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Abstract

Much of the previous work towards digital agents for graphical user interfaces
(GUIs) has relied on text-based representations (derived from HTML or other
structured data sources), which are not always readily available. These input
representations have been often coupled with custom, task-specific action spaces.
This paper focuses on creating agents that interact with the digital world using
the same conceptual interface that humans commonly use — via pixel-based
screenshots and a generic action space corresponding to keyboard and mouse
actions. Building upon recent progress in pixel-based pretraining, we show, for the
first time, that it is possible for such agents to outperform human crowdworkers on
the MiniWob++ benchmark of GUI-based instruction following tasks.

1 Introduction

Systems that can follow instructions to complete tasks through graphical user interfaces (GUIs) can
help automate tedious tasks, improve accessibility, and expand the usefulness of digital assistants
by allowing them to interact with tools and services. Despite the visual nature of GUIs, prior work
has primarily focused on utilizing structured representations of the user interfaces (such as HTML
sources, Document Object Model (DOM) trees, and Android view hierarchies) as well as custom,
task-specific representations of high-level actions based on these structured representations (see §6).
Recent efforts have achieved positive outcomes thanks to the advances of powerful language models
(Gur et al., 2022; Kim et al., 2023; Yao et al., 2022).

While structured and task-specific representations may be useful, they are not always available –
some examples are web applications that use extensive scripting, sandboxed environments where
access to DOM is limited, and mobile applications which often do not expose the underlying structure
to external modules. Even when structured application source data is available, it may be hard to
interpret due to obfuscation and misalignment with what actually appears on the GUIs. Finally,
aligning human demonstrations with task-dependent actions is often challenging.

In contrast, people interact with GUIs by perceiving the visual input and using generic mouse and
keyboard actions, without needing to inspect the application’s source code for cues on its functionality.
They can quickly learn to interact with new applications that offer familiar visual interfaces, regardless
of differences in implementation technologies. In this paper we ask: Can we build an agent that can
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Figure 1: Our agent learns to follow instructions via Graphical User Interfaces (GUIs). Unlike most prior
work studying instruction following for GUI-based tasks, our agent does not rely on text-based observations
corresponding to DOM trees or HTML source code, or task-specific actions. Instead, our agent receives pixel-
based observations and generates outputs corresponding to mouse and keyboard actions. The possible actions are
encoded as text and shown on the top of the figure. We show examples of observations from various episodes for
two benchmarks, MiniWob++ (top row) and WebShop (bottom row), that we adapt to study within the context of
our general Chrome-based environment framework. See details in §2.

complete tasks for users while relying solely on pixel-level visual representations of the GUI state,
and generic low-level actions?

Learning based on pixel-only inputs proved effective for game playing environments such as Atari
(Mnih et al., 2015). However, for GUI-based instruction following tasks, learning from pixel-only
inputs coupled with general low-level actions leads to several challenges. Interpreting GUIs visually
requires understanding the interface layout, recognizing and interpreting visually-situated natural
language, identifying visual elements, and predicting their functions and methods of interaction.
A generic action space also poses the challenge of a more complex mapping between high-level
textual instructions and corresponding sequences of low-level actions. As an example of the increased
difficulty in this setting, on the MiniWob++ benchmark (Shi et al., 2017; Liu et al., 2018) of web GUI
interaction, CC-Net (Humphreys et al., 2022) demonstrates human-level accuracy when accessing
both screenshots and DOM structure, but its performance drops by 75% when the DOM information
is removed from the agent’s observations.

Here we present PIX2ACT, a model that relies solely on pixel-based screenshots as input and selects
actions corresponding to basic mouse and keyboard functionalities.2 We build on PIX2STRUCT (Lee
et al., 2022), a Transformer-based (Vaswani et al., 2017) image-to-text model pre-trained to map

2Code and models are available at https://github.com/google-deepmind/pix2act.
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screenshots to structured representations derived from HTML on web-scale data. PIX2ACT tunes
this model using a combination of human demonstrations and environment interactions, applying tree
search to iteratively generate new expert trajectories for training. We develop a general browser-based
environment framework, and adapt two benchmark datasets, MiniWob++ and WebShop (Yao et al.,
2022), to our setting with a unified, general purpose observation and action format.

