
NVFi: Neural Velocity Fields for 3D Physics Learning
from Dynamic Videos

Jinxi Li Ziyang Song Bo Yang

vLAR Group, The Hong Kong Polytechnic University
jinxi.li@connect.polyu.hk ziyang.song@connect.polyu.hk bo.yang@polyu.edu.hk

Abstract

In this paper, we aim to model 3D scene dynamics from multi-view videos. Unlike
the majority of existing works which usually focus on the common task of novel
view synthesis within the training time period, we propose to simultaneously learn
the geometry, appearance, and physical velocity of 3D scenes only from video
frames, such that multiple desirable applications can be supported, including future
frame extrapolation, unsupervised 3D semantic scene decomposition, and dynamic
motion transfer. Our method consists of three major components, 1) the keyframe
dynamic radiance field, 2) the interframe velocity field, and 3) a joint keyframe and
interframe optimization module which is the core of our framework to effectively
train both networks. To validate our method, we further introduce two dynamic 3D
datasets: 1) Dynamic Object dataset, and 2) Dynamic Indoor Scene dataset. We
conduct extensive experiments on multiple datasets, demonstrating the superior
performance of our method over all baselines, particularly in the critical tasks of
future frame extrapolation and unsupervised 3D semantic scene decomposition.
Our code and data are available at https://github.com/vLAR-group/NVFi

1 Introduction

The 3D world around us is constantly changing over time, where objects are falling, vehicles moving,
and clocks ticking. Humans can effortlessly learn the geometry and physical properties of such
dynamic 3D scenes, and further predict their future motions following the learned physics rules, just
by watching the things for a few seconds. Giving machines such ability to automatically infer the
geometry and physics of complex dynamic 3D scenes is essential for many cutting-edge applications
in augmented reality, games, and the movie industry. Recent advances in the emerging area of
neural radiance field [37] and its succeeding variants [46, 4, 6, 19, 75, 40] have shown excellent
results in modeling dynamic 3D scenes such as deformable things [4, 58] and articulated objects
[39, 55]. While showing superior performance in interpolating novel views within the observed time
period, almost all these methods tend to fit training image sequences, without explicitly learning
the physical properties such as object velocities, thus being unable to extrapolate and predict future
motion patterns of 3D scenes.

More recently, a few studies [47, 14, 8, 32, 2] start to integrate physics priors into implicit neural
representations to model dynamic 3D scenes such as floating smoke or simple moving objects.
By introducing the governing PDEs, a.k.a., PINN [48], these methods demonstrate promising
reconstruction of 3D scene geometry, appearance, velocity and/or viscosity fields. However, the
learned physical properties are either tightly coupled with the target objects [14] in the scene or
require additional foreground segmentation masks in the loop [32]. This means that the estimated
physics knowledge from dynamic video frames is not clearly disentangled, thereby not transferable
from one scene to another.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/vLAR-group/NVFi

Keyframe Dynamic Radiance Field

⋯ ⋯

Interframe Velocity Field

Joint Keyframe
and Interframe
Optimization

Figure 1: The three major components of our framework: Keyframe Dynamic Radiance Field,
Interframe Velocity Field, and the Joint Keyframe and Interframe Optimization module.

In this regard, we ask an ambitious question: Can we learn disentangled physical properties alongside
recovering geometry and appearance of dynamic 3D scenes purely from multi-view video frames?
Among various physical properties in the scene, we choose to focus on velocity as it primarily governs
scene movement dynamics. Such disentangled velocity fields, once successfully learned, are expected
to unlock multiple desirable applications: 1) Future frame extrapolation and prediction beyond the
observed time period in training. For example, after watching a football flying in the penalty area,
we can predict what will happen next. 2) Dynamics transformation from one scene to another. For
instance, after watching a bird flipping wings, we can imagine the same physical behavior on the
body of an airplane. 3) Semantic decomposition of 3D scenes. Intuitively, once the velocity field of
an entire dynamic 3D scene is learned, all individual objects or parts undergoing different moving
patterns can be easily segmented, without needing any extra human annotations for training.

However, accurately learning the physical velocity of a whole 3D scene space is particularly chal-
lenging, primarily due to the lack of ground truth 3D velocity annotations, the unknown object types
or materials in the scene, and the sparse yet long-time visual trajectory in training. In addition,
when separately learning the velocity field, it is usually an under-constrained problem even with the
commonly used PINN technique [14].

To tackle these challenges, we introduce a new general framework to simultaneously model the
geometry, appearance, and disentangled velocity of a dynamic 3D scene only from multi-view video
frames. In particular, as shown in Figure 1, our framework consists of three major components: 1) a
keyframe dynamic radiance field to learn time-dependent volume density and appearance for every
3D point in space; 2) an interframe velocity field to learn time-dependent 3D velocity for every
point as well; and 3) a joint keyframe and interframe optimization method together with physics
informed constraints to train both networks. For the first component, it is flexible to adopt any of the
existing time-dependent NeRF architectures such as HexPlane [6] or K-Planes [19]. For the second
component, the neural network actually can be as simple as MLPs.

The core of our framework is the third component, where we explicitly apply three types of loss
functions to jointly optimize both networks: 1) the keyframe photometric loss, 2) the interframe
photometric loss, and 3) the governing PDE losses. With these losses, our framework can precisely
learn disentangled velocity fields, without needing additional regularization terms on volume density
or information on object masks, types, or materials. Overall, our framework models general dynamic
3D scenes by learning neural velocity fields with physical priors. Our method is named NVFi and
our contributions are:

• We introduce a general framework to model dynamic 3D scenes as physics-informed radiance
fields from multi-view videos, without requiring information on object types, materials, or masks.

• We design a neural velocity field together with a joint keyframe and interframe optimization method
to effectively train the networks.

• We demonstrate three applications for the learned velocity fields on two newly collected dynamic 3D
datasets and a challenging real-world dataset, showing superior results in future frame extrapolation,
semantic decomposition, and velocity transferring across 3D scenes.

2 Related Works

Static 3D Representations: Conventional representations for static 3D objects and scenes include
voxels [13, 71, 72], point clouds [17], octrees [57, 64], meshes [28, 23], and primitives [77]. Due to
the discretization issue of these explicit representations, the fidelity of 3D shapes is usually limited by
spatial resolution and memory footprint. Inspired by the seminal works [10, 36, 41], recently, there

2

𝑦𝑦
𝑧𝑧

Keyframe Dynamic Radiance Field Interframe Velocity Field
𝑡𝑡

𝒑𝒑 = (𝑥𝑥,𝑦𝑦, 𝑧𝑧)

𝒄𝒄

𝜎𝜎

𝒑𝒑 =
𝑥𝑥
𝑦𝑦
𝑧𝑧

𝒑𝒑 =
𝑥𝑥
𝑦𝑦
𝑧𝑧

𝑡𝑡

𝒑𝒑 =
𝑥𝑥
𝑦𝑦
𝑧𝑧 𝒗𝒗 =

𝑣𝑣𝑥𝑥
𝑣𝑣𝑦𝑦
𝑣𝑣𝑧𝑧

……

𝜃𝜃,𝜙𝜙𝒇𝒇𝜣𝜣 𝒈𝒈𝜱𝜱

Figure 2: The left block illustrates the network architecture of our keyframe dynamic radiance field
based on HexPlane [6], and the right block shows the architecture of our interframe velocity field.

has been a strong interest in representing 3D data in implicit neural functions. These methods are
generally classified as: 1) occupancy fields (OF) [10, 36], 2) signed distance fields (SDF) [41], 3)
unsigned distance fields (UDF) [12, 62], and 4) radiance fields (NeRF) [37, 3, 59]. Basically, these
neural representations simply take 3D point locations as input and directly regress the corresponding
point information, such as occupancy, distance to surface, color, semantics [76, 61], et al., via MLPs.
Compared with traditional explicit representations, these implicit neural representations allow for
continuous shape and appearance modeling at a particularly low memory footprint.

Dynamic 3D Representations: Recent techniques in this category are primarily built on the appealing
NeRF architecture [37], thanks to its unprecedented level of fidelity in representing various 3D objects
and scenes [6, 19]. Given video sequences of dynamic scenes, these NeRF based methods usually
take the time t as an additional input dimension and then optimize the entire network using the
standard photometric loss. Generally, the techniques can be classified as: 1) deformation-based
methods [42, 58, 4, 46, 5, 18, 74], 2) flow-based methods [21, 33, 16, 63, 35], and 3) direct space-time
based methods [69, 1, 31, 43]. In parallel, there are also a number of domain-specific NeRFs to
model particular dynamic objects such as human bodies [44, 50, 45, 70, 68] and faces [4, 20, 66, 67].
Although all these methods have shown excellent performance in novel view synthesis on a wide
range of dynamic datasets, they are primarily designed to interpolate frames within the time period of
training data, lacking the ability to predict future frames. By contrast, our NVFi aims to model the
underlying physical principles of 3D scenes, thus being easily able to extrapolate future dynamics.

Physics Informed Deep Learning: Unlike traditional numerical methods such as finite element
methods, recent physics-informed neural networks (PINN) [48] represent tensor fields with neural
networks, converting the PDE solutions into optimizing network weights via PDE-based loss functions.
Inspired by the pioneering works [48, 52, 30], a plethora of succeeding works [51, 49, 25, 38, 65],
have been developed, demonstrating excellent results in a wide range of applications such as acoustics
[53, 56], fluids [60, 22, 15], 3D scene representations [8, 14, 32, 47], et al., thanks to its mesh-free
formulation. More details can be found in the recent surveys [27, 24]. In our framework, we find that
the commonly-used PINN constraints are insufficient to learn accurate 3D velocity fields. To tackle
this issue, we further propose the keyframe based velocity propagation module.

3 NVFi

3.1 Overview

As shown in Figure 2, our framework consists of two neural networks together with their optimization
methods. Given a set of images of a dynamic scene with known camera poses and intrinsics, the
keyframe dynamic radiance field fΘ simply takes a 3D point ppp = (x,y,z), viewing angle (θ ,φ),
and timestamp t as input, directly regressing the volume density σ and color ccc = (r,g,b). For the
network architecture, we simply adopt the recent HexPlane [6] which shows excellent performance in
efficiently modeling dynamic video frames, though other NeRF variants can also be used. Formally,
our keyframe dynamic radiance field is defined below and implementation details are in Appendix.

