
Appendix

I Proof of Theorem 3.1

Proof. We assume that f cn 6= 0 for all c = 1, . . . , C. For a given index k, if fkn > 0, σ(fkn/τ) goes

to 1 as τ → 0. Otherwise, σ(fkn/τ) goes to 0 if fkn < 0. Since LS(f , τ)k =
σ(fk

n/τ)∑C
c=1 σ(f

c
n/τ)

, when
maxc=1,...,C f

c
n > 0, we get the result combining these observations. As for maxc=1,...,C f

c
n < 0,

we have

lim
τ→0+

LS(f , τ)k =

(
1 + lim

τ→0+

∑
c 6=k

1 + exp(−fkn/τ)

1 + exp(−f cn/τ)

)−1

=

(
1 + lim

τ→0+

∑
c 6=k

fkn exp(−fkn/τ)/τ2

f cn exp(−f cn/τ)/τ2

)−1

=

(
1 + lim

τ→0+

∑
c 6=k

fkn
f cn

exp(−(fkn − f cn)/τ)

)−1
,

where we use L’Hôpital’s rule in the second equality. Since fkn/f
c
n > 0, exp(−(fkn − f cn)/τ) goes to

0 if fkn > f cn and goes to +∞ otherwise. Thus, we have limτ→0+ LS(fn, τ)k = I{k = c∗}, where
I{·} is the indicator function.

II Proof of Theorem 3.2

Proof. Without the loss of generality, we use τ = 1 in the following proof. Notice that for logistic-
softmax, we have

p(y = k|fn − C ′) =
1∑C

c=1 σ(f cn − C ′)/σ(fkn − C ′)
, C ′ ∈ R.

It’s sufficient to prove that the denominator converges to that of softmax at each point fn as C ′ goes
to infinity. This is true since for all c, k ∈ [C] we have

σ(f cn − C ′)
σ(fkn − C ′)

= exp(f cn − fkn) · 1 + exp(fkn − C ′)
1 + exp(f cn − C ′)

→ exp(f cn − fkn)

when C ′ →∞.

For the claim that S(fn − C0) = S(fn), one only needs to observe that the likelihood of softmax can
be rewritten as

p(yn = k|fn) =
1

1 +
∑
j 6=k exp(f jn − fkn)

=
1

1 +
∑
j 6=k exp((f jn − C0)− (fkn − C0))

.

We have shown that softmax is translational invariant w.r.t. its input vector fn, therefore completing
the proof.

III Proof of Theorem 3.3

Proof. Without the loss of generality, we use τ = 1 in the following proof.

To begin with, we prove the first equation and then give the proof of the second part of Theorem 3.3.
We introduce some extra notations that are used throughout the proof. Denote f c = (f c1 , . . . , f

c
N)> ∈

RN as the logits of N given points for class c. We write F = (f cn)N×C ∈ RN×C and f = vec(F)
as the logit vector, where we stack the logits of each class. It’s straightforward to verify that
f ∼ N

(
vec(a1TC

)
,K), where a is the mean vector on given points, K = diag(K1, . . . ,KC) ∈

14

RNC×NC is the block diagonal matrix and Kc is the kernel matrix for each class. Denote y ∈ RN

as the label vector for the N given points, where yn ∈ [C].

For the first equation, notice that

p(y) =

∫ N∏
n=1

1

1 +
∑
j 6=yn exp(f jn − fynn)

p(f)df .