On MiniWob++, PIX2ACT outperforms human crowdworkers and improves task score nearly 4x
compared to the best prior results in our proposed setting (CC-Net without DOM). Ablations show
that a key ingredient for PIX2ACT’s performance is the pixel-based pre-training of PIX2STRUCT.

Our contributions are as follows:

1. We show, for the first time, that an agent using pixel-only inputs and a generic action space can
outperform human crowdworkers on the MiniWob++ benchmark, significantly improving over
prior work on this setting, and reaching performance comparable to that of state-of-the-art agents
that access DOM information and use a comparable number of human demonstrations.

2. We adapt the WebShop benchmark to our setting, using pixel-based observations and general low-
level actions. We establish the first baseline on this setting, although there is still a performance
gap relative to larger language models using HTML-based inputs and task-specific actions.

3. We show that PIX2STRUCT’s pre-training via screenshot parsing is effective for GUI-based
instruction following with pixel-based inputs. In the behavioral cloning setting, pre-training
improves task scores from 17.1 to 66.5 on MiniWob++ and from 1.1 to 46.7 on WebShop.

4. We demonstrate the successful application of tree search as a relatively simple method for policy
improvement for MiniWob++.

2 Environment

Following the reinforcement learning literature, we model GUI interaction as a Markov Decision
Process (MDP): at each time step, our agent receives an observation and selects an action. We
develop a common environment framework with shared observation and action formats for browser-
based tasks. Similarly to prior work on web-based agents (Liu et al., 2018), we use Selenium to
programmatically interact with the Google Chrome browser.

Observations To form an observation, we first take a screenshot of the current browser window
using Selenium and then augment it with additional information. First, if not already present, we
render the natural language instruction on the top of the screenshot, following Lee et al. (2022).
Second, as Selenium screenshots do not include cursors (which are typically rendered by the operating
system), we draw a cursor on the screenshot to indicate the mouse pointer position. Finally, we render
an indicator of whether the mouse button is currently pressed down, which is useful for dragging
actions.

Actions Our action space consists of raw mouse and keyboard actions, as shown in Figure 1, where
X and Y refer to discrete coordinate bins, K is one or more keys, M is an optional modifier key such as
“shift”, and Z refers to a vertical scroll amount, also represented as a discrete bin.3 The begin_drag
and end_drag actions can be used to execute “click and drag” actions. We use a configurable number
of coordinate buckets per vertical and horizontal axis. Importantly, the DOM information is not
provided by the environment and is therefore not used in any way to define observations or actions.

Episodes and Rewards Episodes continue until a terminal state or a configurable number of
maximum steps is reached. For the environments we consider, the agent only receives a reward at a
terminal state. This can be a binary reward based on whether the task was completed successfully or
a partial reward based on how well the task was completed.

3We chose discrete bins because they enable a simple encoding of actions as tokens. Alternatives could
include continuously-valued coordinates or relative movements with foveated binning (Baker et al., 2022).
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Figure 2: An example episode of our agent on the MiniWob++ use-colorwheel-2 task. At each step,
the agent receives a new observation and outputs the next action to take. The screenshots include a rendered
instruction that the agent needs to follow to successfully complete the episode. For MiniWob++, we use 32
vertical and horizontal coordinate bins to specify locations. We show the click location visually for this figure.

3 Proposed Agent

Our agent, PIX2ACT, is based on the PIX2STRUCT model (Lee et al., 2022), which uses an image
Transformer encoder and a text Transformer decoder. The architecture is based on Vision Trans-
former (Dosovitskiy et al., 2021) and T5 (Raffel et al., 2020). PIX2STRUCT is pre-trained on a
screenshot parsing task: predicting simplified HTMLs from screenshots with visually-masked re-
gions. Such pre-training was proven effective for tasks related to understanding user interfaces in
a non-interactive setting, such as screen summarization and widget captioning (Wang et al., 2021;
Li et al., 2020b). We use the PIX2STRUCT base variant with 282M parameters (12 encoder and 12
decoder layers; hidden size 768) for all our experiments. The model is called once per time step.

