
Optimistic Exploration in Reinforcement
Learning Using Symbolic Model Estimates

Sarath Sreedharan
Department of Computer Science

Colorado State University
ssreedh3@colostate.edu

Michael Katz
IBM T.J. Watson Research Center

michael.katz1@ibm.com

Abstract

There has been an increasing interest in using symbolic models along with rein-
forcement learning (RL) problems, where these coarser abstract models are used as
a way to provide RL agents with higher level guidance. However, most of these
works are inherently limited by their assumption of having an access to a symbolic
approximation of the underlying problem. To address this issue, we introduce a new
method for learning optimistic symbolic approximations of the underlying world
model. We will see how these representations, coupled with fast diverse planners
developed by the automated planning community, provide us with a new paradigm
for optimistic exploration in sparse reward settings. We investigate the possibility
of speeding up the learning process by generalizing learned model dynamics across
similar actions with minimal human input. Finally, we evaluate the method, by
testing it on multiple benchmark domains and compare it with other RL strategies.

Project Website: https://optimistic-model-learn.github.io/

1 Introduction
A popular trend in recent years is using symbolic planning models with reinforcement learning
(RL) algorithms. Works have shown how these models could be used to provide guidance to RL
agents [37, 26, 12], to provide explanations [33], and as an interface to receive guidance and advice
from humans [21]. Coupled with the fact that advances in automated planning has made available a
number of robust tools that RL researchers could adapt directly to their problems (cf. [11, 29, 31]),
these methods have the potential to help addressing many problems faced by state-of-the-art RL
methods. However, a major hurdle to using these methods is the need to access a complete and correct
symbolic model of the underlying sequential-decision problems. While there have been efforts from
the planning community to learn such models [19, 38], most of those methods have focused on cases
where the models are synthesized from a set of plan traces, hence corresponding to the traditional
offline reinforcement learning setting. Interestingly, very few works have been done in synthesizing
such models in the arguably more prominent RL paradigm, namely, online RL.

To fill this gap, in this paper we propose a novel algorithm to learn relevant fragments of symbolic
models in an online fashion. We show how it could be used to address one of the central problems
within RL, namely effective exploration. We show how our method allows us to perform goal-directed
optimistic exploration, while providing rigorous theoretical guarantees. The exploration mechanism
leverages two distinct components: (a) a representation that captures the most optimistic model that
is consistent with the set of observations received, and (b) the use of a fast and suboptimal diverse
planner that generates multiple possible exploration paths, which are still goal-directed.

The idea of optimistic exploration is not new within the context of RL. The most prominent method
being the RMax algorithm [5]. RMax modifies the reward function to develop agents that are
optimistic under uncertainty. Our use of symbolic models, however, allows us to maintain an
optimistic hypothesis regarding the underlying transition function. Coupled with a goal-directed
planner, this lets us perform directed exploration in sparse reward settings, where we have a clear
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specification of the goal state but no intermediate rewards. As we show in this work, for a finite state
deterministic MDP our method is guaranteed to generate a goal-reaching policy. Additionally, we
investigate the use of a structured form of generalization rule that leverages a very simple intuition,
namely the effects of an action don’t depend on specific object labels but only on object types.
Commonly referred to as lifted representation in planning literature, we show this rule to speed up
learning with minimal human input.

The rest of the paper is structured as follows. We start with related work in Section 2. Section
3 provides a formal definition of the exact problem we are investigating and Section 5 shows the
empirical evaluation of our method against a set of baselines. Finally, Section 6 concludes the paper
with a discussion of the methods and possible future directions.

2 Related Work

As mentioned earlier, one of the foundational works in optimistic exploration in the context of
reinforcement learning is R-max [5]. Even before the formulation in its current popular form, the idea
of optimism under uncertainty has found several uses within the RL literature (cf. [20]). R-max can
be seen as an instance of a larger class of intrinsic reward based learning [2], but one where the reward
is tied to state novelty. Other forms of intrinsic rewards incentivizes the agent to learn potentially
useful skills and new knowledge. A context where model simplification has been used in areas related
to RL is in the context of stochasticity, where methods like certainty equivalence and hindsight
optimization has been applied [4, 40]. In Section 6, we will see how we can also apply our methods
directly in settings with stochastic dynamics. In regards to the user of symbolic models, the most
common use is in the context of hierarchical reinforcement learning. Many works [26, 17, 37, 27],
have investigated the possibility of using the symbolic model to generate potential options and then
using a meta-controller to learn policies over such options. While most of these work assume that the
model is in someway an approximation of the true model, all inferences performed at the symbolic
level is performed over the original model provided as part of the problem. While in this work, we
focused on cases where the symbolic model could in theory exactly capture the underlying model,
the same techniques can also be applied to cases where the planning model may represent some
abstraction of the true model. Another popular use of symbolic model is as source of reward shaping
information (cf. [12]). In this context, works have also looked at symbolic models as a vehicle to
precisely specify their objective [16, 13]. In terms of learning symbolic models, interestingly the
work has mostly focused on learning plans or execution traces [38, 19, 6, 9].

In this context, it is worth noting and contrasting our proposed work with the ones focused on learning
safe models [34, 19, 18, 28]. Safe models are defined to guarantee to only generate valid plans. This
is an important theoretical guarantee to have if the learned model is the only source of information
about the plans, or the cost of executing an invalid plan may be extremely high (e.g., because of
dead-ends that might leave the AI agent stuck or if there are safety implications related to executing
an incorrect action). In practice, this means learning pessimistic planning models, i.e., models that
support only a subset of all possible valid plans. As we move from an offline setting to the more
popular online one, such pessimism can become a burden rather than a strength. In the online setting,
the agent is expected to have access to a simulator of the world, or the agent is allowed to make
mistakes as part of its action execution without any irreversible damage. This means that the agent is
free to try out different things until it finds a plan that works. Such methods naturally lend themselves
to the use of an optimistic planning model that supports a super-set of possible plans.

