
A Graph Neural Networks (GNNs)547

We consider standard message-passing graph neural networks (MPNNs) [19–21] defined as follows.548

A L-layer MPNN maps input X 2 RN⇥d to output Y 2 RN⇥k following an iterative scheme: At549

initialization, h(0) = X; At each iteration l, the embedding for node i is updated to550

h(l)
i = �

0

@h(l�1)
i ,

X

j2N (i)

 
⇣
h(l�1)
i ,h(l�1)

j , A[i,j]

⌘
1

A , (7)

where �, are the update and message functions, N (i) denotes the neighbors of node i, and A[i,j]551

represents the (i, j)-edge weight. MPNNs typically have two key design features: (1) �, are shared552

across all nodes in the graph, typically chosen to be a linear transformation or a multi-layer perceptions553

(MLPs), known as global weight sharing; (2) the graph A is used for (spatial) convolution.554

B Parameterization of Linear Equivariant Maps555

We consider a group G acting on spaces X and Y via representations � and  , respectively. Our goal556

is to find the linear equivariant maps f : X ! Y such that f(�(g)x) =  (g)f(x) for all g 2 G and557

x 2 X . The standard way to do this, used extensively in the equivariant machine learning literature558

(e.g. [40, 43]), is to decompose � and  in irreducibles and use Schur’s lemma.559

In a nutshell, a group representation ' is an homomorphism G ! GL(V ) (sometimes mathematicians560

say that V is a representation of G, but we need to know the homomorphism ' too). One way to561

interpret the group homomorphism (i.e. '(gh) = '(g) � '(h)) is that the group multiplication562

corresponds to the composition of linear invertible maps (i.e. matrix multiplication). A linear subspace563

W of V is said to be a subrepresentation of ' if '(G)(W ) ⇢ W . A irreducible representation is one564

that only has itself and the trivial subspace as subrepresentations.565

Schur’s lemma states that if V , W are vector spaces over C and 'V , 'W are irreducible repre-566

sentations, then either (1) 'V and 'W are not isomorphic as representations (and the only linear567

equivariant map between V , W is the zero map), or (2) 'V and 'W are isomorphic and the only568

non-trivial equivariant maps are of the form � I where � 2 C and I is the identity (See Chapter 1 of569

[60]).570

Now given G acting on spaces X and Y via representations � and  , respectively. Then one can571

decompose � and  in irreducibles over C572

� = �
`
k=1akTk  = �

`
k=1bkTk

(this notation assumes the same irreducibles appear in both decompositions, which can be done if573

we allow some of the ak and bk to be zero). And then one can parameterize the equivariant maps by574

having one complex parameter per irreducible that appears in both decompositions. These ideas can575

be applied to real spaces.576

Then finding the linear equivariant maps reduces to decomposing the corresponding representations577

in irreducibles. In the next sections we explain in detail how to do this for the specific problems578

described in this paper. The appendix is organized as follows: We first show how to parameterize579

equivariant linear layers for Abelian group (Section B.1.1), and then provide the end-to-end design of580

equivariant graph networks G-Net (Section B.3).581

B.1 Equivariant Linear Maps via Isotypical Decomposition582

In this section, we assume that the graph adjacency matrix A has distinct eigenvalues �1 > �2 >583

. . . > �n. Then AG is an Abelian group (Lemma 3.8.1, notes). Under this assumption, we present584

the construction of approximately equivariant graph networks using isotypical decomposition (i.e.585

decomposition into isomorphism classes of irreducible representations) and group characters. We586

remark that such construction extends to non-Abelian groups and refer the interested reader to [68],587

but we omit it here for the ease of exposition.588
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B.1.1 Equivariant Linear Layers for Abelian Group589

We consider the simplest setting where f : RN
! RN is a linear function that maps signals on the590

node level. Let x 2 RN be the node features, then equivariance requires591

f(g x) = g f(x) for all g 2 AG. (8)

To construct linear equivariant functions f , our roadmap is outlined as follows:592

1. Decompose the vector space X = RN into a sum of components such that different593

components cannot be mapped to each other equivariantly (also known as the isotypic594

decomposition);595

2. Given X = �iXi an isotypic representation, we then parameterize f by linear maps at each596

Xi such that for all i, f(Xi) ✓ Xi.597

To this end, we need the following definitions.598

Definition 5. (G-module, [68, Defn 1.3.1]) Let X be a vector space and G be a group. We say the599

vector space X is a G-module or X carries a representation of G if there is a group homomorphism600

⇢ : G ! GL(X ), where GL denotes the General Linear group. Equivalently, if the following holds:601

1. gv 2 X ,602

2. g(cv + dw) = c(gv) + d(gw),603

3. (gh)v = g(hv),604

4. ev = v605

for all g, h 2 G; v, w 2 X and scalars c, d 2 C (e 2 G denotes the identity element).606

In what follows, we consider X = RN carries a representation of G.607

Definition 6. (Group characters) Let X(g), g 2 G be a matrix representation of a group element.608

Then the character of X is �(g) := trX(g).609

Definition 7. (Group orbits) Let X be a vector space and G be a group. The group orbit of an element610

x 2 X is O(x) := {gx : g 2 G}.611

Let g1, . . . , gs be the generators of AG ⇢ (S2)n, or simply AG ⌘ (S2)k for some k  n. Since AG612

is abelian, any irreducible representation is 1-dimensional [60, p.8]. In other words, the irreducible613

representations of an abelian group are homomorphisms614

⇢ : AG ! C. (9)

Since all the elements of the group AG = (S2)k is of order 1 or 2, the homomorphisms are ⇢ : AG !615

{±1} ⇢ R. By Defn 6, the irreducible characters (i.e., characters of irreducible matrix representation)616

are also homomorphisms ⇢ : AG ! {±1}. In other words, �(g) 2 {±1}for all g 2 AG. Then we617

can write down the 2k ⇥ 2k character table, where the rows are the characters �, and the columns are618

the group elements g 2 AG (see Table 3 as an example). Now, define the projection onto the isotypic619

component of the representation X as620

P� :=
deg(X)

|AG|

X

g2AG

�(g) g =
1

|AG|

X

g2AG

�(g) g, (10)

where the second equality uses the fact that AG is abelian.621

Intuitively, applying P� on X = span({e1, . . . , eN}) picks out all v 2 X that stays in the same622

subspace defined by the group character �. (Note that for the (S2)k case ��1(g) = �(g) since623

�(g) 2 {±1}).624

We are ready to present the precise construction of linear equivariant map f with respect to an Abelian625

group:626

Lemma 5. f is linear, equivariant with respect to the abelian group AG if and only if f can be627

written as (12) in Algorithm 1.628
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Algorithm 1 Parameterizing linear equivariant functions f : RN
! RN for abelian group

Require: Abelian group AG = (S2)k

1. Construct the character table of �irreps for AG, i.e. �i : AG ! {±1} i = 1, . . . `;
2. For each character �i in the character table, compute the projection matrix

P�i(X ) = [P�i(e1); . . . ;P�i(eN )] 2 RN⇥N ; (11)

followed by computing the basis from P�i(X ) and call it X�i = [b(1)�i , . . . , b
(Ki)
�i ].