(σ ,ccc) = fΘ(x,y,z,θ ,φ , t) Θ are trainable parameters. (1)

For the interframe velocity field gΦ, it takes the 4D vector (x,y,z, t) as input, and predicts the 3D
velocity vvv = (vx,vy,vz) for point ppp at time t. For simplicity, the network gΦ is parameterized by
simple MLPs, though more advanced architectures can be applied as well. Formally, the velocity
field is defined below and implementation details are in Appendix.

vvv = gΦ(ppp, t) = gΦ(x,y,z, t) Φ are trainable parameters of MLPs. (2)

3

With these two networks and training images sampled from a dynamic 3D scene, the key challenge
is to effectively optimize these networks, such that the final learned velocity field is precise and
disentangled, supporting future frame extrapolation, motion transfer, and semantic decomposition.

3.2 Optimization of Keyframe Dynamic Radiance Fields

Given dynamic video frames of T timestamps {1 · · · t · · ·T}, there are two potential strategies to
optimize dynamic neural radiance fields.

• Strategy 1 - Dense Frame Optimization: This strategy uses all available video frames of a specific
dynamic 3D scene in the training set to optimize a dynamic radiance field. This means that for the
network fΘ, the time dimension t is densely sampled during optimization. Formally:

fΘ(x,y,z,θ ,φ , t) : t ∈ {1 · · · t · · ·T} (3)

However, it has two limitations: 1) It is inefficient to learn accurate 3D geometry and appearance
because this strategy is somewhat equivalent to modeling a dense number of static radiance fields
for all timestamps. 2) It is hard to obtain a disentangled physical velocity field for the entire 3D
scene, as the change of physical geometries is tightly encoded within the dynamic radiance field.

• Strategy 2 - Canonical Frame Optimization: This strategy optimizes a canonical representation
of 3D geometry and appearance, usually joined with another deformation or transportation network
to warp the future (T −1) timestamps back to the first timestamp. It can be seen as:

fΘ(x,y,z,θ ,φ , t) : t ∈ {1} (4)

However, such a strategy has a strong assumption that the corresponding point appearances
across different timestamps keep unchanged. Therefore, for dramatically changing 3D scenes, the
optimized geometry, appearance, and possible jointly learned physics properties tend to be inferior.

Our Strategy - Keyframe Optimization: In this regard, we propose to adopt a keyframe based
strategy to learn the dynamic radiance field fΘ. In particular, we uniformly sample K timestamps out
of the total T stamps to optimize fΘ. Formally:

fΘ(x,y,z,θ ,φ , tk) : tk ∈
{[

T/K
]
,2
[
T/K

]
,3
[
T/K

]
, · · ·T

}
(5)

Color images are rendered from the above keyframe dynamic radiance fields by sampling points
along rays. For each pixel, i.e. ray rrr, in a keyframe at time tk, the appearance CCC(rrr, tk) is obtained by
volume rendering of NeRF [37]. Then the network fΘ can be optimized by the following keyframe
photometric loss. Details of the rendering equation are in Appendix.

ℓkey f rame = ||CCC(rrr, tk)−C̄CC(rrr, tk)||, where C̄CC(rrr, tk) is the ground truth color observation. (6)

This keyframe optimization strategy, albeit simple, has two unique advantages: 1) It allows to
sufficiently and accurately fit the sparsely sampled dynamic 3D scene geometry and appearance given
the same network capacity. 2) It allows the remaining interframes belonging to the (T −K) time
stamps to be used for optimizing a disentangled velocity field, as discussed in Section 3.3.

3.3 Optimization of Interframe Velocity Fields

As to our separate interframe velocity field gΦ, it is impossible to directly supervise it using ground
truth labels as they cannot be collected in practice. However, there are some physics rules to regularize
the velocity field. The objects are transported by the velocity field, and the velocity field is transported
by itself according to some unobservable hidden forces. In order to keep the mass and appearance
of the objects, the velocity field needs to be divergence-free and obeys the basic law of momentum
conservation, whose details are in Appendix. Note that, more complex physics dynamics beyond
the daily 3D scenarios are out of the scope of this paper. In this regard, our velocity field, i.e.,
vvv = gΦ(ppp, t), needs to firstly satisfy the following two constraints.

∇ppp · vvv = 0,
∂vvv
∂ t

+ vvv ·∇pppvvv = aaa (7)

4

We simply turn these PDEs into the following two PINN losses [48] to optimize the velocity field.
Here we use vvv(ppp, t) as the network to avoid abuse of notation.

ℓdivergence_ f ree =
1

NM

N

∑
n=1

M

∑
m=1
||∇pppn · vvv(pppn, tm)||

ℓmomentum =
1

NM

N

∑
n=1

M

∑
m=1
||∂vvv(pppn, tm)

∂ tm
+ vvv(pppn, tm) ·∇pppnvvv(pppn, tm)−aaa|| (8)

where pppn is uniformly sampled in the whole 3D scene volume, and tm is uniformly sampled from
0 to the interested maximum extrapolation time tmax, and aaa is the general acceleration term learned
by another MLP-based network: (x,y,z, t)→ aaa, whose details are in Appendix. Nevertheless, with
such PINN losses, it is insufficient to optimize the velocity field itself, since there are infinitely many
solutions. To tackle this, we introduce an additional interframe optimization strategy.

Interframe Optimization Strategy: Naturally, the 3D scene geometry and appearance encoded in
the keyframe dynamic radiance field, once appropriately transported by the velocity field, should be
able to render 2D images to match with the ground truth observations in interframes belonging to
the remaining (T −K) timestamps. To enforce such a constraint, the key challenge is to determine
the color and density values for all 3D points at each interframe timestamp, such that the volume
rendering equation can be applied to estimate RGB for each pixel at the interframe timestamp, after
which the photometric loss can be adopted. To tackle this, we propose the following Algorithm 1.

Algorithm 1 At a specific interframe timestamp ti, given a light ray rrri with viewing angle (θ ,φ) and S sample
points {ppp1 · · · ppps · · · pppS} along the ray, the objective of this algorithm is to determine the color and density
values for the S points along rrri, denoted as: {(ccc1,σ1) · · ·(cccs,σs) · · ·(cccS,σS)}. In the meantime, we also have the
keyframe dynamic radiance field fΘ and velocity field gΦ.

Note that, we shall not directly query fΘ to obtain color and density for the S points because: 1) the dynamic
radiance field fΘ is never trained on interframe timestamps, thus the queried values are inaccurate; 2) the velocity
field gΦ will not be involved, and therefore the interframes cannot provide additional constraints to optimize gΦ.

Input:
• The ray direction (θ ,φ), the interframe timestamp ti, the S sample points on the ray {ppp1 · · · ppps · · · pppS};
• The K keyframe timestamps {t1 · · · tk · · · tK};
• The initialized and ongoing training networks: fΘ and gΦ;

Output:
• The color and density values for S sample points along the ray: {(ccc1,σ1) · · ·(cccs,σs) · · ·(cccS,σS)};

Preliminary step:
• Find the nearest keyframe timestamp t̂k for the interframe timestamp ti:

t̂k = argmin
tk

|tk− ti|

for ppps in {ppp1 · · · ppps · · · pppS} do
• Transport ppps to its corresponding point ppp′s at its nearest keyframe timestamp t̂k, according to its velocity

field. The position of ppp′s can be obtained by:

ppp′s = ppps +
∫ t̂k

ti
gΦ(ppps(t), t)dt, Runge-Kutta 2 solver [9] is applied in our implementation.

• Retrieve the volume density σ ′s and view-agnostic color feature vector eee′s for point ppp′s:

(σ ′s,eee
′
s)← fΘ(ppp′s, t̂k), Note: HexPlane backbone [6] can output a view-agnostic color feature vector eee′s.

• Assign the retrieved features of ppp′s to the original point ppps: (σs,eees)← (σ ′s,eee
′
s).

• Obtain the color cccs for point ppps:

cccs← f̃Θ(eees,θ ,φ), Note: f̃Θ is a subnetwork of HexPlane backbone [6] as detailed in Appendix.

• Output (cccs,σs) for point ppps.
After the above for loop, we obtain all color and density values for S sample points.

Having the color and density values of all 3D points along ray rrri in the interframe of timestamp ti,
the appearance CCC(rrri, ti) is obtained by volume rendering of NeRF [37]. Then both networks fΘ and
gΦ can be optimized by the following interframe photometric loss.

ℓinter f rame = ||CCC(rrri, ti)−C̄CC(rrri, ti)||, where C̄CC(rrri, ti) is the ground truth color observation. (9)

5

3.4 Joint Keyframe and Interframe Optimization

Technically, the keyframe dynamic radiance field fΘ can be firstly trained by ℓkey f rame only, and then
the interframe velocity field gΦ by ℓdivergence_ f ree + ℓmomentum + ℓinter f rame.

Nevertheless, we empirically find that simultaneously propagating errors of interframes back to the
radiance field fΘ helps achieve better performance overall. Therefore, we adopt the following joint
keyframe and interframe strategy to optimize both networks.

fΘ← (ℓkey f rame + ℓinter f rame) gΦ← (ℓdivergence_ f ree + ℓmomentum + ℓinter f rame) (10)

4 Experiments

Datasets: Our framework primarily focuses on learning meaningful physical velocity fields for
dynamic 3D scenes, instead of simply fitting video frames. Although there are a number of dynamic
3D scene datasets in the literature, they are mainly collected for the popular task of novel view
synthesis within the training time period, i.e., interpolation in time dimension. Besides, the underlying
motions of these scenes tend to be chaotic, and estimating their future motions or transferring their
motions are hardly meaningful or entertaining in practice. In this regard, we introduce two new
synthetic datasets: 1) Dynamic Object dataset, and 2) Dynamic Indoor Scene dataset.

1) Dynamic Object Dataset: This dataset consists of 6 distinct 3D objects, each of which displays
a unique motion pattern, including either rigid or deformable movements in 3D space. These 3D
objects and their realistic motions are all designed by unknown external practitioners from SketchFab,
and we purchased their Licenses and will make them available for free use in the community.