In most of these works, the theoretical guarantee you are aiming for is to generate more pessimistic
models that are always guaranteed to work but may overlook plausible plans. This is completely
antithetical to considerations one must employ when performing explorations in common online RL
settings, where the agent is either operating in a safe environment or interacting with a simulator. To
the best of our knowledge, all existing online methods to acquire symbolic models [7, 24], focuses
on extracting an exact representation of the true underlying model. Since our primary motivation
for learning this model is to drive the exploration process, we do not have that limitation. Instead,
we focus on learning a (more permissive) optimistic approximation. Also, it is worth noting that,
the assumption that the system will be provided action arguments (something we will leverage to
generalize learned dynamics) is one commonly made by most of these works. There are also some
works that are trying to automatically acquire abstract symbolic models from an underlying MDP
(including potential symbols) like that by [23]. This direction is orthogonal to our work, as symbols
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produced by them may be meaningless to the human and we are explicitly trying to leverage human’s
intuitions about the problem.

3 Problem Setting
3.1 Deterministic MDP
The central problem we are interested in addressing is that of an RL agent trying to come up with a
policy for a deterministic MDP with sparse reward. We specifically chose a setting, which forefronts
the problems related to exploration, while placing less emphasis on other aspects of an RL problem
(though in Section 6 how one could easily apply this approach to other settings). In particular, the
underlying model (which is unknown) is assumed to be of the form M = ⟨S, T,A, I,R, γ⟩. Under
this definition, S is a finite set that represents the set of possible states that the agent could find
itself in. We will assume that this set includes a special absorbing state ⊥ ∈ S, allowing to capture
both abnormal and normal trace termination. Additionally, there is a subset of states SG ⊂ S,
which correspond to ‘goal’ states, which are desirable states for the agent. A is the set of possible
actions and given the deterministic nature of the problem, the transition function is specified as
T : S × A × S → {1, 0}. We will refer to the action that transitions from states in SG to the
absorbing state ⊥ as the goal action (aG). Given that we are interested in sparse reward setting, we
will define the reward function as R(s, aG, s′) = 1 if s ∈ SG and s′ = ⊥ and 0 otherwise. Finally, γ
is the discount factor. Note that our work can support cases where the discount factor is equal to one.

We will refer to the transition to ⊥ through a non goal action, as a failure transition. Now, I ∈ S
captures the initial state from which the agent starts. To enumerate the implications of the design
choices we made in picking this model, consider the fact that reward is zero everywhere except for
the goal. This means that any policy that can help reach the goal from the initial state, would be
optimal for the agent (since the agent always starts from the initial state). Coupled with the fact
that the transition function is deterministic, once the agent identifies a goal state, constructing an
optimal policy is relatively easy as they can just reuse the path taken by the exploration strategy. Now,
this setting also renders most existing methods that may use intermediate value bootstrapping or
generalization mostly ineffective as there are no intermediate values to use. So it makes sense to focus
on tabular methods as the RL baseline. In fact, possibly the only effective methods in the mainstream
RL repertoire we can use are curiosity driven or intrinsic reward based methods and we will use such
a method as a baseline. One of the central components we will leverage are state action traces we can
sample from the underlying model. In particular, we say that a trace ⟨s0, a1, .., ai, si, .., ak+1, sk+1⟩
is valid or equivalently goal-reaching if s0 = I, sk ∈ SG, sk+1 = ⊥, and for every 0 ≤ i ≤ k we
have T (si, ai+1, si+1) > 0. The action ak+1 is the goal action.

In the course of discussion, we will use the word ‘original model’ to refer to this true but unknown
underlying MDP. The agent itself is expected to be either interacting with a generative simulator that
encodes this MDP or is acting in the true environment provided that they can reset to the initial state
at the end of each episode.

3.2 Symbolic Planning Models
For the symbolic model, we will be using an a representation scheme called Planning Domain
Definition Language or PDDL. In particular, we will consider a version that will ignore object types
[14]. Here, a planning task is defined in relational terms, i.e., states are described in terms of objects
and relationships between objects and each action is described in terms of the objects involved in
that action and how they may affect or be affected by the relationships between these objects. Such
a model is usually defined by the tuple MS = ⟨L,O, I, G⟩, where L is a first-order language, O a
finite set of action schemas, I and G are specifications of the initial state and the goal, respectively.
The first order language describes the objects and the relationships between these objects (captured
as predicates). Additionally, first order language allows specifying predicates over variables as well
as actual objects. Formally, the first order language is specified as L = ⟨B,V,P⟩, where B is the set
of all objects, V are the variable names and P are the predicates. Each predicate p ∈ P , will take a
fixed number of arguments. For the purpose of discussion in this paper, we will either have cases
where the arguments consist of only variables or only objects. We will refer to the former case as
being the lifted representation of the predicate and the latter as a grounded instance of the predicate
(or ground predicate). In general, however, predicates can be partially grounded, with some of the
arguments being actual objects while others being variables. States of the model correspond to truth
assignments to ground predicates. Each ground predicate can take either a true or a false value. Each
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possible state for a given model is captured by a specific instantiation of all ground predicates. Thus,
possible states can be uniquely represented by sets of ground predicates that are true (assuming the
rest to be false under the closed world assumption). In this representation, I denotes a set of ground
predicates, capturing the unique initial state. For our purposes, G will be captured by a subset of
ground predicates, denoting all states where all of these ground predicates (and possibly some more)
are true. All such states will be considered valid goal states.

Each action schema o ∈ O provides the basic structure shared by a set of ground ac-
tions that can be actually executed by the agent. Each action schema is defined as o =
⟨params(o), pre(o), add(o), del(o)⟩, where params(o) indicates the parameters of the action
schema (variables and objects), the preconditions pre(o), the add-effects add(o), and the delete-
effects del(o). The latter three are first-order formula over the language L, specifying the conditions
that must be satisfied for the action to be executable in a state, as well as the change in a state resulting
from executing the action. Ground actions are obtained from the action schema by assigning objects
to variables in the parameters. The agents are executing the ground actions and therefore it is common
to describe the semantics of ground actions, henceforth simply referred to as actions. In this work we
restrict ourselves to preconditions in disjunctive normal form. For ground actions these would be
disjunctions of conjunctions of ground predicates. All states in which the formula holds, the action is
applicable. The add/delete effects are conjunctions of ground predicates, making these predicates
true respectively false in the state resulting in successful action execution.

