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Abstract

In recent years, AI-assisted drug design methods have been proposed to generate
molecules given the pockets’ structures of target proteins. Most of them are atom-
level-based methods, which consider atoms as basic components and generate atom
positions and types. In this way, however, it is hard to generate realistic fragments
with complicated structures. To solve this, we propose D3FG, a functional-group-
based diffusion model for pocket-specific molecule generation and elaboration.
D3FG decomposes molecules into two categories of components: functional
groups defined as rigid bodies and linkers as mass points. And the two kinds of
components can together form complicated fragments that enhance ligand-protein
interactions. To be specific, in the diffusion process, D3FG diffuses the data
distribution of the positions, orientations, and types of the components into a prior
distribution; In the generative process, the noise is gradually removed from the
three variables by denoisers parameterized with designed equivariant graph neural
networks. In the experiments, our method can generate molecules with more
realistic 3D structures, competitive affinities toward the protein targets, and better
drug properties. Besides, D3FG as a solution to a new task of molecule elaboration,
could generate molecules with high affinities based on existing ligands and the
hotspots of target proteins.

1 Introduction

The established notion in drug-target identification is that similar structures perform similar func-
tions. This principle allows classical computer-aided drug design (CADD) to abstract protein-ligand
interactions as pharmacophores, aligning similar functional groups and extracting pharmaceutical
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information from these structures. Fitting suitable functional groups into the pharmacophores can
enhance ligand-protein interactions, thus improving drug efficiency [1, 2].

Artificial intelligence has already achieved outstanding success in protein design [3–8] and thus led
to a new round of attention in drug design focused on AI-assisted drug design (AIDD). A number
of methods of AI-assisted drug design on pocket-specific molecule generation are emerging [9–15],
thanks to developments in deep generative models [16–21] and graph neural networks (GNNs)
[22–31]. These methods usually focus on atom-level generation, which first generates atom types and
positions and then assembles atoms into molecules that can bind to the protein pockets. Although
significant progress has been made, they are still weak in two aspects. For one thing, it is hard for
them to generate realistic functional groups that contribute pharmacological effects to the target
as classical CADD methods are able to. It is shown that generating benzene rings is uncommon
compared with the reference molecules, not to mention some large functional groups with complex
structure constraints such as purine, indole, etc (Table. 1 in Sec. 5.2). For another, trade-offs between
efficiency and sufficiency of protein context place them in a dilemma. For example, TARGETDIFF
[13] employs sufficient protein context, which disassembles the amino acids into atoms, but leads to
inefficiency due to a large node number (412.14 on average) in GNN’s message passing. DIFFSBDD
[14] simplifies the representation of protein context, by only using Cα’s positions and residue types,
resulting in a reduction of GNNs’ node number (68.10 on average) but the insufficiency of context
information.

To address the above issues, we establish a functional-group-based diffusion model (D3FG), including
the following contributions: 1. Method Novelty. We denote the molecules’ functional groups and
proteins’ amino acids as the same level’s fragments, in which the intra-relative positions of atoms
are fixed like rigid bodies, and represent single atoms as linkers. The positions and orientation of
local structures and the atom type variables are generated gradually through denoising processes.
The fragment-linker designation leads the binding systems to heterogeneous graphs, and thereby, two
schemes are proposed as solutions, which achieve competitive performance in terms of molecule
structures, binding affinity, and drug properties, and sufficiency in encoding protein context by
employing more features. 2. Dataset Establishment. Though the CrossDocked2020 [32] has been a
widely-used dataset for evaluation methods’ performance on the task, the analysis of the molecules’
functional groups of it is missing. We deeply explore the details of the inter-relative positions
and types of functional groups of the molecules and establish an extendable database of common
functional groups. 3. New task. Besides molecule generation, we propose molecule elaboration as
another task that our model can fulfill. Fragment hotspot maps (FHM) [33, 34] are used to preprocess
paired protein-molecule in CrossDocked2020 for the task. As a result, our model generates molecules
with high binding affinity based on the reference.

2 Problem Statement

For a binding system composed of a protein-molecule pair (also called protein-ligand pair) as C,
which contains Naa amino acids of proteins and Nfg functional groups and Nat single atoms of
molecules, we represent the index set of the molecule’s single atoms as Iat, functional groups as Ifg,
and the protein’s amino acids as Iaa, where |Ifg| = Nfg, |Iat| = Nat and |Iaa| = Naa. Note that a
molecule can be disassembled into functional groups and single atoms other than functional groups,
which we also call linkers. For a protein, the amino acids can be represented by its type, Cα atom
coordinate, and the orientation, denoted as si ∈ {1, . . . , 20}, xi ∈ R3, Oi ∈ SO(3), where i ∈ Iaa.
For a molecule, assuming there are Mfg and Mat possible types in total functional groups and linker
atoms respectively, the functional groups can be represented as the three elements if the inter-relative
positions are fixed, as sj , xj and Oj , where sj ∈ {21, . . . , 21 +Mfg} is the type, xj ∈ R3 is the
predefined center atom’s coordinate, and Oj ∈ SO(3) can also be obtained in the same way as amino
acids (See Sec. 5.1 and Appendix. D.) for j ∈ Ifg; And its linkers can be represented as sk, xk and
Ok, with sk ∈ {22 +Mfg, . . . , 22 +Mfg +Mat}, k ∈ Iat and Ok = diag{1, 1, 1} = I .

Therefore, C = {(si,xi,Oi)}
Naa+Nfg+Nat

i=1 can be split into two sets as C = P ∪ M, where
P = {(si,xi,Oi) : i ∈ Iaa} and M = {(sj ,xj ,Oj) : j ∈ Ifg ∪ Iat} . For protein-specific
molecule generation, our goal is to establish a probabilistic model to learn the distribution of
molecules conditioned on the target proteins, i.e. p(M|P). In the following, we omit i ∈ Iaa and
j ∈ Ifg ∪ Iat by default unless specified.
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3 Related Work

3D molecule generation. Previous methods on molecule generation fucus on 1D-smiles-string
[35–38] or 2D-molecule-graph [39–43]. In recent years, more works concentrate on 3D molecule
generation, thanks to fast development in equivariant graph neural networks [44–46] and generative
models [16–21]. Molecular conformation generation aims to generate 3D structures of molecules
with stability, given 2D molecule graph structure, [47–51]. Further, De novo molecular generation
attempts to generate both 2D chemical formulas and 3D structures from scratch [52–54].

Fragment-based drug design. Previously, works on fragment-based molecule generation are
proposed. For example, JT-VAE [55] generates a tree-structured scaffold over chemical substructures
and combines them into a 2D-molecule. PS-VAE [56] can automatically discover frequent principal
subgraphs from the dataset, and assemble generated subgraphs as the final output molecule in
2D. Further, DEEPFRAG [57] predicts fragments conditioned on parents and the pockets, SQUID
[58] generates molecules in a fragment level conditioned on molecule’s shapes. FLAG[59] auto-
regressively generates fragments as motifs based on the protein structures in 3D.

