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Abstract

Existing methods for adapting Neural Radiance Fields (NeRFs) to scene changes
require extensive data capture and model retraining, which is both time-consuming
and labor-intensive. In this paper, we tackle the challenge of efficiently adapting
NeRFs to real-world scene changes over time using a few new images while re-
taining the memory of unaltered areas, focusing on the continual learning aspect
of NeRFs. To this end, we propose CL-NeRF, which consists of two key com-
ponents: a lightweight expert adaptor for adapting to new changes and evolving
scene representations and a conflict-aware knowledge distillation learning objective
for memorizing unchanged parts. We also present a new benchmark for evalu-
ating Continual Learning of NeRFs with comprehensive metrics. Our extensive
experiments demonstrate that CL-NeRF can synthesize high-quality novel views
of both changed and unchanged regions with high training efficiency, surpassing
existing methods in terms of reducing forgetting and adapting to changes. Code
and benchmark will be made available.

1 Introduction

Neural Radiance Fields (NeRFs), powerful models capable of synthesizing high-fidelity novel views
from multi-view images [2, 26, 7], play crucial roles in various applications including AR/VR and
autonomous driving simulators. However, real-world scenes constantly evolve over time, such as
a chair being removed from a room. To handle such changes, it is essential to develop adaptable
representations that can be continuously updated to reflect these changes accurately with minimal
data and computational cost. However, existing NeRF methods [2, 26, 7, 43, 41, 40] often require
a lot of new data and full retraining of the model to adapt to even minor local changes, which is
impractical and costly, especially for large-scale scenes e.g., city-scale scene.

In this paper, we study a novel efficient continual learning task for NeRF, where we aim to update a
scene’s NeRF using only a few new images (i.e., 10-20 images) that capture the scene changes over
time while preserving the memory of the unchanged areas (see Figure 1). A simple approach is to
fine-tune the NeRF with the new images, but this suffers from catastrophic forgetting of the unaltered
areas (see Figure 1). One might argue that using explicit 3D representations, [9, 22, 27], such as
Plenoxels [9], could mitigate this problem since the explicit 3D representation might not change for the
unchanged regions during fine-tuning. Nonetheless, our initial experiments suggest that forgetting still
occurs (refer to Figure 1). This is because the ray-based volumetric rendering formula [2, 26, 9, 22, 27]
propagates supervision signals to all voxels along a ray, which may affect other regions that share
voxels with the same ray. The most related work is dynamic NeRFs [17, 16, 30], which also model
dynamic changes using time-aware latent codes [17] or scene flows [19]. But it focuses on changes
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Figure 1: Catastrophic forgetting (left) and scene changes simulation (right). The left part illustrates
the forgetting behavior of MLP-based and Voxel-based NeRF during fine-tuning, while the right side
simulates representative real-world change operations.

caused by continuous object motions and is designed to remember the observed regions at a specific
timestamp, leading to forgetting of unobserved regions in a large-scale scene.

To address this challenge, we introduce Continual Learning NeRF (CL-NeRF), which efficiently
adapts a learned NeRF model to environmental changes using minimal new data while retaining its
memory of unchanged areas. It consists of two core components: an expert adaptor for adapting
to scene changes and a conflict-aware distillation scheme for memorizing unchanged parts. The
expert adaptor is a lightweight network that learns to encode local changes from a few new images
while keeping the original NeRF parameters fixed. It also predicts a weight value called mask logit
that indicates the likelihood of the rendering point being in the changed areas. It is used to fuse the
original NeRF features and the expert adaptor for rendering. Further, the conflict-aware knowledge
distillation scheme trains the model to preserve the original scene representation for unchanged areas
by minimizing the discrepancy between the outputs of the original NeRF and the adapted model. The
mask logit predicted by the expert network balances the distillation loss and rendering loss of new
images, avoiding conflicting supervision signals.

