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Abstract

Spectral clustering is a popular and effective algorithm designed to find k clusters
in a graph G. In the classical spectral clustering algorithm, the vertices of G are
embedded into Rk using k eigenvectors of the graph Laplacian matrix. However,
computing this embedding is computationally expensive and dominates the running
time of the algorithm. In this paper, we present a simple spectral clustering
algorithm based on a vertex embedding with O(log(k)) vectors computed by
the power method. The vertex embedding is computed in nearly-linear time
with respect to the size of the graph, and the algorithm provably recovers the
ground truth clusters under natural assumptions on the input graph. We evaluate
the new algorithm on several synthetic and real-world datasets, finding that it is
significantly faster than alternative clustering algorithms, while producing results
with approximately the same clustering accuracy.

1 Introduction

Graph clustering is an important problem with numerous applications in machine learning, data
science, and theoretical computer science. Spectral clustering is a popular graph clustering algorithm
with strong theoretical guarantees and excellent empirical performance. Given a graph G with n
vertices and k clusters, the classical spectral clustering algorithm consists of the following two
high-level steps [26, 33].

1. Embed the vertices of G into Rk according to k eigenvectors of the graph Laplacian matrix.

2. Apply a k-means clustering algorithm to partition the vertices into k clusters.

Recent work shows that if the graph has a well-defined cluster structure, then the clusters are well-
separated in the spectral embedding and the k-means algorithm will return clusters which are close to
optimal [21, 28].

The main downside of this algorithm is the high computational cost of computing k eigenvectors of
the graph Laplacian matrix. In this paper, we address this computational bottleneck and propose a new
fast spectral clustering algorithm which avoids the need to compute eigenvectors while maintaining
excellent theoretical guarantees. Moreover, our proposed algorithm is simple, fast, and effective in
practice.

1.1 Sketch of Our Approach

In this section, we introduce the high-level idea of this paper, which is also illustrated in Figure 1. We
begin by considering a recent result of Makarychev et al. [23] who show that a random projection
of data into O(log(k)) dimensions preserves the k-means objective function for all partitions of the
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Figure 1: An illustration of the steps of the spectral clustering algorithm, and the contribution of this
paper. We are given a graph as input. In classical spectral clustering we follow the top path: we
compute the spectral embedding and apply a k-means algorithm to find clusters. Through the recent
result of Makarychev et al. [23], we can project the embedded points into O(log(k)) dimensions and
obtain approximately the same clustering. In this paper, we show that it is possible to compute the
low-dimensional embedding directly with the power method, skipping the computationally expensive
step of computing k eigenvectors.

data, with high probability. Since the final step of spectral clustering is to apply k-means, we might
consider the following alternative spectral clustering algorithm which will produce roughly the same
output as the classical algorithm.

1. Embed the vertices of G into Rk according to k eigenvectors of the graph Laplacian matrix.

2. Randomly project the embedded points into O(log(k)) dimensions.

3. Apply a k-means clustering algorithm to partition the vertices into k clusters.

Of course, this does not avoid the expensive eigenvector computation and so it is not immediately
clear that this random projection can be used to improve the spectral clustering algorithm.

The key technical element of our paper is a proof that we can efficiently approximate a random
projection of the spectral embedding without computing the spectral embedding itself. For this, we
use the power method, which is a well-known technique in numerical linear algebra for approximating
the dominant eigenvalue of a matrix [11]. We propose the following simple algorithm (formally
described in Algorithm 2).

1. Embed the vertices of G into O(log(k)) dimensions using O(log(k)) random vectors
computed with the power method.

2. Apply a k-means clustering algorithm to partition the vertices into k clusters.

We prove that the projection obtained using the power method is approximately equivalent to a
random projection of the spectral embedding. Then, by carefully applying the techniques developed
by Makarychev et al. [23] and Macgregor and Sun [21], we obtain a theoretical bound on the number
of vertices misclassified by our proposed algorithm. Moreover, the time complexity of step 1 is nearly
linear in the size of the graph, and the algorithm is fast in practice. The formal theoretical guarantee
is given in Theorem 3.1.
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1.2 Related Work

This paper is closely related to a sequence of recent results which prove an upper bound on the number
of vertices misclassified by the classical spectral clustering algorithm [15, 21, 24, 28]. While we will
directly compare our result with these in a later section, our proposed algorithm has a much faster
running time than the classical spectral clustering algorithm, and has similar theoretical guarantees.

Boutsidis et al. [5] also study spectral clustering using the power method. Our result improves on
theirs in two respects. Firstly, our algorithm is faster since we compute O(log(k)) vectors rather than
k vectors and their algorithm includes an additional singular value decomposition step. Secondly, we
give a theoretical upper bound on the total number of vertices misclassified by our algorithm.

Makarychev et al. [23] generalise the well-known Johnson-Lindenstrauss lemma [13] to show that
random projections of data into O(log(k)) dimensions preserves the k-means objective, and we make
use of their result in our analysis.

Macgregor and Sun [21] show that for graphs with certain structures of clusters, spectral clustering
with fewer than k eigenvectors performs better than using k eigenvectors. In this paper, we present
the first proof that embedding with O(log(k)) vectors is sufficient to find k clusters with spectral
clustering.