Structure-based drug design. Success in 3D molecule generation and an increasing amount of
available structural data of protein and molecules raises scientific interests in structure-based drug
design (SBDD), which aims to generate both 2D molecule graphs and 3D structures conditioned on
target protein structure as contextual constraints. For example, LIGAN [60] and 3DSBDD [12]
are grid-based models which predict whether the grid points are occupied by specific atoms. By
harnessing 3D equivariant graph neural networks, POCKET2MOL [9] and GRAPHBP [10] generate
atoms auto-regressively and model the probability of the next atom’s type as discrete categorical
attribute and position as continuous geometry. FLAG[59] is also fragment-based, but still generates
motifs in an auto-regressive way. Recently, utilizing the diffusion denoising probability models
[61–63, 53, 64], a series of SBDD methods generate ligands conditioned on the target pockets at full
atom levels [13–15].

4 Method

D3FG firstly decomposes molecules into two categories of components: functional groups and
linkers, and them use the diffsion generative model to learn the type and geometry distributions of
the components. In this section, we describe the D3FG by four parts: (i) the diffusion model as the
generative framework, in which the three variables are generated; (ii) the denoiser parameterized by
graph neural networks, satisfying certain symmetries so that the generative model is SE-(3) invariant;
(iii) the sampling process in which the molecules are generated by the trained models; (iv) the further
problems resulted from heterogenous graph with two solutions.

4.1 Diffusion Models

Diffusion models construct two Markov processes to learn the data distributions. The first called the
forward diffusion process adds noises gradually until the noisy data’s distribution reaches the prior
distribution; The other called the generative denoising process, gradually removes the noise from
the data sampled from the prior distribution until they are recovered to the desired data distribution.
Assume there are T steps in both processes, and we denote Mt = {(stj ,xt

j ,O
t
j)} as the t-th

noisy state in the forward process, with MT ∼ Prior(MT ), and M0 = M, where the transition
distribution is denoted as q(·|·); In the generative process, sample goes from T to 0, in which the
transition distribution is denoted as p(·|·). Here we define the forward and generative processes of stj ,
xt
j , and Ot

j .

Absorbing diffusion for functional group and linker types. Let stj as the one-hot encoding of the
type of a single functional group or linker. The forward process followed by D3PM [65] randomly
transits stj into the absorbing state K (K = 23 +Mfg +Mat) with

q(stj |st−1
j ) = Multinomial

(
st−1
j Qt

)
q(stj |s0j ) = Multinomial

(
s0jQ̄

t
) (1)
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Figure 1: An illustration of the workflows of D3FG of the two schemes.

where Q̄t = Q1Q2 . . .Qt and [Qt]mn = q(stj = n|st−1
j = m) denotes diffusion transition

probabilities, with

[
Qt
]
mn

=


1 if m = n = K

1− βt
type if m = n ̸= K

βt
type if m ̸= K,n = K

. (2)

βt
type monotonically increases from 0 to 1, means that when t = T , all the type variables are absorbed

into the K-th category. In the generative process, it first samples Nat linkers and Nfg functional
groups whose types are all in the absorbing states, selects (1− βt

type)× 100% of them respectively,
and transforms their types from the absorbing states to the predicted ones by

p(st−1
j |Mt,P) = Multinomial

(
F (Mt,P)[j]

)
. (3)

where F is the type denoiser parameterized with a neural network, and F (·, ·)[j] predicts the probabil-
ity of the types for the j-th selected functional groups or linkers. With the effectiveness of BERT-style
training [66], the denoiser directly predicts p(s0j |Mt,P), leading to a training objective as

Lt
type = EMt

∑
j

log p(s0j |Mt,P)

 . (4)

Gaussian diffusion for center atom positions. By defining the center atom in a functional group
as shown in Appendix. D, and itself as the center in a linker, the Cartesian coordinate of center nodes
xj represents its position. The forward transition distributions followed by DDPM [61] read

q(xt
j |xt−1

j ) = N
(
xt
j |
√

1− βt
pos · xt−1

j , βt
posI

)
;

q(xt
j |x0

j ) = N
(
xt
j |
√
ᾱt
pos · x0

j , (1− ᾱ0
pos)I

)
,

(5)

in which βt
pos increases from 0 to 1, means that the noise levels are increasing and the data’s coordinate

signals fade out during the forward diffusion, with αt
pos = 1− βt

pos, ᾱ
t
pos = α0

posα
1
pos . . . α

t
pos, and

finally xT
j ∼ N (0, I). Note that Eq. (5) is equivalent to the Markov process of xt

j =
√

ᾱt
pos · x0

j +√
1− ᾱ0

pos · ϵj , where ϵj ∼ N (0, I). Rather than predicting the mean value of the reverse transition
distribution in the generative process, the position denoiser G approximates the added noise ϵj with
the reparameterization trick as

p(xt−1
j |Mt,P) = N

(
xt−1
j |µpos(Mt,P), βt

posI
)
;

µpos(Mt,P) =
1√
αt
pos

(
xt
j −

βt
pos√

1− ᾱt
pos

G(Mt,P)[j]

)
.

(6)
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The training objective is thus established in a score-based way, as

Lt
pos = EMt

∑
j

∥G(Mt,P)[j]− ϵj∥22

 . (7)

SO(3) diffusion for functional group orientations. By regarding the functional groups as rigid
bodies, orientations together with the center atoms’ positions determine all atoms’ positions. Here we
represent the orientation geometry as elements in SO(3). Following [67], we use isotropic Gaussian
distribution on SO(3) [68] to formulate the process, i.e. IGso(3)(·|µori, σori), in which µori and σori

are viewed as mean orientation and variance, in analogy with Gaussian distribution. The transition
distribution for orientation matrices Oj reads

q(Ot
j |O0

j ) = IGso(3)

(
Ot

j |λori(ᾱ
t
ori,O

0
j ), (1− ᾱt

ori)
)
, (8)

λori(ᾱ
t
ori,O

0
j ) is the geodesic flow from I to Ot

j by the amount ᾱt
ori, as λori(ᾱ

t
ori,O

0
j ) =

exp (ᾱt
ori log(O

0
j )), where exp(·) and log(·) are exponential and logarithm map on the SO(3) man-

ifold. As αt
ori → 0, λori(ᾱ

t
ori,O

0
j ) → I . {βt

ori}Tt=0 is the predefined noise level schedule ranging
from 0 to 1 as t increases, αt

ori = 1− βt
ori and ᾱt

ori = α0
oriα

1
ori . . . α

t
ori.