Finally, we introduce a new continual learning benchmark for NeRF, consisting of synthetic and
real-world scenes. Our benchmark encompasses four fundamental operations that represent prevalent
real-world scene changes: add, remove, move, and replace. Furthermore, to facilitate evaluation, we
develop comprehensive metrics to assess the model’s effectiveness in preserving unaltered areas and
adapting to new changes in terms of accuracy and efficiency. Our extensive experiments, involving
three baselines (i.e., fine-tuning, memory replay, and DyNeRF[17]), demonstrate that our model
consistently outperforms all compared approaches on all evaluated scenarios while maintaining
superior efficiency. Especially, our approach maintains high-quality results throughout a series of
operations in both old and new tasks as evidenced by our PSNR scores (29.74 and 33.38 in the new
and old task, respectively.) Notably, our approach effectively mitigates the forgetting phenomenon
when compared to direct fine-tuning (see Figure 1).

In summary, our primary contributions are:

1) To our best knowledge, we present the first study on Continual Learning of NeRF, aiming to
enable a NeRF model to adapt to changes in real-world scenes. We also introduce a novel
benchmark for this task, which can serve as a valuable resource for future research.

2) We propose a new method – CL-NeRF – consisting of two key components: a lightweight
expert adaptor for adapting to new changes and a conflict-aware knowledge-distillation
objective for preserving unaltered scene representations.

3) We conduct extensive experiments and show that our model achieves high-quality view
synthesis in both altered and unaltered regions, outperforming the baseline methods and
mitigating the forgetting phenomenon.

2 Related Works

Neural Radiance Fields, Dynamic NeRF and NeRF Editing Neural Radiance Fields (NeRF) [26]
have drawn a lot of attention recently due to their high-fidelity rendering quality. To render novel-view
images, previous methods encode the geometry and appearance into the weights of MLPs [26, 2, 3]
or other explicit neural 3D representations [22, 9], then render novel-view images through volume
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rendering [12] based on the predicted radiance values of query points. However, most of these
methods require per-scene optimization and are fragile to the scene changes [35].

To handle scene changes, the vanilla NeRF [26] is modified to model the dynamic objects in the scene.
This line of work usually takes videos containing dynamic objects as inputs and can be divided into
two lines: deformation field estimation [19, 20, 28, 31, 39, 29, 8] and the incorporation of time-aware
inputs [17, 4, 36]. Dycheck [10] offers a critical assessment of recent developments in dynamic
NeRFs. Given that the dynamic NeRFs are only trained on limited observations of the large-scale
scene at each timestamp, thus the high-fidelity rendering at that timestamp is constrained to the
observed regions. Different from dynamic NeRFs, we aim to render high-fidelity images of the entire
scene at any given timestamp.

The recent progress made in enabling NeRFs to support geometry or appearance editing [23, 14, 15,
47] has been quite significant recently. They focus on editing objects within the scene, for example,
changing the color [23, 14], editing the parts of objects [23] or making deformations [15, 44]. This
line of work usually handles editing following the user’s instruction and is limited to existing objects
within the scene while our goal is to adapt NeRFs to various real-world scene changes efficiently.
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Figure 2: Illustration of the Continual Learning of NeRF.

Continual Learning Continual
Learning aims to learn different tasks
progressively[42, 33]. However,
catastrophic forgetting is the key
challenge, meaning the model will
have performance degradation on
previous tasks after training on new
task[13]. In our task, the Continual
Learning of NeRF is defined as a

model that should not have artifacts or quality degradation on unaltered areas after the model has
adapted to the scene changes multiple times. (See Figure 2). To tackle the forgetting problem in
continual learning, some researchers propose memory replay method[5, 6, 11], which will store the
previous training data and use them to augment the current training set while training the model on
the new task. Besides, adding regularization constraints to the neural network to limit the parameter
updated also proves to be an effective solution[1, 13, 21, 46]. Lastly, Adding separate module to
handle different tasks also draw some attentions[18, 32, 34, 45, 25].

3 Continual Learning of NeRF

Our study focuses on continual learning for scene-level NeRF, where the goal is to update a pre-trained
scene-level NeRF efficiently by utilizing a few new images while retaining the memory of unchanged
areas. Figure 2 provides an illustration of the process. In this section, we will first formulate the
Continual Learning task of NeRF and subsequently describe our preliminary study which highlights
the forgetting issue and motivates our method.