Other proposed methods for fast spectral clustering include the Nystrom method [6] and using a
‘pre-clustering’ step to reduce the number of data points to be clustered [35]. These methods lack
rigorous theoretical guarantees on the accuracy of the returned clustering. Moreover, our proposed
algorithm is significantly simpler to implement that the alternative methods.

2 Preliminaries

Let G = (V,E,w) be a graph with n = |V | and m = |E|. For any v ∈ V , the degree of v is given
by d(v) =

∑
u̸=v w(u, v). For any S ⊂ V , the volume of S is given by vol(S) =

∑
u∈S d(u). The

Laplacian matrix of G is L = D−A where D is the diagonal matrix with D(i, i) = d(i) and A is
the adjacency matrix of G. The normalised Laplacian is given by N = D− 1

2LD− 1
2 . We always use

λ1 ≤ λ2 ≤ . . . ≤ λn to be the eigenvalues of N and the corresponding eigenvectors are f1, . . . ,fn.
For any graph, it holds that λ1 = 0 and λn ≤ 2 [7]. We will also use the signless Laplacian matrix1

M = I− (1/2)N and will let γ1 ≥ . . . ≥ γn be the eigenvalues of M. Notice that by the definition
of M, we have γi = 1− (1/2)λi and the eigenvectors of M are also f1, . . . ,fn. For an integer k,
we let [k] = {1, . . . k} be the set of all positive integers less than or equal to k. Given two sets A and
B, their symmetric difference is given by A△B = (A \ B) ∪ (B \ A). We call {Si}ki=1 a k-way
partition of V if Si ∩ Sj = ∅ for i ̸= j and

⋃k
i=1 Si = V .

Throughout the paper, we use big-O notation to hide constants. For example, we use l = O(n)

to mean that there exists a universal constant c such that l ≤ cn. We sometimes use Õ(n) in
place of O(n logc(n)) for some constant c. Following [21], we say that a partition {Si}ki=1 of V is
almost-balanced if vol(Si) = Θ(vol(V )/k) for all i ∈ [k].

2.1 Conductance and the Graph Spectrum

Given a graph G = (V,E), and a cluster S ⊂ V , the conductance of S is given by

Φ(S) ≜
w(S, S)

min{vol(S), vol(S)}
where w(S, S) =

∑
u∈S

∑
v∈S w(u, v). Then, the k-way expansion of G is defined to be

ρ(k) ≜ min
partition C1,...Ck

max
i

Φ(Ci).

Notice that ρ(k) is small if and only if G can be partitioned into k clusters of low conductance. There
is a close connection between the k-way expansion of G and the eigenvalues of the graph Laplacian
matrix, as shown in the following higher-order Cheeger inequuality.

1The signless Laplacian is usually defined to be 2 · I−N. We divide this by 2 so that the eigenvalues of M
lie between 0 and 1.
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Lemma 2.1 (Higher-Order Cheeger Inequality, [19]). For a graph G, let λ1 ≤ . . . ≤ λn be the
eigenvalues of the normalised Laplacian matrix. Then, for any k,

λk

2
≤ ρ(k) ≤ O

(
k3
)√

λk.

From this lemma, we can see that an upper bound on ρ(k) and a lower bound on λk+1 are sufficient
conditions to guarantee that G can be partitioned into k clusters of low conductance, and cannot
be partitioned into k + 1 clusters. This condition is commonly used in the analysis of graph
clustering [15, 21, 24, 28].

2.2 The k-means Objective

For any matrix B ∈ Rn×d, the k-means cost of a k-way partition {Ai}ki=1 of the data points is given
by

COSTB(A1, . . . , Ak) ≜
k∑

i=1

∑
u∈Ai

∥B(u, :)− µi∥22 ,

where B(u, :) is the uth row of B and µi = (1/ |Ai|)
∑

u∈Ai
B(u, :) is the mean of the points in Ai.

Although optimising the k-means objective is NP-hard, there is a polynomial-time constant factor
approximation algorithm [14], and an approximation scheme which is polynomial in n and d with an
exponential dependency on k [8, 16]. Lloyds algorithm [20], with k-means++ initialisation [3] is an
O(log(n))-approximation algorithm which is fast and effective in practice.

2.3 The Power Method

The power method is an algorithm which is most often used to approximate the dominant eigenvalue
of a matrix [11, 25]. Given some matrix M ∈ Rn×n, a vector x0 ∈ Rn, and a positive integer t, the
power method computes the value of Mtx0 by repeated multiplication by M. The formal algorithm
is given in Algorithm 1.

Algorithm 1: POWERMETHOD(M ∈ Rn×n,x0 ∈ Rn, t ∈ Z≥0)

1 for i ∈ {1, . . . , t} do
2 xi = Mxi−1

3 end
4 return xt

3 Algorithm Description and Analysis

In this section, we present our newly proposed algorithm and sketch the proof of our main result.
Omitted proofs can be found in the Appendix. We first prove that if M has k eigenvalues γ1, . . . , γk
close to 1, then the power method can be used to compute a random vector in the span of the
eigenvectors corresponding to γ1, . . . , γk.