In the generative process, an orientation denoiser H is used to predict the mean orientation in the
isotropic Gaussian distribution, which reads

p(Ot−1
j |Mt,P) = IGso(3)

(
Ot−1

j |H(Mt,P)[j], βt
ori

)
. (9)

We use the same loss function as in [69] to minimize the expected discrepancy measured by the inner
product between the data orientation matrices and the predicted ones, which reads

Lt
ori = EMt

∑
j

∥(H(Mt,P)[j])⊺O0
j − I∥2F

 . (10)

4.2 Parametrization of Denoisers with Neural Networks

Amino acid context encoding. In order to decrease the computational complexity, we denote the
protein context at amino-acid levels. Besides the amino acid types, Cα atom coordinate and the
orientation, each atom’s coordinates in the local system and three torsion angles including angles
around ‘N-Cα’ bond, ‘Cα-C’ bond and ‘C-N’ bond, are also used as intra-amino-acid features,
which are concatenated and embedded by an MLP to create the intra-amino-acid embedding vector
ei. For inter-amino-acid features, the pair of amino acid types, sequential relationships (if the two
amino acids are adjacent in the protein sequence), pairwise distances between Cα and inter-residue
dihedrals are all embedded as inter-amino-acid embedding vector zi,j with i, j ∈ Iaa. Note that these
embedding vectors are all translational and rotational invariant (Appendix. C).

Denoisers with equivariance. In the setting of generative models, the learned distribution p(M|P)
should be equivariant to translation and rotation, such that p(Tg(M)|Tg(P)) = p(M|P) for any
g ∈ SE(3), where Tg is the corresponding roto-translational transformations, and Tg(M) means
each atom in the molecule is rotated and translated by Tg. In the setting of diffusion models, the
following proposition indicates the translational and rotational equivariance of each denoisers.

Proposition 1. Let p(xT ), p(OT ), and p(sT ) be SE(3)-invariant distribution, and the transition
distributions p(xt−1|Mt,P) be SE(3)-equivariant, p(Ot−1|Mt,P) be T(3)-invariant and SO(3)-
equivariant, and p(st−1|Mt,P) be SE(3)-invariant, then the density p(M|P) modeled by the reverse
Markov Chains in the generative process of diffusion models is SE(3)-equivariant.

According to the Proposition 1, while the denoisers for functional group and linker types are roto-
translational invariant, the denoiser for positions should be roto-translational equivariant, and it for
orientations should be translational invariant and rotational equivariant. Therefore, we employ our
denoiser’s network structures with IPA [3] by harnessing the expressivity of TRANSFORMER [70]
and roto-translational equivariance of LOCS [71]. Denote the binding system as a graph, in which the
nodes are composed of amino acids, functional groups, and linkers, and the edges are established with
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Algorithm 1 Joint Generation for Molecules using D3FG

Input: Zero-centered protein {si,xi,Oi}i∈Iaa , and graph denoiser F,G,H , and node number
sampler ϕfg, ϕat.
Sample Nfg ∼ ϕfg, Nat ∼ ϕat, leading to the index set Ifg and Iat.
Sample initial states of functional groups, {sTj ,xT

j ,O
T
j }j∈Ifg∪Iat

, where stj = K, xT
j ∼ N (0, I),

OT
j ∼ UniformSO(3) for j ∈ Ifg else OT

j = I .
for t in T − 1, T − 2, . . . , 1 do

Sample {st−1
j ,xt−1

j ,Ot−1
j }j∈Ifg∪Iat as Eq. (3), (6) and (9) and update Mt−1.

end for
Output: M = {s0j ,x0

j ,O
0
j}j∈Ifg∪Iat

K-nearest neighbor. Let {hi : i ∈ Iaa ∪ Ifg ∪ Iat} be the node embedding which is SE(3)-invariant,
{ei : i ∈ Iaa∪Ifg∪Iat} and {zi,j : i, j ∈ Iaa∪Ifg∪Iat} be the previously defined intra- and inter-
amino acid embedding, with ej = 0 and zi,j = 0 if i /∈ Iaa or j /∈ Iaa. The attention mechanism in
IPA updates the embedding of node i as

h′
i =

∑
j∈N (i)

exp
(
(Wqe

′
j)

⊺(Wke
′
i) + zi,j

)
(Wve

′
j)∑

j∈N (i) exp
(
(Wqe′j)

⊺(Wke′i) + zi,j
) (11)

where e′i = hi + ei, h′
i is the updated node embedding, Wq, Wk , Wv are learnable parameters,

and N (i) is neighborhood of node i obtained by the edges. Because hi, ei, and zi,j are all SE(3)-
invariant, h′

i is also invariant. Three heads parameterized with MLP are stacked after several layers
of Transformers update the node embedding, denoted by MLPF (·),MLPG(·), and MLPH(·) is used
for updating st−1, xt−1 and Ot−1. The LOCS updates the parameters in Eq. (3), (6) and (9) by

F
(
Mt,P

)
[j] = MLPF (h

′
j)

G
(
Mt,P

)
[j] = MLPG(h

′
j)O

t
j

H
(
Mt,P

)
[j] = exp

(
MLPH(h′

j)
)
Ot

j

(12)

The output of G means predicting the coordinate deviations in the local coordinate systems and
then projecting it into the global one; In H , MLPH first predicts a vector in Lie group so(3) and
the exponential map on SO(3) converts it into a rotation matrix. The updating process ensures the
equivariance and the invariance of the transition distributions in Proposition 1, which is proved in
[71] and [69]. However, since Ot

i = I for any i ∈ Iat, the equivariance of G on linkers will not be
preserved, so we instead use EGNN [44] to get the output of G (Appendix. C).

4.3 Sampling Process

In sampling, we first use two prior distributions as the empirical distributions ϕat and ϕfg drawn
from the training set to sample the linker Nat and functional group number Nfg. As p(xT ), p(OT )
and p(sT ) should be SE(3)-invariant, p(sT ) = 1{K}(s

T ) , p(xT ) = N (xT |0, I) and p(OT ) =

UniformSO(3)(O
T ) satisfy the conditions, where 1·(·) is the indicator function and UniformSO(3)(·)

is the uniform distribution on SO(3). And the iteratively generative process of p(st−1|Mt,P),
p(xt−1|Mt,P) and p(Ot−1|Mt,P) are given in Eq. (3), (6) and (9). The detailed sampling
algorithm is given in Algorithm. 1.

4.4 Heterogeneous graph: Joint or Two-stage?

Amino acids and functional groups are both fragments composed of atoms in proteins and molecules,
regarded as rigid bodies, while the linkers are single atoms, regarded as mass points. Therefore, in
the binding graph, nodes are of different levels and connections are of different kinds, thus leading
the graph to be heterogeneous. For this reason, we propose two generative schemes: joint generation
scheme and two-stage generation scheme as shown in Figure. 1.