3. X = �
`
i=1X�i where X�i are the isotypic component. Then f is any linear function satisfying

that f(X�i) ✓ X�i for all i = 1, . . . , `. In particular, in the basis [b(s)�i ]1i`,1sKi f can
be written as a block diagonal matrix Rn⇥n with each block M�i being the linear map from
X�i ! X�i ,

f =

2

664

M�1

M�2

. . .
M�`

3

775 (12)

return f

e �

�e 1 1
�2 1 �1

Table 3: Character table for aut(P4) ⇠= Z2

Proof. By construction in Algorithm 1, f is linear and equivariant. To show the converse, since AG629

is abelian with all irreducible representations being one-dimensional, for X�1 � X�2 , we have630

g v1 = �1(g) v1, for all g 2 G, v1 2 X�1 , (13)
g v2 = �2(g) v2, for all g 2 G, v2 2 X�2 , (14)

where there exists some g 2 G such that �1(g) 6= �2(g). To show f being linear and equivariant631

implies for all v 2 X�, f(v) 2 X�, we prove by contradiction. Without loss of generality, suppose632

f(v�1) = ↵1v�1 + ↵2v�2 , (15)

for some scalars ↵1,↵2 and v�1 2 X�1 , v�2 2 X�2 . Then by (13), for all g 2 G,633

f(g v�1) = f(�1(g) v�1) = �1(g)f(v�1) = �1(g)↵1v�1 + �1(g)↵2v�2 . (16)

Now, since f is equivariant, for all g 2 G,634

f(g v�1) = gf(v�1) = g(↵1v�1 + ↵2v�2) = �1(g)↵1v�1 + �2(g)↵2v�2 . (17)

But there exists some g0 2 G such that �1(g0) 6= �2(g0), which leads to f(g0v�1) 6= f(g0v�1), a635

contradiction. One can easily extend the proof strategy to the general case for f(v�1) =
Pl

i=1 v�i .636

637

Example B.1. Consider the path graph on 4 nodes (i.e., P4). We have aut(P4) = {e, (14)(23)} ⇠=638

Z2.639

Steps 1: Note that Z2 is Abelian and thus all irreducible characters �(g) 2 {±1}, for all g 2 Z2. The640

character table is shown in Table 3.641
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Step 2: using (10) we have642

P�e [e1; e2; e3; e4] =
1

2

2

64

1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

3

75 which yields basis B(P�e) = [e1 + e4; e2 + e3].

P�2 [e1; e2; e3; e4] =
1

2

2

64

1 0 0 �1
0 1 �1 0
0 �1 1 0
�1 0 0 1

3

75 which yields basis B(P�2) = [e1 � e4; e2 � e3].

Step 3: Parameterize f : R4
! R4 by f : B(P�e) ! B(P�e) and f : B(P�2) ! B(P�2), i.e. for all643

v 2 R4,let v = c1(e1 + e4) + . . .+ c4(e2 � e3), then644

f(v) =


↵1 ↵2

↵3 ↵4

�
[c1; c2] +


↵5 ↵6

↵7 ↵8

�
[c3; c4], (18)

where ↵1, . . . ,↵8 are (learnable) real scalars. Now f is linear, equivariant by construction.645

B.2 Equivariant Linear Map for Symmetries Induced by Graph Coarsening646

In this section, we present the construction of equivariant linear maps for some examples using the647

symmetry group induced by graph coarsening (Defn 3). Recall the symmetry group with M clusters648

of G (with the associated coarsened graph G0) is given by649

GG!G0 :=
⇣
S1 ⇥ S2 . . .⇥ SM

⌘
oAG0 ⇢ SN .

Here we assume that AG0 is trivial and we show how to parameterize equivariant functions with650

respect to products of permutations. In more general cases, for instance if AG0 is abelian, we can use651

a construction by Serre ([69] Section 8.2). For the ease of exposition, consider X 2 RN , Y 2 RN .652

Then any permutation-equivariant linear function f : RN
! RN with respect to GG!G0 admits the653

following block-matrix form:654

f =

2

664

f11 f12 · · · f1M
f21 f22 · · · f2M

. . .
fM1 fM2 · · · fMM

3

775 , fkk = akI+ bk11
>, fkl = ckl11

> for k 6= l, (19)

where fkl are block matrices, and ak, bk, ckl are scalars where ckl = clk if and only if the coarsened655

nodes k, l 2 G0 are in the same group orbit. Figure 2 illustrates the block structure of f . This is due to656

(1) fkk is a linear permutation-equivariant function if and only if its diagonal elements are the same657

and its off-diagonal elements are the same ([34, Lemma 3.]); (2) fkl for k 6= l is a constant matrix658

since nodes within a cluster are indistinguishable, and ckl needs to satisfy the symmetry of AG0 .659

Finally, we illustrate the linear equivariant layer for two-cluster graph coarsening. Without loss of660

generality, assume that the adjacency matrix A and the node signals X are ordered according to the661

cluster assignment (e.g., X[1:|V1|] are node features for the first cluster, etc). Let X(1), X(2) denote the662

node features for the first and second cluster, W s
(1),W

s
(2) denote the weights on the block diagonal for663

self-feature transformation, Wn
(1),W

n
(2) denote the weights on the block diagonal for within-cluster664

neighbors, and Wn
(12),W

n
(21) denote the weights off the block diagonal for across-cluster neighbors.665

Let I denote the identity matrix, and 1(1),1(2) denote the all-ones matrices with the same size as the666

corresponding cluster. Recall � denotes the element-wise multiplication of two matrices. Then the667

linear equivariant layer is parameterized as668

A�I


X(1)W

s
(1)

X(2)W
s
(2)

�
+A�

⇣
1(1) 0
0 1(2)

�
�I

⌘ 
X(1)W

n
(1)

X(2)W
n
(2)

�
+A�


0 1(2)

1(1) 0

� 
X(1)W

n
(12)

X(2)W
n
(21)

�
. (20)

B.3 Equivariant Layer for Human Skeleton Graph669

We now apply the constructions above to our human skeleton graph described in Section 5.1. We670

first show how to parameterize all linear AG-equivariant functions. Observe that AG
⇠= (S2)2 =671
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Figure 2: The block structure of linear equivariant function f : Rn
! Rn with respect to GG!G0

(where G,G0 are asymmetric): Each diagonal block fkk is diagonally constant and off-diagonally
constant; Each off-diagonal block fkl is a constant matrix.

{e, a, l, al}, where the nontrivial actions correspond to the arm flip with respect to the spine, the leg672

flip with respect to the spine, and their composition. To fix ideas, we first treat both input and output673

graph signals as vectors, and construct AG-equivariant linear maps f : R16
! R16.674

Step 1: Obtain the character table for (S2)2675

e a l al

�e 1 1 1 1
�2 1 1 �1 �1
�3 1 �1 1 �1
�4 1 �1 �1 1

Table 4: Character table for (S2)2

Step 2: Construct the basis for isotypic decomposition. Here we choose to index the leg joint pairs as676

(1, 4), (2, 5), (3, 6), arm joint pairs as (10, 13), (11, 14), (12, 15), and spline joints 0, 7, 8, 9.677

B = [B(P�e);B(P�2);B(P�3);B(P�4)] where

B(P�e) = [(e1 + e4)/
p

2; . . . ; (e12 + e15)/
p

2; e0; e7; e8; e9] 2 R16⇥10.