Denote f̃ ∈ RNC as follows:

f̃ jn =

{
f jn − fynn , if j 6= yn

fynn , if j = yn.
(1)

We denote f̃y ∈ RN where the n-th element of this vector equals to fynn . We also write f̃−y ∈
RN(C−1) to denote the rest of the elements in f̃ . Since Eq. (1) is a linear transformation of f ,
it’s straightforward to verify that f̃−y is a multivariate Gaussian variable with zero mean, thus the
distribution of it is irrelevant to a. Then we use the substitution rule for definite integrals and derive

p(y) =

∫ N∏
n=1

1

1 +
∑
j 6=yn exp(f̃ jn)

p(f̃y)df̃y

=

∫ N∏
n=1

1

1 +
∑
j 6=yn exp(f̃ jn)

p(f̃y | f̃−y)p(f̃−y)df̃

=

∫ N∏
n=1

1

1 +
∑
j 6=yn exp(f̃ jn)

p(f̃−y)df̃−y,

where p(f̃y | f̃−y) is integrated out in the third equation. Thus, p(y) is irrelevant to a since the
distribution of f̃−y is irrelevant to a. Therefore, we complete the proof of the first equation by showing
that p(y) only depends on kc.

Now we give proof to the second part. First we denote the marginal likelihood of y induced by ls
and softmax likelihood with gaussian prior mean a and covariance K as pls(y|a,K) and ps(y|K)
respectively. We start by pointing out the desired convergence result as follows:

lim
a→−∞

pls(y|a,K) = lim
a→−∞

∫
pls(y|F)p(F|a,K)dF

= lim
a→∞

∫
pls(y|F− a1TC)p(F|0,K)dF

=

∫
lim

a→∞
pls(y|F− a1TC)p(F|0,K)dF

=

∫
ps(y|F)p(F|0,K)dF = ps(y|K),

(2)

where the second equation holds due to the property of multivariate Gaussian variable. In the third
equation, we need to interchange the integration and limiting operations. To guarantee its feasibility,
we rely on the Dominated convergence theorem (DCT). To verify the condition of DCT, notice that,

pls(y|F− a1TC)p(F|0,K) =

N∏
n=1

σ(fynn − an)∑C
j=1 σ(f jn − an)

p(F|0,K)

≤ p(F|0,K).

This implies that pls(y|F− a1TC)p(F|0,K) is dominated by the Gaussian prior p(F|0,K), which is
integrable. Since Theorem 3.2 directly implies

lim
a→∞

pls(y|F− a1TC) = ps(y|F),

15

thus by DCT, the desired convergence result in Eq. (2) is proved.

Our next step is to define a suitable mean and kernel function class for a and kc respectively. For
simplicity, we consider each sample point xi ∈ Rp. Define

A := {f : Rp → R},
K := {f : Rp × Rp → R, f is postive semi-definite}.

We also say a0(x) ≡ −∞,∀x ∈ Rp, where a0 ∈ A . We define the marginalized likelihood of y
induced by the logistic-softmax likelihood with a0 and kc evaluated at X as,

pls(y|X, a0, kc) := lim
a→−∞

pls(y|a,K)

= ps(y|K),
(3)

where the second equation is from Eq. (2). Finally, we define F (LS | A ,K) and F (S | K)as,

F (LS | A ,K) : = {f : f(y) = pls(y|a,K), ai = a(xi), k
c
ij = kc(xi,xj), a ∈ A , kc ∈ K ,X ∈ RN×p},

F (S | K) : = {f : f(y) = ps(y|K), kcij = kc(xi,xj), k
c ∈ K , X ∈ RN×p}.

For each ps(·|X, kc) in F (S | K), we have pls(·|X, a0, kc) = ps(·|X, kc) using Eq. (3), where
pls(·|X, a0, kc) ∈ F (LS | A ,K). Thus, we have proved that

F (S | K) ⊂ F (LS | A ,K).

IV Derivation of Augmented Joint Distribution

In this section, we derive the Gibbs sampler and mean-field variational inference for a specific task.
The usual likelihood function for multiclass classification is the softmax function. Here, we replace
the softmax function with the logistic-softmax function [9]

p(yn = k | fn) =
σ(fkn/τ)∑C
c=1 σ(f cn/τ)

, (4)

where f cn = f c(xn), fn = [f1n, . . . , f
C
n]>, k ∈ {1, . . . , C} and we omit the conditioning on xn.

In the following, we augment three auxiliary latent variables to make the likelihood appear in a
conjugate form.