In joint scheme, we regard amino acids, functional groups, and linkers at the same level, and use one
single neural network to predict the three variables and update them. In detail, this scheme directly
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models p(M|P) = p({si,xi,Oi}i∈Ifg∪Iat |P), where the parameterized transition distribution is
p({st−1

i ,xt−1
i ,Ot−1

i }i∈Ifg∪Iat
|Mt,P). Note that Ot

i = I for any t if i ∈ Iat.
In two-stage scheme, we regard amino acids and functional groups at the fragment level, and
linkers at the atom level, and use two different neural networks to parameterize the transition
distribution. In the first stage, the functional groups are generated, and then single atoms as linkers
will be generated to connect the generated functional groups as a full molecule. The two-stage
generative scheme is similar to CADD, which first determines the pharmacophores towards the
target protein, fits functional groups with high activity into them, and then searches for the possible
molecules with these functional groups. In specific, the generative process reads p(M|P) =
p({sj ,xj}j∈Iat

|{si,xi,Oi}i∈Ifg
,P)p({si,xi,Oi}i∈Ifg

|P). The transition distribution of the first
stage p({st−1

i ,xt−1
i ,Ot−1

i }i∈Ifg
|{sti,xt

i,O
t
i}i∈Ifg

,P) is parameterized by one neural network; In
the second stage, the generated {si,xi,Oi}i∈Ifg

is used as context, so that the other neural network
models p({st−1

i ,xt−1
i }i∈Iat

|{sti,xt
i}i∈Iat

, {si,xi,Oi}i∈Ifg
,P).

5 Experiments

5.1 Data Processing.

In the experiments, we use CrossDocked2020[32] for evaluation. In the prevailing works, they focus
on generating molecules at the atom level, differing from our functional-group-based generation,
so our first target is to divide the molecules into functional groups and linkers. We use EFGs[72]
to segment molecules. We select the 25 functional groups that appear most frequently with stable
structures, which are partly shown in Figure. 2 For some functional groups, chirality exists in their
structures, and we treat them as two functional groups. As a result, we finally build up a dataset
as a corpus including 27 functional groups (two of the 25 have chirality) for Crossdocked2020,
with their intra-structures fixed as rigid bodies, and assure that most molecules can be decomposed
into the substructures in our corpus datasets. Details are given in Appendix. D. For linkers, we
choose {B,C,N,O,F,P,S,Cl,Br, I} as representative heavy atoms. After the processing, we
obtain Mfg = 27 and Mat = 10 in our experiments. Besides, by the fragment-linker designation of a
binding graph, the node number is reduced to 53.62 on average in GNN’s message-passing.

5.2 Pocket-Specific Molecule Generation

Dataset. The datasets for training and evaluation are split according to POCKET2MOL [9] and
TARGETDIFF [13]. 22.5 million docked protein binding complexes with low RMSD ( < 1Å) and
sequence identity less than 30% are selected, leading to 100,000 pairs of pocket-ligand complexes,
with 100 novel complexes as references for evaluation.

Setup. For performance comparison, our methods are compared with baselines including LIGAN
[60], 3DSBDD [12], GRAPHBP [10], POCKET2MOL [54], DIFFSBDD [14] and TARGETDIFF
[13]. LIGAN as a 3D CNN-based method generates atoms on regular grids, with VAE [73] as its
generative model. 3DSBDD, GRAPHBP and POCKET2MOL are all GNN-based, generating atoms
in an auto-regressive way. DIFFSBDD and TARGETDIFF are two diffusion-based methods that
generate molecules at the full atom level, with equivariant GNNs as the denoisers. The two schemes
of generation lead to two variants of our method, written as D3FG(Joint) and D3FG(Stage). In some
parts, we choose POCKET2MOL as the representative autoregressive methods, and DIFFSBDD and
TARGETDIFF as the benchmarks employing diffusion models, because these three baselines are the

c1ccccc1

NH2O

NC=O

OHO

O=CO

N

c1ccncc1

N
N

NHN

c1ncc2nc[nH]c2n1

Figure 2: Five of twenty-five functional groups with stable structures that occur most frequently in
Crossdocked2020 and are used in D3FG.

7



Table 1: ‘Ratio’ of the top ten functional groups with the highest frequency in Crossdocked2020.
‘Ref.’ is calculated in the training set. MAE is obtained between rows of ‘Ref.’ and different methods’
‘Ratio’ and JSD is calculated by ‘Freq’, which is in detail given in Appendix. E ‘Ratio’ in bold means
it is the closest to ‘Ref.’, and MAE/JSD in bold means it is the lowest.

Functional Group Ref. POCKET2MOL TARGETDIFF DIFFSBDD D3FG (Joint) D3FG (Stage)

c1ccccc1 0.712 0.583 0.293 0.131 0.548 0.608
NC=O 0.266 0.089 0.149 0.010 0.120 0.159
O=CO 0.216 0.200 0.320 0.025 0.226 0.127

c1ccncc1 0.082 0.086 0.052 0.001 0.040 0.078
c1ncc2nc[nH]c2n1 0.061 0.001 0.000 0.000 0.002 0.030

NS(=O)=O 0.055 0.000 0.000 0.001 0.001 0.001
O=P(O)(O)O 0.040 0.004 0.020 0.000 0.011 0.015

OCO 0.034 0.024 0.097 0.001 0.067 0.075
c1cncnc1 0.032 0.010 0.015 0.000 0.003 0.013

c1cn[nH]c1 0.029 0.013 0.002 0.000 0.004 0.006

MAE (↓) - 0.030 0.045 0.071 0.024 0.020
JSD(↓) - 0.248 0.301 0.553 0.223 0.201

Table 2: Jensen-Shannon divergence between the distributions of bond distance for reference vs.
generated molecules. The smaller, the better. Value in bold is the lowest.

Bond LIGAN 3DSBDD POCKET2MOL TARGETDIFF DIFFSBDD D3FG (Joint) D3FG (Stage)

C-C 0.599 0.424 0.416 0.346 0.385 0.339 0.281
C=C 0.665 0.545 0.516 0.503 0.565 0.485 0.469
C-N 0.631 0.424 0.401 0.299 0.421 0.307 0.313
C=N 0.742 0.671 0.628 0.547 0.569 0.530 0.523
C-O 0.656 0.547 0.445 0.408 0.413 0.412 0.406
C=O 0.662 0.638 0.532 0.467 0.541 0.490 0.488
c:c 0.494 0.410 0.398 0.264 0.339 0.327 0.302
c:n 0.634 0.443 0.457 0.228 0.260 0.246 0.237

latest works that show good empirical performance. We sample 100 valid molecules for each pocket
for the baselines and D3FG, leading to 10,000 pairs of complexes. After the molecules are generated
by the model, Openbabel [74] is used to construct chemical bonds between atoms, and Universal
Force Field (UFF) minimization [75] is used for refinement. The following evaluations are based on
the samples. Figure. 4 gives an example of generated molecules by different methods.