3.1 Problem Formulation

We represent a 3D scene as a 5D radiance function, denoted by Fθ : (x, d) → (c, σ), in accordance
with the vanilla NeRF [26]. Specifically, our approach utilizes an MLP Fθ, where θ represents a set
of parameters, to predict the volume density σ and color c according to each sample point x and its
corresponding view direction d. NeRF has demonstrated a high capacity for high-quality novel view
synthesis. Our focus is on the Continual Learning of NeRF to adapt to changes while maintaining the
unaltered components.

To simulate natural scene changes, we incorporate basic operations, denoted as Op, including adding,
removing, moving, and replacing objects, which are common factors contributing to scene alterations.
To emulate these scene changes over time, we simulate a series of operations [Op1 , Op2 , ..., Opn ],
representing time-varying changes that result in evolved scenes [Su1 , Su2 , ..., Sun ], respectively. Our
simulation aims to capture the following characteristics of real-world scenes: 1) localized changes
occurring within objects, 2) the impracticality of extensively recapturing scene-level data in large-
scale environments, such as rooms or cities, due to time and cost constraints, and 3) the dynamic
evolution of real-world scenes over time.

3



𝐺 𝑓!∗(𝑥)PE(𝑥) 𝑚

𝐸!

𝐹!

Frozen Frozen

Frozen

𝑓!(𝑥)

𝑒!(𝑥)
Lightweight expert adaptor

Trainable

𝑐

σ

𝑚 Gating module𝐺Mask logitBackbone features 

Fused features 

Features

Figure 3: An overall inference framework of CL-NeRF. The position encoding PE(x) is fed into both
the original MLP backbone and the proposed lightweight expert adaptor module (the green dashed
box), generating backbone features fθ(x) and expert features eθ(x). A scalar output m by the expert
is utilized for feature fusion. Finally, the fused feature f∗

θ (x) is passed to the volume density and
color prediction heads for further volumetric rendering.

Given the changes in scenes over time, our continual learning task is defined as follows: initially, we
train a model Fθ with m multi-view images of an original scene So. Subsequently, we progressively
update Fθ using k new multi-view images that capture scene changes Sui

after operation Opi
at each

time step i. It is worth noting that the new training dataset is significantly smaller compared to the
original one (i.e., k ≪ m).

3.2 Preliminary Study and Motivations
Preliminary Study A straightforward approach to the continual learning task is to directly fine-tune
an existing NeRF model with newly acquired data at each instance. We evaluate this baseline using a
simple single-operation preliminary experiment. Specifically, as shown in Figure 1 the room-level
scene comprises several pieces of furniture. We capture around 200-300 images for the scene to train
the original model Fθ. Then, we modify the scene with the ADD operation (i.e., placing several
apples on the table) and take 10 images around the object. Finally, we use the new data to fine-tune
Fθ as a baseline.

Catastrophic Forgetting However, this simple strategy leads to unsatisfactory performance. While
achieving acceptable quality for the updated region after the change, the model results in a catastrophic
deterioration of the quality in unaltered regions. As illustrated in Figure 1, after fine-tuning with the
new data, artifacts appear on the bookshelf, which is on the unchanged area located on the right-hand
side of the table. The average PSNR dramatically drops from 32.71 to 24.21. We conjecture that
NeRF stores geometry and appearance information in the weights of its MLP model in a coupled and
implicit manner. Consequently, applying changes locally without affecting other regions is difficult.
This issue presents a significant obstacle in adapting pre-trained NeRF models to changing real-world
scenes while preserving unaltered areas. The problem is particularly pronounced in large-scale scenes,
making recapturing and full retraining impractical in many cases.

Comparisons with Traditional Continual Learning Task In practical settings, continually captur-
ing images and retraining a NeRF after every scene change is ideal but unfeasible for large, dynamic
scenes. Instead, we propose a more realistic method: fine-tuning existing NeRFs with recent images
consistently, which resembles traditional Continual Learning (CL) tasks. This technique, however,
can induce artifacts and catastrophic forgetting in previously trained areas, as noted in traditional CL
tasks [13]. The divergence between CL in NeRF and traditional CL tasks lies in the inherent conflict
between new and old data. While traditional CL tasks maintain a stable one-to-one input-output
correspondence, NeRF attributes colors and densities to specific points. Scene alterations can modify
these associations, leading to conflicting supervisory signals. Standard CL solutions like Memory
Replay (MR) prove insufficient in NeRF due to these inconsistencies, particularly in changed regions.
To navigate these challenges, our study introduces a novel method in Section 4.