For each 3D object, we collect RGB images at 15 different viewing angles over 1 second, where
each viewing angle has 60 frames captured. We reserve the first 45 frames at randomly picked 12
viewing angles as the training split, i.e., 540 frames, while leaving the 45 frames at the remaining 3
viewing angles for testing interpolation ability, i.e., 135 frames for novel view synthesis within the
training time period, and keeping the last 15 frames at all 15 viewing angles for evaluating future
frame extrapolation, i.e., 225 frames. More details are in Appendix.

2) Dynamic Indoor Scene Dataset: We also collect another synthetic dynamic 3D dataset, which
includes 4 indoor scenes with multiple complex 3D objects undergoing different rigid body motions.
There are about 4 objects such as tables or chairs in each 3D scene. Basically, such an indoor dataset
aims to simulate potential scenarios for robotics or VR applications to understand dynamic 3D scenes.

Since the indoor scene is significantly more challenging, for each 3D scene, we collect RGB images
at 30 viewing angles over 1 second, where each viewing angle has 60 frames captured. Similarly,
we reserve the first 45 frames at randomly picked 25 viewing angles as the training split, i.e., 1125
frames, while leaving the 45 frames at the remaining 5 viewing angles for testing interpolation ability,
i.e., 225 frames, and keeping the last 15 frames at all 30 viewing angles for evaluating future frame
extrapolation, i.e., 450 frames. The ground truth object segmentation masks are also collected for
evaluating the semantic decomposition capability in Section 4.2. More details are in Appendix.

While existing dynamic 3D scene modeling techniques and the commonly used datasets in literature
are mainly designed for novel view rendering/interpolation within the training time period, rather
than for extrapolation beyond the training time period, we evaluate our method on two selected scenes
from a real-world dataset: NVIDIA Dynamic Scene[73]. It captures real-world dynamic scenes by a
static camera rig with 12 cameras. For each scene, we clip 60 frames with reasonable and predictable
motions. We reserve the first 46 frames at randomly picked 11 cameras as the training split, i.e., 506
frames, while leaving the 46 frames at the remaining 1 camera for testing interpolation ability, i.e., 46
frames for novel view synthesis within the training time period, and keeping the last 14 frames at all
12 cameras for evaluating future frame extrapolation, i.e., 168 frames.

Baselines: We carefully choose three representative groups of methods as our baselines: 1) dense
frame optimization method T-NeRF [46] and NSFF [33], 2) canonical frame optimization methods
D-NeRF [46] and TiNeuVox [18], 3) PINN methods T-NeRFPINN and HexPlanePINN . Both methods
are adapted by us via integrating a separate velocity field supervised by the same PINN losses as ours.

Metrics: For evaluating both interpolation and future frame extrapolation and motion transfer, the
standard metrics PSNR, SSIM, and LPIPS scores are reported across testing views. For evaluating

6

Table 1: Quantitative results of all methods for both novel view interpolation and future frame
extrapolation on Dynamic Object Dataset and Dynamic Indoor Scene Dataset.

Dynamic Object Dataset Dynamic Indoor Scene Dataset
Interpolation Extrapolation Interpolation Extrapolation

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
T-NeRF[46] 13.163 0.709 0.353 13.818 0.739 0.324 24.944 0.742 0.336 22.242 0.700 0.363
D-NeRF[46] 14.158 0.697 0.352 14.660 0.737 0.312 25.380 0.766 0.300 20.791 0.692 0.349

TiNeuVox[18] 27.988 0.960 0.063 19.612 0.940 0.073 29.982 0.864 0.213 21.029 0.770 0.281
T-NeRFPINN 15.286 0.794 0.293 16.189 0.835 0.230 16.250 0.441 0.638 17.290 0.477 0.618

HexPlanePINN 27.042 0.958 0.057 21.419 0.946 0.067 25.215 0.763 0.389 23.091 0.742 0.401
NSFF[33] - - - - - - 29.365 0.829 0.278 24.163 0.795 0.289

NVFi(Ours) 29.027 0.970 0.039 27.594 0.972 0.036 30.675 0.877 0.211 29.745 0.876 0.204

Table 2: Quantitative results of our method and baselines on the NVIDIA Dynamic Scene dataset.
Truck Skating

Interpolation Extrapolation Interpolation Extrapolation
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

TiNeuVox[18] 27.230 0.846 0.229 24.887 0.848 0.209 29.377 0.889 0.202 24.224 0.878 0.220
HexPlanePINN 25.494 0.768 0.337 24.991 0.768 0.325 24.447 0.867 0.225 23.955 0.868 0.232

NVFi(Ours) 27.276 0.840 0.235 28.269 0.855 0.220 26.999 0.848 0.227 28.654 0.896 0.208

semantic decomposition, the Average Precision (AP), Panoptic Quality (PQ) and F1 scores with an
IoU threshold of 0.5, together with the mean Intersection over Union (mIoU) scores are reported.

4.1 Evaluation of Future Frame Extrapolation
We first evaluate the extrapolation capability of our framework. In particular, our method and 5
baselines except NSFF are trained from scratch on each of the 6 objects in Dynamic Object dataset,
and all methods on each of the 4 scenes in Dynamic Indoor Scene dataset, all in a scene-specific
fashion. In total, (6×6)+(7×4) = 64 models are trained for comparison. The keyframe number
K is set as 16 in our method for Dynamic Object Dataset and 4 for Dynamic Indoor Scene Dataset.
As for real-world NVIDIA Dynamic Scene dataset, we evaluate our model and 2 baselines with
comparable performance on our own datasets, where the keyframe number K is set as 4 in our method.

Analysis: Table 1 compares all methods regarding the quality of view synthesis for future frame
extrapolation. The view synthesis for interpolation is also included for comparison. It can be seen
that: 1) our NVFi achieves significantly better results than all baselines on both dynamic datasets,
particularly on the critical task of future frame extrapolation, although the strong baseline TiNeuVox
shows excellent performance for interpolation. 2) Naïvely adding physics priors into an existing
dynamic NeRF tends to be inferior as shown by T-NeRFPINN and HexPlanePINN . This clearly verifies
the effectiveness of our special design of the joint keyframe and interframe optimization strategy.
More qualitative results are in Figure 4(a). Table 2 compares our method and two best baselines. It
can be seen that, even if our NVFi only gets comparable performance in interpolation, it still achieves
the best performance in extrapolation without any performance drop compared with interoplation
thanks to the accurate motion predictions. More qualitative results are in Figure 3.

4.2 Evaluation of 3D Semantic Scene Decomposition
Having the well-trained keyframe dynamic radiance field fΘ and interframe velocity field gΦ for each
3D scene in the Dynamic Indoor Scene dataset in Section 4.1, naturally, all individual 3D objects such
as chairs and tables undergoing different movements are supposed to be automatically discovered,
segmented, and tracked without needing any extra object annotations as supervision signals.

In order to achieve this desirable unsupervised object decomposition objective, a naïve strategy is to
query the velocity values of dense 3D points in space, followed by a velocity clustering module to
group points into objects. However, such a strategy fundamentally fails to recognize object shapes
but just identifies similar motions, thereby tracking objects is also infeasible. A more elegant strategy
is to directly learn an object code oooppp (usually one-hot) for each 3D point ppp within the entire 3D scene
volume at the initial timestamp t = 0, without retraining any neural layer of the well-trained networks
fΘ and gΦ but just using them. This would clearly allow all dynamic 3D objects in the scene to be
segmented and tracked over time. To this end, we simply introduce a simple 4-layer MLP as the

7

semantic scene decomposition network hΨ. It takes a 3D point ppp as input, directly regressing its
object code oooppp, i.e., oooppp = hΨ(ppp) which is optimized using the following steps:

• First, given the well-trained keyframe dynamic radiance field fΘ, we uniformly sample dense 3D
points at timestamp t = 0, obtaining their density values. Only 3D points with sufficiently large
densities are kept as valid points for the subsequent steps.

• Second, the valid 3D points are fed into our new object segmentation network hΨ (initialized but
yet to be trained), obtaining their corresponding object codes.

• Third, the valid points are transported to their correspondences at a random timestamp t ′ using the
well-trained velocity field gΦ. Motion vectors of these points from 0 to t ′ are computed.

• Lastly, given per-point motions, we employ the dynamic rigid consistency and spatial smoothness
losses proposed in OGC [54] to optimize the object segmentation network hΨ.

Once the object segmentation network hΨ is learned, all dynamic objects at time t = 0 are segmented.
With the aid of the well-trained velocity field, in any subsequent timestamps, all these identified
objects can be naturally tracked. In addition, with the aid of well-trained keyframe dynamic radiance
field fΘ, we simply use the accumulated weights computed in volume rendering to combine point
object codes along a given light ray, thus rendering accurate object segmentation 2D masks for any
camera poses at any given timestamps. More details of the implementation are in Appendix.

Table 3: Quantitative results of scene decomposi-
tion on the Synthetic Indoor Scene dataset.

AP↑ PQ↑ F1↑ mIoU↑
Mask2Former [11] 65.37 73.14 78.29 64.42

D-NeRF [46] 57.26 46.15 59.02 46.58
NVFi(Ours) 91.21 78.74 93.75 67.64

We evaluate the semantic scene decomposition
ability on the Dynamic Indoor Scene dataset. In
particular, we render all 2D object segmentation
masks from our network at the 30 viewing an-
gles over 60 frames for all scenes, i.e., 7200 2D
masks, and then evaluate them against ground
truth masks. For a fair comparison, we also train
a similar object segmentation network for the
baseline D-NeRF [46] at time t = 0, using its learned deformation vectors as supervision signals and
tracking signals. Note that, the deformation vectors are converted back as motion vectors. In addition,
we include an image-based object segmentation method, the powerful Mask2Former [11] pre-trained
on COCO [34] dataset, as a fully-supervised baseline. More implementation details are in Appendix.

Analysis: As shown in Table 3, we can see that: 1) Our object segmentation performance is superior to
D-NeRF [46], essentially because our velocity field learns better scene dynamics than the deformation
field, thus enabling the object segmentation network to be better optimized. 2) We also clearly surpass
the powerful pre-trained Mask2Former [11] on all metrics. The reasons are two-fold. First, we
fundamentally rely on motion patterns rather than appearances to discover objects, thus being able
to generalize to unseen object types ("Genome") or scenes ("Factory") better than Mask2Former
[11]. Second, our learned object field inherently leverages multi-view consistency, thus allowing the
segmentation of partially occluded objects. Figure 4(b) shows qualitative results.