We then apply this result to the signless Laplacian matrix of a graph to develop a fast spectral
clustering algorithm and we bound the number of misclassified vertices when the algorithm is applied
to a well-clustered graph.

3.1 Approximating a Random Vector with the Power Method

Suppose we are given some matrix M ∈ Rn×n with eigenvalues 1 ≥ γ1 ≥ . . . ≥ γn ≥ 0 and
corresponding eigenvectors f1, . . . ,fn. Typically, the power method is used to approximate the
dominant eigenvector, f1. In this section, we show that when γk is sufficiently close to 1, the power
method can be used to compute a random vector in the space spanned by f1, . . . ,fk.
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Let x0 ∈ Rn be a random vector chosen according to the n-dimensional Gaussian distribution
N(0, I). We can write x0 as a linear combination of the eigenvectors:

x0 =

n∑
i=1

aifi,

where ai = ⟨x0,fi⟩. Then, the vector xt computed by POWERMETHOD(M,x0, t) can be written as

xt =

n∑
i=1

aiγ
t
ifi.

Informally, if γk ≥ 1− c1 and γk+1 ≤ 1− c2 for sufficiently small c1 and sufficiently large c2, then
for a carefully chosen value of t we have γt

i ≈ 1 for i ≤ k and γt
i ≈ 0 for i ≥ k + 1. This implies

that

xt ≈
k∑

i=1

aifi =

(
k∑

i=1

fif
⊺
i

)
x0,

and we observe that
(∑k

i=1 fif
⊺
i

)
x0 is a random vector distributed according to a k-dimensional

Gaussian distribution in the space spanned by f1, . . . ,fk. We make this intuition formal in Lemma 3.1
and specify the required conditions on γk, γk+1 and t.
Lemma 3.1. Let M ∈ Rn×n be a matrix with eigenvalues 1 ≥ γ1 ≥ . . . ≥ γn ≥ 0 and
corresponding eigenvectors f1, . . .fn. Let x0 ∈ Rn be drawn from the n-dimensional Gaus-
sian distribution N(0, I). Let xt = POWERMETHOD(M,x0, t) for t = Θ

(
log(n/ϵ2k)

)
. If

γk ≥ 1−O
(
ϵ · log(n/ϵ2k)−1

)
and γk+1 ≤ 1− Ω(1), then with probability at least 1− 1/(10k),

∥xt −Px0∥2 ≤ ϵ
√
k,

where P =
∑k

i=1 fif
⊺
i is the projection onto the space spanned by the first k eigenvectors of M.

3.2 The Fast Spectral Clustering Algorithm

We now introduce the fast spectral clustering algorithm. The algorithm follows the pattern of the
classical spectral clustering algorithm, with an important difference: rather than embedding the ver-
tices according to k eigenvectors of the graph Laplacian, we embed the vertices with Θ

(
log(k) · ϵ−2

)
random vectors computed with the power method for the signless graph Laplacian M. Algorithm 2
formally specifies the algorithm, and the theoretical guarantees are given in Theorem 3.1.
Theorem 3.1. Let G be a graph with λk+1 = Ω(1) and ρ(k) = O

(
ϵ · log(n/ϵ)−1

)
. Additionally, let

{Si}ki=1 be the k-way partition corresponding to ρ(k) and suppose that {Si}ki=1 are almost balanced.
Let {Ai}ki=1 be the output of Algorithm 2. With probability at least 0.9− ϵ, there exists a permutation
σ : [k] −→ [k] such that

k∑
i=1

vol(Ai△Sσ(i)) = O(ϵ · vol(VG)) .

Moreover, the running time of Algorithm 2 is

Õ
(
m · ϵ−2

)
+ TKM(n, k, l),

where m is the number of edges in G and TKM(n, k, l) is the running time of the k-means approxi-
mation algorithm on n points in l dimensions.

Remark 3.1. The assumptions on λk+1 and ρ(k) in Theorem 3.1 imply that the graph G can be
partitioned into exactly k clusters of low conductance. This is related to previous results which make
an assumption on the ratio λk+1/ρ(k) [21, 28, 30]. Macgregor and Sun [21] prove a guarantee like
Theorem 3.1 under the assumption that λk+1/ρ(k) = Ω(1). We achieve a faster algorithm under a
slightly stronger assumption.
Remark 3.2. The running time of Theorem 3.1 improves on previous spectral clustering algo-
rithms. Boutsidis et al. [4] describe an algorithm with running time Õ

(
m · k · ϵ−2

)
+O

(
k2 · n

)
+

TKM(n, k, k). Moreover, their analysis does not provide any guarantee on the number of misclassified
vertices.
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Algorithm 2: FASTSPECTRALCLUSTER(G = (V,E), k ∈ Z≥0, ϵ ∈ [0, 1])

1 M← I− (1/2) ·NG

2 l← Θ
(
log(k) · ϵ−2

)
3 t← Θ

(
log(n/ϵ2k)

)
4 for i ∈ {1, . . . , l} do
5 Let xi ∈ Rn be a random vector from Gaussian distribution N(0, I)
6 yi ← POWERMETHOD(M,xi, t)
7 end
8 Y ← [y1; . . . ;yl]

9 A1, . . . , Ak ← KMEANS(D
−1/2
G Y, k)

10 return A1, . . . , Ak

Remark 3.3. The constants in the definition of l and t in Algorithm 2 are based on those in the
analysis of Makarychev et al. [23] and this paper. In practice, we find that setting l = log(k) and
t = 10 log(n/k) works well.