Augmentation of Gamma Variables We utilize the integral identity 1/z =
∫∞
0

exp (−λz)dλ to
express Eq. (4)

p(y | F) =

N∏
n=1

σ(fkn/τ)∑C
c=1 σ(f cn/τ)

=

N∏
n=1

σ(fkn/τ)

∫ ∞
0

exp(−λn
C∑
c=1

σ(f cn/τ))dλn

=

∫ ∞
0

· · ·
∫ ∞
0

N∏
n=1

σ(fkn/τ) exp(−λn
C∑
c=1

σ(f cn/τ))dλ1 · · · dλN ,

where y = [y1, . . . , yN]>, F is the N × C matrix of f cn. Therefore, we obtain the augmented
likelihood of Gamma variables

p(y,λ | F) =

N∏
n=1

σ(fkn/τ)

C∏
c=1

exp(−λnσ(f cn/τ)), (5)

where λ = [λ1, . . . , λN]>.

Augmentation of Poisson Variables We rewrite the exponential term in Eq. (5) using the moment
generating function of the Poisson distribution exp(λ(z−1)) =

∑∞
m=0 z

mPo(m | λ) and the logistic
symmetry property σ(x) = 1− σ(−x).

p(y,λ | F) =

N∏
n=1

σ(fkn/τ)

C∏
c=1

∞∑
mc

n=0

σ(−f cn/τ)m
c
nPo(mc

n|λn).

16

Therefore, we obtain the augmented likelihood of Poisson variables

p(y,λ,M | F) =

N∏
n=1

σ(fkn/τ)

C∏
c=1

σ(−f cn/τ)m
c
nPo(mc

n|λn), (6)

where M is the N × C matrix of mc
n.

Augmentation of Pólya-Gamma Variables The logistic function in Eq. (6) can be rewritten as a
scale mixture of Gaussians utilizing the Pólya-Gamma representation [21]

σ(z) = 2−1ez/2
∫ ∞
0

e−ωz
2/2PG(ω | 1, 0)dω,

where PG(ω | 1, 0) is the Pólya-Gamma distribution.

p(Y,λ,M | F) =

∫ ∞
0

· · ·
∫ ∞
0

N∏
n=1

C∏
c=1

2−(y
c
n+m

c
n) exp

(ycn −mc
n

2

f cn
τ
− ωcn

2

(f cn
τ

)2)
PG(ωcn | mc

n + ycn, 0)
λ
mc

n
n

mc
n!

exp(−λn)dω1
1 · · · dωCN ,

where we rewrite y in the one-hot encoding form Y which is a N × C matrix. Therefore, we obtain
the augmented likelihood of Pólya-Gamma variables

p(Y,λ,M,Ω | F) =

N∏
n=1

C∏
c=1

2−(y
c
n+m

c
n) exp

(ycn −mc
n

2

f cn
τ
− ωcn

2

(f cn
τ

)2)
PG(ωcn | mc

n + ycn, 0)

λ
mc

n
n

mc
n!

exp(−λn),

(7)
where Ω is the N × C matrix of ωcn.

Augmented Joint Distribution Introducing the GP priors on f c, we obtain the augmented joint
distribution

p(Y,λ,M,Ω,F) =

N∏
n=1

C∏
c=1

2−(y
c
n+m

c
n) exp

(ycn −mc
n

2

f cn
τ
− ωcn

2

(f cn
τ

)2)
PG(ωcn | mc

n + ycn, 0)

λ
mc

n
n

mc
n!

exp(−λn) ·
C∏
c=1

N (f c | ac,Kc),

(8)
where f c = [f c1 , . . . , f

c
N]> is the c-th column of F, ac is the mean and Kc is the kernel matrix w.r.t.

observations for c-th class.