Structure analysis. We first analyze the functional groups of generated molecules by different
methods. We show the ‘Ratio’ and ‘Freq’ of the included functional groups partly, where ‘Ratio’
means how many specified functional groups are in each molecule on average, and ‘Freq’ means the
statistical frequency of occurrence of the specified functional group in the generated molecules. Mean
absolute error (MAE) as overall metrics is calculated according to reference ‘Ratio’ and generated
‘Ratio’; Jensen-Shannon divergence (JSD) is calculated according to reference ‘Freq’ and generated
‘Freq’. The smaller MAE and JSD are, the better performance the method achieves. Table. 1
shows the metrics of different methods’ generated molecules, demonstrating D3FG’s superiority
in generating molecules with realistic drug structures since distributions of the functional groups in
generated molecules are more similar to the real drug molecules’. Secondly, we analyze the atom
type, bond distance, bond angle, dihedral and atom type distribution. JSDs are calculated between
the distributions of bond distance for reference vs. generated molecules. ‘-’, ‘=’,‘:’ represents single,
double, and aromatic bonds, respectively. Besides, we report MAE on reference ‘Ratio’ vs. generated
‘Ratio’ and JSD on reference ‘Freq’ vs. generated ‘Freq’ based on atom type distribution. Table. 2, 3
and Figure. 3 gives details atom type analysis. For other geometries, please refer to Appendix. E. We
found that D3FG(Stage) outperforms D3FG(Joint) in generating more realistic molecules, and has
competitive performance with TARGETDIFF.

Binding affinity. We secondly make a comparison of Binding Affinity. Following 3DSBDD and
LIGAN, we employed two evaluation metrics including Vina docking score [76] and Gnina docking
score [77]. Vina docking [78] as a classical docking tool, gives a lower score as Vina energy if the
binding affinity of the molecule is better, while Gnina docking as a deep-learning-based docking tool,
gives it a higher score. ∆Affinity measures the percentage of generated molecules that have better
predicted binding affinity than the corresponding reference molecules. Table. 4 shows that our D3FG
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Figure 3: Atom type distribution and metrics.

Method MAE(↓) JSD(↓)
POCKET2MOL 0.573 0.098
TARGETDIFF 0.471 0.059
DIFFSBDD 0.627 0.054
D3FG(Joint) 0.528 0.075
D3FG(Stage) 0.294 0.056

Table 3: MAE and JSD of dif-
ferent methods’ atom type num-
ber and distribution vs. the ref-
erence. Values in bold are the
lowest.

Table 4: Evaluation of Binding affinity and other chemical drug properties for baselines and variants
of D3FG. ↓ means the smaller the value, the better the performance, and ↑ means the opposite.
Values in bold are the top-2 best metrics.

Vina
Score (↓)

Vina
∆Affinity (↑)

Gnina
Score (↑)

Gnina
∆Affinity(↑) QED (↑) SA (↑) LogP Lipinski (↑)

Ref. (Test) -7.06 - 5.37 - 0.471 0.725 0.818 4.247
LIGAN -6.17 21.24% 4.29 21.68% 0.382 0.584 -0.138 4.046

GRAPHBP -6.36 27.41% 4.52 26.54% 0.437 0.502 3.024 4.448
3DSBDD -6.12 20.73% 4.48 19.22% 0.426 0.625 0.266 4.735

POCKET2MOL -6.92 45.86% 5.34 40.68% 0.543 0.746 1.584 4.904
TARGETDIFF -7.11 49.52% 5.41 42.40% 0.474 0.581 1.402 4.487
DIFFSBDD -6.37 31.32% 4.63 27.96% 0.494 0.343 -0.157 4.895

D3FG (Joint) -6.89 37.32% 5.30 33.45% 0.507 0.832 2.796 4.943
D3FG (Stage) -6.96 45.88% 5.43 43.36% 0.501 0.840 2.821 4.965
D3FG (EHot) -7.19 51.78% 5.51 56.53% 0.482 0.731 0.814 4.330
D3FG (ECold) -7.02 44.03% 5.16 32.69% 0.476 0.707 0.820 4.228

of the two-stage scheme achieves competitive affinity scores, comparable to TARGETDIFF and much
better than D3FG of the joint scheme.

Drug property. Moreover, chemical properties are evaluated with RdKit [79], including QED [80]
(quantitative estimation of drug-likeness), SA [81] (synthetic accessibility score), LogP [82] (the
octanol-water partition coefficient, which should be between −0.4 and 5.6 for good drug candidates),
and Lipinski [83, 84] (number of rules the drug follow the Lipinski’s rule of five). QED, SA, and
Lipinski are three metrics with preferences for atom numbers, demonstrated in DIFFBP[15]. Table. 4
demonstrates that two variants of D3FG achieve overall best performance in these metrics.

(a) Ref. (b) D3FG (Stage) (c) D3FG (Joint)

(d) DIFFSBDD (e) TARGETDIFF (f) POKECT2MOL

Figure 4: Generated molecules by different methods on pocket 3o96_A_rec. The diffusion-based
methods generated molecules more similar to the reference, appearing to be ‘vertical’.

9



5.3 Pocket-Specific Molecule Elaboration

Introduction. Molecule elaboration as a sub-task of molecule optimization, aims to elaborate a
fragment of existing molecules amenable to chemical modification for improving binding affinity.
To fulfill it, we here first select a functional group in a ligand that contributes to binding affinity and
remove it to obtain the editable fragments. Then, we attempt to use D3FG to generate the new type
of functional groups with its structures, for modifying the fragments and thus building up a new
molecule with higher binding affinity to the target protein.

Dataset. The selection of a functional group for replacement is the first problem. Pharmacophoric
information is extracted by calculating the fragment hotspot map (FHM) [33, 34] of the target
protein. In specific, FHM describes regions of the binding pocket that are likely to make a positive
contribution to binding affinity. Then, by placing the molecules into the pockets, we can thus obtain
each functional group’s hotspot scores, according to the binding complexes. The higher hotspot score
a functional group reaches, the more contributions it makes to the binding affinity. Functional groups’
hotspot scores of each ligand are calculated based on 100,000 pairs of pocket-ligand complexes in
Crossdocked2020, and the selection of functional groups can be based on their scores. Finally, we
established our new datasets for molecule elaboration based on FHM.