For a given action schema o, we will denote the grounded instance obtained by replacing the
parameter with an object list Θ using the function symbol Γ↑(o,Θ). We can also define an inverse
mapping function λ↑(o↓,Θ) that retrieves the lifted model given a grounded instance (we can do
this by replacing all instances of an object with a variable). This lifting function λ↑ is well defined
in all cases where we don’t have a repeating object in Θ. In this particular work, we will only
focus on applying such lifting functions in cases where they are well defined. Overloading the
notations a bit, we will also apply the functions Γ↑ and λ↑, to create grounded and lifted instances of
predicates as well. Each planning problem can be represented equivalently in a grounded form as
M↓ = ⟨F↓, A↓, I, G⟩, where F↓ consists of all grounded predicates and A↓ grounded actions. At
most this model may have 2|F↓| states. A solution for a planning model is a plan π = ⟨a1, ..., an⟩,
which is a sequence of action whose execution in initial state will lead to a goal state, i.e., π(I) ⊇ G
(where π(I) = an(....a1(I))).

3.3 Connecting the Symbolic Model to the MDP
For any given deterministic MDP M of the form defined in Section 3.1, there must exist a symbolic
model that can exactly capture the MDP. In particular, there is a surjective function (many-to-one)
mapping the (ground) actions in the symbolic model to MDP actions. Every plan under the symbolic
model maps by this mapping to a valid trace of the MDP. The appendix include a proof that shows by
construction how such a model will always exist. However, rather than creating an arbitrary mapping
to a symbolic model, we are interested in creating one that leverages the expertise of a human domain
expert to creating a potentially more effective representation of the problem. In particular, we start
by taking human input to learn how to symbolically represent the states of the MDP. In particular,
we expect the human to specify a set of predicates and objects that they might associate with the
given problem. We use the symbol F C

↓ to capture the set of all ground predicate possible under this
specification. Similar to previous explanatory works [33, 32, 21] that have tried to learn symbolic
representations of RL problems, we use this to learn binary classifier that test whether a ground
predicate may be true in a given MDP state. We can learn such classifiers by collecting positive
and negative examples for each ground concept. Once the classifiers are available, we can construct
the symbolic state corresponding to each MDP state, by testing each classifier on any given MDP
state. We use the function C : S → 2F

C
↓ as a way to capture the mapping between the states. For

potential actions, we assume that every symbolic ground action corresponds to exactly one action in
the MDP. Overloading the notations a bit, we use C−1(a) to represent the MDP action corresponding
to the symbolic action a. As we will see later, the agent can also potentially leverage the human’s
intuitions about how they structure actions to further improve the effectiveness of our method. Finally,
we expect the human to provide a specification of the goal states specified in terms of the ground
predicates in F C

↓ . We denote this goal specification by GC . Additionally, we require that the initial
state for the symbolic model corresponds to C(I) and for any goal state s ∈ SG, C(s) satisfies GC

(or, equivalently, there is a symbolic goal action whose precondition meets this requirement) .
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4 Our Approach

Algorithm 1 Iteratively refine the model until
a goal reaching trace is found

Iterative-Model-Refinement
Input:MC

0 , κ
Output: An action sequence ⟨a1, ..., ak⟩ that will
lead to the goal
Procedure:
Mcurr ←MC

0

execution_statistics ← {}, solvability_flag ←
True
while solvability_flag is True do
M̂curr ← PruneModel(Mcurr , execu-
tion_statistics)
Π̂ ← DiversePlanner(M̂curr, κ)
if |Π̂| > 0 then

for π̂ ∈ Π̂ do
if π̂ leads to goal in the environment then

return π̂
else
Mcurr, execution_statistics ←
UpdateModel(Mcurr, π̂, execu-
tion_statistics)

end if
end for

else
solvability_flag ← False

end if
end while
return No policy with non-zero Value

The basis of our approach is an observation that
every deterministic MDP has a precise symbolic
representation. By precise representation, we mean
that for the specific setting we consider here, there
exists a symbolic model that can exactly simulate
the MDP: any transition possible under the sym-
bolic model must correspond to non-zero proba-
bility transition possible under the MDP and vice
versa. However, as discussed, our objective is not to
learn such a precise representation but rather only to
learn an optimistic approximation. We start from a
trivially optimistic representation of the underlying
model, which we iteratively refine towards the true
representation. At each iteration, the current sym-
bolic representation is used to generate potential
plans to the goal. These plans are then tested out in
the environment and the observed outcomes of the
execution of such action sequences are then used to
refine our estimate towards the true representation.
At every point of our model refinement process,
we ensure that every subsequent model estimate
generated is an optimistic one. By maintaining the
optimistic nature of the representation, we ensure
that no potential valid solution is overlooked at any
point in the learning process. So we will start the
discussion of our approach by providing a rigorous
definition of what we mean by an optimistic repre-
sentation. In particular, we are interested in creating
symbolic representations that allow all valid traces
that are possible under the original MDP to be pos-
sible under the new representations. Formally, we
define this requirement as

Definition 1 For an MDP model M, a symbolic model MC defined over a symbol mapping C(·) is
said to be an optimistic representation, if for every action sequence ⟨a1, ..., ak⟩ such that there exists
a valid trace (i.e. it reaches goal), there exists a valid plan in MC of the form π = ⟨a′

1, ..., a
′

k⟩, such
that C−1(a

′

i) = ai.