4.3 Evaluation of Motion Transfer
We further demonstrate the ability of our model to transfer a well-trained velocity field to another
separately trained static scene. All objects in the new scene are expected to undergo the same
dynamics as learned in the velocity field. The more accurate the learned velocity field, the more
realistic and entertaining the new 3D scene will be, after applying the learned dynamics.

Table 4: Quantitative results of motion trans-
fer on Synthetic Indoor Scene dataset.

PSNR↑ SSIM↑ LPIPS↓
D-NeRF [46] 16.124 0.327 0.550
NVFi(Ours) 16.178 0.334 0.551

In order to evaluate the performance, we create a new
3D scene, called Gnome-new, being similar to the
scene Gnome in our Dynamic Indoor Scene dataset.
We apply the same dynamics of Gnome on Gnome-
new, recording 30*60 = 1800 frames as its ground
truth observations. To explicitly show the advantage
of our learned disentangled velocity field, we sepa-
rately train a static TensoRF [7] model for Gnome-new only using its frames at time t = 0. Note
that, any other NeRF variants are also applicable here. We then pick up the well-trained velocity
field of Gnome in Section 4.1, after which we directly apply the learned velocity field on the newly
trained static TensoRF model, rendering 30*60 frames for a comparison with the ground truth images.
Similarly, we apply the deformation field learned by D-NeRF in Section 4.1 in the same transferring
pipeline, rendering 2D images for comparison. More implementation details are in Appendix.

8

Ti
N

eu
Vo

x
H

ex
Pl

an
e

(P
IN

N
)

N
V

Fi
(O

ur
s)

G
T

𝑡 = 0 𝑡 = 0.5 𝑡 = 1 𝑡 = 0 𝑡 = 0.5 𝑡 = 1
ExtrapolationInterpolation ExtrapolationInterpolation

Figure 3: Qualitative results of baselines and our method on NVIDIA Dynamic Scene dataset.

Analysis: Figure 4(c) shows that our method clearly keeps the geometry and appearance of the new
static object, thanks to the accurately learned disentangled velocity field, whereas D-NeRF [46] fails
to do so. However, we observe that in Table 4 our advantage is not so significant. This is because the
static reconstruction of Gnome-new lacks supervision signals for ground planes occluded by objects,
leading to rendering artifacts in these regions when objects are moved away by motion transfer. Our
strong ability of motion transfer is further validated by additional experiments on our Dynamic Object
Dataset in Appendix.

4.4 Ablation Study

Table 5: Quantitative results of ablation
studies on Dynamic Object dataset.

Extrapolation
Joint Physics #K PSNR↑ SSIM↑ LPIPS↓

✓ ✓ 16 27.594 0.972 0.036
✗ ✓ 16 24.792 0.955 0.059
✓ ✗ 16 25.537 0.968 0.040
✓ ✓ 8 27.490 0.974 0.036
✓ ✓ 32 24.902 0.964 0.037

(1) Without Joint Optimization: We only use
ℓkey f rame to train the keyframe dynamic radiance
field fΘ, followed by the (ℓdivergence_ f ree + ℓmomentum +
ℓinter f rame) to separately train the velocity field gΦ.

(2) Removing Physics Constraints: The PINN losses
(ℓdivergence_ f ree + ℓmomentum) are removed to train gΦ.

(3) Choice of Keyframe Number K: We set the
keyframe number K as 8 and 32, while we choose
K = 16 in main experiments.

Table 6: Quantitative results of ablation
studies on Dynamic Object dataset.

Extrapolation
Camera Numbers PSNR↑ SSIM↑ LPIPS↓

12 27.594 0.972 0.036
6 25.114 0.959 0.122
3 21.370 0.917 0.084

(4) Reducing the Number of Cameras: we reduce
the number of cameras used in our Dynamic Object
datasets to half of the number, i.e., 6 cameras, and one
quarter of the number, i.e., 3 cameras.

Table 5 and Table 6 shows the ablation results for future
frame extrapolation on our Dynamic Object dataset.
We can see that: 1) The joint keyframe and interframe
optimization strategy is critical to enable our method to learn accurate velocity field as well as
dynamic radiance field. 2) Once the keyframe number K becomes larger, the extrapolation capability
clearly drops, validating that the dense supervision is inferior to help learn physics velocity overall. 3)
The extremely sparse camera views are unlikely to capture sufficient visual information for physical
motion learning. More ablation results are in Appendix.

5 Conclusion

In this paper, we extend the appealing radiance field to represent dynamic 3D scenes from multi-
view videos. Unlike most of the existing methods which focus on novel view synthesis within the
training time period, our method learns to disentangle the physical velocity field from the geometry
and appearance of 3D scenes by jointly optimizing two neural networks: the keyframe dynamic
radiance field and the interframe velocity field. Extensive experiments on three dynamic datasets
demonstrate that our framework learns accurate velocity, enabling successful applications in future
frame extrapolation, semantic scene decomposition, and motion transfer.

9

22159290 24959290

T-
N
eR
F

D
-N
eR
F

Ti
N
eu
Vo
x

T-
N
eR
F

(P
IN
N
)

H
ex
Pl
an
e

(P
IN
N
)

N
V
Fi

(O
ur
s)

G
ro
un
d

Tr
ut
h

𝑡 = 0 𝑡 = 0.5 𝑡 = 1 𝑡 = 1 𝑡 = 0 𝑡 = 0.5 𝑡 = 1 𝑡 = 1

(a) Future Frame Extrapolation

(b) Semantic Scene Decomposition (c) Motion Transfer

D
-N
eR
F

M
as
k2
-

Fo
rm
er

N
V
Fi

(O
ur
s)

G
T

Im
ag
e D-NeRF NVFi (Ours) GT

𝑡
=
0

𝑡
=
0.
5

𝑡
=
1

Interpolation Extrapolation Interpolation Extrapolation

Figure 4: Qualitative results of baselines and our method on the three tasks. More qualitative results
can be found in Appendix and our project page: https://vlar-group.github.io/NVFi.html

10

https://vlar-group.github.io/NVFi.html

Acknowledgements: This work was supported in part by Research Grants Council of Hong Kong
under Grants 25207822 & 15225522.

References
[1] B. Attal, E. Laidlaw, A. Gokaslan, C. Kim, C. Richardt, J. Tompkin, and M. O’Toole. ToRF:

Time-of-Flight Radiance Fields for Dynamic Scene View Synthesis. NeurIPS, 2021.

[2] D. Baieri, S. Esposito, F. Maggioli, and E. Rodolà. Fluid Dynamics Network: Topology-
Agnostic 4D Reconstruction via Fluid Dynamics Priors. arXiv:2303.09871, 2023.

[3] J. T. Barron, B. Mildenhall, M. Tancik, P. Hedman, and R. M.-b. Pratul. Mip-NeRF: A Multiscale
Representation for Anti-Aliasing Neural Radiance Fields. ICCV, 2021.

[4] J. T. Barron, K. Park, S. M. Seitz, and R. Martin-brualla. Nerfies: Deformable Neural Radiance
Fields. ICCV, 2021.

[5] H. Cai, W. Feng, X. Feng, Y. Wang, and J. Zhang. Neural Surface Reconstruction of Dynamic
Scenes with Monocular RGB-D Camera. NeurIPS, 2022.

[6] A. Cao and J. Johnson. HexPlane: A Fast Representation for Dynamic Scenes. CVPR, 2023.

[7] A. Chen, Z. Xu, A. Geiger, J. Yu, and H. Su. TensoRF: Tensorial Radiance Fields. ECCV, 2022.

[8] H. Chen, R. Wu, E. Grinspun, C. Zheng, and P. Y. Chen. Implicit Neural Spatial Representations
for Time-dependent PDEs. arXiv:2210.00124, 2022.

[9] R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud. Neural Ordinary Differential
Equations. NeurIPS, 2018.

[10] Z. Chen and H. Zhang. Learning Implicit Fields for Generative Shape Modeling. CVPR, 2019.

[11] B. Cheng, I. Misra, A. G. Schwing, A. Kirillov, and R. Girdhar. Masked-attention Mask
Transformer for Universal Image Segmentation. CVPR, 2022.

[12] J. Chibane, A. Mir, and G. Pons-Moll. Neural Unsigned Distance Fields for Implicit Function
Learning. NeurIPS, 2020.

[13] C. B. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese. 3D-R2N2: A Unified Approach for
Single and Multi-view 3D Object Reconstruction. ECCV, 2016.

[14] M. Chu, L. Liu, Q. Zheng, E. Franz, H. P. Seidel, C. Theobalt, and R. Zayer. Physics informed
neural fields for smoke reconstruction with sparse data. TOG, 2022.

[15] Y. Deng, H.-X. Yu, J. Wu, and B. Zhu. Learning Vortex Dynamics for Fluid Inference and
Prediction. ICLR, 2023.

[16] Y. Du, Y. Zhang, and J. B. Tenenbaum. Neural Radiance Flow for 4D View Synthesis and Video
Processing. ICCV, 2021.

[17] H. Fan, H. Su, and L. Guibas. A Point Set Generation Network for 3D Object Reconstruction
from a Single Image. CVPR, 2017.

[18] J. Fang, X. Wang, and M. Nießner. Fast Dynamic Radiance Fields with Time-Aware Neural
Voxels. SIGGRAPH Asia, 2022.

[19] S. Fridovich-Keil, G. Meanti, F. Warburg, B. Recht, and A. Kanazawa. K-Planes: Explicit
Radiance Fields in Space, Time, and Appearance. CVPR, 2023.

[20] G. Gafni, J. Thies, M. Zollhöfer, and M. Nießner. Dynamic neural radiance fields for monocular
4D facial avatar reconstruction. CVPR, 2021.

[21] C. Gao, A. Saraf, J. Kopf, and J.-B. Huang. Dynamic View Synthesis from Dynamic Monocular
Video. ICCV, 2021.

11

[22] F. Gibou, D. Hyde, and R. Fedkiw. Sharp interface approaches and deep learning techniques for
multiphase flows. Journal of Computational Physics, 2019.

[23] T. Groueix, M. Fisher, V. G. Kim, B. C. Russell, and M. Aubry. A Papier-Mache Approach to
Learning 3D Surface Generation. CVPR, 2018.