Input The only input to the model is pixel-based observation from the environment. We can also
condition on multiple previous observations by concatenating multiple frames. In preliminary experi-
ments, we did not observe significant gains from conditioning on past observations for MiniWob++,
and thus we only use the screenshot of the current step in our experiments. We reuse PIX2STRUCT’s
image processing by scaling input images up or down so as to extract the maximal number of
fixed-size patches that still fit within the sequence length limit. We use resolutions of 160×210 and
800×600 for MiniWoB++ and WebShop, respectively.

Output We encode actions as text tokens, which are predicted autoregressively by the Transformer
decoder. We use beam search over tokens to output the k-best actions (see Appendix B.1 for details).

Greedy Policy For interacting with the environment, we adopt a standard greedy policy, selecting
the highest scoring action at each step, with one modification. To help prevent the agent from getting
stuck in cycles, we track which actions have been taken for a given observation, and select the highest
probability action in the beam that has not previously been taken given the current observation, which
provides a modest increase in performance.

3.1 Training

We explore two methods for training models to follow instructions via GUIs. First, similarly to prior
work, we use Behavioral Cloning (BC), where we train our model using standard supervised learning
to predict the given action for each observation in a set of human demonstrations. Second, given
access to environments with reward signals, prior work has also explored Reinforcement Learning
(RL) to further improve agent performance. As an alternative to common reinforcement learning
algorithms such as REINFORCE (Williams, 2004) and PPO (Schulman et al., 2017), we apply tree
search as a simple method for policy improvement.
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Tree Search For a given set of model parameters, tree search leverages the deterministic nature of
the environment to look ahead at the consequences of possible actions to determine a more optimal
policy than greedily selecting actions.

We adopt Monte Carlo Tree Search (MCTS) (Coulom, 2006), which outperformed more naive search
algorithms in initial experiments, and has been successfully integrated with neural network policies
in prior work (Silver et al., 2017; Anthony et al., 2017). Similarly to this prior work, we train a
model to estimate a value function, which predicts the value (i.e., estimated future rewards) of a given
state. We use a surrogate reward which penalizes the number of steps taken to encourage concise
trajectories without unnecessary actions. We implement this value function approximator using the
same PIX2STRUCT architecture used for our agent.4 However, instead of predicting actions, this
model predicts state-values mapped to discrete buckets. To estimate the value of leaf states during
MCTS, we use a combination of this value function approximator and rollouts using our greedy
policy, similarly to Silver et al. (2017). See Appendix B for additional technical details.

We can then use successful episodes found with this stronger tree search policy to improve our
model. As this stronger model then yields a more effective tree search policy, we can continue to
iteratively improve our model using this method. Notably, this approach requires no modifications to
the fine-tuning procedure of PIX2ACT, as, for simplicity, we tune on episodes from the tree search
policy using standard supervised learning.

4 Benchmarks and Demonstrations

We adapt two benchmarks, MiniWob++ and WebShop, to our environment framework (§2) which
consists of pixel-based observations and generic low-level actions. We also map previously collected
human demonstrations for these benchmarks to our observation and action spaces.

4.1 MiniWob++

MiniWob++ (Liu et al., 2018) is a set of over a hundred web-browser based tasks. See Figures 1 and 2
for task examples. Each task consists of an algorithm for generating variations of the task and an
instruction template, controlled by a random seed, with up to billions of possible configurations per
task. The task instruction is given as (mostly) natural language text in the top yellow part, which in
our framework can only be accessed visually. An automatic reward is given at the end of the task.