B(P�2) = [(e1 � e4)/
p

2; (e2 � e5)/
p

2; (e3 � e6)/
p

2] 2 R16⇥3;

B(P�3) = [(e10 � e13)/
p

2; (e11 � e14)/
p

2; (e12 � e15)/
p

2] 2 R16⇥3;

B(P�4) = ; (21)

Step 3: Parameterize f : R16
! R16 by f : B(P�e) ! B(P�e) and f : B(P�2) ! B(P�2), i.e. for678

all v 2 R16, let v = B(P�e) ce + B(P�2) c2 + B(P�3) c3, then679

f(v) = We ce +W2 c2 +W3 c3, (22)

where We 2 R10⇥10,W2 2 R3⇥3,W3 2 R3⇥3 are (learnable) weight matrices. Now f expresses all680

linear, equivariant maps w.r.t (S2)2.681

The following calculation based on f : R16
! R16 shows how much degree of freedom (measured by682

learnable parameters) is gained by relaxing the symmetry from global (group S16), exact AG
⇠= (S2)2,683

to trivial group (i.e., no symmetry).684

fS16 = w I16 + w0(1� I16), (2 parameters); (23)
fAG = We �W2 �W3, (118 parameters on the isotypic components); (24)
ftriv. = W, (256 parameters). (25)
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To parameterize linear equivariant function f : R16⇥d
! R16⇥d0

, we proceed by decoupling the input685

space into R10⇥d,R3⇥d,R3⇥d and the output space into R10⇥d0
,R3⇥d0

,R3⇥d0
. Now the learnable686

weight matrices for multidimensional input/output become We 2 R10d⇥10d0
,W2 2 R3d⇥3d0

,W3 2687

R3d⇥3d0
. The construction is summarized in Algorithm 2.688

Algorithm 2 Equivariant layer fAG : R16⇥d
! R16⇥d0

for AG
⇠= (S2)2

Require: The basis B 2 R16⇥16 in (21) for isotypic decomposition of AG = (S2)2, input h(l)
2

R16⇥d.
Initialize: The learnable weights W (l)

e 2 R10d0⇥10d;W (l)
2 ,W (l)

3 2 R3d0⇥3d;M (l)
2 R16⇥16.

1. Project h(l) to the isotypic component: z(l) = B>h(l);
2. Perform block-wise linear transformation:

• ze = We flatten(z(l)[:,:10])

• z2 = W2 flatten(z(l)[:,10:13])

• z3 = W3 flatten(z(l)[:,13:])

• z(l+1) = concat[ze; z2; z3] 2 R16⇥d0

3. Project back to the standard basis: h̄(l+1) = B z(l+1).
4. Perform pointwise nonlinearity: h(l+1) = �(h̄(l+1)).

return h(l+1)

Figure 3: Human skeleton graph G, its coarsened graph G0 (clustering leg joints), and blow-up of G0

C Proofs of Our Theoretical Results689

C.1 Proofs of Generalization with Exact Symmetries690

Lemma 1 (Risk Gap). Let X = RN⇥d,Y = RN⇥k be the input and output graph signal spaces on a
fixed graph G. Let X ⇠ µ where µ is a SN -invariant distribution on X . Let Y = f⇤(X) + ⇠, where
⇠ 2 RN⇥k is random, independent of X with zero mean and finite variance and f⇤ : X ! Y is
AG-equivariant. Then, for any f 2 V and for any compact group G ✓ SN , we can decompose it as

f = f̄G + f?
G ,

where f̄G = QGf, f?
G = f � f̄G . Moreover, the risk gap satisfies

�(f, f̄G) := E
⇥
kY � f(X)k2F

⇤
� E

⇥
kY � f̄G(X)k2F

⇤
= �2hf⇤, f?

G iµ| {z }
mismatch

+
��f?

G
��2
µ| {z }

constraint

.

Lemma 1 is a straightforward extension of Lemma 6 in [8], which makes use of Lemma 1 in [8].691

Lemma 1 in [8]. Let U be any subspace of V that is closed under Q. Define the subspaces S and
A of, respectively, the G-symmetric and G-anti-symmetric functions in U : S = {f 2 U : f is
G-equivariant } and A = {f 2 U : Qf = 0}. Then U admits admits an orthogonal decomposition
into symmetric and anti-symmetric parts

U = S �A
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Proof. The first part of Lemma 1 f = f̄G + f?
G follows from Lemma 1 in [8]. For the second part,692

by the assumption that the noise ⇠ is independent of X with zero mean and finite variance, we can693

simplify the risk gap as694

�(f, f̄G) := E
⇥
kY � f(X)k2F

⇤
� E

⇥
kY � f̄G(X)k2F

⇤

= E
⇥
kf⇤(X)� f(X)k2F

⇤
� E

⇥
kf⇤(X)� f̄G(X)k2F

⇤
. (26)

Substituting f = f̄G + f?
G yields695

E
⇥
kf⇤(X)� f̄G(X)� f?

G (X)k2F
⇤
� E

⇥
kf⇤(X)� f̄G(X)k2F

⇤

= � 2hf⇤(X)� f̄G(X), f?
G (X)iµ + E

⇥
kf?

G (X)k2F
⇤

= � 2hf⇤, f?
G iµ +

��f?
G
��2
µ
. (27)

696

We remark that Lemma 6 in [8] assumes that f⇤ is G-equivariant, so the first term in (27) vanishes.697

We are motivated from the symmetry model selection problem, and thereby relax the assumption of698

the chosen symmetry group G can differ from the target symmetry group AG .699

Theorem 2 (Bias-Variance-Tradeoff). Let X = RN⇥d,Y = RN⇥k be the graph signals spaces on
a fixed graph G. Let G ✓ SN with orthogonal representations � on X and  on Y . Let X[i,j]

i.i.d.
⇠

N
�
0,�2

X

�
and Y = f⇤(X)+ ⇠ where f⇤(x) = ⇥>x is AG-equivariant and⇥ 2 RNd⇥Nk. Assume

⇠[i,j] is random, independent of X , with mean 0 and E
⇥
⇠⇠>

⇤
= �2

⇠ < 1. Let ⇥̂ be the least-squares
estimate of ⇥ from n i.i.d. examples {(Xi, Yi) : i = 1, . . . , n},  G(⇥̂) be its equivariant version
with respect to G. Let (� | ��) =

R
G � (g)��(g)d�(g) denote the scalar product of the characters.

If n > Nd+ 1 the risk gap is

E
h
�
⇣
f⇥̂, f G(⇥̂)

⌘i
= ��2

X k ?
G (⇥)k

2
F| {z }

bias

+ �2
⇠
N2dk � (� | ��)

n�Nd� 1| {z }
variance

.

Theorem 2 presents the risk gap in expectation, which follows from Lemma 1, by taking f as700

the least-squares estimator and using assumptions in the linear regression setting. To this end, we701

denote X 2 Rn⇥Nd,Y 2 Rn⇥Nk, ⇠ 2 Rn⇥Nk as the training data arranged in matrix form, where702

Y = f⇤(X) + ⇠. Recall that the least-squares estimator of ⇥ in the classic regime (n > d) is given703

by704

⇥̂ := (X>X)†X>Y
a.e.
= ⇥+ (X>X)�1X>⇠, (28)

while its equivariant map is705

 G(⇥̂) =

Z

G
�(g) ⇥̂ 

�
g�1

�
d�(g). (29)

Our proof makes use of the following results in [8], which we restate adapted versions here for our706

setting.707

Proposition 11 in [8]. Let V = {fW : fW (x) = W>x,W 2 Rd⇥k, x 2 Rd
} denote the space of708

linear functions. Let X ⇠ µ with E[XX>] = ⌃. For any linear functions fW1 , fW2 2 V , the inner709

product on V satisfies710

hfW1 , fW2iµ = Tr(W>
1 ⌃W2). (30)

Theorem 13 in [8] (Simplified, Adapted). Consider the same setting as Theorem 2. For n > Nd+1,

�2
XE

��� ?
G

⇣�
X>X

�+
X>⇠

⌘���
2

F

�
= �2

⇠
N2dk � (� | ��)

n�Nd� 1
.