[24] Z. Hao, S. Liu, Y. Zhang, C. Ying, Y. Feng, H. Su, and J. Zhu. Physics-Informed Machine
Learning: A Survey on Problems, Methods and Applications. arXiv:2211.08064, 2022.

[25] Z. Hao, C. Ying, H. Su, J. Zhu, J. Song, and Z. Cheng. Bi-level Physics-Informed Neural
Networks for PDE Constrained Optimization Using Broyden’s Hypergrandients. ICLR, 2023.

[26] R. Z. Horace He. functorch: Jax-like composable function transforms for pytorch. https:
//github.com/pytorch/functorch, 2021.

[27] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang. Physics-
informed machine learning. Nature Reviews Physics, 2021.

[28] H. Kato, Y. Ushiku, and T. Harada. Neural 3D Mesh Renderer. CVPR, 2018.

[29] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[30] I. E. Lagaris, A. Likas, and D. I. Fotiadis. Artificial neural networks for solving ordinary and
partial differential equations. IEEE Transactions on Neural Networks, 1998.

[31] T. Li, M. Slavcheva, M. Zollhoefer, S. Green, C. Lassner, C. Kim, T. Schmidt, S. Lovegrove,
M. Goesele, and Z. Lv. Neural 3D Video Synthesis From Multi-View Video. CVPR, 2022.

[32] X. Li, Y.-L. Qiao, P. Y. Chen, K. M. Jatavallabhula, M. Lin, C. Jiang, and C. Gan. PAC-
NeRF: Physics Augmented Continuum Neural Radiance Fields for Geometry-Agnostic System
Identification. ICLR, 2023.

[33] Z. Li, S. Niklaus, N. Snavely, and O. Wang. Neural Scene Flow Fields for Space-Time View
Synthesis of Dynamic Scenes. CVPR, 2021.

[34] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona, D. Ramanan,
C. L. Zitnick, and P. Dollár. Microsoft COCO: Common Objects in Context. ECCV, 2014.

[35] Y.-L. Liu, C. Gao, A. Meuleman, H.-Y. Tseng, A. Saraf, C. Kim, Y.-Y. Chuang, J. Kopf, and
J.-B. Huang. Robust Dynamic Radiance Fields. CVPR, 2023.

[36] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger. Occupancy Networks:
Learning 3D Reconstruction in Function Space. CVPR, 2019.

[37] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng. NeRF:
Representing Scenes as Neural Radiance Fields for View Synthesis. ECCV, 2020.

[38] S. Mishra and R. Molinaro. Estimates on the generalization error of physics-informed neural
networks for approximating PDEs. IMA Journal of Numerical Analysis, 2023.

[39] A. Noguchi, X. Sun, S. Lin, and T. Harada. Neural Articulated Radiance Field. ICCV, 2021.

[40] J. Ost, F. Mannan, N. Thuerey, J. Knodt, and F. Heide. Neural Scene Graphs for Dynamic
Scenes. CVPR, 2021.

[41] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove. DeepSDF: Learning
Continuous Signed Distance Functions for Shape Representation. CVPR, 2019.

[42] K. Park, U. Sinha, P. Hedman, J. T. Barron, S. Bouaziz, D. B. Goldman, R. Martin-Brualla, and
S. M. Seitz. HyperNeRF: A Higher-Dimensional Representation for Topologically Varying
Neural Radiance Fields. SIGGRAPH Asia, 2021.

[43] S. Park, M. Son, S. Jang, Y. C. Ahn, J.-Y. Kim, and N. Kang. Temporal Interpolation Is All You
Need for Dynamic Neural Radiance Fields. CVPR, 2023.

12

https://github.com/pytorch/functorch
https://github.com/pytorch/functorch

[44] S. Peng, J. Dong, Q. Wang, S. Zhang, Q. Shuai, X. Zhou, and H. Bao. Animatable Neural
Radiance Fields for Modeling Dynamic Human Bodies. ICCV, 2021.

[45] S. Peng, Y. Zhang, Y. Xu, Q. Wang, Q. Shuai, H. Bao, and X. Zhou. Neural Body: Implicit
Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic
Humans. CVPR, 2021.

[46] A. Pumarola, E. Corona, G. Pons-Moll, and F. Moreno-Noguer. D-NeRF: Neural Radiance
Fields for Dynamic Scenes. CVPR, 2021.

[47] Y.-L. Qiao, A. Gao, and M. C. Lin. NeuPhysics: Editable Neural Geometry and Physics from
Monocular Videos. NeurIPS, 2022.

[48] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686–707, 2019.

[49] M. Raissi, A. Yazdani, and G. E. Karniadakis. Hidden fluid mechanics: Learning velocity and
pressure fields from flow visualizations. Science, 2020.

[50] A. Raj, J. Tanke, J. Hays, M. Vo, C. Stoll, and C. Lassner. ANR: Articulated Neural Rendering
for Virtual Avatars. CVPR, 2021.

[51] Y. Shin, J. Darbon, and G. E. Karniadakis. On the convergence of physics informed neural
networks for linear second-order elliptic and parabolic type PDEs. arXiv:2004.01806, 2020.

[52] J. Sirignano and K. Spiliopoulos. DGM: A deep learning algorithm for solving partial differential
equations. Journal of Computational Physics, 375:1339–1364, 2018.

[53] V. Sitzmann, J. N. P. Martel, A. W. Bergman, D. B. Lindell, and G. Wetzstein. Implicit Neural
Representations with Periodic Activation Functions. NeurIPS, 2020.

[54] Z. Song and B. Yang. OGC: Unsupervised 3D Object Segmentation from Rigid Dynamics of
Point Clouds. NeurIPS, 2022.

[55] S.-Y. Su, F. Yu, M. Zollhoefer, and H. Rhodin. A-NeRF: Articulated Neural Radiance Fields for
Learning Human Shape, Appearance, and Pose. NeurIPS, 2021.

[56] M. Tancik, P. P. Srinivasan, B. Mildenhall, N. Raghavan, and J. T. Barron. Fourier Features Let
Networks Learn High Frequency Functions in Low Dimensional Domains. NeurIPS, 2020.

[57] M. Tatarchenko, A. Dosovitskiy, and T. Brox. Octree Generating Networks: Efficient Convolu-
tional Architectures for High-resolution 3D Outputs. ICCV, 2017.

[58] E. Tretschk, A. Tewari, V. Golyanik, M. Zollhöfer, C. Lassner, and C. Theobalt. Non-Rigid
Neural Radiance Fields: Reconstruction and Novel View Synthesis of a Deforming Scene from
Monocular Video. ICCV, 2021.

[59] A. Trevithick and B. Yang. GRF: Learning a General Radiance Field for 3D Representation and
Rendering. ICCV, 2021.

[60] K. Um, R. Brand, Y. R. Fei, P. Holl, and N. Thuerey. Solver-in-the-Loop: Learning from
Differentiable Physics to Interact with Iterative PDE-Solvers. NeurIPS, 2020.

[61] B. Wang, L. Chen, and B. Yang. DM-NeRF: 3D Scene Geometry Decomposition and Manipu-
lation from 2D Images. ICLR, 2023.

[62] B. Wang, Z. Yu, B. Yang, J. Qin, T. Breckon, L. Shao, N. Trigoni, and A. Markham. RangeUDF:
Semantic Surface Reconstruction from 3D Point Clouds. arXiv:2204.09138, 2022.

[63] C. Wang, B. Eckart, S. Lucey, and O. Gallo. Neural Trajectory Fields for Dynamic Novel View
Synthesis. arXiv:2105.05994, 2021.

[64] P.-s. Wang, Y. Liu, Y.-X. Guo, C.-Y. Sun, and X. Tong. O-CNN: Octree-based Convolutional
Neural Networks for 3D Shape Analysis. TOG, 36, 2017.

13

[65] S. Wang, H. Wang, and P. Perdikaris. Learning the solution operator of parametric partial
differential equations with physics-informed DeepONets. Science Advances, 7(40), 2021.

[66] T.-C. Wang, A. Mallya, and M.-Y. Liu. One-Shot Free-View Neural Talking-Head Synthesis for
Video Conferencing. CVPR, 2021.

[67] Z. Wang, T. Bagautdinov, S. Lombardi, T. Simon, J. Saragih, J. Hodgins, and M. Zollhöfer.
Learning Compositional Radiance Fields of Dynamic Human Heads. CVPR, 2021.

[68] C.-Y. Weng, B. Curless, P. P. Srinivasan, J. T. Barron, and I. Kemelmacher-Shlizerman. Human-
NeRF: Free-viewpoint Rendering of Moving People from Monocular Video. CVPR, 2022.

[69] W. Xian, J.-B. Huang, J. Kopf, and C. Kim. Space-time Neural Irradiance Fields for Free-
Viewpoint Video. CVPR, 2021.

[70] H. Xu, T. Alldieck, and C. Sminchisescu. H-NeRF: Neural Radiance Fields for Rendering and
Temporal Reconstruction of Humans in Motion. NeurIPS, 2021.

[71] B. Yang, S. Rosa, A. Markham, N. Trigoni, and H. Wen. Dense 3D Object Reconstruction from
a Single Depth View. TPAMI, 2019.

[72] B. Yang, S. Wang, A. Markham, and N. Trigoni. Robust Attentional Aggregation of Deep
Feature Sets for Multi-view 3D Reconstruction. IJCV, 128:53–73, 2020.

[73] J. S. Yoon, K. Kim, O. Gallo, H. S. Park, and J. Kautz. Novel view synthesis of dynamic scenes
with globally coherent depths from a monocular camera, 2020.

[74] M. You and J. Hou. Decoupling Dynamic Monocular Videos for Dynamic View Synthesis.
arXiv:2304.01716, 2023.

[75] W. Yuan, Z. Lv, T. Schmidt, and S. Lovegrove. STaR: Self-supervised Tracking and Reconstruc-
tion of Rigid Objects in Motion with Neural Rendering. CVPR, 2021.

[76] S. Zhi, T. Laidlow, S. Leutenegger, and A. J. Davison. In-Place Scene Labelling and Under-
standing with Implicit Scene Representation. ICCV, 2021.

[77] C. Zou, E. Yumer, J. Yang, D. Ceylan, and D. Hoiem. 3D-PRNN: Generating Shape Primitives
with Recurrent Neural Networks. ICCV, 2017.