V Mean-field Variational Inference

The aforementioned Gibbs sampler is efficient because of closed-form solutions, but it is still not
efficient enough because the sampling from a Pólya-Gamma distribution is time-consuming. In order
to improve efficiency, the mean-field variational inference algorithm is proposed. In the mean-field
algorithm, we need to approximate the true posterior p(λ,M,Ω,F | Y) by a variational distribution
which is assumed to factorize over some partition of latent variables. Here, we assume the variational
distribution q(λ,M,Ω,F) = q1(M,Ω)q2(λ,F). Following the traditional mean-field method [3],
the optimal distribution for each factor can be expressed as

log q1(M,Ω) = Eq2 log p(Y,λ,M,Ω,F) + C1,

log q2(λ,F) = Eq1 log p(Y,λ,M,Ω,F) + C2,

17

where C1 and C2 are constants. Substituting Eq. (8), we obtain

q1(Ω|M) =

N,C∏
n,c=1

PG(ωcn | mc
n + ycn, f̃

c
n), (9a)

q1(M) =

N,C∏
n,c=1

Po(mc
n | γcn), (9b)

q2(λ) =

N∏
n=1

Ga(λn | αn, C), (9c)

q2(F) =

C∏
c=1

N (f c | µ̃c, Σ̃c), (9d)

where

f̃ cn =
1

τ

√
E[f c2n] =

1

τ

√
µ̃c2n + σ̃c2nn, (10a)

γcn =
exp(ψ(αn)− µ̃cn/2τ)

2C cosh(f̃ cn/2)
, (10b)

αn =

C∑
c=1

γcn + 1, (10c)

Σ̃c = (diag(ω̄cn/τ
2) + Kc−1

)−1, (10d)

µ̃c =
1

2τ
Σ̃c(yc − γc) + Σ̃cKc−1

ac, (10e)

ω̄cn = E[ωcn] =
γcn + ycn

2f̃ cn
tanh

f̃ cn
2
. (10f)

VI ELBO and Derivative

In this section, we derived the evidence lower bound for a specific task which is used to be optimized
w.r.t. the hyperparameters of deep kernels [9]:

log p(Y) ≥ L = Eq[log p(Y | λ,M,Ω,F)]− KL(q(λ,M,Ω,F)||p(λ,M,Ω,F)), (11)

where we omit the conditioning on hyperparameters Θ,

Eq[log p(Y | λ,M,Ω,F)] =

N,C∑
n=1,c=1

−(ycn + γcn) log 2 +
ycn − γcn

2τ
µ̃cn −

ω̄cn
2
f̃ c

2

n , (12a)

KL(q(λ,M,Ω,F)||p(λ,M,Ω,F)) = KL(q(F)||p(F)) + KL(q(λ,M,Ω)||p(λ,M,Ω)), (12b)

KL(q(F)||p(F)) =
1

2

C∑
c=1

(log |Kc| − log |Σ̃c| −N + Tr[Kc−1

Σ̃c] + (ac − µ̃c)>Kc−1

(ac − µ̃c)),

(12c)
KL(q(λ,M,Ω)||p(λ,M,Ω)) = KL(q(λ)||p(λ)) + Eq(λ)[KL(q(M)||p(M | λ))] (12d)

+ Eq(M)[KL(q(Ω |M)||p(Ω |M))],

KL(q(λ)||p(λ)) =

N∑
n=1

−αn + logC − log Γ(αn)− (1− αn)ψ(αn), (12e)

Eq(λ)[KL(q(M)||p(M | λ))] =

N,C∑
n=1,c=1

γcn(log γcn − 1)− γcn(ψ(αn)− logC) +
αn
C
, (12f)

Eq(M)[KL(q(Ω |M)||p(Ω |M))] =

N,C∑
n=1,c=1

− f̃
c2

n

2
ω̄cn + (γcn + ycn) log cosh(

f̃ cn
2

). (12g)

18

We can get the analytical ELBO by summing up Eqs. (12a), (12c) and (12e) to (12g).