Binding affinity and drug property. We here consider two schemes for molecule elaboration, the
first is to remove the functional groups with the highest scores, and elaborate the remaining fragments
by replacing them with the functional group generated by D3FG. We write this as D3FG(EHot). The
second D3FG(ECold), on the other hand, replaces the functional groups of the lowest scores). We
report the D3FG’s elaborated molecules by the two schemes in Table. 4. It shows that D3FG(EHot)
tends to generate more molecules with higher affinity, while molecules elaborated by D3FG(ECold)
show tiny differences in binding affinity from the raw references. Besides, on other chemical
properties, the elaborated molecules are very close to the raw references, since the differences lie
only in one single functional group, and the major molecular skeletons are almost identical.

6 Conclusion and Future Work

In this paper, a functional-group-based diffusion model called D3FG is proposed to generate
molecules in 3D with protein structures as its context. Joint and two-stage generation schemes
lead to two variants of D3FG. The molecules generated by the two-stage generation scheme show
more realistic structures, competitive binding performance, and better drug properties. Besides,
in molecule elaboration, D3FG can also generate molecules with good binding affinity. However,
limitation still exists. First, the functional group datasets are still small, which will be enlarged in the
future. Second, the binding affinities of generated molecules still remain to be improved, since other
diffusion models even show better binding performance.
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A Proof of Proposition 1.

First, we here denote all atom’s positions in the molecules as XM ∈ RNa×3, and in the protein as
XM ∈ RNaa×3, and linker and functional group type as SM ∈ R(Naa+Nfg)×(22+Mfg+Mat). Note that
one functional group may contain several atoms so that Naa +Nfg < Na.

SE(3) group as a roto-translation group in R3, can be divided into two groups: SO(3) as the rotation
group and T(3) as the translation group. For x ∈ R3, and g = r+ v with g ∈ SE(3), r ∈ SO(3), v ∈
T(3), Tg(x) = Tr+v(x) = Tv ◦ Tr(x)

Lemma A1. If the The equivariance and invariance of the distribution in the reverse diffusion process
are listed as
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Then p
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)
is SE(3) invariant.

Proof. Since Tg(M) = {S,Tg(XM)}, we can write the joint generative process as
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M|Tg(XP),SP

) T−1∏
t=0

p
(
Tg(X

t−1
M ),St−1

M |Tg(X
t
M),St

M,Tg(XP),SP

)
dM0:T−1

=

∫
p
(
XT

M,ST
M|XP,SP

) T−1∏
t=0

p
(
Tg(X

t−1
M ),St−1

M |Tg(X
t
M),St

M,Tg(XP),SP

)
dM0:T−1

=

∫
p
(
XT

M,ST
M|XP,SP

) T−1∏
t=0

p
(
Tg(X

t−1
M )|Tg(Mt,P)

)
p
(
St−1
M |Tg(Mt,P)

)
dM0:T−1

=

∫
p
(
XT

M,ST
M|XP,SP

) T−1∏
t=0

p
(
Xt−1

M |Mt,P
)
p
(
St−1
M |Mt,P

)
dM0:T−1

=

∫
p
(
XT

M,ST
M|XP,SP

) T−1∏
t=0

p
(
Xt−1

M ,St−1
M |Xt

M,St
M,XP,SP

)
dM0:T−1

=p (XM,SM|XP,SP)
(14)

Then, let’s consider a single atom’s position. We here denote each atom’s xt
M as

xt
M = xt

C + xt
RO

t
c (15)

where xt
C is the defined center atom’s position in the functional group, xt

R is the relative position
of the atom in the local coordinate system centering at xt

C, Ot
C is the rotation matrices of the local

coordinate system with respect to the global system. Moreover, because the functional group is
regarded as rigid bodies, xt

R = xR is constant. To be specific, if xt
M refers to linker’s position,

Ot
C = 0.

Proposition A2. If each atom’s relative positions in the local coordinate systems are fixed, and
p(xt−1

C |Mt,P) is SE(3)-equivariant and p(Ot−1
C |Mt,P) is SO(3)-equivariant and T(3)-invariant,

such that p
(
Tg(x

t−1
C )|Tg(Mt,P)

)
= p

(
xt−1
C |Mt,P

)
and p

(
Tr(O

t−1
C )|Tg(Mt,P)

)
=

p
(
Ot−1

C |Mt,P
)
, where r ∈ SO(3), v ∈ T(3), r + v = g ∈ SE(3), then p(xt−1

M |Mt,P) is
SO(3)-equivariant.

Proof. According to the convolution formula in probability theory, if w = u+ v, then

p(w) =

∫
p(u,w − u)du =

∫
p(w − v, v)dv (16)
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By using the Eq. (16), we can write every single atom’s position density function as

p
(
xt−1
M |Mt,P

)
=p
(
xt−1
C + xRO

t−1
C |Mt,P

)
=

∫
p
(
xt−1
C ,xt−1

M − xt−1
C |Mt,P

)
dxt−1

C

=

∫
p
(
xt−1
C |Mt,P

)
p
(
xt−1
M − xt−1

C |Mt,P
)
dxt−1

C

(17)

Since
p
(
Tg(x

t−1
C )|Tg(Mt,P)

)
= p

(
xt−1
C |Mt,P

)
, (18)

and
p
(
Tr(O

t−1
C )|Tg(Mt,P)

)
= p

(
Ot−1

C |Mt,P
)
. (19)

We can obtain that
p
(
Tr(x

t−1
M − xt−1

C )|Tg(Mt,P)
)

=p
(
Tr(xRO

t−1
C )|Tg(Mt,P)

)
=

1

xR
p
(
Tr(O

t−1
C )|Tg(Mt,P)

)
=

1

xR
p
(
Ot−1

C |Mt,P
)

=p
(
xRO

t−1
C |Mt,P

)
=p
(
xt−1
M − xt−1

C |Mt,P
)

(20)

Therefore, according to Eq. (18), (20), and (17)

p
(
Tg(x

t−1
M )|Tg(Mt,P)

)
=

∫
p
(
Tgx

t−1
C )|Tg(Mt,P)

)
p
(
Tr+v(x

t−1
M − xt−1

C )|Tg(Mt,P)
)
dxt−1

C

=

∫
p
(
Tgx

t−1
C )|Tg(Mt,P)

)
p
(
Tr(x

t−1
M − xt−1

C )|Tg(Mt,P)
)
dxt−1

C

=

∫
p
(
xt−1
C |Mt,P

)
p
(
xt−1
M − xt−1

C |Mt,P
)
dxt−1

C

=p
(
xt−1
M |Mt,P

)
(21)

Proof of Proposition 1. The sufficiency of SE(3)-invariance of p(st−1|Mt,P) and p(sT ) is given in
Lemma A.1, and the sufficiency of SE(3)-equivariance of p(xt−1|Mt,P), and SO(3)-equivariance
and T(3)-invariance of p(Ot−1|Mt,P) is given in Proposition A.2. Besides, it is easy to obtain that
if p(OT ) and p(xT ) is SE(3)-invariant distribution, then p(xT

M) will be invariant.