Throughout the remainder of this section, we will sketch the proof of Theorem 3.1. We assume
that G = (V,E) is a graph with k clusters {Si}ki=1 of almost balanced size, λk+1 = Ω(1), and
ρ(k) = O

(
ϵ · log(n/ϵ)−1

)
.

In order to understand the behaviour of the k-means algorithm on the computed vectors, we will
analyse the k-means cost of a given partition under three different embeddings of the vertices. Let
f1, . . . ,fk be the eigenvectors of M corresponding to the eigenvalues γ1, . . . , γk and let y1, . . . ,yl

be the vectors computed in Algorithm 2. We will also consider the vectors z1, . . . ,zl given by
zi = Pxi, where {xi}ki=1 are the random vectors sampled in Algorithm 2, and P =

∑k
i=1 fif

⊺
i

is the projection onto the space spanned by f1, . . . ,fk. Notice that each zi is a random vector
distributed according to the k-dimensional Gaussian distribution. Furthermore, let

F =

[ | |
f1 . . . fk

| |

]
, Y =

[ | |
y1 . . . yl

| |

]
and Z =

[ | |
z1 . . . zl
| |

]
.

We will consider the vertex embeddings given by D−1/2F, D−1/2Z and D−1/2Y and show that the
k-means objective for every k-way partition is approximately equal in each of them. We will use the
following result shown by Makarychev et al. [23].
Lemma 3.2 ([23], Theorem 1.3). Given data X ∈ Rn×k, let Π ∈ Rk×l be a random matrix with
each column sampled from the k-dimensional Gaussian distribution N(0, Ik) and

l = O

(
log(k) + log(1/ϵ)

ϵ2

)
.

Then, with probability at least 1− ϵ, it holds for all partitions {Ai}ki=1 of [n] that

COSTX(A1, . . . , Ak) ∈ (1± ϵ)COSTXΠ(A1, . . . , Ak).

Applying this lemma with X = D− 1
2F and Π = F⊺Z shows that the k-means cost is approximately

equal in the embeddings given by D− 1
2F and D− 1

2Z, since FF⊺Z = Z and each of the entries of
F⊺Z is distributed according to the Gaussian distribution N(0, 1).2 By Lemma 3.1, we can also show
that the k-means objective in D− 1

2Y is within an additive error of D− 1
2Z. This allows us to prove

the following lemma.
Lemma 3.3. With probability at least 0.9− ϵ, for any partitioning {Ai}ki=1 of the vertex set V , we
have

COSTD−1/2Y(A1, . . . , Ak) ≥ (1− ϵ)COSTD−1/2F(A1, . . . , Ak)− ϵk

and
COSTD−1/2Y(A1, . . . , Ak) ≤ (1 + ϵ)COSTD−1/2F(A1, . . . , Ak) + ϵk.

2There is some interesting subtlety in this argument. If we ignore the D− 1
2 matrix, then F is the data matrix,

and F⊺Z represents the random projection. After projecting the data, we are left with the projection matrix Z
itself. This happens only because the data matrix is the orthonormal basis F which is also used to project Z.
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To complete the proof of Theorem 3.1, we will make use of the following results proved by Macgregor
and Sun [21].
Lemma 3.4 ([21], Lemma 4.1). There exists a partition {Ai}ki=1 of the vertex set V such that

COSTD−1/2F(A1, . . . Ak) < k · ρ(k)/λk+1.

Lemma 3.5 ([21], Theorem 2). Given some partition of the vertices, {Ai}ki=1, such that

COSTD−1/2F(A1, . . . Ak) ≤ c · k,
then there exists a permutation σ : [k] −→ [k] such that

k∑
i=1

vol(Ai△Sσ(i)) = O(c · vol(V )) .

Proof of Theorem 3.1. By Lemma 3.4 and Lemma 3.3, with probability at least 0.9− ϵ, there exists
some partition {Âi}ki=1 of the vertex set VG such that

COSTD−1/2Y(Â1, . . . , Âk) = O

(
(1 + ϵ)

ϵk

log(n/ϵ)
+ ϵk

)
.

Since we use a constant-factor approximation algorithm for k-means, the partition {Ai}ki=1 returned
by Algorithm 2 satisfies COSTD−1/2Y(A1, . . . , Ak) = O(ϵk) . Then, by Lemma 3.5 and Lemma 3.3,
for some permutation σ : [k] −→ [k], we have

k∑
i=1

vol(Ai△Sσ(i)) = O(ϵ · vol(VG)) .

To bound the running time, notice that the number of non-zero entries in M is 2m, and the time
complexity of matrix multiplication is proportional to the number of non-zero entries. Therefore,
the running time of POWERMETHOD(M,x0, t) is Õ(m). Since the loop in Algorithm 2 is executed
Θ
(
log(k) · ϵ−2

)
times, the total running time of Algorithm 2 is Õ

(
m · ϵ−2

)
+ TKM(n, k, l). ■

4 Experiments

In this section, we empirically study several variants of the spectral clustering algorithm. We compare
the following algorithms:

• k EIGENVECTORS: the classical spectral clustering algorithm which uses k eigenvectors of
the graph Laplacian matrix to embed the vertices. This is the algorithm analysed in [21, 28].