For the given set of grounded actions AC
↓ and a grounded set of predicates F C

↓ , we can create a
symbolic model that is guaranteed to be optimistic for any MDP whose action set is isomorphic
to AC

↓ and the state space can be represented using F C
↓ . In particular, the model will have empty

preconditions and delete effect and the add effects would correspond to the set of all ground predicates.
This means that every action is executable in every state and an execution of any action will satisfy the
goal. We will denote this model as MC

0 = ⟨F C
↓ , A

C
↓ , I

C , GC⟩. More formally, every action a ∈ AC
↓

will be defined as follows: a = ⟨prea0 , add
a
0 , del

a
0⟩, where prea0 = dela0 = ∅ and adda

0 = F C
↓ . The

fact that its an optimistic representation for any MDP possible in this context can be trivially proved
(Proof is provided in the appendix).

4.1 Refining the Model
Now, of course, while all valid traces for the original model correspond to a plan in MC

0 , the symbolic
model may also support plans that may not correspond to any valid trace in the original model. Our
basic strategy would be to use this model as a starting point to sample potential plans, simulate/execute
them in the environment or simulator and use the outcomes (both successful and failed executions)
to refine the current the current estimate. We will continue this process until we find a plan that
leads us to the goal. Keeping this general approach in mind, the next step would be to define our
model update rule. In particular, let us assume that we receive the following observation from the
environment ⟨s, a, s′⟩, such that s′ ̸= ⊥. Now we know this corresponds to the symbolic observation
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⟨C(s), C(a), C(s′
)⟩. Given this observation, we know that any changes made in the state must be

the result of the action. We will use this information to update action’s effects. For add effects, if
the estimate previously had hypothesized the action making a predicate true, which doesn’t hold
in C(s′

) then it can be removed from the add effects. Similarly, if there was a predicate that is
made false in C(s′

) but was not part of the delete effects, it can be added to the set of delete effects.
Formally, we can set the new estimate of the action as follows a = ⟨preai+1, add

a
i+1, del

a
i+1⟩, where

preai+1 = {ϕ|ϕ ∈ preai and ϕ ⊆ C(s)} and for effects we have adda
i+1 = adda

i \ (F C
↓ \ C(s′

)) and
delai+1 = delai ∪ (C(s′

) \ C(s)). If the sampled transition corresponds to a failure (⟨s, a,⊥⟩), we will
only update the precondition. Specifically, we will remove any precondition clause that satisfies the
state and replace it with a set of preconditions that includes one of the predicates that was false in
the model (this follows from the fact that the action failed because some predicate part of the true
underlying precondition wasn’t true in the given state). More formally, for any ϕ ∈ preai , such that
ϕ ⊆ C(s), we remove ϕ and add Φ = {ϕ ∪ f |f ∈ (F C

↓ \ C(s))}. The proof for why this update rules
result in optimistic representations are provided in the appendix.

4.2 Overall Algorithm
Algorithm 1 presents the overall iterative algorithm we will be using to identify the action sequence
that can lead to a goal state. The algorithm starts with the initial estimate of the model. It iteratively
generates plans for the model estimate, which will then be used to progressively refining the model
until we get a plan that corresponds to a path to a goal state. These plans are derived using a diverse
planner that identifies a set of plans that are diverse in terms of the actions used. This is represented by
the procedure DiversePlanner that takes the number of diverse plans to be generated as an argument
(κ). Readers can check [22] for a more detailed discussion of diverse planners. These plans are first
tested on the underlying environment/simulator to check whether they lead to the goal from the initial
state and if not the experiences sampled from their execution are used to refine the current model.
Note that, given the optimistic nature of the model estimate, the planner would generally try to use
actions that haven’t been previously executed successfully. However, each future use of the action
would become progressively harder due to the growing precondition set. With that said, one could
further improve the planner behavior by being more careful about the actions being used as part of
plans. If an action has been tested quite frequently, it would be better to de-prioritize its usage until no
better alternative has been found. Note that this is quite similar to the kind of exploration performed
in the context of multi-armed bandits [25]. In fact, one could directly apply methods like UCB [3] to
select the action sets to be considered by the planner. This part of the algorithm is captured by the
procedure PruneModel. To keep our implementation of the approach simple, we will use a simple
queue based system to identify the actions to be included. The exact procedure we use to control
the selection of actions is described in the appendix. The variable execution_statistics keeps track
of previous action trials and the frequency of success per action. The procedure UpdateModel uses
the rules described in Section 4.1 to use the sampled traces to update the given model estimate. One
could also further improve the efficiency of the search by always testing all possible actions in every
new state that is identified as part of the procedure.

Theorem 1 Algorithm 1 will (a) terminate in a finite number of steps and (b) identify a path to a goal
(provided one exists); as long as the diverse planner used is complete (i.e., it will return a non-empty
plan set as long as there exists a valid plan).

The proof for the theorem is provided in the appendix.

Leveraging the Exploration Strategy in the Context of RL algorithms: In the context of the
overall RL learning process, this exploration method will be used as a way to update the Q values
(and depending on the algorithm, structures like replay buffers). Specifically, we will first run this
exploration procedure to find a valid trace to the goal. Once such a trace is found, we can update the
Q values of all the states that are part of that trace to a more informed value. Once updated, we can
employ traditional RL algorithms to identify optimal policies. One could also leverage the proposed
method in conjunction with other exploration strategies, during the learning process. It is important
to note that any consecutive use of our approach for generating goal directed paths would be much
more efficient, as the method will start from a more refined estimate of the model.