4 Our Method

In this section, we introduce our novel approach, CL-NeRF, for adapting a pre-trained NeRF to scene
changes over time. The pipeline comprises two major components: a lightweight expert adaptor
specifically designed to adapt to new scene changes and a conflict-aware knowledge distillation
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training objective to preserve the memory in unaltered areas (see Section 4.1). As shown in Figure
3, the overall framework involves a pre-trained Fθ for modeling the entire scene and a small set of
new training images I that capture local scene changes. The lightweight trainable expert adaptor,
represented as Eθ, generates a feature for capturing scene changes which is further fused with features
from the original Fθ using a masking mechanism. To prevent forgetting, we introduce a conflict-aware
self-distillation mechanism (as illustrated in Figure 3) that distills knowledge from Fθ, particularly in
unaltered areas. Moreover, we propose a continual learning benchmark for NeRF, which includes
various operational definitions and metrics to assess the overall neural rendering performance in
adapting to changes and preserving unchanged content (see Section 4.2).

4.1 CL-NeRF

Lightweight Expert Adaptor Our approach is motivated by the observation that scene changes
primarily occur in localized regions , fine-tuning all the model parameters resulting in forgetting in
unaltered regions. To address the above issue, we introduce a lightweight expert adaptor, denoted
as Eθ, which can be seamlessly integrated with the original NeRF model, represented by Fθ, as a
plug-and-play module. In addition to encoding information about newly modified areas of the scene,
Eθ also provides a rollback strategy that enables users to revert to any desired timestamp. By contrast,
Fθ is responsible for storing information about the overall original scene. These two components
offer a comprehensive solution for modeling dynamic scenes with high fidelity.

To achieve our objectives, we define the input and output of Eθ in the same manner as for Fθ.
Specifically, Eθ takes the same input as the backbone Fθ and generates two outputs: a mask logit
m, and a feature vector fo, which is subsequently integrated into the original Fθ. The mask logit m
takes on a gating role in the feature fusion module, whereas the feature output by Fθ is fused with the
output of Eθ, as illustrated in Figure 3. This approach enables us to capture dynamic changes in the
scene with Eθ while preserving the overall structure of the original scene with Fθ.

Concretely, each sampling point x is fed to the original network Fθ, which generates a feature
fθ(x) representing previous contents. Simultaneously, Eθ predicts a residual feature vector for x,
represented as eθ(x). The final fused feature f∗

θ (x) can be calculated as

f∗
θ (x) = fθ(x) +m · eθ(x). (1)

Then, f∗
θ (x) is fed back into the remaining component of Fθ to further predict volume-density σ and

view-dependent color c for neural rendering. As m approaches 0, the output features should remain
as close as possible to the original features. When m approaches 1, the predicted features from Eθ

will be most effective in predicting modifications made to new areas, also such a design encourages
the model not to change the origin scene.

Conflict-Aware Self-Distillation Mechanism The student model, responsible for adapting to a
new scenario, is initialized with prior knowledge and fine-tuned to incorporate relevant information
from the previous scene. To prevent catastrophic forgetting, we designate the previously trained
original model in the preceding scene as the teacher model. Through self-distillation, we transfer
scene-related information from the teacher model to the student model. To be specific, we randomly
sample camera views and points in space and feed them into both the teacher model and the student
model. The teacher model’s prediction is used to supervise the student model.