• log(k) EIGENVECTORS: spectral clustering with log(k) eigenvectors of the graph Laplacian
to embed the vertices.

• KASP: the fast spectral clustering algorithm proposed by Yan et al. [35]. The algorithm
proceeds by first coarsening the data with k-means before applying spectral clustering.

• PM k VECTORS (Power Method with k vectors): spectral clustering with k orthogonal
vectors computed with the power method. This is the algorithm analysed in [4].

• PM log(k) VECTORS: spectral clustering with log(k) random vectors computed with the
power method. This is Algorithm 2.

We implement all algorithms in Python, using the numpy [12], scipy [32], stag [22], and
scikit-learn [27], libraries for matrix manipulation, eigenvector computation, graph process-
ing, and k-means approximation respectively. We first compare the performance of the algorithms on
synthetic graphs with a range of sizes drawn from the stochastic block model (SBM). We then study
the algorithms’ performance on several real-world datasets. We find that our algorithm is significantly
faster than all other spectral clustering algorithm, while maintaining almost the same clustering
accuracy. The most significant improvement is seen on graphs with a large number of clusters.
All experiments are performed on an HP laptop with an 11th Gen Intel(R) Core(TM) i7-11800H
@ 2.30GHz processor and 32 GB RAM. The code to reproduce the experiments is available at
https://github.com/pmacg/fast-spectral-clustering.
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Figure 2: The running time of spectral clustering variants on graphs drawn from the stochastic block
model. (a) Setting n = 1000 · k and increasing the number of clusters, k, shows that Algorithm 2
is much faster than alternative methods for large values of k. (b) Setting k = 20 and increasing the
number of vertices, n, shows that for fixed k, Algorithm 2 is faster than the alternatives by a constant
factor.

4.1 Synthetic Data

In this section, we evaluate the spectral clustering algorithms on synthetic data drawn from the
stochastic block model. Given parameters n ∈ Z≥0, k ∈ Z≥0, p ∈ [0, 1], and q ∈ [0, 1], we generate
a graph G = (V,E) with n vertices and k ground-truth clusters S1, . . . , Sk of size n/k. For any pair
of vertices u ∈ Si and v ∈ Sj , we add the edge {u, v} with probability p if i = j and with probability
q otherwise. We study the running time of the algorithms in two settings.

In the first experiment, we set n = 1000 · k, p = 0.04, and q = 1/(1000k). Then, we study the
running time of spectral clustering for different values of k. The results are shown in Figure 2(a). We
observe that our newly proposed algorithm is much faster than existing methods for large values of k,
and our algorithm is easily able to scale to large graphs with several hundred thousand vertices.

In the second experiment, we set k = 20, p = 40/n, and q = 1/(20n). Then, we study the
running time of the spectral clustering algorithms for different values of n. The results are shown in
Figure 2(b). Empirically, we find that when k is a fixed constant, our newly proposed algorithm is
faster than existing methods by a constant factor. In every case, all algorithms successfully recover
the ground truth clusters.3

4.2 Real-world Data

In this section, we evaluate spectral clustering on real-world data with labeled ground-truth clusters.
We compare the algorithms on the following datasets from a variety of domains.

• MNIST [18]: each data point is an image with 28 × 28 greyscale pixels, representing a
hand-written digit from 0 to 9.

• Pen Digits [1]: data is collected by writing digits on a digital pen tablet. Each data point
corresponds to some digit from 0 to 9 and consists of 8 pairs of (x, y) coordinates encoding
the sequence of pen positions while the digit was written.

• Fashion [34]: each data point is an image with 28× 28 greyscale pixels, representing one
of 10 classes of fashion item, such as ‘shoe’ or ‘shirt’.

• HAR (Human Activity Recognition) [2]: the dataset consists of pre-processed sensor data
from a body-worn smartphone. Participants were asked to perform a variety of activities,

3Note that we cannot compare with the KASP algorithm on the stochastic block model since KASP is
designed to operate on vector data rather than on graphs.
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Table 1: The performance of spectral clustering algorithms on real-world datasets. The PM log(k)
algorithm corresponds to Algorithm 2. We perform 10 trials and report the average performance with
one standard deviation of uncertainty. We observe that Algorithm 2 is consistently very fast when
compared to the other algorithms while achieving comparable clustering accuracy.