Leveraging Lifted Representation The algorithm described above tests each of the available
actions to learn a symbolic model corresponding to the observed behavior. However, one of the
important points to note here is the fact that this means that the testing and by extension learning of the
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model occurs at the level of ground actions. As we had discussed earlier, a very common assumption
made throughout symbolic models is that of the existence of a lifted representation of actions. Namely,
the fact that the nature of actions could be described independently of the exact objects it may be
interacting with. This is a very natural outcome that comes out of relational representations of tasks,
where the state is represented in terms of objects and relationship between objects. Consider a simple
domain where a robot is tasked with stacking blocks on the table (popularly called blocksworld [35]).
It is very easy to see that the outcome of picking up the red block should be quite similar to the
case of picking up the green block of the same size. For example, if we observe that the execution
of the action ‘pick-up red block’ results in the agent holding the red block in it’s gripper; then it
would be quite natural to assume that the execution of ‘pick-up green block’ should result in the
agent holding the green block. We will leverage such symmetry by asking the human to provide some
additional information about each action. Specifically, the human can provide us a basic annotation
over what actions could share a lifted structure and what objects each actions might interact with.
Note that we are not asking the users to specify what the lifted structure may be, but just a grouping
of actions and an ordered list of relevant objects. The order may reflect the different roles played by
the objects participating in the action. For example, when an object is being placed on top of another,
the annotation may list the destination object first and then the object being placed on top of it. The
exact ordering wouldn’t matter provided they remain consistent through the annotations. Additionally,
even if the grouping provided by the human may be a subset of the true possible grouping and the
human provides a superset of the objects relevant to any given action, our generalization approach
remains valid. The set of objects associated with each action could also be automatically extracted
from natural language descriptions of actions, as performed by works like that by [10].

For a given set of actions that are marked as being grounded instances of the same lifted action,
we will ensure that learned effects of all actions comply with the most refined action in the set. As
discussed earlier, the effects of an action comprises of add and delete effects and for each component
we can select the most refined set independent of each other. From the set of effect descriptions,
we select the add effect set containing the minimum number of elements and the delete effect set
containing the maximum number of elements. For each such set, we can create the lifted description
using the λ↑ function described earlier. Let min_add be the lifted description corresponding to the
smallest set of adds and max_del be the largest set of deletes for a given set of actions corresponding
to the same lifted action. Then we can simply replace the effect of every action with a grounding of
these lifted actions. This will still result in an optimistic model description, as we can show that the
min_add and max_del are still optimistic estimates

Proposition 1 Let Ā = ⟨a1, ..., am⟩ be a set of actions marked as being instances of a single lifted
action a↑. Then min_add must be a superset of add effects of a↑ and max_del a superset of deletes
of a↑, where min_add and max_del are calculated for Ā

The proof for validity of this proposition is discussed in the appendix. This proposition now means
that, once max_del and min_add are identified, then for every action a in the set of possible
groundings we can replace add effects and delete effects with the corresponding grounding of the
lifted effects, i.e, adda = Γ↑(min_add,Θa) and dela = Γ↑(max_del,Θa), where Θa is the object
list corresponding to the action a. One can follow similar lines of reasoning to show that the lifted
description of the maximal precondition description is guaranteed to entail the true preconditions.

Lifted Representation as a Basis for Curriculum Learning. While the above discussion focused
on leveraging lifted representation to speed up learning within a given planning problem, one could
also use lifted representations as basis of transferring model information from one problem instance
to another. Within classical planning problems, it is very common to separate the domain information
represented in lifted terms from specific problem instances. Each problem instance could differ in
terms of the number and identities of objects involved, the initial and goal state. However, actions
applicable in every instance share the same lifted definition. Even within RL, benchmarks consisting
of various instances of the same problem domain are becoming more popular (Minigrid [8] being a
popular example). When such a suite of problem instances are available, one could further speed up
learning by using the smaller instance to learn as much of the lifted model as possible. Once such a
partial lifted model is learned, it can then be used to refine the optimistic model in the target problem,
where the normal learning process then takes over. Note that the access to a smaller problem instance
doesn’t obviate the need to perform learning in the true underlying model. After all, in the smaller
problem there may be lifted actions that may not be executable in any of the reachable states, but
needs to be used in the target problem to reach the goal.
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Figure 1: Four minigrid maps considered and the cumulative rewards per episode comparing our
method to a vanilla RL. The values are plotted along with their 95% confidence interval.

5 Evaluation
We perform our evaluation in four different domains. Three of these correspond to traditional planning
domains and one a more traditional reinforcement learning benchmark. The planning benchmarks
include blocksworld, a simple gridworld type domain involving robot picking up objects and a domain
where the agent has to control elevator schedules. For the RL domain, we looked at two variants of
minigrid problem. One was the version introduced by [26] (henceforth referred to as Minigrid-Parl)
and the other being a simplified version of the original minigrid testbed [8]. We chose to use the
Minigrid-Parl, since it provided us with annotations that allowed us to use hierarchical RL methods.
For the latter variant, we dropped the turn action and introduced directional movement, pick up, drop
and toggle actions. This allowed us to use simpler PDDL formalisms to capture the domain. For
each planning domain, we selected five different problems (the sizes are approximately listed in the
tables in terms of the number of grounded predicates) and two problems for the minigrid domain.
We created a simulator wrapper around PDDL models for each of the problems, as it allowed us
easy access to the annotation information for lifting. For the minigrid problems, we auto generated
PDDL problem files from the simulator code for each specific environment. he code can be found at
https://github.com/sarathsreedharan/ModelLearner.

5.1 Reaching Goal States
As a first step, we are interested in testing how our proposed method compares against standard
exploration strategies used by RL algorithms. In particular, we compare our method against three
baselines: vanilla ϵ-greedy exploration (as implemented by the SimpleRL framework [1], as part of
the Q learning agent), R-max based exploration strategy (again taken from the SimpleRL framework),
which as we discussed is a form of intrinsic reward, and a hierarchical RL method that learns a policy
over SMDP using PPO (as implemented by [26]) on instances from Minigrid-PARL.
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Problem Instance
ϵ−greedy Our method Our method

(w/o lifting) (with lifting)

Name Size solved time # samples solved time # samples solved time # samples

Blocks

25

3/5

0.89 9164.2

3/5

26.7 19262

5/5

5.59 592
25 11.35 115136.8 399.35 168859.6 31.96 56404.8
25 1.99 20702 46.86 18901.8 9.28 4432.4
36 - 2966996.4 - 96152.8 32.99 191451.2
36 - 3135384 - 142605.4 33.93 138203.4