Human Demonstrations We use the human demonstrations collected by Humphreys et al. (2022).
However, their demonstrations were collected using an X11-based environment, which is different
from our Selenium-based environment. This results in different renderings of the same underlying
environment state, introducing a shift between the screenshots seen during training and those observed
at test time. Additionally, we need to map from their real-time X11-based action sequences to our
action space. We were able to perform this mapping with a reasonable degree of success for 59
tasks. Notably, not all behaviors in the human demonstrations are supported in our Selenium-based
environment. For example, Selenium does not implement the ability to highlight text and drag it
into a text field, and such an action is widely used in the human demonstrations for tasks where text
is copied and pasted. Additionally, while our environment framework intends to cover the basic
functionality of most web interfaces, aspects of some MiniWob++ tasks, such as capturing real-time
observations for animated elements, are not supported. See Appendix A for additional details.5

Starting with approximately 1.3 million demonstrations across the 59 supported tasks, we filtered
demonstrations with a reward of < 0.8, or approximately 6% of demonstrations. We were able to
successfully convert 81% of the remaining demonstrations to our action space. We reserve 10% of
the data for a development set. Demonstrations contain approximately 3 steps per task on average,
although this varies considerably across tasks.

4While it may be more efficient to share an encoder between these two PIX2STRUCT-based models that
condition on the same inputs, we trained separate models for simplicity.

5Other prior work has used the demonstrations from Liu et al. (2018), which cover a different subset of
MiniWob++ tasks. However, these demonstrations do not include screenshots or sufficient information to replay
the episodes in a browser environment to collect new screenshots, and therefore cannot be applied to our setting.
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Figure 3: Main results evaluating PIX2ACT (ours) on MiniWob++ (left) and WebShop (right). In this
paper we focus on approaches that do not have access to DOM or HTML information, and recieve pixel-based
observations (blue). On this setting, PIX2ACT significantly improves over prior work on MiniWob++ and
establishes the first baseline on WebShop. Our method performs competitively with humans (green) and with
methods that have access to DOM or HTML information (red) on MiniWob++, although there is a gap with the
best performing methods that access HTML on WebShop (see §5.3 for detailed analysis).

Evaluation We report the mean score across seeds and tasks. The score is the MiniWob++ raw
reward (without time decay) mapped from the original range [−1, 1] to the range [0, 100]. The score
is equivalent to the success rate (i.e. the proportion of episodes in which the agent receives a positive
reward) for tasks with binary rewards. For episodes that do not complete due to reaching a maximum
number of allowed steps, we assume a score of 0. For each task, we compute the mean over 100
random seeds, and then compute the mean over 59 MiniWob++ tasks.

4.2 WebShop

WebShop (Yao et al., 2022) is a web-based shopping environment with over 1.1 million products
from Amazon. The task is to find and purchase a product based on a human-authored text instruction.
Finding a suitable product requires entering search queries, clicking on results, and determining the
relevance of various products to the instruction. An automatic reward is computed based on similarity
between the purchased product and the gold target product.

Human Demonstrations We use the 1,566 human demonstrations (with a train/development/test
split of 1012/54/500) collected in Yao et al. (2022). As with the MiniWob++ demonstrations, we
need to map between the observation and action sequences used in their setup to our framework. Yao
et al. (2022) used high-level actions (e.g. “search” or “click[item]”), each of which could map to
multiple lower-level actions in our environment. Specifically, for all actions involving a mouse click,
we determine the coordinates of the center of the corresponding HTML element. For WebShop, the
entire screen content is not always visible due to page heights exceeding the viewport dimensions. If
the clicked element lies outside the visible area, we add scroll actions until the element is visible.
Finally, we map search actions to two actions in our environment: clicking on the center of the
search box and entering the search query followed by the enter key. We render the HTML inputs
in the human demonstrations using our browser to obtain screenshots. Additionally we found that
rendering the last 5 actions (separated by <s>) on top of the screenshot to be helpful.

Evaluation Consistent with previous work, we report Task Score, which is the average reward
across 500 test instructions.

5 Experiments and Analysis

5.1 Training Details

We updated all model parameters during fine-tuning, including both the image encoder and text
decoder. We used the Adafactor optimizer (Shazeer and Stern, 2018) with a learning rate of 0.01.

MiniWoB++ We finetuned a single model jointly on episodes from all tasks for a total of 26K steps
using a batch size of 512, input/output sequence lengths of 512/16. We also evaluated using the
tree search procedure described in §3.1 to improve our agent. We performed 2 iterations of policy
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Figure 4: Comparing scores on MiniWob++ tasks of PIX2ACT (blue) with human crowdworkers (green), ranked
from left to right by the relative difference in performance.

improvement with tree search, collecting a total of 826K episodes across all tasks, and tuning for a
further 26K steps.