Proof. We first plug in the least-squares expressions ⇥̂, G(⇥̂) to Lemma 1 and treat the mismatch711

term and constraint term separately; We complete the proof by collecting common terms together.712
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For the mismatch term, our goal is to compute713

�2E [h⇥, ⇥̂� G(⇥̂)iµ], (31)

where the expectation is taken over the test point X and the training data X, ⇠.714

To that end, we write715

⇣
⇥̂� G(⇥̂)

⌘
x

a.e.
= ⇥>x+⇠>X(X>X)�1x�

Z

G
 (g�1)

�
⇥> + ⇠>X(X>X)�1

�
�(g)x d�(g).

(32)

Taking expectation yields716

EX,X,⇠ [h⇥, ⇥̂� G(⇥̂)iµ] = k⇥k2µ + EX,X,⇠

⇥
h⇥>X, ⇠>X(X>X)�1xi

⇤

� EX,X,⇠


h⇥>x,

Z

G
 (g�1)

�
⇥> + ⇠>X(X>X)�1

�
�(g)x d�(g)i

�
.

(33)

Note that ⇠ is independent with X and mean 0, so the second term in (33) vanishes. Similarly, the717

part EX,X,⇠

R
G  (g

�1)
�
⇠>X(X>X)�1

�
�(g)x d�(g) also vanishes (by first taking conditional718

expectation of ⇠ conditioned on X). Thus, we arrive at719

E [h⇥, ⇥̂� G(⇥̂)iµ] = k⇥k2µ � Ex


h⇥>x,

Z

G
 (g�1)⇥> �(g)x d�(g)i

�

= k⇥k2µ � h⇥, G(⇥)iµ

= k ?
G (⇥)k

2
µ

= �2�2
Xk ?

G (⇥)k
2
F , (34)

where the last equality follows from Proposition 11 in [8] with the assumption that ⌃ = �2
X . This720

finishes the computation for the mismatch term.721

Now for the constraint term, we have722

kf?
G k

2
µ = k ?

G (⇥̂)k
2
µ (35)

= �2
X EX,⇠k 

?
G
�
⇥+ (X>X)�1X>⇠

�
k
2 (36)

= �2
Xk ?

G (⇥)k
2
F + �2

X EX,⇠k 
?
G
�
(X>X)�1X>⇠

�
k
2, (37)

where the last equality follows from linearity of expectation, E[⇠] = 0 and ⇠ independent of x.723

Combining the mismatch term in (34) with the constraint term in (37), the risk gap becomes724

E
h
�
⇣
f⇥̂, f G(⇥̂)

⌘i
= ��2

Xk ?
GL

(⇥)k2 + �2
X EX,⇠k 

?
GL

�
(X>X)�1X>⇠

�
k
2, (38)

Applying Theorem 13 in [8], the second term in (38) reduces to725

�2
X EX,⇠k 

?
GL

�
(X>X)�1X>⇠

�
k
2 = �2

⇠
N2dk � (� | ��)

n�Nd� 1
, (39)

from which the theorem follows immediately.726

727

Finally, we state a well-known result for the risk of (Ordinary) Least-Squares Estimator 2 (see [70, 71]728

and references therein).729

Lemma 6 (Risk of Least-Squares Estimator). Consider the same set-up as Theorem 2. For n >
Nd+ 1,

E
h
kY � ⇥̂>Xk

2
F

i
= �2

⇠
Nd

n�Nd� 1
+ �2

⇠ .

2In the main paper, the irreducible error term �2
⇠ is missing. We fix this in the Appendix and the revised

version. The risk gain is of a factor
N2dk�(� |��)

n�1 .
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Proof. Recall X,Y denote the test sample. We denote the risk of the least-squares estimator con-730

ditional on the training data X 2 Rn⇥Nd as R(⇥̂ | X), which has the following bias-variance731

decomposition:732

R(⇥̂ | X) = E
h
kY � ⇥̂>Xk

2
F | X

i
(40)

= E
h
k⇥>X + ⇠ � ⇥̂>Xk

2
F | X

i
(41)

= E
h
k(⇥� ⇥̂)>Xk

2
F | X

i
+ �2

⇠ , (42)

where the last equality follows from ⇠ being zero mean and independent with X . The second term �2
⇠733

is also known as irreducible error. We decompose the first term into734

E
h
k(⇥� ⇥̂)>Xk

2
F | X

i
= E

h
k(⇥� E[⇥̂])>Xk

2
F + k(E[⇥̂]� ⇥̂)>Xk

2
F | X

i
. (43)

Recall that ⇥̂ a.e.
= (X>X)�1X>Y = (X>X)�1X>(X⇥ + ⇠) = ⇥ + (X>X)�1X>⇠. Thus735

E[⇥̂] = ⇥ and (43) simplifies to E
h
k(E[⇥̂]� ⇥̂)>Xk

2
F | X

i
.736

We finish computing the risk by taking expectation over X , and using E[⇥̂]� ⇥̂ = (X>X)�1X>⇠,737

E
h
kY � ⇥̂>Xk

2
F

i
= E

h
R(⇥̂ | X)

i
(44)

= EX

h
EX,⇠

h
k(E[⇥̂]� ⇥̂)>Xk

2
F | X

ii
+ �2

⇠ (45)

= E
h
k
�
(X>X)�1X>⇠

�>
Xk

2
F

i
+ �2

⇠ (46)

= �2
⇠ tr

�
E[(X>X)�1]�2

XI
�
+ �2

⇠ . (47)

By [72, Lemma 2.3], for n > Nd+ 1, E[(X>X)�1] = Nd
n�Nd�1I . Putting this in (47) completes738

the proof.739

C.2 Proofs of Generalization with Approximate Symmetries740

Corollary 3 (Risk Gap via Graph Coarsening). Let X = RN⇥d,Y = RN⇥k be the input and output741

graph signal spaces on a fixed graph G. Let X ⇠ µ where µ is a SN -invariant distribution on X . Let742

Y = f⇤(X) + ⇠, where ⇠ 2 RN⇥k is random, independent of X with zero mean and finite variance,743

and f⇤ : RN⇥d
! RN⇥k be an approximately equivariant mapping with equivariance rate . Then,744

for any G0 that coarsen G up to error ✏, for any f 2 V , we have745

�(f, f̄GG!G0 ) = �2hf⇤, f?
GG!G0 iµ| {z }

mismatch

+
���f?

GG!G0

���
2

µ| {z }
constraint

� (1� 2(✏))
���f?

GG!G0

���
2

µ
.

Proof. We start by simplifying the mismatch term in Lemma 1,746

�2E
h
hf⇤(x), f?