14

A Appendix

The appendix includes:

• Rendering equation.
• Implementation details of keyframe dynamic radiance field and velocity field.
• Additional details of physics prior.
• Implementation details of joint optimization.
• Additional details of datasets.
• Implementation details about semantic scene decomposition.
• Implementation details about motion transfer.
• Additional quantitative results for ablation study.
• Additional quantitative & qualitative results for future frame extrapolation.
• Additional quantitative & qualitative results for semantic scene decomposition.
• Additional qualitative results for motion transfer.

In addition, we provide a demo video for better visualization of qualitative results on multiple tasks,
appended in the supplementary materials.

A.1 Rendering Equation

Neural radiance fields were initially introduced [37] to model 3D scenes by associating the coordinate
(x,y,z) and view direction (θ ,φ) of each point in space with its color, represented by vector c, and
density, denoted by σ . We keep the same rendering equation to obtain the expected color C(ri, ti) of
a pixel in the image captured by a camera at time ti, a ray ri(s) = oi + sdi is involved, which marches
from the camera’s center towards the pixel. Here, oi and di represent the ray’s origin and direction,
respectively, while s signifies the distance from a point to the camera, ranging from a predefined near
bound sn to a far bound s f . The pixel color is rendered by sampling a series of points along the ray
and performing classical volume rendering:

Ĉ(r) =
N

∑
i=1

Ti(1− exp(−σiδi))ci,

Ti = exp(−
i−1

∑
j=1

σ jδ j),

(11)

where δi represents the distance between the ith and (i+1)th sample point, and N denotes the number
of sampled points. Equation (11) connects real 3D points with image pixels by accumulating colors
ci and densities σi of sample points along the ray.

A.2 Implementation Details of Keyframe Dynamic Radiance Field

We adapt HexPlane[6] to parameterize volumetric keyframes. It is a direct extension of static
TensoRF[7] to a dynamic radiance field. Instead of using concatenation to combine the features from
different planes as TensoRF and HexPlane, we use Hadamard Production as used in K-Plane[19],
which shows stronger ability in representing complex geometries. The formal definition of our
Keyframe Dynamic Radiance Field is as follows:

If we denote τk as the time step corresponding to the kth keyframe, we can write:

A(xi,τk) = B(f1(xi,yi)⊙g1(zi,τk)⊙ f2(xi,zi)⊙g2(yi,τk)⊙ f3(yi,zi)⊙g3(xi,τk)) , (12)

and

σ(xi,τk) = 1⊤ (h1(xi,yi)⊙k1(zi,τk)⊙h2(xi,zi)⊙k2(yi,τk)⊙h3(yi,zi)⊙k3(xi,τk)) ,

where σ(xi,τk) is the predicted sigma for point xi, A(xi,τk) is the predicted appearance feature. And
f j, h j, g j and k j are vector-valued grid functions with output dimension Mσ or Mapp respectively. The

15

final density value σ is the summation of the Mσ dimension density feature, and the final appearance
feature is a weighted sum of the Mapp dimension output feature, where B is a simple linear layer.
Note unlike HexPlane[6] and K-Planes[19], we only do grid interpolation to find the feature values
for spatial coordinates, while we pick the time dimension according to the corresponding keyframe
index. The final RGB color c is regressed from a 2-layer MLP with appearance feature and view
direction as inputs. With points’ density σ and colors c, images are rendered via volumetric rendering
Equation (11).

In our implementation, for all the experiments, we set Mσ as 24 and Mapp as 48, while for different
experiments, we use different keyframe numbers. For object extrapolation task, we set keyframe
number as 16, due to the more complex dynamics of the deformable objects. For both indoor
extrapolation task and segmentation task, we set keyframe number as 4. The color decoder MLP has
2 hidden layers, each with 128 nodes.

A.3 Implementation Details of Velocity Field

The velocity field is defined as follows:

vvv = gΦ(ppp, t) = gΦ(x,y,z, t) = wΦ(x,y,z, t)Mv(x,y,z) Φ are trainable parameters of MLPs. (13)

Here we decompose the velocity field as a weight MLP wΦ along with a velocity basis field. In our
experiment, we find this can make the velocity convergence faster. The velocity basis field is defined
as:

Mv(x,y,z) =

1 0 0
0 1 0
0 0 1
−z 0 x
−y x 0
0 −z y

 . (14)

The weight MLP is implemented as 4 hidden layers with 128 nodes, with a positional encoder of dim
3 as in [37]. The output is a weight vector w ∈ R6, which could be regarded as the linear velocity in
x, y, z directions and angular velocity rounding x, y, z axis respectively.

A.4 Additional Details of Physics Prior

We enforce the appearance and volume density features, denoted as fi both admit the conservation
laws characterized by the divergence-free implicit velocity field v(x, t):
∂ fi

∂ t
+∇ · (v fi) =

∂ fi

∂ t
+v ·∇ fi + fi∇ ·v =

D fi

Dt
+ fi∇ ·v = 0, where

D
Dt

is the material derivative.

Intuitively, we assume the objects moved by the velocity field have a property of local rigidity, and
the implicit velocity field should be incompressible (or in other words free of sources or sinks of
mass). Then we can get the divergence-free constraint ∇ ·v = 0.

The momentum of a velocity field is defined to be ρv, per unit volume. Newton’s second law of
motion states that momentum is conserved by a mechanical system of masses if no forces act on the
system. If F(x, t) is the force acting on the velocity, per unit volume, then we immediately have

ρ
Dvi

Dt
= F,

where we assume the implicit velocity field has uniform mass density ρ . As a result, the momentum
conservation constraint could be derived as:

Dvi

Dt
=

∂v
∂ t

+v ·∇v =
F
ρ
= a. (15)

A.5 Implementation Details of Joint Optimization

During training, our keyframe radiance field starts with a space grid size of 643 and increases its
resolution in log scale at 2k, 4k, 6k, 8k, 10k iterations till 2003. The learning rate for feature planes is
0.02, and the learning rate for color decoding neural network and velocity field is 0.001. All learning

16

rates are exponentially decayed to 1/10 at final iteration 30k. We use Adam[29] for optimization with
β1 = 0.9,β2 = 0.99. We apply Total Variational loss [7, 6, 19] on all feature planes with λ = 0.001
for spatial axes.

We sample 262144 points uniformly in the space [−1,1]3 and time [0,1] for dynamic object datasets,
and 1310672 points for dynamic indoor scene datasets every iteration. The jacobians of velocity
required is calculated by using autograd from functorch[26]. For all the sampled points, we only
evaluate the physics losses at occupied region, where the grid alpha α = 1−exp−σ ×0.01≥ 0.0001.
We set the loss weight for divergence-free loss as 5, and the weight for momentum conservation loss
as 0.1. All scenes are trained for 1.5 hours on a single NVIDIA RTX 3090 GPU respectively.

A.6 Additional Details of Datasets

Dynamic Object dataset: This dataset comprises 6 distinct objects 1, displaying a variety of motion
types, including both rigid and deformable movements. We use a total of 15 views, of which 12 are
allocated for training and 3 for testing. Each view consists of 60 frames over 1 second; however, only
the first 45 frames are used in the training set, with the remaining 15 frames for evaluation. Details of
the 6 dynamic objects are:

• Falling Ball: A basketball is falling freely through a hoop. The basketball is accelerated by
gravity, which should be learned by the model.

• Telescope: A telescope is given, whose upper part is rotating while the lower part remains
static.

• Fan: An antique fan is given. The outer part of the fan is static, while the inner fan is
rotating. The embedded motion makes this scene difficult.

• Bat: A bat is flapping its wings. Since the wing is extremely thin, and the motion is in a
great extent, it’s hard to reconstruct the motion.

• Shark: A shark is shaking its tail left and right.
• Whale: A whale is flapping its tail up and down.

Dynamic Indoor Scene dataset: This dataset consists of 4 indoor scenes, each containing several
rigid objects 2 undergoing different rigid body motions. Since the indoor scene is more challenging,
it comprises 30 views, with 25 for training and 5 for testing. Like the first dataset, we use the first 45
frames from the 60-frame views for training and reserved the remaining frames for evaluation. A set
of ground-truth segmentation masks is provided for evaluation. The segmentation mask is rendered
by blender object index, which is perfectly accurate as ground truth. We have in total 4 scenes:

• Gnome House: 3 objects are moving outwards from the center of a house: a gnome, a sofa,
and a treasure chest.

• Chessboard: 5 objects are moving towards each other on a chessboard: a horse statue, a
marble bust, and a china vase from one side, a wooden elephant and a brass vase from the
other side.

• Factory: 5 objects are moving towards nearly the same direction, among which 2 objects
are rotating at the same time: three barrels with different appearance, a cardboard box, and a
compost bag.

• Dining Table: 4 objects are falling down onto a dining table from the surrounding air: an
apple, a cake, a croissant, and a lime.

A.7 Implementation Details about Semantic Scene Decomposition

NVFi(Ours): Figure 5 illustrates the optimization pipeline of our method for scene decomposition
task:

1Basketball is downloaded from TurboSquid, licensed under the TurboSquid 3D Model License:
https://blog.turbosquid.com/turbosquid-3d-model-license. Other objects are purchased from SketchFab, li-
censed under the SketchFab Standard License: https://sketchfab.com/licenses

2All objects and textures are freely downloaded from Poly Haven, licensed under Poly Haven asset License:
https://polyhaven.com/license

17

𝒇𝒇𝜣𝜣
𝑡𝑡 = 0

𝒉𝒉Ψ

𝒈𝒈𝜱𝜱

𝒍𝒍𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅
𝒍𝒍𝒔𝒔𝒅𝒅𝒔𝒔𝒔𝒔𝒔𝒔𝒉𝒉𝒅𝒅𝒔𝒔𝒔𝒔𝒔𝒔

𝑡𝑡 = 0 → 𝑡𝑡’

𝒇𝒇𝜣𝜣
𝑡𝑡 = 0

𝒉𝒉Ψ

𝒈𝒈𝜱𝜱

𝒍𝒍𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅
𝒍𝒍𝒔𝒔𝒅𝒅𝒔𝒔𝒔𝒔𝒔𝒔𝒉𝒉

𝑡𝑡 = 0 → 𝑡𝑡’

BAD

𝑷𝑷 𝑶𝑶 𝑴𝑴𝒔𝒔𝒕

Figure 5: The optimization pipeline of our method for scene decomposition. The solid black lines
represent forward inference while the dashed gray lines represent backward supervision.