Elevator

20

0/5

- 2045316.4

2/5

408.79 3394856.8

5/5

36.94 88108
20 - 2087898.2 - 3839855.6 26.73 66507
20 - 2062441.2 401.85 3053364.2 21.25 88835
20 - 2089477.6 - 3099277.6 36.12 83296
20 - 2081322 - 4117586.6 36.57 87747.2

Gripper

25

1/5

5.56 53929.8

2/5

73.52 77450.2

5/5

15.9 16523
25 - 1511944.6 328.74 252954.4 23.17 308598.6
25 - 2663695 - 83551.8 35.93 309964.8
36 - 2395190.2 - 55209.8 43.31 308598.6
36 - 2112899.6 - 37136.8 61.99 624489.6

Minigrid-PARL 94 0/2 - 2743179.4 0/2 - 310032 1/2 86.41 342981.8
593 - 334535.2 - 2458.2 - 8217319.4

Table 1: Our method w/wo lifting generalization vs. Q learning. Times are listed in seconds and only
the average time and number of samples are reported (full data is in the Appendix).

Our interest is not only to see how well the current method performs, but also to see how much is
contributed by the action-level generalization provided by lifted representations. Our primary metrics
of evaluation are going to be, (a) do the methods consistently reach the goals, (b) the number of
samples collected from the environment as part of reaching the goal, and (c) the time taken by the
method to reach the goal. This third aspect is an important one to consider to make sure that the RL
based exploration is given a fair chance when compared against planning based methods. After all,
the planning methods reason over environment model, allowing them to perform less interactions
with the environment. However, this adds a computational overhead, that might not be required for
other method, such as vanilla RL methods. We capture that tradeoff of one computation for another
by measuring the time to reaching the goal. Additionally, we set a time limit on the exploration step,
as for some of these problems the exploration might not be completed in a reasonable amount of time.
For all planning based instances we set the time limit to 10 minutes, while for the minigrid instances
we extended the time limit to 30 minutes. Every experiment is run five times, averaging the results to
account for possible randomness in the learning process. All seed values were randomly assigned and
kept constant through the all five runs. As the underlying diverse planner, we used FI [15], generating
ten different plans at every step. Table 1 presents the comparison of our method against Q learning
for the planning benchmarks. Both R-max and SMDP time out on all tested instances, so we will
skip reporting their values in the table. SMDP took 188416.8 and 106821.4 samples each for the two
minigrid problems. We see that apart from Blocksworld and minigrid domain, our vanilla method is
able to solve more problems and our method equipped with the application of lifting rule outperforms
both by a wide margin. Neither R-Max or SMDP visited any of the goal state in the given time limit.

5.2 Overall Learning Performance

With the initial results collected on how well our method is able reach goal. The next question we
wanted to answer was how well an RL algorithm augmented with our new exploration strategy is
able to perform. For this question we focused on tabular Q learning and the minigrid environment.
Specifically, we compared an instance of Q learning algorithm where Q values were initialized
using the plan generated through our exploration process and a vanilla one that started with no
such information ( Top row of Figure 1 provides a visualization of the maps considered for these
experiments). Columns two and three of Table 2 presents the time and samples taken to get such a
plan for each of the problem instance considered. The bottom two rows of Figure 1 present how the
total value per episode changes over episodes. As expected, the access to a valid plan (which isn’t
necessarily optimal) ensures that our method starts from a higher value. For smaller instances, we see
that the vanilla method eventually catches up or at least gets closer. However for the largest problem
instance, even after 1000 episodes the RL agent is still unable to get a positive reward since it never
reaches a goal state.
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Problem with original PruneModel with bootstrapping w/o bootstrapping
time # samples time # samples time # samples

DoorKey-5× 5 35.39 23977.2 N/A N/A N/A N/A
DoorKey-6x6 34.45 24418.4 42.14 27666.0 35.91 21531.8
DoorKey-8x8 54.63 260839.8 52.1 143223.4 92.78 367749.2

DoorKey-16x16 1488.08 6705823.2 2353.63 11088198 – –

Table 2: The results from our method (with lifting) applied to the second Minigrid variant. Includes
the performance under our original PruneModel strategy and the results on how bootstrapping helps
learning under the new action selection strategy. The entries for DoorKey-16x16 are skipped for w/o
bootstrapping, since the method timed out after 90 minutes.

5.3 Curriculum Learning
The final question we were interested in investigating was whether having access to a smaller problem
instance had the potential of speeding up our learning process. We again went back to the minigrid
problems and tested whether first learning a partial lifted model using the a problem of grid size 5×5,
help speed up learning in larger problems. In particular, we stop learning in the smaller instance, as
soon as we find a single solvable plan. We then use the lifted model information learned from the
smaller instance to create a more informed model of the target problem. Then we follow the same
procedure as before, until all the plans returned by the diverse planner is valid. One of the things
we noticed was that bootstrapped models did significantly worse off under the original PruneModel
method we used. We noticed that using a strategy based on failure count resulted in useful actions
getting tested early and getting removed from consideration. So for this set of experiments we
considered a different strategy that re-introduces actions more frequently. Last four columns of 2,
presents the results for the minigrid problems, where the problem were bootstrapped with a lifted
model learned from a 5× 5 grid. The method without bootstrapping timed out for the largest problem
without finding a solution after 90 mins. Except for the smallest problem we see the bootstrapping
giving a definite advantage.