GG!G0 (x)i
i
= �2E

h
hf⇤(x)� f⇤

GG!G0 (x) + f⇤
GG!G0 (x), f

?
GG!G0 (x)i

i

= �2E

2

64h f⇤(x)� f⇤
GG!G0 (x)| {z }

GL-anti-symmetric part of f⇤

, f?
GG!G0 (x)| {z }

GL-anti-symmetric part of f

i

3

75

� �2 kf⇤
� f⇤

GG!G0 kµ kf
?
GG!G0 kµ (By Cauchy Schwarz Ineq.)

� �2(✏) kf?
G kµ. (By Definition 4 Approx. Equiv. Map)

Putting this together with the constraint term completes the proof.747
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Corollary 4 (Bias-Variance-Tradeoff via Graph Coarsening). Consider the same linear regression
setting in Theorem 2, except now f⇤ is an approximately equivariant mapping with equivariance rate
, and G = GG!G0 is controlled by G0 that coarsens G up to error ✏. Denote the orthogonal repre-
sentations of GG!G0 on X ,Y as �0, 0, respectively. Let (� 0 | ��0) =

R
GG!G0

� 0(g)��0(g)d�(g)

denote the scalar product of the characters. If n > Nd+ 1 the risk gap is bounded by

E
h
�

⇣
f⇥̂, f GG!G0 (⇥̂)

⌘i
� (1� 2(✏))�2

⇠
N2dk � (� 0 | � 0)

n�Nd� 1
.

Proof. It follows immediately from applying Theorem 13 in [8] to Corollary 3 with G = GG!G0 .748

D Example Details749

D.1 Example 3.1750

Consider G = S3,G = S2,X = R3,Y = R3, and x ⇠ N (0,�2
XId). The target function is linear,751

i.e., f⇤(x) = ⇥>x for some ⇥ 2 R3⇥3. In other words, we are learning linear functions on a fixed752

graph domain with 3 nodes. Suppose the target function is S2-equivariant such that it has the form753

⇥ =

"
a b c
b a c
d d e

#
, a, b, c, d, e 2 R. (48)

Now, we project ⇥ in (48) to S3-equivariant space using the intertwine average 5 with the orthogonal754

representation of S3. Direct calculation yields755

 S3(⇥) =

2

4
1
3 (2a+ e) 1

3 (b+ c+ d) 1
3 (b+ c+ d)

1
3 (b+ c+ d) 1

3 (2a+ e) 1
3 (b+ c+ d)

1
3 (b+ c+ d) 1

3 (b+ c+ d) 1
3 (2a+ e)

3

5 (49)

 ?
S3
(⇥) = ⇥� S3(⇥) =

2

4
1
3 (a� e) 1

3 (2b� c� d) 1
3 (�b+ 2c� d)

1
3 (2b� c� d) 1

3 (a� e) 1
3 (�b+ 2c� d)

1
3 (�b� c+ 2d) 1

3 (�b� c+ 2d) 1
3 (�2a+ 2e).

3

5 (50)

Therefore, the bias term evaluates to756

��2
X k ?

S3
(⇥)k2 = ��2

X

✓
2(a� e)2

3
+

2(�2b+ c+ d)2

9
+

2(b� 2c+ d)2

9
+

2(b+ c� 2d)2

9

◆
.

(51)

For the variance term, recall � S3
, S3 are both the standard representation of S3, we have757

�
� S3

| ��S3

�
=

1

6
(32 + 12 + 12 + 12 + 02 + 02) = 2. (52)

Therefore, the variance term evaluates to758

�2
⇠
N2

� (� | � )

n�N � 1
= �2

⇠
7

n� 4
. (53)

Putting (51) and (53) together yields the generalization gap of for the least square estimator f⇥̂759

compared to its S3-equivariant version f S3 (⇥̂).760

As a comparison, when choosing the symmetry group of the target function G = S2, the bias vanishes761

and note that
�
� S2

| ��S2

�
= 1

2 (3
2 + 12) = 5, so generalization gap is762

E
h
�
⇣
f⇥̂, f S2 (⇥̂)

⌘i
= �2

⇠
4

n� 4
. (54)

We see that choosing G = S3 is better if a ⇡ e, b ⇡ c ⇡ d (i.e., f⇤ is approximately S3-invariant)763

and the training sample size n small, whereas S2 is better vice versa. This analysis illustrates the764

advantage of choosing a (suitably) larger symmetry group to induce a smaller hypothesis class765

when learning with limited data, and introduce useful inductive bias when the target function is766

approximately symmetric with respect to a larger group. We further validate our theoretical analysis767

via simulation, with details and results shown in Figure 4.768
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Figure 4: Choosing the symmetry group corresponding to the target function usually yields the
best generalization ((a), (b), (d)), but not always: when the number of training data n is small
and the target function f is approximately equivariant with respect to a larger group, choosing the
larger symmetry group could yield further generalization gain, as shown in (c) empirically. Dashed
gray vertical line highlights the theoretical threshold n⇤

⇡ 35, before which using S3 yields better
generalization than S2, validating our theoretical analysis. We set �2

X = 1,�2
⇠ = 1

64 , conduct 10
random runs and compute the generalization error based on 300 test points. We obtain the estimators
via stochastic gradient descent, and enforce symmetry via tying weights. Titles of each subplot
indicate the symmetry of the target function, and display the target function values.

D.2 Example: Approximately Equivariant Mapping on a Geometric Graph769

In this section, we illustrate a construction of an approximately equivariant mapping. We focus on a770

version of Definition 3 that does not take to account the symmetries of G0. Namely, we consider a771

definition of the approximate symmetries as772

GG!G0 := Sc1 ⇥ Sc2 . . .⇥ ScM ⇢ SN .

Equivalently, we restrict the analysis to coarsening graphs G0 that are asymmetric.773

Background from graphon-signal analysis. To support our construction, we cite some definitions774

and results from [73].775

Definition 8. Let r > 0. The graphon-signal space with signals bounded by r is WLr := W ⇥776

L1
r [0, 1], where L1

r [0, 1] is the ball of radius r in L1[0, 1]. The distance in WLr is defined for777

(W, s), (V, g) 2 WLr by778

d⇤
�
(W, s), (V, g)

�
:= k(W, s)� (V, g)k⇤ := kW � V k⇤ + ks� gk1.

Moreover,779

�⇤
�
(W, s), (V, g)

�
= inf

�
d⇤

�
(W, s), (V �, g�)

�
,

where g�(x) = g(�(x)) and � is a measure preserving bijection.780

Any graph-signal induces a graphon signal in the natural way, as in Definition 1. The cut norm and781

distance between to graph-signals is defined to be the cut norm and distance between the two induced782

graphon-siganl respectively. Similarly, the L1 distance between a signal q on a graph and a signal s783

on [0, 1] is defined to be the L1 distance between the induced signal from q and s.784

The supremum in the definition of cut distance between two induced graphon-signals is realized for785

some measure preserving bijection.786

Sampling graphon-signals. The following construction is from [73, Section 3.4]. Let ⇤ =787

(�1, . . .�N ) 2 [0, 1]N be N independent uniform random samples from [0, 1], and (W, s) 2 WLr.788