B Model Comparisons.

With Pocket2Mol and GraphBP. Pocket2Mol and GraphBP are all auto-regressive models, which
violate the physical rules from the perspective of energy[15], while the diffusion models which
consider the global interactions are a solution to the problem. Besides, to decide which atom will
be added a bond with the next atom, Pocket2Mol needs a classifier to predict the focal atom, so
that the training and the prediction are not end-to-end. Finally, D3FG is a functional-group- or
fragment-based method, while these two models generate molecules at the atom level.

With DiffSBDD and TargetDiff. These two methods are diffusion-based, which considers the
global interactions between atoms. In the atom type generation, DiffSBDD uses continuous latent
spaces generation, while Targetdiff diffuses the atom types in a uniform distribution. These two
models all generate molecules at the atom level, while D3FG generates at the fragment level, and
besides the types and positions, the orientations of the functional groups are generated.
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With FLAG. It is still an auto-regressive model and does not support end-to-end generation since
the focal atom needs to be predicted. Besides, we defined our functional groups as rigid bodies
with stable intra-structures, while the motifs in FLAG are 2D smiles, with the structures generated
by RDKIT. The 3D structures of functional groups are obtained by the training set in D3FG, thus
avoiding the problem of distribution shift of FLAG since the training/test motif substructures may not
match the RDKIT’s generation.

With DeepFrag. It is a model for fragment-based lead optimization, in which the protein and the
parent is used as condition and the fragment type is predicted by the model. In this way, it is more
like an elaboration task defined in D3FG. Here we point out several advantages of D3FG(EHot/Cold)
over Deepfrag. First, Deepfrag just predicts the fragment type, without 3D structures, so that the
problem of equivariance is not included, but D3FG generates 3D positions of the molecules. Second,
although the type is the SE(3)-invariant variable, the model uses CNNs as the model backbone rather
than EGNN, so the invariance can also not be preserved. Instead, D3FG assures physical symmetries
by using EGNN. Finally, D3FG is a generative model with stochasticity, while Deepfrag only gives
the probability of the fragment types, as a discriminative model.

C Method Details

Amino acid context encoding. Several geometric or type features are embedded to encode amino
acids. For the geometric features including torsion angles/dihedrals, and pairwise distances, they
are all roto-translational invariant, since the geometric features are all scalars obtained from relative
coordinates. Besides, the local coordinates of atoms in a single amino acid are also invariant because
it is always fixed in the local frame established by Cα, C and N. For the type features including amino
acid types, sequential relationships, and pair of amino acid types, the translational and rotational
operation is unrelated to them. Thus, the encoded amino acid contexts are roto-translational invariant,
leading to the invariance of all the follow-up embeddings.

Equivariant neural network for linkers. For the roto-translational equivariance of positions for
single atoms, since Ot

j = I , Eq. 12 will be written as G (Mt,P) [j] = MLPG(h
′
j), unable to satisfy

the equivariance. In this way, we revised it for single atoms by using the EGNN[44] stacked in the
final layer for updating the positions, which reads

G
(
Mt,P

)
[j] = xj +

1

Cj

∑
i∈Iat∪Ifg

(xj − xi)h
′
i, (22)

where we choose Cj = ∥xj∥2 + 1.

D Data Preprocessing

Local frame establishment. In 3D Euclidian space, for a rigid body including more than mass
points that are not co-linear, a local frame can be established. We first choose a center node (center
point) A as the origin, and a second node B, leading to A⃗B as the direction of x-axis. Then, a third
node C is selected. By Schmidt orthogonalization of A⃗C with respect to A⃗B, the direction of y-axis
can be computed. And finally, the direction of z-axis is obtained by the cross-product of the unit
vectors in the x direction and y direction. By this means, the local frame is established by the three
nodes, and the other nodes’ local coordinates can be determined in the local frame. Because the local
frame requires at least three points to establish, the functional groups including only 2 atoms are
divided into two linkers.

Functional group datasets. We give detailed information on the included functional groups,
including 2D graph, 3D structure, time of occurrence in the CrossDocked2020, and the center node
(node A), node B, and node C of the functional group in Table. 10.

Note that in beneze, the symmetric structures lead the frame nodes to be any three consecutive
points on the hexagon. Besides, for the functional groups of ‘NS(=O)=O’ and ‘O=CNO’, two stable
conformations exist, so we in practice regard them as four different types.
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Table 5: Frequency of the top ten functional groups that occur most frequently in Crossdocked2020.
Functional Group Ref. Pocket2Mol TargetDiff DiffSBDD D3FG(Joint) D3FG(Stage)

c1ccccc1 0.392 0.491 0.277 0.007 0.372 0.409
NC=O 0.147 0.075 0.142 0.201 0.082 0.107
O=CO 0.119 0.169 0.303 0.579 0.154 0.085

c1ccncc1 0.045 0.072 0.049 0.018 0.027 0.052
c1ncc2nc[nH]c2n1 0.034 0.001 0.000 0.000 0.001 0.020

NS(=O)=O 0.030 0.000 0.000 0.008 0.001 0.001
O=P(O)(O)O 0.022 0.003 0.193 0.000 0.007 0.010

OCO 0.019 0.024 0.091 0.016 0.045 0.050
c1cncnc1 0.017 0.008 0.138 0.000 0.002 0.009

c1cn[nH]c1 0.016 0.011 0.001 0.000 0.003 0.004

JSD - 0.248 0.301 0.553 0.223 0.201

Table 6: Ratio of the atoms.
Atom Ref. Pocket2Mol TargetDiff DiffSBDD D3FG(Joint) D3FG(Stage)

C 15.866 14.956 17.744 13.526 17.766 15.999
N 2.765 1.956 2.192 2.236 2.157 1.943
O 4.006 2.538 4.389 3.071 3.732 3.353
F 0.309 0.084 0.239 0.160 0.193 0.170
P 0.263 0.024 0.119 0.034 0.969 0.088
S 0.266 0.038 0.104 0.149 0.169 0.153
Cl 0.152 0.016 0.064 0.006 0.145 0.122

MAE - 0.573 0.471 0.627 0.528 0.294

E Experiment Details

Platform. We use a single NVIDIA A100(81920MiB) GPU for a trial. The codes are implemented
in Python 3.9 mainly with Pytorch 1.12, and run on Ubuntu Linux.

Model Details. In the diffusion of orientation and position, we employ a cosine variance schedule
for ᾱt, which reads

ᾱt = cos2
(
π

2
(
t

T
+ s)/(1 + s)

)
/ cos2

(π
2
s/(1 + s)

)
, (23)

where s = 0.01. In the diffusion of atom type, βt is set as βt =
t
T . For the denoiser, the layer number

is set as 6, and the embedding size is set as 256. The model is trained with Adam optimizer in 5000
epochs.