Dataset
Algorithm MNIST Pen Digits Fashion HAR Letter

Time

k EIGS 2.70± 0.24 0.64± 0.07 3.55± 0.17 0.58± 0.07 29.29± 11.85
log(k) EIGS 2.73± 0.20 1.01± 0.05 3.79± 0.11 0.83± 0.05 24.99± 11.58

KASP 15.47± 3.40 0.22± 0.03 14.33± 3.54 0.91± 0.19 0.33± 0.14
PM k 3.23± 0.15 0.49± 0.02 2.40± 0.07 0.38± 0.01 1.14± 0.02

PM log(k) 1.99± 0.05 0.36± 0.01 1.19± 0.06 0.30± 0.02 0.39± 0.02

ARI

k EIGS 0.61± 0.01 0.58± 0.02 0.42± 0.00 0.51± 0.00 0.17± 0.00
log(k) EIGS 0.49± 0.03 0.63± 0.06 0.32± 0.02 0.30± 0.01 0.17± 0.00

KASP 0.33± 0.03 0.42± 0.04 0.30± 0.03 0.48± 0.03 0.13± 0.01
PM k 0.55± 0.03 0.60± 0.07 0.40± 0.02 0.50± 0.02 0.17± 0.00

PM log(k) 0.51± 0.04 0.61± 0.05 0.35± 0.03 0.49± 0.02 0.17± 0.00

NMI

k EIGS 0.74± 0.01 0.78± 0.00 0.60± 0.00 0.72± 0.00 0.27± 0.02
log(k) EIGS 0.68± 0.01 0.77± 0.03 0.55± 0.01 0.48± 0.02 0.13± 0.02

KASP 0.48± 0.02 0.60± 0.03 0.46± 0.03 0.61± 0.03 0.35± 0.01
PM k 0.73± 0.03 0.76± 0.03 0.61± 0.02 0.69± 0.02 0.29± 0.03

PM log(k) 0.69± 0.02 0.77± 0.02 0.55± 0.04 0.66± 0.04 0.30± 0.01

such as ‘walking’, ‘walking upstairs’, and ‘standing’. The task is to identify the activity
from the sensor data.

• Letter [9]: each data point corresponds to an upper-case letter from ‘A’ to ‘Z’. The data was
generated from distorted images of letters with a variety of fonts, and the features correspond
to various statistics computed on the resulting images.

Table 2: The number of vertices (n) and
clusters (k) in each of the real-world
datasets.

Dataset n k

MNIST 70000 10
Pen Digits 7494 10

Fashion 70000 10
HAR 10299 6
Letter 20000 26

The datasets are all made available by the OpenML [31]
project, and can be downloaded with the scikit-learn
library [27]. We first pre-process each dataset by com-
puting the k nearest neighbour graph from the data, for
k = 10. Table 2 shows the number of nodes and the
number of ground truth clusters in each dataset.

For each dataset, we report the performance of each spec-
tral clustering algorithm with respect to the running time
in seconds, and the clustering accuracy measured with the
Adjusted Rand Index (ARI) [10, 29] and the Normalised
Mutual Information (NMI) [17]. Table 1 summarises the
results.

We find that Algorithm 2 is consistently very fast when compared to the other spectral clustering
algorithms. Moreover, the clustering accuracy is similar for every algorithm.

5 Conclusion

In this paper, we introduced a new fast spectral clustering algorithm based on projecting the vertices
of the graph into O(log(k)) dimensions with the power method. We find that the new algorithm is
faster than previous spectral clustering algorithms and achieves similar clustering accuracy.

This algorithm offers a new option for the application of spectral clustering. If a large running time is
acceptable and the goal is to achieve the best accuracy possible, then our experimental results suggest
that the classical spectral clustering algorithm with k eigenvectors is the optimal choice. On the other
hand, when the number of clusters or the number of data points is very large, our newly proposed
method provides a significantly faster algorithm for a small trade-off in terms of clustering accuracy.
This could allow spectral clustering to be applied in regimes that were previously intractable, such as
when k = Θ(n).
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A Omitted detail from Section 3

In this section, we prove the main theoretical result of the paper. In order that this section is self-
contained, we repeat some of the steps included in the main paper. We first show that the lengths
of the random vectors xi generated in Algorithm 2 are close to their expected value. Notice that
E [∥xi∥2] =

√
n and E [∥Pxi∥2] =

√
k. We use Chebyshev’s inequality to show the following.

Lemma A.1. Let x ∈ Rn be drawn from the n-dimensional Gaussian distribution N(0, I). Let
f1, . . . ,fk ∈ Rn be orthogonal vectors and let P =

∑k
i=1 fif

⊺
i be the projection onto the space

spanned by f1, . . . ,fk. With probability at least 1− (1/10k),

• ∥Px∥2 ≤
√
6k, and

• ∥x∥2 ≤
√
6n.

Proof of Lemma A.1. Since x is drawn from a symmetric n-dimensional Gaussian distribution, ∥x∥22
is distributed according to a χ2 distribution with n degrees of freedom. Similarly, since P is a
projection matrix, ∥Px∥22 is distributed according to a χ2 distribution with k degrees of freedom. By
the Chebyshev inequality, we have that

Pr
[
∥Pxi∥22 ≥ 6k

]
≤ k

(5k)2
=

1

25k
,

and

Pr
[
∥xi∥22 ≥ 6n

]
≤ n

(5n)2
=

1

25n
.