We define the random weighted graph W (⇤) as the weighted graph with N nodes and edge weight789

wi,j = W (�i,�j) between node i and node j. We similarly define the random sampled signal s(⇤)790

with value si = s(�i) at each node i. Note that W (⇤) and s(⇤) share the sample points ⇤. We then791

define a random simple graph as follows. We treat each wi,j = W (�i,�j) as the parameter of a792
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Bernoulli variable ei,j , where P(ei,j = 1) = wi,j and P(ei,j = 0) = 1�wi,j . We define the random793

simple graph G(W,⇤) as the simple graph with an edge between each node i and node j if and only794

if ei,j = 1.795

The following theorem is from [73, Theorem 3.6]796

Theorem 1 (Sampling lemma for graphon-signals). Let r > 1. There exists a constant N0 > 0 that797

depends on r, such that for every N � N0, every (W, s) 2 WLr, and for ⇤ = (�1, . . .�N ) 2 [0, 1]N798

independent uniform random samples from [0, 1], we have799

E
✓
�⇤

⇣�
W, s

�
,
�
G(W,⇤), s(⇤)

�⌘◆
<

15p
log(N)

. (55)

By Markov’s inequality and (55), for any 0 < p < 1, there is an event of probability 1� p (regarding800

the choice of ⇤) in which801

�⇤
⇣�

W, s
�
,
�
G(W,⇤), s(⇤)

�⌘
<

15

p
p

log(N)
. (56)

Stability to deformations of mappings on geometric graphs. Let M be a metric space with an802

atomless standard probability measure defined over the Borel sets (up to completion of the measure).803

Such a probability space is equivalent to the standard probabiltiy space [0, 1] with Lebesgue measure.804

Namely, there are co-null sets A ⇢ M and B ⇢ [0, 1], and a measure preserving bijection � : A ! B.805

Hence, graphon analysis applied as-is when replacing the domain [0, 1] with M.806

Suppose that we are interested in a target function fM : L1(M) ! L1(M) that is stable to807

deformations in the following sense.808

Definition 9. Let ✏ > 0. A measurable bijection ⌫ : M ! M is called a deformation up to ✏, if809

there exists an event B✏ ⇢ M with probability greater than 1� ✏ such that for every x 2 B✏810

dM
�
⌫(x), x

�
< ✏.

The mapping fM : L2(M) ! L2(M) is called stable to deformations with stability constant C, if811

for any deformation ⌫ up to ✏, and every s 2 L1(M), we have812

kfM(s)� fM(s � ⌫) � ⌫�1
k1 < C✏.

Suppose that we observe a discretized version of the domain M, defined as follows. There is a813

graphon W : M2
! [0, 1] defined as814

W (x, y) = r
�
d(x, y)

�
, (57)

where r : R+ ! [0, 1] is a decreasing function with support [0, ⇢]. Instead of observing W , we815

observe a weighted graph G = G(W,⇤) with node set [N ], sampled from W on the random816

independent points ⇤ = {�n}Nn=1 ⇢ M as above. Suppose moreover that any graph signal is817

sampled from a signal in L1(M), on the same random points ⇤, as above.818

Suppose that the target fM on the continuous domain is well approximated by some mapping819

f⇤ : L2[N ] ! L2[N ] on the discrete domain in the following sense. For every s 2 L1(M), let sG820

be the graph signal sampled on the random samples {�n}n. Then there is an event of high probability821

such that822

kf⇤sG � {
�
fM(s)

�
(xn)}nk1 < e

for some small e. We hence consider f⇤ as the target mapping of the learning problem. One example823

of such a scenario is when there exists some Lipschitz continuous mapping ⇥ : WLr ! WLr with824

Lipschitz constant L, such that fM = ⇥(W, ·) and f⇤ = ⇥(G, ·). Indeed, by (56), for some p as825

small as we like, there is an event of probability 1� p in which, up to a measure preserving bijection,826

kfMs� f⇤sGk1  �⇤
⇣�

W, fMs
�
,
�
G, f⇤sG

�⌘

827

 L�⇤
⇣�

W, s
�
,
�
G, sG

�⌘
<

15L

p
p
log(N)

= e.
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A concrete example is when ⇥ is a message passing neural network (MPNN) with Lipschitz continu-828

ous message and update functions, and normalized sum aggregation [73, Theorem 4.1].829

Let G0 be a graph that coarsens G up to error ✏. In the same event as above, by (56), up to a measure830

preserving bijection,831

d⇤(WG0 ,W )  d⇤(WG0 ,WG) + d⇤(WG,W )  ✏+ e = u. (58)

We next show an approximation property that we state here informally: since W (x, y) ⇡ 0 for x away832

from y, we must have WG0(x, y) ⇡ 0 as well for a set of high measure. Otherwise, �⇤(WG0 ,W )833

cannot be small. By this, any approximate symmetry of G is a small deformation, and, hence, f⇤ is834

an approximately equivariant mapping.835

Equivariant mappings on geometric graphs. In the following, we construct a scenario in which836

f⇤ can be shown to be approximately equivariant in a restricted sense. For simplicity, we restrict837

to the case r = [0,⇢] in the geometric graphon W of (57). Denote the induced graphon WG0 = T .838

Given h > 0, define the h-diagonal839

dh = {(x, y) 2 M
2
| dM(x, y)  h}.

In the following, all distances are assumed to be up to the best measure preserving bijection.840

If there is a domain S0
⇥ T 0

2 M
2 outside the ⇢-diagonal in which T (x, y) > c for some c > 0, we841

must have842

kW � Tk⇤ �

Z

S0

Z

T 0
T (x, y)dydx = cµ(S0)µ(T 0).

Hence, since by (58), kW � Tk⇤ < u, for every S0
⇥ T 0 that does not intersect d⇢, we must have843

Z

S0

Z

T 0
T (x, y)dydx  u.

In other words, for any two sets S, T with distance more than ⇢ (infs2S,t2T dµ(s, t) > ⇢), we have844

Z

S

Z

T
T (x, y)dydx  u.

This formalizes the statement “W (x, y) ⇡ 0 for x away from y” from above.845

Next, we develop the analysis for the special case M = [0, 1] with the standard metric and Lebesgue846

probability measure. We note that the analysis can be extended to M = [0, 1]D for a general847

dimension D 2 N.848

For every z 2 [0, 1], we have849

Z

[z+⇢/
p
2,1]

Z

[0,z�⇢/
p
2]
T (x, y)dydx  u,

and850 Z

[0,z�⇢/
p
2]

Z

[z+⇢/
p
2,1]

T (x, y)dydx  u.

Let ⌫ > 0. We take a grid {xj} 2 [0, 1] of spacing
p
2⌫. The sets851

[

j

[xj + ⇢/
p

2, 1]⇥ [0, xj � ⇢/
p

2] ,
[

j

[0, xj � ⇢/
p

2]⇥ [xj + ⇢/
p

2, 1]

cover dc⌫ (where dc⌫ is the complement of d⌫). Hence,852

ZZ

dc
⌫

T (x, y)dydx 

1/
p
2⌫X

j=1

Z

[xj+⇢/
p
2,1]

Z

[0,xj�⇢/
p
2]
T (x, y)dydx

853

+

1/
p
2⌫X

j=1

Z

[0,xj�⇢/
p
2]

Z

[xj+⇢/
p
2,1]

T (x, y)dydx
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854


2

p
2⌫

u.

We take 2p
2⌫
u = t, for u ⌧ t ⌧ 1, namely, ⌫ =

q
2u
t . For example, we may take t = u1/3, and855

⌫ =
p
2u1/2�1/6 =

p
2u1/2, assuming that ⇢ < u1/3. Hence, we have856

ZZ

dc

u1/3

T (x, y) 
p

2u1/3.