Functional group and Atom type analysis. We give a detailed analysis of functional groups and
atom types, in Table. 5, 6 and 7.

Bond Angle and Dihedral analysis. Besides bond distance, a detailed analysis of bond angle
and dihedral is shown in Table. 8 and 9. It gives the JSD between the reference and the generated
molecules, and demonstrates that D3FG generates more realistic drug molecules in comparison with
other baselines.
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Table 7: Frequency of the atoms.
Atom Ref. Pocket2Mol TargetDiff DiffSBDD D3FG(Joint) D3FG(Stage)

C 0.672 0.762 0.714 0.702 0.741 0.733
N 0.117 0.100 0.088 0.116 0.124 0.089
O 0.170 0.129 0.176 0.159 0.175 0.154
F 0.013 0.004 0.009 0.008 0.009 0.008
P 0.011 0.001 0.005 0.002 0.002 0.004
S 0.011 0.002 0.004 0.007 0.001 0.007
Cl 0.006 0.001 0.002 0.003 0.001 0.006

JSD - 0.098 0.059 0.054 0.075 0.056

Table 8: JSD on bond angle distributions.
Angle Pocket2Mol TargetDiff DiffSBDD D3FG(Stage) D3FG(Joint)

C-C-C 0.269 0.272 0.304 0.255 0.258
C-C-N 0.254 0.267 0.313 0.256 0.255
C-N-C 0.286 0.241 0.319 0.269 0.277
C-C-O 0.317 0.295 0.345 0.293 0.295
C-O-C 0.308 0.311 0.372 0.310 0.314
C-N-N 0.294 0.276 0.301 0.270 0.281
N-C-O 0.300 0.295 0.326 0.282 0.291
N-C-N 0.304 0.288 0.342 0.282 0.292

Table 9: JSD on dihedral distributions.
Dihedral Pocket2Mol TargetDiff DiffSBDD D3FG(Stage) D3FG(Joint)

C-C-C-C 0.151 0.149 0.158 0.141 0.138
C-C-C-N 0.176 0.165 0.224 0.169 0.175
C-C-C-O 0.183 0.159 0.206 0.156 0.164
C-C-O-C 0.180 0.174 0.231 0.167 0.149
C-C-N-C 0.165 0.142 0.223 0.136 0.146
C-C-N-O 0.277 0.270 0.285 0.264 0.293
C-N-C-O 0.453 0.430 0.398 0.358 0.335
N-C-C-O 0.315 0.253 0.303 0.244 0.272
C-N-C-N 0.340 0.317 0.328 0.254 0.263
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Table 10: The included functional groups in D3FG. ‘T’ is the occurrence times of the functional
group in the datasets (100,000 ligands).

Smiles 2D graph 3D structures A B C T

c1ccccc1 CH:0

CH:1CH:2

CH:3

CH:4 CH:5

c1ccccc1

1 0 2 131148

NC=O NH2:0
CH:1

O:2

NC=O

1 0 2 49023

O=CO O:0
CH:1

HO:2

O=CO

1 0 2 39863

c1ccncc1 CH:0

CH:1CH:2

N:3

CH:4 CH:5

c1ccncc1

3 2 4 15115

c1ncc2nc[nH]c2n1
CH:0

N:1
CH:2

C:3
N:4

CH:5

NH:6
C:7

N:8

c1ncc2nc[nH]c2n1

7 3 6 11369

NS(=O)=O
H2N:0

SH:1
O:2

O:3

NS(=O)=O

1 0 2 10121

O=P(O)(O)O
O:0

P:1
OH:2

OH:3

HO:4

O=P(O)(O)O

1 0 2 7451

OCO OH:0
CH2:1

HO:2

OCO

1 0 2 6405

c1cncnc1 CH:0

CH:1N:2

CH:3

N:4 CH:5

c1cncnc1

3 2 4 5965

c1cn[nH]c1 CH:0

CH:1
N:2

NH:3
CH:4

c1cn[nH]c1

2 3 1 5404
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Smiles 2D graph 3D structures A B C T

O=P(O)O
O:0

PH:1
OH:2

OH:3

O=P(O)O

0 1 center(2,3) 5271

c1ccc2ccccc2c1
CH:0

CH:1
CH:2

C:3
CH:4

CH:5

CH:6
CH:7

C:8
CH:9

c1ccc2ccccc2c1

3 2 4 4742

c1ccsc1 CH:0

CH:1
CH:2

S:3
CH:4

c1ccsc1

3 2 4 4334

N=CN NH:0
CH:1

H2N:2

N=CN

1 0 2 4315

NC(N)=O
NH2:0

C:1
H2N:2

O:3

NC(N)=O

2 1 3 4167

O=c1cc[nH]c(=O)[nH]1
O:0

C:1

CH:2
CH:3

NH:4

C:5
O:6NH:7

O=c1cc[nH]c(=O)[nH]1

7 1 5 4145

c1ccc2ncccc2c1
CH:0

CH:1
CH:2

C:3
N:4

CH:5

CH:6
CH:7

C:8
CH:9

c1ccc2ncccc2c1

3 2 4 3519

c1cscn1 CH:0

CH:1
S:2

CH:3
N:4

c1cscn1

2 3 1 3466

c1ccc2[nH]cnc2c1
CH:0

CH:1
CH:2

C:3
NH:4

CH:5

N:6
C:7

CH:8

c1ccc2[nH]cnc2c1

5 4 6 3462

c1c[nH]cn1 CH:0

CH:1
NH:2

CH:3
N:4

c1c[nH]cn1

3 2 4 2964

O=[N+][O-] O:0
N+ :1

-O:2

O=[N+][O-]

1 0 2 2702
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Smiles 2D graph 3D structures A B C T

O=CNO O:0
CH:1

NH:2
HO:3

O=CNO

1 0 2 2477

NC(=O)O
NH2:0

C:1
O:2

OH:3

NC(=O)O

1 0 2 2438

O=S=O O:0
S:1

O:2

O=S=O

1 0 2 2375

c1ccc2[nH]ccc2c1
CH:0

CH:1
CH:2

C:3
NH:4

CH:5

CH:6
C:7

CH:8

c1ccc2[nH]ccc2c1

3 4 2 2301
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60.0%
Vina Affinity

Figure 5: Affinity metrics with the change of repos-
itory sizes.

Size 5 10 15 20 25

QED 0.489 0.484 0.502 0.496 0.501
SA 0.821 0.814 0.836 0.843 0.840
LogP 2.774 2.795 2.802 2.759 2.821
Lipinski 4.910 4.983 4.937 4.931 4.965

Table 11: Metrics of chemical properties with the
change of repository sizes
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