L =

N,C∑
n=1,c=1

−(ycn + γcn) log 2 +
ycn − γcn

2τ
µ̃cn −

ω̄cn
2
f̃ c

2

n

− 1

2

C∑
c=1

(log |Kc| − log |Σ̃c| −N + Tr[Kc−1

Σ̃c] + (ac − µ̃c)>Kc−1

(ac − µ̃c))

−
N∑
n=1

−αn + logC − log Γ(αn)− (1− αn)ψ(αn)

−
N,C∑

n=1,c=1

γcn(log γcn − 1)− γcn(ψ(αn)− logC) +
αn
C

−
N,C∑

n=1,c=1

− f̃
c2

n

2
ω̄cn + (γcn + ycn) log cosh(

f̃ cn
2

).

(13)

The gradient of ELBO w.r.t. Θ can be computed by the automatic differentiation technique.

VII Algorithm

Algorithm 1: Efficient Bayesian Meta-learning for Few-shot Classification
Training:
Input: Support and query data {Xt}Tt=1,

{Yt}Tt=1 for T tasks
Output: Hyperparameters Θ for the kernels
Initialize the variational parameters of each task

and hyperparameters of the kernels;
for Iteration do

All tasks are implemented in parallel
for Task t do

Update task-level variational parameters
until convergence

for Step do
Update f̃ cn, γ

c
n, αn, Σ̃

c, µ̃c, ω̄cn itera-
tively by Eq. (4.4a) − (Eq. (4.4f))

end
end
Update meta-level hyperparameters
Update Θ by∇ΘL

end

Test:
Input: Support data X, Y; query data x∗;

learned hyperparameters Θ̂
Output: Label y∗
Initialize the variational parameters of test
task;

for Iteration do
Update test-task variational parameters

until convergence
for Step do

Update f̃ cn, γ
c
n, αn, Σ̃

c, µ̃c, ω̄cn itera-
tively by Eq. (4.4a) − (Eq. (4.4f))

end
end
Predict the test label
Predict y∗ by Eq. (4.6).

VIII Experimental Details

Datasets

We use three dataset scenarios as described below.

1. CUB. There are 200 classes and 11788 images in the Caltech-UCSD Birds (CUB) dataset.
We use the common split of 100 training, 50 validation, and 50 test classes [27].

2. mini-ImageNet. There are 100 classes associated with 600 images for each class in the
mini-ImageNet dataset. We also use the usual split of 64 training, 16 validation, and 20 test
classes as applied in Snell & Zemel [27] .

3. mini-ImageNet→CUB. This is a cross-domain scenario, where we employ the training
split of mini-ImageNet and the validation and test split of CUB.

19

Comparison of Baselines

As for the description of baseline methods, we refer to Snell & Zemel [27] for a detailed overview.
Here we only compare the methods that are most similar to ours, which include DKT, LS (Gibbs),
and OVE.

1. Deep Kernel Transfer (DKT) [20] utilizes label regression to tackle the conjugacy issue
that appeared in classification. In DKT, the multi-class classification problem is transformed
into separate binary classification tasks via the one-vs-rest scheme, where labels {+1,−1}
are treated as continuous values.

2. Logistic-softmax with Gibbs sampling (LS (Gibbs)) [9] applies the logistic-softmax for
a conditional conjugate model after data augmentation. We consider the Gibbs sampling
version implemented by Snell & Zemel [27] for Bayesian meta-learning, whose inference
method is different from ours. Note that LS (Gibbs) does not use a temperature parameter,
which is essentially the scenario of τ = 1 in our notation system.

3. One-vs-Each Approximation (OVE) [27] approximates the lower bound of the softmax
function for conditional conjugacy after data augmentation. Although it is shown that OVE is
a pairwise composite likelihood version of the softmax likelihood, the general approximation
capability is weak as shown in the following example. As for implementation, Snell &
Zemel [27] utilizes Gibbs sampling as well. We also note that OVE is a transitional invariant
likelihood as opposed to the logistic-softmax likelihood.

We present a short example to illustrate the approximation ability of each method in Fig. 1. Here we
randomly generate 5,000 samples from N (−5, 1) for each class and plot the confidence histogram
and kernel density estimate of the softmax, Gaussian, logistic-softmax, and OVE likelihood. Appar-
ently, though OVE is an approximation to the lower bound of softmax, it is not similar to softmax
classification-wise.

