint arXiv:2207.08171, 2022. Cited on 2

Jinxiu Liang, Yong Xu, Chenglong Bao, Yuhui Quan, and Hui Ji. Barzilai-Borwein-based adaptive
learning rate for deep learning. Pattern Recognition Letters, 128:197–203, 2019. Cited on 5, 10

Chaoyue Liu, Libin Zhu, and Mikhail Belkin. Loss landscapes and optimization in over-parameterized
non-linear systems and neural networks. Applied and Computational Harmonic Analysis, 59:
85–116, 2022. Cited on 2, 3, 6, 10

Nicolas Loizou, Sharan Vaswani, Issam Hadj Laradji, and Simon Lacoste-Julien. Stochastic polyak
step-size for sgd: An adaptive learning rate for fast convergence. In International Conference on
Artificial Intelligence and Statistics, pages 1306–1314. PMLR, 2021. Cited on 2, 3, 4, 5, 6, 8

L. Luo, Y. Xiong, Y. Liu, and X. Sun. Adaptive gradient methods with dynamic bound of learning
rate. In International Conference on Learning Representations, 2019. Cited on 1, 6

Maren Mahsereci and Philipp Hennig. Probabilistic line searches for stochastic optimization. The
Journal of Machine Learning Research, 18(1):4262–4320, 2017. Cited on 1, 3

Mitchell Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated
corpus of english: The Penn Treebank. Computational Linguistics 19.2, pages 313–330, 1993.
Cited on 9

Si Yi Meng, Sharan Vaswani, Issam Hadj Laradji, Mark Schmidt, and Simon Lacoste-Julien. Fast
and furious convergence: Stochastic second order methods under interpolation. In International
Conference on Artificial Intelligence and Statistics, pages 1375–1386. PMLR, 2020. Cited on 3

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In International Conference on Learning Representations, 2017. Cited on 9

Maximus Mutschler and Andreas Zell. Parabolic approximation line search for DNNs. Advances in
Neural Information Processing Systems, 33:5405–5416, 2020. Cited on 1

Mor Shpigel Nacson, Kavya Ravichandran, Nathan Srebro, and Daniel Soudry. Implicit bias of the
step size in linear diagonal neural networks. In International Conference on Machine Learning,
pages 16270–16295. PMLR, 2022. Cited on 1, 6

Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science & Business Media,
2006. Cited on 1, 5, 7

Yan Pan and Yuanzhi Li. Toward understanding why Adam converges faster than SGD for transform-
ers. In Optimization for Machine Learning (NeurIPS Workshop), 2022. Cited on 9

Courtney Paquette and Katya Scheinberg. A stochastic line search method with convergence rate
analysis. arXiv preprint arXiv:1807.07994, 2018. Cited on 1, 3

Vassilis P Plagianakos, George D Magoulas, and Michael N Vrahatis. Deterministic nonmonotone
strategies for effective training of multilayer perceptrons. IEEE Transactions on Neural Networks,
13(6):1268–1284, 2002. Cited on 2

Boris Teodorovich Polyak. Minimization of unsmooth functionals. USSR Computational Mathematics
and Mathematical Physics, 9(3):14–29, 1969. Cited on 2

M. Raydan. The Barzilai and Borwein gradient method for the large scale unconstrained minimization
problem. SIAM Journal on Optimization, 7(1):26–33, 1997. Cited on 2

Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of Mathematical
Statistics, pages 400–407, 1951. Cited on 1, 6

Mark Schmidt and Nicolas Le Roux. Fast convergence of stochastic gradient descent under a strong
growth condition. arXiv preprint arXiv:1308.6370, 2013. Cited on 2

12

Conghui Tan, Shiqian Ma, Yu-Hong Dai, and Yuqiu Qian. Barzilai-Borwein step size for stochastic
gradient descent. In Advances in Neural Information Processing Systems, pages 685–693, 2016.
Cited on 10

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural networks.
In International conference on machine learning, pages 6105–6114. PMLR, 2019. Cited on 6

Tuyen Trung Truong and Hang-Tuan Nguyen. Backtracking gradient descent method and some
applications in large scale optimisation. Part 2: Algorithms and experiments. Applied Mathematics
& Optimization, 84(3):2557–2586, 2021. Cited on 1

Tuyen Trung Truong and Tuan Hang Nguyen. Backtracking gradient descent method for general C1

functions, with applications to deep learning. arXiv preprint arXiv:1808.05160, 2018. Cited on 1

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017. Cited on 3, 8, 9

Sharan Vaswani, Aaron Mishkin, Issam Laradji, Mark Schmidt, Gauthier Gidel, and Simon Lacoste-
Julien. Painless stochastic gradient: Interpolation, line-search, and convergence rates. In Advances
in Neural Information Processing Systems, pages 3732–3745, 2019. Cited on 1, 2, 3, 4, 5, 6, 8

Sharan Vaswani, Issam Laradji, Frederik Kunstner, Si Yi Meng, Mark Schmidt, and Simon Lacoste-
Julien. Adaptive gradient methods converge faster with over-parameterization (but you should do a
line-search). arXiv preprint arXiv:2006.06835, 2020. Cited on 1, 9

Yifei Wang, Zeyu Jia, and Zaiwen Wen. The search direction correction makes first-order methods
faster. arXiv preprint arXiv:1905.06507, 2019. Cited on 2

Yifei Wang, Zeyu Jia, and Zaiwen Wen. Search direction correction with normalized gradient makes
first-order methods faster. SIAM Journal on Scientific Computing, 43(5):A3184–A3211, 2021.
Cited on 2

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In British Machine Vision
Conference 2016. British Machine Vision Association, 2016. Cited on 6

Hongchao Zhang and William W Hager. A nonmonotone line search technique and its application to
unconstrained optimization. SIAM Journal on Optimization, 14(4):1043–1056, 2004. Cited on 1,
2, 3, 4, 5

Jian L Zhou and AL Tits. Nonmonotone line search for minimax problems. Journal of Optimization
Theory and Applications, 76(3):455–476, 1993. Cited on 2

Weijun Zhou. A short note on the global convergence of the unmodified PRP method. Optimization
Letters, 7(6):1367–1372, 2013. Cited on 2

13

	Introduction
	Related Works
	Methods
	Rates of Convergence
	Experiments
	A New Resetting Technique
	Time Comparison
	Experiments for Convex Losses and for Transformers

	Conclusion