6 Conclusions and Discussion
Our paper, presents a novel exploration paradigm for reinforcement learning algorithms. Our proposed
method supports the learning and refinement of optimistic symbolic estimates of the underlying
model for the given task. We show how we can start with a trivially optimistic model and then use a
diverse planner to drive both the task-level exploration and the refinement of the model. Experiences
generated from the execution of identified plans lead to better estimates of the task, which in turn
leads to more informed plans. We additionally show how we can leverage lifted representations of
the given task, to generalize any learned model information across various instances of the same
lifted operators. We also use this mechanism to propose a novel curriculum learning paradigm for
model learning. The effectiveness of our proposed method depends on three crucial factors: (a) the
possibility of performing systematic refinements of our models while ensuring desirable properties,
(b) the availability of fast, diverse planners, and (c) the ability to leverage human intuition about the
task. The latter is of crucial importance: even if there were other model classes and planners we
could exploit, the ability to tap into human knowledge gives us a significant advantage. Importantly,
the same knowledge has been used by many of the other state-of-the-art methods. Further, it only
represents a small subset of the information usually provided as part of a complete symbolic planning
model. One of the aspects not discussed in the paper was the fact that instead of starting with an
empty model, we could have started with a partially complete model. In such cases, the human could
just provide whatever they know about the task, and the RL agent can fill in the rest. We expect such
settings to provide even more advantages to our method. For future work, a promising direction is to
support stochastic transitions. One possible way of using such methods in a stochastic setting would
be by considering a separate copy of an action for each possible transition, similar to the methods
used by many probabilistic planners [39]. The central challenge here would be to recognize the
different transitions associated with the same action and to ensure that the estimate at any given point
is still an optimistic estimate of the true model. Last, but by no means least, is the combination with
RL methods that use function approximation, especially in settings where the symbolic model might
be an abstraction of the true underlying model. Such settings are among the most practical ones from
the real-world applications perspective, allowing our method to gradually generalize to fine-grained
abstractions and eventually to the real world.
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A Appendix Overview
In this appendix, Section B will cover the formal statements and proof sketches for various theoretical
results, Section C will cover the implementation details including hyperparameters. Section E will
cover the various assumptions made in the work and finally Section F provides an overview of how
our approach is used in the context of Q learning.

B Theoretical Results
First result we are interested in establishing is the fact that for any given MDP of the form described
in Section 3.1 in the main paper, there exists a corresponding symbolic model that meets the criteria
discussed in Section 3.2 in the paper.

Proposition 2 For an MDP of the form M = ⟨S, T,A, I,R⟩, there exists a grounded symbolic
model M↓ = ⟨F↓, A↓, I, G⟩, such that there exists

1. a mapping C from the state S of M to the states of M↓,

2. a mapping C−1 from the actions A↓ of M↓ to the actions A of M, and

3. a mapping from valid traces in M to valid plans in M↓ and vice-versa.

Proof Sketch: We can build such a model by adding one grounded predicate (each corresponding
to a unique lifted predicate of arity 0) for each state other than ⊥ into F↓. Now a state in S maps
(defined by C) exactly to the symbolic state where the corresponding predicate is true and none of
the other fluents are true. Now for the action, we will start with an action definition that includes
conditional effect, and then convert it to a form assumed by the work. A conditional effect captures
cases where an effect of an action only fires if the state meets certain criteria. Now we create one
symbolic action for each MDP action. For each possible transition between states (other than ⊥), we
will add a corresponding conditional effect that takes the predicate corresponding to source state as
condition and as effect the predicate corresponding to the target state. We will keep as precondition
of the actions a disjunctive list of all possible states where it will not fail. For the goal action, we
will have corresponding symbolic goal action whose precondition corresponds to potential states in
SG and the effect is a goal predicate. The initial state consists of only the predicate corresponding
to the state I and the goal corresponds to the goal predicate. Now we can convert the actions with
conditional effects to ones with no conditional effect (cf. [30]). Now the action mapping C−1, will
map each of these new actions to the original MDP action from which it was defined. Now a plan
is only valid in this model, if there exists a sequence of transitions from initial state to goal with
non-zero probability. Similarly, for every valid trace there must exist a valid plan where each MDP
action could be replaced by one of the potential symbolic actions that maps to it.

Next we will talk about the optimism of the initial model estimate

Proposition 3 MC
0 = ⟨F C

↓ , A
C
↓ , I

C , GC⟩. More formally, every action a ∈ AC
↓ will be defined as

follows: a = ⟨prea0 , add
a
0 , del

a
0⟩, where prea0 = dela0 = ∅ and adda

0 = F C
↓ is optimistic for any

MDP model such that there exists a mapping C from MDP state to symbolic states and a function C−1

mapping symbolic actions to MDP actions.

This can be easily shown by the fact that every possible action sequence is a possible plan here.

Moving onto the update rule.

Proposition 4 Update rule as presented in Section 4.1, will only result in an optimistic representation.

Proof Sketch: The important point to note is that at any point, the update rule is only applied to
an optimistic representation. So, in order for it to result in a non-optimistic model, it must have
removed a plan corresponding to a valid trace. Given our initial construction of MC

0 , we always
ensure that in MC

0 the execution of an action a at a state C(s) will result in a symbolic state that is a
superset of C(s′), where T (s, a, s′) = 1. Note that an application of an update rule will only extend
the precondition if the corresponding MDP action fails and the preconditions are extended to exclude
only the current state (though the list of excluded state, action pairs grows as the number of failed
samples grows). Additionally, the effect is changed only to disallow impossible transitions. Since
the transitions are deterministic, only one sample is needed to determine that no other transitions are
possible from that state and action. This means that the above property (the fact that the resultant
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symbolic state will be superset) will be preserved through updates. Which in turn means that any
plan that previously corresponded to a valid trace can become invalid.

Now coming to the theorem

Theorem 1 Algorithm 1 (as referenced in the main paper) will (a) terminate in a finite number of
steps and (b) identify a path to a goal (provided one exists); as long as the diverse planner used is
complete (i.e., it will return a non-empty plan set as long as there exists a valid plan).

Proof Sketch The validity of this theorem follows from the fact that the update rule will
remove any plan that doesn’t correspond to a valid trace from consideration again. If the planner
is complete then it will effectively iterate over all possible plans. Eventually finding one that
corresponds to a path that goes to the goal. This is guaranteed to exit in finite steps, as the set of
non-redundant plans is guaranteed to be finite when the state space is finite.