WebShop We used only the provided human demonstrations to train our model.6 Due to its larger
resolution and text-heavy data, we used a higher input sequence length of 4096. We also found it
useful to perform intermediate finetuning on MiniWoB++, followed by 10K steps of further finetuning
on WebShop using a batch size of 256 (see §5.3 for details).

5.2 Main Results

We report the results of our models on MiniWob++ and WebShop in Figure 3. For MiniWob++,
we also provide task-level comparisons between PIX2ACT and human crowdworkers in Figure 4.
There is limited prior work studying these tasks without access to DOM and HTML information. For
MiniWob++, the only comparable baselines are from the CC-Net model of Humphreys et al. (2022),
which mentions an ablation experiment where performance dropped by 75% from their primary
results when the models conditioned on only screenshots without DOM information. As they did not
provide per-task numbers for this ablation, we estimate the performance of CC-Net without DOM
information by assuming that the drop in performance on the subset of tasks we study was also 75%.
Regardless, it is clear that PIX2ACT significantly outperforms CC-Net on this setting. The difference
in performance can be largely attributed to the screenshot parsing pre-training of Lee et al. (2022).
For WebShop, there is no prior work exploring such a setting, so we establish the first baseline.

5.3 Ablations and Analysis

Pre-training ablations To study the impact of the pre-training on our model’s ability to effectively
learn to follow instructions via GUIs, we evaluate model performance without the pre-training
procedure. For these experiments, we only compared performance of models trained using behavioral
cloning. The results are shown in Figure 3, and demonstrate that pre-training is critical for our
model’s performance.

Comparison with models that use DOM or HTML as input We can also compare our results
without access to DOM or HTML to previous methods that utilized these resources, including those
which also leverage DOM information to construct specialized action spaces. The performance of the
best model from prior work leveraging DOM or HTML information is shown in Figure 3.

For MiniWob++, the best model on this setting is CC-Net (Humphreys et al., 2022) trained with BC
and RL and with access to both DOM and pixel-based observations.7 PIX2ACT achieves comparable
performance to their best model, while relying on only a subset of the information used by CC-Net,
and using a comparable number of human demonstrations for training. PIX2ACT also outperforms

6We did not explore applying RL techniques to WebShop in this work. Prior work (Yao et al., 2022) has not
shown as significant an advantage to applying RL on WebShop relative to the large improvements shown by
prior work on MiniWob++, which offers a near limitless variety of environments with reward signals for training.

7We compute mean scores for CC-Net by averaging their reported per-task results over the 59 tasks we study.
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Pre-training Included Heldout

Yes 65.5 28.3
No 11.0 7.6

Table 1: We selected 9 MiniWob++ tasks and eval-
uated mean scores when they are heldout from the
training set. Pretraining leads to non-trivial general-
ization (28.3) to held out tasks that were unobserved
at training time compared to a randomly initialized
model (7.6). We also include scores when the tasks
are included during training for reference.

Iteration

Policy 0 1 2

Greedy 66.5 93.1 96.2
Tree Search 91.7 98.4 —

Table 2: We compare average MiniWob++ scores
using the greedy policy with one that uses tree search
and lookahead, given the same underlying model.
The model is initially trained on human demonstra-
tions and iteratively improved by training on episodes
generated by the tree search policy.

CC-Net when each model is trained only with behavioral cloning, as CC-Net performance on
this setting drops to 38.7 (results not shown in the Figure). Notably, CC-Net scores also drop by
approximately 10% when the model is not given access to a dictionary of input strings provided
by the environment. As shown in Figure 3, the key to our model’s ability to achieve comparable
performance without relying on DOM-based inputs is pixel-based pre-training. Another difference
is that CC-Net uses a real time setting, which enables some forms of interaction not supported by
our environment, and therefore can support a larger set of MiniWob++ tasks. On the other hand, for
BC, CC-Net does not need to handle the shift in rendering format and potentially noisy action space
conversion.