However, the supervision signals provided by the images captured in new camera views can conflict
with the supervision from the teacher model. To this end, we propose conflict-aware knowledge
distillation. Specifically, for each sampling point, our expert adaptor has already predicted a mask
logit. This allows us to utilize volume rendering in the same way as image prediction to render a
soft mask map M̂ . This soft mask map can serve as a probability map indicating the likelihood
of a pixel belonging to the changed area. A value close to 1 signifies a high probability of the
pixel belonging to the conflict region, in which case the self-distillation mechanism need not be
executed. Conversely, when there is a higher probability of the pixel belonging to the unaltered
region, calculating an additional knowledge distillation loss to make the supervision signals more
accurate. It can be formulated as

Lkd = ∥Îs · (1− M̂)− Ît · (1− M̂)∥2, (2)

where Îs and Ît are the images predicted by the student model and the teacher model, respectively.
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Training Objective Our whole pipeline is trained in a self-supervised manner. The overall loss
includes a photometric loss Lph, a conflict-aware self-distillation loss Lkd and a mask loss Lm. It is
well noted that we introduce a self-distillation training mechanism therefore we can have both the
observed new images and a teacher model to provide the supervisory signals. Hence we divide the
inputs into two parts based on camera pose distributions, defined as new and old poses, respectively.
To be specific, when the input points are sampled using new camera poses, we use Lph to generate
supervision. Lph measures the reconstruction error between the predicted image Îs and newly
captured ground-truth image In as

Lph = ∥Îs − In∥2. (3)

To further enhance the change awareness, we also propose a mask loss under new poses as

Lm = ∥M̂ − M̂gt∥2, (4)

where M̂gt is the pseudo ground-truth mask. M̂gt is computed by the difference map between newly
captured images and the predicted images from the teacher model using the same camera pose as the
newly captured images. Besides, when we want to compute Lkd, the uniformly sampled old camera
views can be used as inputs to both the teacher model and the student model, and the definition is
given in Equation 2. Finally, the overall training objective is

Lall = wkd · Lkd + wph · Lph + wm · Lm. (5)

More implementation details are described in the supplementary file.

4.2 Benchmarks

To our best knowledge, there is no existing dataset for our proposed continual learning task of NeRF
and no proper evaluation metrics to evaluate the forgetting behavior. Therefore, in this section, we
will first propose a new dataset containing two synthesis scenes, one real-world scene, and an extra
city-level scene. Then we propose metrics specifically designed to evaluate how serious the forgetting
after fine-tuning is.

Operations We categorize scene operations into three types: atomic, composite, and sequential.
Atomic operations consist of addition and deletion. Composite operations include movement and
substitution, which modify positional relationships or replace existing objects with new ones. Sequen-
tial operations apply a series of basic or composite operations over time. Different from composite
operations’ focus on quick, specific region modifications, sequential operations aim to monitor
long-term error accumulation in changing real-world scenarios.

Camera Views We evaluate the reconstruction quality of both local details and the overall scene
using two testing indicators: local and global views consisting of a set of evaluation camera poses.
Six camera trajectories are designed to cover the entire scene, with five capturing the four orientations
of a room (local view) and the sixth simulating a person wandering around the room (global view).
Additionally, we define an object-centric camera view to assess adaptation to new changes.

Task Definitions We further define the old task as using the camera poses on the six camera
trajectories of the global view mentioned above to evaluate the overall quality of the entire scene.
While the new task is defined as evaluating the model with an object-centric camera view to represent
the local quality of the altered region. In the sequential continual learning setting, we define n tasks
ranging from task 1 to task n. Each task corresponds to an operation with an object-centric camera
pose centering around the altered region. Which this pose is used in capturing new training data for
model adaptation and evaluation. Therefore, to evaluate the forgetting behaviors, we will evaluate all
the previous tasks after each fine-tuning. For example, in Table 3, the cell "training on task 4 and
testing on task 1" under FT block represents the model after tuning on add, delete, move, and replace
data; then evaluate on the add region.

Evaluation Metrics PSNR is a well-established rendering quality assessment criterion that measures
the peak signal-to-noise ratio between original and reconstructed images. We calculate two quality
metrics through the same average process as the local view with a pose from the global view to
evaluate the model’s memorization of unaltered areas after updating the model. In addition, we have
drawn inspiration from the commonly used backward transfer scores employed to assess a continual
learning system [24] and have accordingly designed similar metrics for evaluating the forgetfulness
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level of our method in the continual learning setting. The forgetting level between the model fine-
tuning step n and step m, while n ≤ m, is intuitively measured by the backward transfer model. At
each fine-tuning step, a new dataset captured from locally altered regions with corresponding camera
poses specific to that tuning step is utilized for model adaptation. It is noteworthy that the pose of
each step also serves as the evaluation pose. In such case, we first calculate the PSNRm,n by using
the model tuned at step m to render outputs given poses from step n. Then, the definition of the
Backward Transfer Metric (BTM) is shown in Eq. (6).