The lemma follows by the union bound and since k ≤ n. ■

We now show that the output of the POWERMETHOD algorithm is close to a random vector in the
space spanned by f1, . . . ,fk.
Lemma 3.1. Let M ∈ Rn×n be a matrix with eigenvalues 1 ≥ γ1 ≥ . . . ≥ γn ≥ 0 and
corresponding eigenvectors f1, . . .fn. Let x0 ∈ Rn be drawn from the n-dimensional Gaus-
sian distribution N(0, I). Let xt = POWERMETHOD(M,x0, t) for t = Θ

(
log(n/ϵ2k)

)
. If

γk ≥ 1−O
(
ϵ · log(n/ϵ2k)−1

)
and γk+1 ≤ 1− Ω(1), then with probability at least 1− 1/(10k),

∥xt −Px0∥2 ≤ ϵ
√
k,

where P =
∑k

i=1 fif
⊺
i is the projection onto the space spanned by the first k eigenvectors of M.

Proof of Lemma 3.1. By the assumptions of the Lemma, we can assume that

• γk+1 ≤ c1 < 1,

• γk ≥ 1− c2ϵ log(24n/ϵ
2k)−1, and

• t = c3 log(24n/ϵ
2k),

for constants c1, c2, and c3. Fixing c1 < 1, we will set

c3 =
1

2 log
(

1
c1

)
and

c2 =
1

c3 · 2
√
6
.

Furthermore, by Lemma A.1, with probability at least 1− (1/10k) it holds that

∥Px0∥2 ≤
√
6k

12



and
∥x0∥2 ≤

√
6n,

and we assume that this holds in the remainder of the proof.

Now, we write x0 in terms of its expansion in the basis given by the eigenvectors f1, . . . ,fn:

x0 =

n∑
j=1

ajfj ,

where aj = ⟨x0,fj⟩. Similarly, we have

Px0 =

k∑
j=1

ajfj

and

xt =

n∑
j=1

ajγ
t
jfj .

Then,

∥xt −Px0∥2 =

∥∥∥∥∥∥
k∑

j=1

(
ajγ

t
j − aj

)
fj +

n∑
j=k+1

ajγ
t
jfj

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥
k∑

j=1

(
ajγ

t
j − aj

)
fj

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
n∑

j=k+1

ajγ
t
jfj

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥(1− γt
k

) k∑
j=1

ajfj

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥γt
k+1

n∑
j=k+1

ajfj

∥∥∥∥∥∥
2

=
(
1− γt

k

)
∥Px0∥2 + γt

k+1 ∥(I−P)x0∥2
≤
(
1− γt

k

)
∥Px0∥2 + γt

k+1 ∥x0∥2
where we used the fact that 1 ≥ γ1 ≥ . . . ≥ γn. Now, we have

γt
k ≥

(
1− c2ϵ log(24n/ϵ

2k)−1
)c3 log(24n/ϵ2k)

≥ 1− c2c3ϵ

= 1− ϵ

2
√
6
.

Furthermore,

γt
k+1 ≤ c

c3 log(24n/ϵ2k)
1

=

(
1

c1

)c3 log(ϵ2k/24n)

=

(
ϵ2k

24n

)c3 log(1/c1)

= ϵ

√
k

24n
.

Combining everything together, we have

∥xt −Px0∥2 ≤
ϵ

2
√
6
∥Px0∥2 + ϵ

√
k

24n
∥x0∥2

≤ ϵ

2
√
6

√
6k + ϵ

√
6kn

24n

≤ ϵ
√
k,

which completes the proof. ■
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It remains to prove that the k-means cost is preserved in the embedding produced by the power method.
Recall that f1, . . . ,fk are the eigenvectors of M corresponding to the eigenvalues γ1, . . . , γk and
y1, . . . ,yl are the vectors computed in Algorithm 2. We will also consider the vectors z1, . . . ,zl given
by zi = Pxi, where {xi}ki=1 are the random vectors sampled in Algorithm 2, and P =

∑k
i=1 fif

⊺
i

is the projection onto the space spanned by f1, . . . ,fk. We also define

F =

[ | |
f1 . . . fk

| |

]
, Y =

[ | |
y1 . . . yl

| |

]
and Z =

[ | |
z1 . . . zl
| |

]
.

We will use the following result shown by Makarychev et al. [23].

Lemma 3.2 ([23], Theorem 1.3). Given data X ∈ Rn×k, let Π ∈ Rk×l be a random matrix with
each column sampled from the k-dimensional Gaussian distribution N(0, Ik) and

l = O

(
log(k) + log(1/ϵ)

ϵ2

)
.

Then, with probability at least 1− ϵ, it holds for all partitions {Ai}ki=1 of [n] that

COSTX(A1, . . . , Ak) ∈ (1± ϵ)COSTXΠ(A1, . . . , Ak).

Applying this lemma with X = D− 1
2F and Π = F⊺Z shows that the k-means cost is approximately

equal in the embeddings given by D− 1
2F and D− 1

2Z, since FF⊺Z = Z and each of the entries of
F⊺Z is distributed according to the Gaussian distribution N(0, 1). By Lemma 3.1, we can also show
that the k-means objective in D− 1

2Y is within an additive error of D− 1
2Z. This allows us to prove

the following lemma.