To conclude, the probability of having an edge between nodes �i and �j in G0
N which are further857

away than u1/3, namely, dM(�i,�j) > u1/3, is less than
p
2u1/3.858

Suppose that G0 is asymmetric. This means that symmetries of GG!G0 can only permute between859

nodes that have an edge between them in the blown-up graph G0
N . The probability of having an edge860

between nodes further away than u1/3 is less than
p
2u1/3. Hence, a symmetry in GG!G0 can be seen861

as a small deformation, where for each node �i and a random uniform g 2 GG!G0 , the probability862

that �i it is mapped by g to a node of distance less than u1/3 is more than 1�
p
2u1/3. Any symmetry863

g in GG!G0 induces a measure preserving bijection ⌫ in M = [0, 1], by permuting the intervals of864

the partition PN of Definition 1. As a result, the set of points that are mapped further away than u1/3865

under ⌫ has probability upper bounded by
p
2u1/3, and symmetries in GG!G0 can be seen as a small866

deformation ⌫ according to Definition 9 (in high probability). This means that867

kfM(s)� fM(s � ⌫) � ⌫�1
k1 < C

p

2u1/3,

so by the triangle inequality, we have868

kf⇤(sG)� g�1f⇤(gsG)k1 < 2e+ C
p

2u1/3 = ✏0, (59)
Next, we show that f⇤ is approximately equivariant in a restricted sense, where we limit ourselves to869

a symmetry group870

GG!G0 = Sc1 ⇥ Sc2 . . .⇥ ScM

in Definition 3, without the symmetries of AG0 .871

Equation (59) leads to872

kf⇤(sG)�QGG!G0 (f
⇤)(sG)k1 = kf⇤(sG)�

1

|GG!G0 |

X

g2GG!G0

g�1f⇤(gsG)k1 (60)


1

|GG!G0 |

X

g2GG!G0

kf⇤(sG)� g�1f⇤(gsG)k1 < ✏0. (61)

Since for any q 2 L2[0, 1] \ L1[0, 1] we have kqk22  kqk1kqk1, we can bound873

kf⇤(sG)�QGG!G0 (f
⇤)(sG)k2 <

q
2kf⇤(sG)k1

p

✏0.

Denote kf⇤
k1 :=

R
kf⇤(sG)k1dµ(sG), and suppose that kf⇤

k1 is finite. Hence, if µ is a probabil-874

ity measure, we have875
��f⇤

�QGG!G0 (f
⇤)
��
µ
<

q
2kf⇤k1

p

✏0.

This shows a modified version of approximate equivariance, where the approximation rate is also a876

function of the size of the graph N , and goes to zero as N ! 1 and ✏! 0.877

In future work, we will extend this example to more general metric space M and to non-trivial878

symmetry groups AG0 . Intuitively, most random geometric graphs are “close to asymmetric.” This879

means that for “most” G0, the symmetries of AG0 can only permute between nodes connected by an880

edge, and so are the symmetries of GG!G0 . For this, we need to extend Definition 9 by treating G0881

probabilistically.882

E Experiment Details883

The source code will be made available in the final version of the paper. All experiments were884

conducted on a server with 256 GB RAM and 4 NVIDIA RTX A5000 GPU cards.885
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E.1 Application: Human Pose Estimation886

Data. We use the standard benchmark dataset, Human3.6M [65], with the same protocol as in [66]:887

We train the models on 1.56M poses (from human subjects S1, S5, S6, S7, S8) and evaluate them888

on 0.54M poses (from human subjects S9, S11). We use the method described in [74] to normalize889

the inputs (2D joint poses) to [�1, 1] and align the targets (3d joint poses) with the root joint.890

Graph Networks with Equivariant Modules. We give detailed description of G-Net and891

its variants used in the experiments. Figure inset illustrates the architecture of G-Net.892

 Linear Map 

 Nonlinearity

 Linear Map 

 Nonlinearity

 Linear Map 

For the human skeleton graph with N = 16, we have fG : R16⇥d
! R16⇥k,893

where d, k represent the input dimension and output dimension (for each layer). Let894

fG [i, j] : R16
! R16 denote its (i, j)-th slice.895

1. G-Net with strict equivariance using equivariant linear map fG (see Table 5):896

• S16: fS16 [i, j] 2 R16⇥16 is a diagonal matrix, with one learnable scalar a897

on diagonal and another learnable scalar b off diagonal.898

• Relax-S16: We relax fS16 [i, j] by having 16 different pairs of scalars899

(ai, bi), i 2 [16], such that each node i can map to itself and communicate900

to its neighbors in a different way (controlled by (ai, bi)), while still treat901

all neighbors equally (by using the same bi for nodes j 6= i).902

• (S2)6: We use Algorithm 2 while replacing AG with the symmetry903

group on a disconnected graph G0 consists of the orbits in G, i.e.904

G0 has the same nodes as G, but only retaining the edges among905

(1, 4), (2, 5), (3, 6), (10, 13), (11, 14), (12, 15).906

• AG: We use Algorithm 2.907

• S2: We use Algorithm 2 while replacing AG with S2 representing the908

bilateral symmetry on the human skeleton graph (i.e., the left arms and909

legs must flip together, similarly for the right arms and legs).910

• Trivial: We allow f [i, j] 2 R16⇥16 to be arbitrary, i.e., it has 16 ⇥ 16911

learnable scalars.912

We remark that for S16 and Relax-S16, we implement them by tying weights; for (S2)6,AG,S2, we913

implement them by projecting to isotypic component as shown in Algorithm 2.914

2. G-Net augmented with graph convolution AfG(x), denoted as G-Net(gc) (see Table 5): We apply915

the equivariant linear map fG in 1. and obtain the output fG(x) 2 R16⇥k; We then apply graph916

convolution by multiplication from the left, i.e., AfG(x) 2 R16⇥k.917

3. G-Net augmented with graph convolution and learnable edge weights, denoted as G-Net(gc+ew)918

(see Table 13): We further learn the edge weights for the adjacency matrix A, by softmax(M �A)919

where M 2 R16 represents the learnable edge weights, and Mi,j is nonzero when Ai,j 6= 0 and920

0 elsewhere. This is inspired from SemGCN [66]. Besides the groups discussed in 1., we also921

implemented Relax-(S6)2 which corresponds to tying weights among the coarsened graph orbits,922

consists of 4 spline nodes (singleton orbits) and 2 orbits for the left/right arm and leg nodes.923

4. G-Net augmented with graph locality constraints (A� fG)(x), denoted as G-Net(pt) (see Table 5):924

We perform pointwise multiplication A� fG [i, j] at each (i, j)-th slice of fG . In practice, we also925

allow learnable edge weights as done in 3.926

Experimental Set-up. We design G-Net to have 4 layers (with batch normalization and residual927

connections in between the hidden layers), 128 hidden units, and use ReLU nonlinearity. This allows928

G-Net(gc+ew) to recover SemGCN [66] when choosing G = S16. We train our models for maximally929

30 epochs with early stopping. For comparison purpose, we use the same optimization routines as in930

SemGCN [66] and perform the hyper-parameter search of learning rates {0.001, 0.002}.931

Evaluation. Table 5 shows results of G-Net and its variants when varying the choice of G. We932

observe that using the automorphism group AG does not give the best performance, while imposing933

no symmetries (Trivial) or a relaxed version of S16 yields better results.934

3There is a typo in Table 1, where (S2)
6 should be corrected to Relax-S16, and (S6)

2 should be corrected to
Relax-(S6)

2.
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Table 5: 3D human pose prediction using G-Net and its variants. Error (± std) measured by Mean
Per-Joint Position Error (MPJPE) and MPJPE after rigid alignment (P-MPJPE) across 3 runs. All
methods use the same hidden dimension d = 128. Bold type indicates the top-2 performance among
each variant. “NA” indicates the loss fails to converge.