Figure 1: Confidence (maxc p(y = c | f)) histogram and kernel density estimate for randomly
generated function samples fc ∼ N (−5, 1). Output probabilities are normalized for C = 5.

Training Protocols

All of our experiments use the Adam optimizer with a learning rate of 10−3 for the neural network
and a learning rate of 10−4 for other kernel parameters, following the setting in Patacchiola et al. [20].
During training, all methods use 100 randomly sampled episodes for an epoch. Each episode contains
5 classes and 16 query examples. At test time, 15 query points are evaluated for each episode. We
use the validation set to tune all hyperparameters, and the validation set is not applied for training. As
for the steps used for mean-field approximation, we run 2 steps during training time and 20 steps
during testing time.

20

Additional Results

Now we provide some additional results on different kernels and the training steps of mean-field
approximation updates.

In Table 3 we present a comparison between different kernels (Cosine, Linear, Matérn, Polynomial
(p = 1), Polynomial (p = 2), and RBF) trained on 1-shot, ML, (τ < 1) scenarios of CUB and
domain transfer. We find that different kernels yield similar results, but the Cosine kernel generally
gives a marginally better accuracy across all tasks. This result is in line with both Patacchiola et al.
[20] and Snell & Zemel [27].

Table 3: Average 1-shot accuracy and standard deviation on 5-way few-shot classification for different
kernels. We use the exact same experiment settings as Cosine for other kernels. Results are evaluated
over 5 batches of 600 episodes with different random seeds.

Method CUB CUB→mini-ImageNet
Cosine 65.21 ± 0.45 40.43 ± 0.43
Linear 65.21 ± 0.50 39.86 ± 0.24
Matérn 64.42 ± 0.30 39.95 ± 0.15
Polynomial (p = 1) 64.23 ± 0.47 39.64 ± 0.23
Polynomial (p = 2) 64.40 ± 0.26 39.50 ± 0.22
RBF 65.14 ± 0.50 39.69 ± 0.18

Additionally, since the task-level update steps of mean-field approximation is a hyperparameter, we
investigate the specific effects of different steps. In Fig. 2 we demonstrate a comparison between
different steps (starting from 1 to 7) trained on 1-shot, ML, (τ < 1) scenarios of CUB and domain
transfer. We find that using 2 or 3 steps is generally optimal, as fewer steps may not lead to
convergence and more steps may block the gradient flow of ELBO. As we have mentioned, when the
task-level variables are detached from the computational graph, ELBO is not capable of generating
an accurate gradient flow for the deep kernel which leads to a collapse in performance.

Figure 2: Lineplots of average 1-shot accuracy and standard deviation on 5-way few-shot classification
for different steps. We use the exact same experiment settings for all steps. Results are evaluated over
5 batches of 600 episodes with different random seeds.

We also present some additional results with regard to the temperature hyperparameter τ in logistic-
softmax in Table 4. It might be helpful to see the variation in accuracy as the temperature changes.

Table 4: Average 1-shot and 5-shot accuracy and standard deviation on 5-way few-shot classification
on CUB. Results are evaluated over 5 batches of 600 episodes with different random seeds.

Temperature 0.2 0.5 0.75 1 1.5
1-shot 65.76 ± 0.40 65.16 ± 0.28 64.02 ± 0.29 60.85 ± 0.38 59.43 ± 0.25
5-shot 79.10 ± 0.33 78.48 ± 0.18 77.20 ± 0.13 75.98 ± 0.33 72.13 ± 0.20

21

	Appendix
	Appendices
	Proof of prop:limit
	Proof of thm:approx
	Proof of thm:subset
	Derivation of Augmented Joint Distribution
	Mean-field Variational Inference
	ELBO and Derivative
	Algorithm
	Experimental Details
	Datasets
	Comparison of Baselines
	Training Protocols
	Additional Results