Lemma 3.3. With probability at least 0.9− ϵ, for any partitioning {Ai}ki=1 of the vertex set V , we
have

COSTD−1/2Y(A1, . . . , Ak) ≥ (1− ϵ)COSTD−1/2F(A1, . . . , Ak)− ϵk

and
COSTD−1/2Y(A1, . . . , Ak) ≤ (1 + ϵ)COSTD−1/2F(A1, . . . , Ak) + ϵk.

In order to prove this, we will use the fact shown by Boutsidis and Magdon-Ismail [5] that we can
write the k-means cost as

COSTB(Ai, . . . , Ak) = ∥B−XX⊺B∥2F (1)

where X ∈ Rn×k is the indicator matrix of the partition, defined by

X(u, i) =

{
1√
|Ai|

if u ∈ Ai

0 otherwise
,

and ∥B∥F ≜ (
∑

i,j B
2
i,j)

1/2 is the Frobenius norm.

Proof of Lemma 3.3. Notice that F⊺Z ∈ Rk×l is a random matrix with columns drawn from the
standard k-dimensional Gaussian distribution. Then, by Lemma 3.2, with probability at least 1− ϵ,
we have for any partition {Ai}ki=1 that

COSTD−1/2F(A1, . . . , Ak) ∈ (1± ϵ) COSTD−1/2Z(A1, . . . , Ak) (2)

since D−1/2FF⊺Z = D−1/2Z, where we use the fact that the columns of Z are in the span of
f1, . . . ,fk.

Furthermore, by the union bound, we can assume with probability at least 0.9 that the conclusion of
Lemma 3.1 holds for every vector yi computed by Algorithm 2.

Now, we will establish that COSTD−1/2Y(·) is close to COSTD−1/2Z(·) which will complete the
proof. For some arbitrary partition {Ai}ki=1, let X be the indicator matrix of the partition. Then, we
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have ∥∥∥D−1/2Y −XX⊺D−1/2Y
∥∥∥
F
−
∥∥∥D−1/2Z−XX⊺D−1/2Z

∥∥∥
F

=
∥∥∥(I−XX⊺)D−1/2Y

∥∥∥
F
−
∥∥∥(I−XX⊺)D−1/2Z

∥∥∥
F

≤
∥∥∥(I−XX⊺)D−1/2 (Y − Z)

∥∥∥
F

≤ ∥(I−XX⊺) (Y − Z)∥F
≤ ∥Y − Z∥F

=

√√√√ l∑
i=1

∥yi − zi∥22

≤
√
lϵ2k

≤ ϵk,

Where we use Lemma 3.1, and the fact that l ≤ k. Combining this with (2) completes the proof. ■

Now we come to the proof of the main theorem.
Theorem 3.1. Let G be a graph with λk+1 = Ω(1) and ρ(k) = O

(
ϵ · log(n/ϵ)−1

)
. Additionally, let

{Si}ki=1 be the k-way partition corresponding to ρ(k) and suppose that {Si}ki=1 are almost balanced.
Let {Ai}ki=1 be the output of Algorithm 2. With probability at least 0.9− ϵ, there exists a permutation
σ : [k] −→ [k] such that

k∑
i=1

vol(Ai△Sσ(i)) = O(ϵ · vol(VG)) .

Moreover, the running time of Algorithm 2 is

Õ
(
m · ϵ−2

)
+ TKM(n, k, l),

where m is the number of edges in G and TKM(n, k, l) is the running time of the k-means approxi-
mation algorithm on n points in l dimensions.

To complete the proof, we will make use of the following results proved by Macgregor and Sun [21],
which hold under the same assumptions as Theorem 3.1.
Lemma 3.4 ([21], Lemma 4.1). There exists a partition {Ai}ki=1 of the vertex set V such that

COSTD−1/2F(A1, . . . Ak) < k · ρ(k)/λk+1.

Lemma 3.5 ([21], Theorem 2). Given some partition of the vertices, {Ai}ki=1, such that

COSTD−1/2F(A1, . . . Ak) ≤ c · k,
then there exists a permutation σ : [k] −→ [k] such that

k∑
i=1

vol(Ai△Sσ(i)) = O(c · vol(V )) .

Proof of Theorem 3.1. By Lemma 3.4 and Lemma 3.3, with probability at least 0.9− ϵ, there exists
some partition {Âi}ki=1 of the vertex set VG such that

COSTD−1/2Y(Â1, . . . , Âk) = O

(
(1 + ϵ)

ϵk

log(n/ϵ)
+ ϵk

)
.

Since we use a constant-factor approximation algorithm for k-means, the partition {Ai}ki=1 returned
by Algorithm 2 satisfies COSTD−1/2Y(A1, . . . , Ak) = O(ϵk) . Then, by Lemma 3.5 and Lemma 3.3,
for some permutation σ : [k] −→ [k], we have

k∑
i=1

vol(Ai△Sσ(i)) = O(ϵ · vol(VG)) .
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To bound the running time, notice that the number of non-zero entries in M is 2m, and the time
complexity of matrix multiplication is proportional to the number of non-zero entries. Therefore,
the running time of POWERMETHOD(M,x0, t) is Õ(m). Since the loop in Algorithm 2 is executed
Θ
(
log(k) · ϵ−2

)
times, the total running time of Algorithm 2 is Õ

(
m · ϵ−2

)
+ TKM(n, k, l). ■
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