BTM = − 1

T − 1

∑T−1
i=1 (PSNRT,i − PSNRi,i) and FM =

1

T

∑T
i=1PSNRT,i. (6)

BTM quantifies the level of forgetting by measuring the average cumulative gap between the original
model performance (PSNRi,i) and the final performance (PSNRT,i). Furthermore, we introduce a
Forgetting Metric (FM) that measures the overall performance upon completion of the entire sequence
of operations, with T being the last step. The metric evaluates the average PSNR obtained by having
the last model infer all old poses as Eq. (6).

5 Experiment

5.1 Datasets
We construct two kinds of distinct datasets, synthetic and real, to assess the performance of our algo-
rithm and baselines, specifically focusing on continuous learning and the phenomenon of forgetting,
thereby showcasing the algorithm’s versatility in diverse environments.

Synthetic Dataset Synthetic datasets are created using the Blender simulator, employing predefined
meshes with textures. We provide three synthetic datasets: Dataset Whiteroom, Dataset Kitchen and
Dataset Rome. The first two datasets encompass indoor, room-level scenes of a living room (depicted
in Figure 4) and a kitchen, respectively. Using Dataset Whiteroom as an example, for the pre-training
stage on the original scene, we capture roughly 200-300 multi-view images from six pre-defined
camera trajectories discussed in Section 4.2. The camera poses are designed to encompass the entire
scene. To fine-tune the pre-trained model after each operation applied to the original scene with new
training data, we collect about 10 multi-view images for each time of change, totaling 40 images
for all four operations. Notably, these new images are captured around the modified area’s center.
Furthermore, we captured all images at 960x640 resolution and partitioned the overall data into an
80% training set and a 20% validation set. The final dataset, Dataset Rome, encompasses a large-scale
synthetic outdoor environment, featuring a reconstructed mesh of the Colosseum. More descriptions
for Dataset Kitchen and Dataset Rome are provided in the supplementary file.

Real Dataset We capture two challenging real-world scenes, Dataset Lab (indoor) and Dataset
Court (outdoor), featuring diverse objects and environments to demonstrate our algorithm’s general-
izability. For indoor scenes, we use an iPhone 14 Pro to capture both the RGB and LiDAR depth
streams via a custom iOS application, with poses determined by ARKit. For outdoor scenes, RGB
images are captured with a drone, and poses are computed using COLMAP [37, 38].

We assess the core ATOMIC function ADD. For initial training, we take 100-150 images; for
finetuning, an extra 10-20 near changes; to assess adjustments and study task-forgetting, we capture
another 10-20 and 20-30 images, respectively, in old and revised areas. We resize all images at a
resolution of 960×720 and 960×640, respectively. More descriptions for Dataset Lab and Dataset
Court are available in the supplementary file.

5.2 Baselines for Comparison

As no prior work on our task or related tasks exists, we develop several baselines to evaluate the
efficacy of our proposed CL-NeRF. In the supplementary file, we also provide a comparison with the
generalizable NeRF.

Navie Fine-Tuning Our first baseline is a straightforward fine-tuning approach, denoted as “FT”, in
which we use new data to fine-tune the NeRF model. In the sequential operation setting, we fine-tune
the model at step t− 1 after applying the t-th operation to the scene.

Memory Replay (MR) Inspired by the prevalent memory replay approach in lifelong learning [6, 11],
we randomly select old training images to augment the fine-tuning training set. Our empirical study
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sets the replay data to new data ratio at 50%:50%. In the case of multiple operations appearing in a
sequential form, we extend the data memory pool with the new data provided by previous stages. We
maintain the same sampling ratio when randomly selecting old data to supplement the training set.