For WebShop, the best model on this setting is WebGUM (Furuta et al., 2023a), which leverages
the HTML source, a custom action space for the shopping domain, and a Flan-T5-XL (Chung et al.,
2022) backbone. WebGUM outperforms PIX2ACT when compared on this setting. Some of this gap
can be attributed to their simplified high-level action space, direct access to the relevant text on the
page, and ability to transfer from Flan-T5’s pretraining scale and instruction finetuning. Comparable
improvements to the scale and pretraining of pixel-based models could reduce this gap.

We discuss other approaches that leverage DOM or HTML information further in §6. We also offer a
complete comparison across all MiniWob++ tasks in Appendix C.

Evaluating transfer across tasks Training a pretrained, pixel-based model to interact with a GUI
can intuitively lead to better generalization to new tasks that use common GUI design principles. To
study this, we evaluate the ability of PIX2ACT (without RL) to generalize to tasks unseen during
training. Specifically, we hold out 9 out of 59 tasks and train on the remaining 50.8 We then evaluate
performance on the held-out tasks, comparing initializing with PIX2STRUCT to random initialization.
Table 1 illustrates that PIX2ACT can reach a mean score of 28.3 on held out tasks compared to 65.5
when training on those tasks. Conversely, mean score is 7.6 when PIX2STRUCT initialization is not
used. This shows that combining pretraining with a general GUI interface can lead to non-trivial
generalization to held out tasks.

For WebShop, we find that finetuning directly on WebShop (without intermediate finetuning on
MiniWoB++ as mentioned in 5.1) results in a drop of 4.0 in Task Score, demonstrating transfer
learning benefits across these datasets.

Tree search analysis Table 2 shows the improvement in MiniWob++ scores by training on episodes
generated by tree search. After an initial round of training on episodes generated by tree search,
the effectiveness of tree search also improves due to improvements in the underlying model used to
guide the search. The best greedy policy achieves performance close to the best tree search policy,
but does not require access to reward signals or additional exploration at inference time. Our results
indicate that we could further improve performance with more iterations of policy improvement via
tree search.

8We manually pick the 9 tasks to verify they include only actions or elements that would be reasonable to
generalize to from the training tasks. The tasks are click-checkboxes-large, click-color, click-tab-2,
click-tab-2-hard, count-shape, drag-shapes, use-color-wheel-2, use-slider-2.
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6 Related Work

We focus on agents that interact with GUIs, such as operating system dialogs or web pages, to
accomplish a given task. Many early approaches relied on the structured information from the GUIs
(Zettlemoyer and St. Amant, 1999; Allen et al., 2007; Branavan et al., 2010). This information could
range from a flat list of GUI components and their properties, to the full hierarchical structure of the
components (e.g. the DOM tree). The output space also depends on this structured information, often
using GUI components as action targets (e.g. clicking button #7). As discussed in §1, such structured
information might not always be available, or might not align with what visually appears to the users.

When Shi et al. (2017) introduced the World of Bits tasks, which was the precursor to MiniWob++
(Liu et al., 2018), they proposed a model based on a convolutional neural network that takes both
visual and structured inputs and then performs generic low-level computer actions (e.g. clicking
at a coordinate or pressing a key), similarly to PIX2ACT. However, the model performed poorly
compared to humans. Follow-up work studied specialized architectures for incorporating structured
DOM information and restricted the action space to clicking and typing predetermined texts on DOM
elements (Liu et al., 2018; Gur et al., 2018; Jia et al., 2019). Humphreys et al. (2022) reconsidered
incorporating both visual and structured information as well as a low-level action space that aligns
better to the human demonstrations. We discussed their approach, CC-Net, in §5.3. Humphreys et al.
(2022) also explored the benefits of large-scale human demonstrations, and we build on their work to
utilize a large number of human demonstrations to train PIX2ACT. This paper shows that PIX2ACT,
a model with pixel-only inputs, can outperform humans on MiniWob++ and match the state-of-the-art
approaches that rely on DOM information.