• First, we sample dense 3D points at timestamp t = 0 and query their density values through the
well-trained keyframe dynamic radiance field fΘ. By removing 3D points with low densities, we
obtain a non-empty point set PPP with N points at timestamp t = 0, i.e., PPP ∈ RN×3.

• Second, we feed the point set PPP into the to-be-trained scene decomposition network hΨ and obtain
per-point object codes OOO ∈ (0,1)N×K , where K is a predefined number of objects that the network
is expected to predict in maximum.

• Third, the points in PPP are transported to their correspondences PPPt ′ using the well-trained velocity
field gΦ. Thus, we can compute the per-point motion vectors MMMt ′ ∈ RN×3 as MMMt ′ = PPPt ′ −PPP.

• Lastly, we apply two losses proposed in OGC [54] onto the predicted object codes. 1) Dynamic
rigid consistency: For the kth object, We first retrieve its (soft) binary mask OOOk, and feed the tuple
{PPP,PPPt ′ ,OOOk} into the weighted-Kabsch algorithm to estimate its transformation matrix TTT k ∈ R4×4

belonging to SE(3) group. Then the dynamic loss is defined as:

ℓdynamic =
1
N ∑

ppp∈PPP

∥∥∥(K

∑
k=1

ok
ppp · (TTT k ◦ ppp)

)
− (ppp+mmmt ′)

∥∥∥
2

(16)

where ok
ppp represents the probability of being assigned to the kth object for a specific point ppp, and

mmmt ′ ∈ R3 represents the motion vector of ppp from timestamp 0 to t ′. The operation ◦ applies the
rigid transformation to the point. This loss serves to discriminate objects with different motions. 2)
Spatial smoothness: We first search H nearest neighboring points for each point ppp in PPP. Then the
smoothness loss is defined as:

ℓsmooth =
1
N ∑

ppp∈PPP

(1
H

H

∑
h=1
∥oooppp−oooppph∥1

)
(17)

where oooppp ∈ (0,1)K represents the object assignment of center point ppp, and oooppph ∈ (0,1)K represents
the object assignment of its hth neighbouring point. This loss servers to avoid the over-segmentation
issues. We refer readers to [54] for more details.

For our scene decomposition network hΨ, we adopt a simple 4-layer MLP with 128 neurons in each
hidden layer. The maximum number of predicted objects K is set to 8. A softmax activation is applied
onto the predicted object code. During optimization, we adopt the Adam optimizer with a learning
rate of 0.005 and optimize the network for 1000 iterations. The two losses ℓdynamic and ℓsmooth are
weighted by {1.0, 0.1}.

D-NeRF: For D-NeRF, we adopt exactly the same architecture of scene decomposition network as
ours. The optimizer and other hyperparameters are also consistent with ours.

Mask2Former: We use the implementation of Mask2Former from MMDetection 3, where we
choose the most powerful Swin-L backbone. The model is pretrained on COCO dataset for panoptic
segmentation task. Since we aim to decompose objects with different motions only, the ground plane
and the wall in each scene are regarded as a whole static background, while the pre-trained model
may separate them into different parts. For a fair comparison, we manually merge the segments in
model’s predictions corresponding to the static background.

3https://github.com/open-mmlab/mmdetection

18

Table 7: Quantitative results of ablation study for both interpolation task and extrapolation task on
Dynamic Object dataset.

Interpolation Extrapolation
Joint Physics #K PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

✓ ✓ 16 29.027 0.970 0.039 27.594 0.972 0.036
✗ ✓ 16 27.525 0.959 0.057 24.792 0.955 0.059
✓ ✗ 16 29.109 0.970 0.039 25.537 0.968 0.040
✓ ✓ 8 29.355 0.970 0.041 27.490 0.974 0.036
✓ ✓ 32 28.922 0.969 0.042 24.902 0.964 0.037

Table 8: Quantitative results of ablation study of the keyframe number on our Dynamic Indoor Scene
dataset.

Interpolation Extrapolation
Number of Keyframes PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

4 30.675 0.877 0.211 29.745 0.876 0.204
8 30.321 0.871 0.220 29.093 0.873 0.225

16 28.000 0.862 0.226 26.235 0.839 0.237
32 29.764 0.851 0.255 26.634 0.828 0.247

A.8 Additional Implementation Details about Motion Transfer

There are two models to train for this task. The first one is the velocity field model. The training
detail of the velocity field is the same as future frame extrapolation task. In fact, we use the trained
velocity from our future frame extrapolation task. The other model to train is a new static TensoRF
[7] for the scene to be transferred. To be simple, we just set the keyframe number of our NVFi as 1,
then we can get a static representation as TensoRF. The next step is to load the parameter from the
pretrained velocity field to our new NVFi.

A.9 Additional Quantitative Results for Ablation Study

Here we show the total results for ablation study in Tables 7&8&9, both for interpolation and
extrapolation.

A.10 Additional Quantitative Results for Future Frame Extrapolation

We report the quantitative results of interpolation and extrapolation tasks for individual objects/scenes
in Dynamic Object dataset and Dynamic Indoor Scene dataset. As shown in Tables 10&11, our
method achieves leading performance frequently on interpolation, and significantly outperforms all
baselines on future frame extrapolation.

A.11 Additional Quantitative Results for Semantic Scene Decomposition

In the main paper, we report the excellent results of our model in Table 3 on semantic scene
decomposition task based on a small integral time step 0.06. We also report the results with much
larger integral time step 0.5. As shown in Tables 12&13, when we set the integral time step as 0.06,
our segmentation results are significantly boosted, surpassing the two baselines by large margins.

A.12 Additional Qualitative results for Future Frame Extrapolation

We show the remaining qualitative results for interpolation and extrapolation tasks on Dynamic
Objects Datasets in Figures 6&7, on Dynamic Indoor Scene Datasets in Figures 8&9. Images at time
0 and time 0.5 are within the observed time (interpolation), while time 1 is future frames. For each
scene, the first three images are novel views, and the fourth one is from a seen viewing angle but at a
future timestamp.

A.13 Additional Qualitative results for semantic scene decomposition

We show more qualitative results for semantic scene decomposition on Dynamic Indoor Scene dataset
in Figures 10&11. Images at time 0 till time 0.67 are within observed time interval, while time 0.83
and time 1 is for future frames. Besides, we apply the semantic decomposition pipeline onto the
Dynamic Object dataset for part decomposition. Qualitative results are shown in Figure 12.

19

Table 9: Quantitative results of ablation study of the camera number on our Dynamic Objects dataset.

Interpolation Extrapolation
Number of Cameras PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

12 29.027 0.970 0.039 27.594 0.972 0.036
6 25.689 0.954 0.051 25.114 0.959 0.122
3 21.460 0.912 0.088 21.370 0.917 0.084

Table 10: Per-scene quantitative results of Dynamic Object dataset.

Falling Ball Bat
Methods Interpolation Extrapolation Interpolation Extrapolation

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
T-NeRF[46] 14.921 0.782 0.326 15.418 0.793 0.308 13.070 0.836 0.234 13.897 0.834 0.230
D-NeRF[46] 15.548 0.665 0.435 15.116 0.644 0.427 14.087 0.845 0.212 15.406 0.887 0.175

TiNeuVox[18] 35.458 0.974 0.052 20.242 0.959 0.067 16.080 0.908 0.108 16.952 0.930 0.115
T-NeRFPINN 17.687 0.775 0.368 17.857 0.829 0.265 16.412 0.903 0.197 18.983 0.930 0.132

HexPlanePINN 32.144 0.965 0.065 20.762 0.951 0.081 23.399 0.958 0.057 21.144 0.951 0.064
NVFi(Ours) 35.826 0.978 0.041 31.369 0.978 0.041 23.325 0.964 0.046 25.015 0.968 0.042

Fan Telescope
Methods Interpolation Extrapolation Interpolation Extrapolation

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
T-NeRF[46] 8.001 0.308 0.646 8.494 0.392 0.593 13.031 0.615 0.472 13.892 0.670 0.417
D-NeRF[46] 7.915 0.262 0.690 8.624 0.370 0.623 13.295 0.609 0.469 14.967 0.700 0.385

TiNeuVox[18] 24.088 0.930 0.104 20.932 0.935 0..078 31.666 0.982 0.041 20.456 0.921 0.067
T-NeRFPINN 9.233 0.541 0.508 9.828 0.606 0.443 14.293 0.739 0.366 15.752 0.804 0.298

HexPlanePINN 22.822 0.921 0.079 19.724 0.919 0.080 25.381 0.948 0.066 23.165 0.932 0.074
NVFi(Ours) 25.213 0.948 0.049 27.172 0.963 0.037 26.487 0.959 0.048 27.101 0.963 0.046

Shark Whale
Methods Interpolation Extrapolation Interpolation Extrapolation

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
T-NeRF[46] 13.813 0.853 0.223 15.325 0.882 0.193 16.141 0.860 0.212 15.880 0.860 0.203
D-NeRF[46] 17.727 0.903 0.150 19.078 0.936 0.092 16.373 0.898 0.154 14.771 0.883 0.171

TiNeuVox[18] 23.178 0.971 0.059 19.463 0.950 0.050 37.455 0.994 0.016 19.624 0.943 0.063
T-NeRFPINN 17.315 0.878 0.177 18.739 0.921 0.115 16.778 0.927 0.141 15.974 0.919 0.127

HexPlanePINN 28.874 0.976 0.040 22.330 0.961 0.047 29.634 0.981 0.035 21.391 0.961 0.053
NVFi(Ours) 32.072 0.984 0.024 28.874 0.982 0.021 31.240 0.986 0.025 26.032 0.978 0.029

A.14 Additional Qualitative Results for Motion Transfer

We have already shown results for Dynamic Indoor Scene datasets in Section 4.3. Here we report
three results on objectwise motion transfer in Figure 13:

• Whale to starfish. We transfer the flapping tail motion to the starfish. The starfish is
supposed to flapping its rays as the whale.

• Shark to whale. We transfer the shaking tail motion to the whale. The whale used to flap
its tail, but now it’s supposed to shake its tail.

• Whale to shark. We transfer the flapping tail motion to the shark. The shark is supposed to
flap its tail as a whale instead of shaking it.