DyNeRF [17] We adapt our task to meet the requirements of dynamic NeRF, i.e., DyNeRF[17].
Following its setting, we assign a latent code for data from each operation; this latent code is a
trainable vector zt, which is jointly fed into the MLP along with the original input x. zt is a 32-
dimensional vector that will be optimized during training. Specifically, in our task, we first pre-train
an MLP NeRF with latent code zo for representing the original scene. At each operation step t, we
initialize a new latent code zt and use it to replace the latent code in the trained MLP model at step
t− 1. Then, the whole model is fine-tuned on the new dataset. Furthermore, to prevent forgetting and
align the input format of the original DyNeRF, we also employ the same sampling strategy as used
in the Memory Replay Baseline. This baseline essentially combines the original DyNeRF [17] and
Memory Replay, which sets a strong baseline. Note that the original DyNeRF [17] does not have a
mechanism to avoid forgetting.

5.3 Main Results

Due to page limitations, we present the results of a single synthetic dataset Dataset Whiteroom and
qualitative results for several others. Additional results can be found in the supplementary file.

Single-step Operations We first compare our method with all three baselines introduced above
on single-step operation experiments. As shown in Table 2, our CL-NeRF delivers exceptional
performance across all operation types, particularly in ADD and DELETE operations. Our method
achieves the best rendering quality on altered regions, shown in the new columns in Table 2 while
having the minimum forgetting problem among all the methods. It is important to mention that
DyNeRF uses previous-stage old image data in training, while our approach only utilizes new images.
We present more results and analysis in the supplementary file.

Ground truth     Pre-trained

Add
New    (Apple)     Old

Delete
New   (Sofa) Old

Move
New (Radio) Old

Replace
New   (Books)   Old

Ground truth   Pre-trained Ground truth      Pre-trainedGround truth   Pre-trained

FT
D
yN
eR
F

O
ur
s

M
R

Figure 4: Visualization results of CL-NeRF (Ours) and all compared baselines on 4 single-step
operations: add, delete, move, and replace. The ground truth images and inference images from the
pre-trained model are used to highlight the rendering quality on new tasks and quality degradation
caused by forgetting severity.

Figure 4 demonstrates the algorithm’s efficacy in both new and old tasks. The new scene images are
rendered from camera poses that reflect scene changes (i.e., object-centric camera pose trajectory),
while the old scene images are rendered from camera poses where the scene remains unchanged. Our
method captures significantly more details for the newly added object compared to the other three
methods. Additionally, our method can completely remove the sofa, while the entire sofa or traces of
the sofa remain visible in MR or DyNeRF. In comparison to “FT”, our model retains more details
of unchanged areas during the delete operation, such as the pillow patterns. In move and replace
operations, our model also demonstrates the advantages of preserving unchanged areas, particularly
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Figure 5: Visualization results after sequential operations. The images in the upper row are rendered
after the model has been fine-tuned on four operations, while the images in the lower row test and
demonstrate the forgetting issue on the old task.
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Figure 6: Synthetic Dataset Rome.
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Figure 7: Real Dataset Lab/Court.

in detailed representations. Figures 6 and 7 further attest to our algorithm’s adaptability across diverse
environments.

Metrics FM ↑ BTM ↓

FT 20.908 11.367

MR 20.930 1.233

Ours 28.638 1.707

Table 1: Forgetting metrics in sequential
operations SEQ on Dataset Whiteroom.

Sequential Operations Table 1, 2, 3 and Figure 5 present
the results of sequential operations. Table 1 employs both
BTM and FM to quantify the issue of forgetting, with
specifics elucidated in Eq. 6. Table 2 denotes “SEQ” as
the sequential operation, evaluating the final model’s per-
formance following a sequence of operations, whereas
Table 3 examines performance at each individual stage. It
can be observed that our proposed method exhibits supe-
rior performance in all evaluated tasks compared to the
baseline methods. It performs on par with the “FT” base-

line in Task 4. This is because both training and evaluation are conducted on Task 4, allowing the
fine-tuning baseline to benefit more from the new data. Qualitative comparisons in Figure 5 also
demonstrate the effectiveness of our method in delivering high-quality results.