Automating web-based tasks using large language models (LLMs) has also been broadly explored.
For instance, WebGPT uses a text-based web browsing environment to search and navigate the web
(Nakano et al., 2021). More relatedly, recent work has investigated prompting LLMs to produce
agents that can generalize to tasks based on a small number of in-context examples. Yao et al. (2023)
proposed ReAct, a few-shot prompted LLM, which uses observations derived from HTML and a
custom action space to make predictions based on explicit reasoning steps. Similarly, Kim et al.
(2023) proposed RCI, a prompted LLM that iteratively critiques and refines its outputs, also using
HTML inputs and custom action spaces. These approaches achieve competitive performance on
WebShop and MiniWob++, respectively, and are extremely sample-efficient, relying on just a handful
of demonstrations per task. Gur et al. (2022) treated raw HTML as a string and fed it to LLMs
pretrained on natural language. After fine-tuning them on demonstrations, the models improved
MiniWob++ task success rate and sample efficiency compared to models that take DOM-based inputs
and specialized architectures. Finally, WebGUM (Furuta et al., 2023b), discussed in §5.3, extends
HTML-based models to integrate a vision encoder pretrained on ImageNet-21K.

Other work has focused on tasks related to mobile apps. Li and Li (2022) considered a model with
pixel-based inputs similar to that of Lee et al. (2022), and included evaluations on tasks related to
grounding instructions to screenshots, but did not consider interactive environments. Some work
has considered instruction following tasks in mobile app environments (Li et al., 2020a; Burns et al.,
2022), but has generally not studied observation and action formats similar to ours, instead relying on
inputs based on the Android view hierarchy. We focused on web-based GUIs so that we could use a
consistent environment framework for simplicity. Besides GUIs, several works on video game agents
also considered visual-only input and low-level actions. For example, most works on Atari games
used the screenshot as visual input and predicted the controller buttons to press (Mnih et al., 2015).
More recently, Baker et al. (2022), which focuses on learning from unlabeled videos, proposes an
agent for Minecraft that uses pixel-based inputs paired with keyboard and mouse actions, similarly to
PIX2ACT.

7 Limitations and Discussion

Pixel-based vs. text-based representations Text-based representations may be practically useful
when available, especially since they enable transferring knowledge from LLMs, demonstrating
impressive few-shot learning with LLMs for MiniWob++ (Kim et al., 2023) and WebShop (Yao
et al., 2023). When structured source is not available, OCR systems and models trained to predict the
location and function of UI elements may also help connect models with the power of LLMs. On
the other hand, similar advances in scaling and pre-training of vision or multimodal models could
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potentially enable similar capabilities in a pixel-based setting in the future, as we have shown the
effectiveness of pixel-based pre-training (albeit at a smaller scale) for GUI-based tasks. Neverthe-
less, beyond addressing the case where HTML or DOM information is unavailable, we hope our
study contributes towards a better understanding of the potential of pixel-based representations for
instruction following via GUIs.

Tree Search Our approach to policy improvement with tree search for MiniWob++ relied on the
ability to procedurally generate new MiniWob++ environment and instruction variations and receive
reward signals for task completion. Both aspects are unlikely to be available for some real world
environments, and such an approach might need to rely on generative models of potential instructions
and approximate reward models for task completion (e.g. Bahdanau et al. (2018); Du et al. (2023)).
Our implementation also relied on the ability to reset the environment to an initial state, a useful
feature for environments being used for exploration. Additionally, while we show that tree search can
be sufficient to reach high performance on MiniWob++, we did not perform a detailed comparison
relative to other search and RL algorithms in this study, which would be useful to better understand
the most efficient approaches for learning from GUI-based environments.

Broader Impact In this paper we have trained and evaluated models only in offline environments.
Responsibly deploying models in an environment where they can interact with online services would
require additional considerations. Prior to enabling a model to access a new service, it would be
important to sufficiently verify and/or constrain the behavior of the model to ensure that it is consistent
with the terms-of-service for that service and does not otherwise cause harm. Ensuring sufficient data
privacy could also be an important consideration for deploying models such as PIX2ACT that rely on
capturing screenshots from browsers.