20

Table 11: Per-scene quantitative results of Dynamic Indoor Scene dataset.

Gnome House Chessboard
Methods Interpolation Extrapolation Interpolation Extrapolation

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
T-NeRF[46] 26.094 0.716 0.383 23.485 0.643 0.419 25.517 0.796 0.294 20.228 0.708 0.365
D-NeRF[46] 27.000 0.745 0.319 21.714 0.641 0.367 24.852 0.774 0.308 19.455 0.675 0.384

TiNeuVox[18] 30.646 0.831 0.253 21.418 0.699 0.326 33.001 0.917 0.177 19.718 0.765 0.310
T-NeRFPINN 15.008 0.375 0.668 16.200 0.409 0.651 16.549 0.457 0.621 17.197 0.472 0.618

HexPlanePINN 23.764 0.658 0.510 22.867 0.658 0.510 24.605 0.778 0.412 21.518 0.748 0.428
NSFF[33] 31.418 0.821 0.294 25.892 0.750 0.327 32.514 0.810 0.201 21.501 0.805 0.282

NVFi(Ours) 30.667 0.824 0.277 30.408 0.826 0.273 30.394 0.888 0.215 27.840 0.872 0.219
Factory Dining Table

Methods Interpolation Extrapolation Interpolation Extrapolation
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

T-NeRF[46] 26.467 0.741 0.328 24.276 0.722 0.344 21.699 0.716 0.338 20.977 0.725 0.324
D-NeRF[46] 28.818 0.818 0.252 22.959 0.746 0.303 20.851 0.725 0.319 19.035 0.705 0.341

TiNeuVox[18] 32.684 0.909 0.148 22.622 0.810 0.229 23.596 0.798 0.274 20.357 0.804 0.258
T-NeRFPINN 16.634 0.446 0.624 17.546 0.480 0.609 16.807 0.486 0.640 18.215 0.548 0.595

HexPlanePINN 27.200 0.826 0.283 24.998 0.792 0.312 25.291 0.788 0.350 22.979 0.771 0.355
NSFF[33] 33.975 0.919 0.152 26.647 0.855 0.196 19.552 0.665 0.464 22.612 0.770 0.351

NVFi(Ours) 32.460 0.912 0.151 31.719 0.908 0.154 29.179 0.885 0.199 29.011 0.898 0.171

Table 12: Overall quantitative results for semantic scene decomposition.

AP↑ PQ↑ F1↑ Pre↑ Rec↑ mIoU↑
Mask2Former[11] 65.37 73.14 78.29 94.83 68.88 64.42

D-NeRF[46] 57.26 46.15 59.02 56.55 62.94 46.58
NVFi(Ours, ∆t = 0.5) 75.82 63.34 80.59 80.78 81.11 57.05

NVFi(Ours, ∆t = 0.06) 91.21 78.74 93.75 93.76 93.74 67.64

Table 13: Per-scene quantitative results for semantic scene decomposition.

Methods Gnome House Chessboard
AP↑ PQ↑ F1↑ Pre↑ Rec↑ mIoU↑ AP↑ PQ↑ F1↑ Pre↑ Rec↑ mIoU↑

Mask2Former[11] 60.89 73.05 77.32 85.32 70.69 66.94 82.68 81.35 90.81 97.54 84.94 76.17
D-NeRF[46] 80.54 62.24 85.28 85.28 85.28 54.82 57.12 48.11 60.22 56.20 64.85 48.97

NVFi(Ours, ∆t = 0.5) 99.00 82.99 99.92 99.92 99.92 66.42 48.30 43.14 61.19 61.53 60.84 45.95
NVFi(Ours, ∆t = 0.06) 100.00 85.01 100.00 100.00 100.00 68.01 67.97 57.95 76.96 76.96 74.96 56.79

Methods Factory Dining Table
AP↑ PQ↑ F1↑ Pre↑ Rec↑ mIoU↑ AP↑ PQ↑ F1↑ Pre↑ Rec↑ mIoU↑

Mask2Former[11] 40.25 53.54 57.60 99.01 40.61 37.76 77.65 84.61 87.42 97.44 79.28 76.80
D-NeRF[46] 17.33 17.08 21.29 25.35 18.35 20.72 74.05 57.15 69.30 59.35 83.27 61.82

NVFi(Ours, ∆t = 0.5) 64.82 57.75 77.93 85.72 71.44 49.70 91.17 69.49 83.31 75.96 92.23 66.13
NVFi(Ours, ∆t = 0.06) 98.86 80.17 99.09 99.09 99.09 69.07 98.01 91.81 98.95 98.99 98.92 76.68

21

23559290 2071198960

T-
N
eR
F

D
-N
eR
F

Ti
N
eu
Vo
x

T-
N
eR
F

(P
IN
N
)

H
ex
Pl
an
e

(P
IN
N
)

N
V
Fi

(O
ur
s)

G
ro
un
d

Tr
ut
h

𝑡 = 0 𝑡 = 0.5 𝑡 = 1 𝑡 = 1 𝑡 = 0 𝑡 = 0.5 𝑡 = 1 𝑡 = 1
Interpolation Extrapolation Interpolation Extrapolation

Figure 6: Qualitative results of objects Fan and Telescope.

22

26359290 20759290

T-
N
eR
F

D
-N
eR
F

Ti
N
eu
Vo
x

T-
N
eR
F

(P
IN
N
)

H
ex
Pl
an
e

(P
IN
N
)

N
V
Fi

(O
ur
s)

G
ro
un
d

Tr
ut
h

𝑡 = 0 𝑡 = 0.5 𝑡 = 1 𝑡 = 1 𝑡 = 0 𝑡 = 0.5 𝑡 = 1 𝑡 = 1
Interpolation Extrapolation Interpolation Extrapolation

Figure 7: Qualitative results of objects Shark and Whale.

23

65359290 65359290

T-
N
eR
F

D
-N
eR
F

Ti
N
eu
Vo
x

T-
N
eR
F

(P
IN
N
)

H
ex
Pl
an
e

(P
IN
N
)

N
V
Fi

(O
ur
s)

G
ro
un
d

Tr
ut
h

𝑡 = 0 𝑡 = 0.5 𝑡 = 1 𝑡 = 1 𝑡 = 0 𝑡 = 0.5 𝑡 = 1 𝑡 = 1
Interpolation Extrapolation Interpolation Extrapolation

Figure 8: Qualitative results of scenes Gnome House and Chessboard.

24

56959290 65359290

T-
N
eR
F

D
-N
eR
F

Ti
N
eu
Vo
x

T-
N
eR
F

(P
IN
N
)

H
ex
Pl
an
e

(P
IN
N
)

N
V
Fi

(O
ur
s)

G
ro
un
d

Tr
ut
h

𝑡 = 0 𝑡 = 0.5 𝑡 = 1 𝑡 = 1 𝑡 = 0 𝑡 = 0.5 𝑡 = 1 𝑡 = 1
Interpolation Extrapolation Interpolation Extrapolation

Figure 9: Qualitative results of scenes Dining Table and Factory.

25

D
-N
eR
F

M
as
k2
-

Fo
rm
er

N
V
Fi

(O
ur
s)

G
T

Im
ag
e

t = 0 t = 0.17 t = 0.33 t = 0.50 t = 0.67 t = 0.83 t = 1
D
-N
eR
F

M
as
k2
-

Fo
rm
er

N
V
Fi

(O
ur
s)

G
T

Im
ag
e

(a) Gnome House

(b) Chessboard

Extrapolation

Extrapolation

Interpolation

Interpolation

Figure 10: Qualitative results of semantic scene decomposition for Gnome House and Chessboard.

26

D
-N
eR
F

M
as
k2
-

Fo
rm
er

N
V
Fi

(O
ur
s)

G
T

Im
ag
e

t = 0 t = 0.17 t = 0.33 t = 0.50 t = 0.67 t = 0.83 t = 1
D
-N
eR
F

M
as
k2
-

Fo
rm
er

N
V
Fi

(O
ur
s)

G
T

Im
ag
e

(c) Dining Table

(d) Factory

Extrapolation

Extrapolation

Interpolation

Interpolation

Figure 11: Qualitative results of semantic scene decomposition for Dining Table and Factory.

27

N
V
Fi

(O
ur
s)

Im
ag
e

t = 0 t = 0.17 t = 0.33 t = 0.50 t = 0.67 t = 0.83 t = 1

(a) Bat

N
V
Fi

(O
ur
s)

Im
ag
e

(b) Falling Ball

N
V
Fi

(O
ur
s)

Im
ag
e

(c) Fan

N
V
Fi

(O
ur
s)

Im
ag
e

(d) Shark

(e) Telescope

(f) Whale

N
V
Fi

(O
ur
s)

Im
ag
e

N
V
Fi

(O
ur
s)

Im
ag
e

ExtrapolationInterpolation

Figure 12: Qualitative results of semantic scene decomposition for Dynamic Object dataset.

28

Ta
rg
et

So
ur
ce

t = 0 t = 0.17 t = 0.33 t = 0.50 t = 0.67 t = 0.83 t = 1

Ta
rg
et

So
ur
ce

Ta
rg
et

So
ur
ce

ExtrapolationInterpolation

Figure 13: Qualitative results for objectwise motion transfer.

29

	Introduction
	Related Works
	NVFi
	Overview
	Optimization of Keyframe Dynamic Radiance Fields
	Optimization of Interframe Velocity Fields
	Joint Keyframe and Interframe Optimization

	Experiments
	Evaluation of Future Frame Extrapolation
	Evaluation of 3D Semantic Scene Decomposition
	Evaluation of Motion Transfer
	Ablation Study

	Conclusion
	Appendix
	Rendering Equation
	Implementation Details of Keyframe Dynamic Radiance Field
	Implementation Details of Velocity Field
	Additional Details of Physics Prior
	Implementation Details of Joint Optimization
	Additional Details of Datasets
	Implementation Details about Semantic Scene Decomposition
	Additional Implementation Details about Motion Transfer
	Additional Quantitative Results for Ablation Study
	Additional Quantitative Results for Future Frame Extrapolation
	Additional Quantitative Results for Semantic Scene Decomposition
	Additional Qualitative results for Future Frame Extrapolation
	Additional Qualitative results for semantic scene decomposition
	Additional Qualitative Results for Motion Transfer