Now revisiting Proposition 1

Proposition 1 Let Ā = ⟨a1, ..., am⟩ be a set of actions marked as being instances of a sin-
gle lifted action a↑. Then min_add must be a superset of add effects of a↑ and max_del a superset
of deletes of a↑, where min_add and max_del are calculated for Ā

Proof Sketch The validity is trivial. The update rule makes sure that every effect estimate
will be an optimistic estimate of the true ground action effects. In the case of add effects this estimate
will be a superset and for delete effects it will be a subset. Thus, the lifted representation of each set
must correspond to optimistic estimates of the true lifted representation of the effects.

C Implementation Details
All experiments were on a laptop running Mac OS v 11.06, with 2 GHz Quad-Core Intel Core
i5 and 16 GB 3733 MHz LPDDR4X. We did not use CUDA in any of the experiments. For the
planner, we used the FI-diverse-agl planner provided as part of the forbid iterative planner. As
discussed we generated 10 plans in every planing query. The search was given a maximum threshold
of 1000 iterations, but we never reached that limit given our time limit. We stop an action from being
considered if it fails 10 times in a row. We will update this upperbound on number of failures if the
planner returns empty plan at any point. Since we found out that the planner was slowed down by
the introduction of disjunctive preconditions, we replaced the disjunctions with a set of actions (this
is an equivalent compilation popular within planning). To control the growth of the precondition,
we introduce an upper bound on its size, set to 10 in our experiment. Note that the true size of the
preconditions in all instances we consider here is significantly smaller than our bound. We could
make the bound adaptive to a domain, but we do not expect it to make any significant difference. For
all the RL baselines we used a discount factor of γ. For Q learning and R max, we used a maximum
of 1000000 episodes with 200 steps per episode. For exploration, the ϵ and decay rates were set
as the same as the one used by SimpleRL experiment scripts. For PPO, we used the same default
values used by [26]. The environment names for the two problems we tested in minigrid where where,
MazeRooms-8by8-DoorKey-v0 and MazeRooms-2by2-TwoKeys-v0. While creating the PDDL
model for minigrid we combined the turn actions with the other actions (move, pickup, drop, etc.), to
avoid potential conditional effects.

D Additional Experiments
D.1 Comparison with a Symbolic Baseline
To see how our method compares against other methods for symbolic model acquisition, we look at
how many samples are required by a popular model learning method (cf. [19]) to generate a model
that can produce a goal reaching plan. Since we don’t have access to a plan library, we will generate
one through random walks on our simulator. We focused on the Blocksworld domain, and for each
of the five problems, we look at the number of samples required to generate a model that allows a
potential plan to the goal. Since the method generates a pessimistic approximation of the model, any
plan generated by the model is guaranteed to be valid and thus the method no longer requires the use
of diverse planners to generate potential plans. We placed an upper bound of 600000 on the number
of samples originally collected from the simulator (this is nearly six times larger than the number

15



of samples required by our method). Out of the five problems, we found that only the method was
only able to learn a model capable of generating a valid plan in the case of the first problem instance.
Even for that problem, we found that the method took on average 548287.8 samples.

D.2 Kitchen Domain
As an additional experiment, we tested our method on the symbolic part of the Kitchen Domain [36].
We tested our method on the domain by creating a symbolic simulator that uses the descriptions
provided in the appendix of the paper (specifically the inter-dependencies listed in Figure 5). The
purely symbolic domain consisted of one action for each high-level goal possible and the preconditions
were built based on the relationships described in the paper. The exact domain consisted of 15
predictions and 13 actions. The goal was the same as the one described in the paper (i.e., both banana
and cabbage is cooked, they are placed on plates and the plates are served). The lifted version of our
method was able to identify a valid plan in 61.46 sec using 24727.2 time steps (averaged across five
runs) and the non lifted version took 393.57 secs and used 140681 samples (again averaged across
five runs). Now executing the plans in the true simulator would require an additional component an
additional step to drive the simulated robot to achieve each of these subgoal. However, as discussed
in the paper, we can do that by using a motion level planner (like an RRT based planner).

E Assumptions Made
Here we explicitly mention all the theoretical assumptions we have made in the paper and how to
relax them

Model dynamics:
Deterministic model – our primary formulation and evaluation focus on deterministic domains.
However, as discussed in the future works section, we can directly apply our method to stochastic
environments by creating symbolic models that correspond to so-called all outcome determinizations
of the model [39].

Observability:
We assume that the environment is fully observable. However, previous work have looked at how
partial observability can be compiled into classical planning model. For optimistic estimates, we can
make further simplification to assume that all unobservable facts are true, thus allowing us to directly
apply our methods in such settings.

Finite state and action space:
We assume that the underlying state and action space is finite and thus can be represented exactly
using a finite symbolic models. For cases where this is not true, we can still employ our symbolic
model to capture an abstraction of the true state and action space.

Symbolic observations:
We assume that noise-free classifiers for each symbolic fluent are given. Previous work [32] have
looked at the problem of learning such classifiers, which we can directly use in our scenario. If the
classifiers are noisy, this corresponds to a special case of partial observability. As discussed above,
we therefore can extend our model to handle noisy classifiers.

F Overall Learning System
Here we provide an overview of the overall learning process. Figure 2 presents a diagrammatic
representation of the learning process. As discussed before, we start with a trivially optimistic
representation of the model. We then use a diverse planner to potentially generate possible plans from
that domain, which are then tested on the simulators. The experiences generated from the simulator
are then used to update and refine our optimistic representation. Once a successful plan is identified,
this information is used to initialize the RL algorithm. For our experiments, we focused on Q learning;
as such, the plans were used to initialize the Q values with more informative estimates. It is worth
noticing that the problem of learning a useful refinement of an optimistic model involves solving
an additional exploration-exploitation problem. Specifically, this involves identifying what actions
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Figure 2: A visualization of the overall learning process

the planner should try to include in the plans. While the use of diverse planners already provides us
with mechanisms to promote exploration, given the optimistic nature of the model estimates, there
is always a possibility that the planner will try to use actions that have not yet been successfully
executed (thereby updating its effect). In our current implementation, we employ a queuing strategy
to prevent the planner from retrying the same actions too many times.
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