Table 2: Rendering results of atomic/composite/sequential operation on Dataset Whiteroom. It
showcases the PSNR on both new and old tasks following four single-step operations. The best
results are highlighted in bold, while the second-best results are underlined.

Operations
ADD DELETE MOVE REPLACE SEQ

Old New Old New Old New Old New Old New

FT 24.21 23.54 22.89 34.76 20.93 29.29 21.45 30.14 16.91 27.36

MR 31.97 19.40 31.40 17.21 32.39 25.66 32.48 25.15 25.95 24.45

DyNeRF 32.29 23.89 31.39 25.82 32.83 30.12 32.70 29.88 25.80 29.83

Ours 32.33 25.29 32.43 34.77 33.30 29.97 33.33 29.82 33.38 29.74
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Table 3: Rendering result of the sequential operation on Dataset Whiteroom. Tasks 1-4 are defined to
evaluate the model based on camera poses corresponding to four operations: add, delete, move, and
replace, respectively. Models are evaluated after being tuned for previously completed tasks. The
best results are highlighted in bold, while the second-best results are underlined.

Testing on
FT MR Ours

Task1 Task2 Task3 Task4 Task1 Task2 Task3 Task4 Task1 Task2 Task3 Task4
Tr

ai
ni

ng
on

Task1 23.54 - - - 19.40 - - - 25.29 - - -

Task2 20.65 34.76 - - 17.48 17.21 - - 24.41 34.77 - -

Task3 16.81 21.55 29.29 - 17.46 17.63 25.66 - 24.05 33.78 29.97 -

Task4 14.63 20.28 18.58 30.14 17.49 17.80 23.28 25.15 23.71 33.07 28.13 29.82

5.4 Ablation Study

Expert Adaptor and Distillation Our model comprises two essential components: the lightweight
expert adaptor and the conflict-aware knowledge-distillation learning objective. We conduct an
ablation study on these components, with the results shown in Table 4. These results demonstrate
that both modules contribute to improving performance. Without the expert adaptor, the model’s
performance drops significantly when evaluating new scenes, highlighting the effectiveness of the
expert adaptor in enabling the model to adapt to new changes. In the absence of knowledge distillation
(KD), the model performs poorly on old scenes, indicating that KD helps address the forgetting
problem for the Continual Learning of NeRF.

Table 4: Ablation Study on Dataset Whiteroom. We study the importance of the expert adaptor and
distillation strategy.

Operations
ADD DELETE MOVE REPLACE SEQ

Old New Old New Old New Old New Old New

w/o Expert 31.24 23.42 30.36 27.48 31.23 30.86 31.33 30.00 29.39 24.30

w/o KD 29.81 24.10 29.27 34.57 23.90 29.92 23.47 28.97 18.63 28.19

w/o Lm 31.08 24.92 30.99 31.73 31.90 28.64 32.63 28.53 30.70 28.05

Ours 32.33 25.29 32.43 34.77 33.30 29.97 33.33 29.82 33.38 29.74

Mask Loss. In order to demonstrate the necessity of mask loss in resolving conflict, we conduct an
experiment with mask loss Lm removed. As shown in Table 4, our findings suggest that mask loss
Lm also contributes to high-quality view syntheses. Without the guidance provided by the mask loss,
the model may struggle to correctly predict object boundaries and often produce inaccurate results.

6 Conclusion

We have presented a method CL-NeRF for efficiently adapting pre-trained NeRF to changing envi-
ronments. CL-NeRF comprises two major components: a lightweight expert adaptor for modeling
new changes in evolved scenes, and a conflict-aware knowledge distillation strategy for preserving
memory in unaltered areas. These two designs collaborate, enabling our method to achieve superior
results. To facilitate future research, we have also introduced a continual learning benchmark for
NeRF with comprehensive evaluation metrics. To the best of our knowledge, this is the first of its
kind. We hope our investigation and comprehensive benchmark inspire further research in this task,
empowering NeRF to effectively model the ever-changing real-world scenes. More discussions about
broader impacts, limitations including the scalability and other parameter-efficient tuning (PET)
method are described in the supplementary file.
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