MPJPE # S16 Relax-S16 (S2)
6 AG = (S2)

2 S2 Trivial

G-Net NA 47.97± 0.47 52.97± 0.79 48.30± 0.69 48.95± 0.31 42.86± 0.64
G-Net(gc) NA 54.50± 4.33 52.97± 0.64 49.40± 1.37 48.72± 0.39 43.24± 0.82
G-Net(pt) 41.54± 0.47 40.44± 0.61 52.47± 0.48 40.63± 0.26 48.19± 0.13 38.41± 0.31

P-MPJPE # S16 Relax-S16 (S2)
6 AG = (S2)

2 S2 Trivial

G-Net NA 36.45± 0.56 41.66± 0.28 37.17± 0.59 37.27± 0.27 32.59± 0.62
G-Net(gc) NA 40.61± 0.99 41.87± 0.80 37.62± 1.32 36.97± 0.78 33.05± 0.81
G-Net(pt) 32.31± 0.03 31.11± 0.68 41.45± 0.28 31.35± 0.14 37.56± 0.12 29.68± 0.22

Table 6: 3D human pose prediction using G-Net(gc+ew), where the models induced from each choice
of G are set to have roughly the same number of parameters. d denotes the number of hidden units.

G-Net Number of Parameters Number of Epochs MPJPE P-MPJPE

S16 0.27M (d = 128) 50 43.48 34.96
Relax-S16 0.27M (d = 32) 20 40.08 32.08

AG = (S2)
2 0.22M (d = 16) 30 44.10 34.12

Trivial 0.22M (d = 10) 30 45.05 34.79

Additional Evaluation. Table 6 shows the experiments when we keep the number of parameters935

roughly the same across different choices of G.936

E.2 Application: Traffic Flow Prediction937

Data. The METR-LA traffic dataset, [67], contains traffic information collected from 207 sensors in938

the highway of Los Angeles County from Mar 1st 2012 to Jun 30th 2012 [75]. We use the same traffic939

data normalization and 70/10/20 train/validation/test data split as [67]. We consider two different940

traffic graphs constructed from the pairwise road network distance matrix: (1) the sensor graph G941

introduced in [67] based on applying a thresholded Gaussian kernel (degree distribution in Figure942

5e); (2) the sparser graph Gs based on applying the binary mask where the (i, j) entry is nonzero if943

and only if nodes i, j lie on the same highway (degree distribution in Figure 5d). We construct the944

second variant to more faithfully model the geometry of the highway sensors, illustrated in Figure 5a.945

Graph coarsening. We choose 2 clusters based on highway intersection and flow direction, indicated946

by colors (Figure 5c (b)), and 9 clusters based on highway labels (Figure 5c (c)).947

Model. We use a standard baseline, DCRNN proposed in [67]. DCRNN is built on a core recurrent948

module, DCGRU cell, which iterates as follows: Let xi,t, hi,t denote the i-th node feature and hidden949

state vector at time t; Let Xt, Rt, Ht�1 be the matrices of stacking feature vectors xi,t, ri,t, hi,t�1 as950

rows.951

zi,t = �g (Wz xi,t + Uz hi,t�1 + bz) (62)
ri,t = �g (Wr xt + Ur ht�1 + br) (63)

ĥi,t = �h
⇣
[AXWh]

>
[i,:] + [A (Rt �Ht�1)Uh]

>
[i,:] + bh

⌘
(64)

hi,t = zt � ht�1 + (1� zt)� ĥt, (65)

where Wz, Uz, bz, Ur,Wr, br,Wh, Uh, bh are learnable weights and biases, �g is the sigmoid func-952

tion, �g is the hyperbolic tangent, and hi,0 = 0 for all i at initialization. The crucial different from a953

vanilla GRU lies in eqn (64) where graph convolution replaces matrix multiplication.954

We then modify the graph convolution in (64) from global weight sharing to tying weights among955

clusters of nodes, similar to the implementation in Appendix E.1 for Relax-S16. For example, in the956

case of two clusters (orbits), we change XWh to957

swap (concat[Xc1Wh,c1 ;Xc2Wh,c2 ]) , (66)
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(a) Our faithful traffic graph (b) Graph clustering (2 clusters) (c) Graph clustering (9 clusters)

(d) Our faithful graph degree dis-
tribution

(e) Original sensor graph degree
distribution

Figure 5: METR-LA traffic graph: visualization, clustering, and degree distribution

where Xci denotes the submatrix of X including the rows of nodes from cluster i only, and958

Wh,c1 ,Wh,c2 are two learnable matrices. In words, we perform cluster-specific linear transformation,959

combine the transformed features, and reorder the rows (i.e., swap) to ensure compatibility with the960

graph convolution.961

Experiment Set-up. For our experiments, we use DCRNN model with 1 RNN layer and 1 diffusion962

step. We choose T 0 = 3 (i.e., 3 historical graph signals) and T = 3 (i.e., predict the next 3 period963

graph signals). We train all variants for 30 epochs using ADAM optimizer with learning rate 0.01.964

We report the test set performance selected by the best validation set performance.965

E.2.1 Assumption Validation: Approximate Equivariant Map966

Before applying our construction of approximate symmetries, we validate the assumption of the967

target function f⇤ being an approximately equivariant mapping using a trained DCRNN model as a968

proxy. We proceed as follows:969

Data. We use the validation set of METR-LA (traffic graph signals in LA), which has 207 nodes and970

consists of 14, 040 input and output signals. Each input X 2 R207⇥2 represents the traffic volume971

and speed in the past at the 207 stations, and output Y 2 R207 representing future traffic volume.972

Model. We use a trained DCRNN model on our faithful graph, with input being 3 historical signals973

X = (XT�3, XT�2, XT�1) 2 R3⇥207⇥2 to predict the future signals Y = (XT , XT+1, XT+2) 2974

R3⇥207. We denote this model as f . It gives reasonable performance with Mean Absolute Error ⇡ 3,975

and serves as a good proxy for the target (unknown) function f⇤.976

Neighbors. We take our faithful traffic graph that originally has 397 non-loop edges, and only consider977

a subset of 260 edges by thresholding the distance values to eliminate geometrically far-away nodes.978

This defines our 260 neighboring node pairs.979

Equivariance error. For each node pair (i, j), we swap their input signals by interchanging the
(i, j)-th slices in the node dimension of the tensor X , denoted as X(i,j), and check if the swapped
output Ŷ(i,j) = f(X(i,j)) is close to the original output Ŷ = f(X) with (i, j)-th slices swapped.
We measure “closeness” via the relative equivariant error at the node pair. Concretely, let X[i, j]
denote the tensor slices at the (i, j) node pair, and X[j, i] being the swapped version by interchanging
(i, j)-th slices. The relative different is computed as

��Ŷ(i,j)[j, i]� Ŷ [i, j]
��/Ŷ [i, j],
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where / denotes element-wise division. We then compute the mean relative equivariance error over980

all instances in the validation set, which equals to 5.17%. This gives concrete justification to enforce981

approximate equivariance in the traffic flow prediction problems.982
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