There would be many potential risks associated with deploying models that could interact with
services in violation of their terms-of-service or otherwise engage in various forms of spam, fraud, or
abuse. Examples of such behavior could include impersonating human users, generating harmful
content or spam, or engaging in denial-of-service attacks. Models that use the same conceptual
interface humans use could potentially be more capable of breaking security defenses (e.g. solving
CAPTCHAs) or engaging in forms of spam, fraud, or abuse that are more difficult to detect. It is
therefore important for research related to security and techniques for detecting spam, fraud, and
abuse to take such potential uses into account.
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A Additional Dataset Details

A.1 MiniWob++ Supported Tasks

MiniWob++ consists of 104 tasks. Most prior work (Shi et al., 2017; Liu et al., 2018; Gur et al.,
2018; Jia et al., 2019) has evaluated performance on only a subset of these tasks, with the notable
exception of Humphreys et al. (2022), which evaluated on all 104 tasks. We evaluated on 59 of these
104 tasks, based on our best effort attempt to (1) design a general purpose set of actions that could
be implemented using Selenium and (2) convert the demonstrations collected by Humphreys et al.
(2022) to our observation and action format. While further development of the conversion process
and Selenium-based actions could potentially support more tasks, the 59 tasks we support still include
a wide range of instructions and interactions. Note that determining the set of 59 tasks was based
solely on the feasibility of conversion to our observation and action format, and not based on model
performance. Below we offer further details.

Several tasks in MiniWob++ feature animated elements. These tasks can require sampling ob-
servations in a real-time manner in order to capture the information needed to select the correct
action. Also, the effects of an action may be delayed and therefore not captured by an observation
sampled immediately after the action has executed. MiniWob++ provides a -nodelay version
for several tasks which removes such animations. We train and evaluate on the -nodelay ver-
sion of these tasks (choose-date, click-collapsible-2, click-collapsible, click-pie,
use-autocomplete). We exclude choose-date-easy and choose-date-medium which offer
simpler versions of choose-date but do not have a corresponding -nodelay version. Addition-
ally, we exclude chase-circle, drag-cube, moving-items, and simon-says, which feature
animation without a -nodelay version.

Many MiniWob++ tasks also involve vertical scrolling. In the human demonstrations,
this can be implemented using a scroll wheel, or various clicking or dragging inter-
actions with a vertical scroll bar rendered on the right side of a scrollable element.
Mapping such interactions to actions that lead to equivalent scrolling in our Selenium-
based environment is non-trivial. Therefore, for simplicity, we excluded tasks that in-
volve scrolling: book-flight, click-scroll-list, email-inbox, email-inbox-nl-turk,
read-table, read-table-2, scroll-text, scroll-text-2, search-engine, social-media,
social-media-all, social-media-some, terminal.

Demonstrations for many MiniWob++ tasks also include copying and pasting text. In many
cases, this was executed in the human demonstrations by double clicking a text string and
then clicking and dragging it into an input field. Such an interaction is not supported in
Selenium, which made it challenging to support these tasks. This led us to exclude the fol-
lowing tasks: login-user-popup, copy-paste, copy-paste-2, email-inbox-forward,
email-inbox-forward-nl, email-inbox-forward-nl-turk, email-inbox-noscroll,
email-inbox-reply, email-inbox-star-reply, enter-password, enter-text,
enter-text-dynamic, find-word, login-user, multi-layouts, multi-orderings.

Finally, we excluded several other tasks for various other reasons. The choose-list task uses
the HTML <select> tag to implement a drop-down menu, which is not supported properly by
our Selenium-based environment. The click-menu and click-menu-2 tasks require unsupported
mouseover effects. Demonstrations for the text-editor task features click and drag interactions
to highlight text which do not have the same effect when executed in Selenium. There also ap-
peared to be differences in how Selenium implemented the number input field for guess-number.
Finally, we excluded several tasks due to low demonstration conversion success rates (focus-text,
focus-text-2, use-spinner). Upon further investigation, this was due to episodes completing im-
mediately after a “pointer down” event without a complete click for focus-text and focus-text-2,
and due to frequent double clicking for use-spinner.

A.2 MiniWob++ Rendering Differences

There are differences between the rendering of observations in the human demonstrations from
Humphreys et al. (2022) and the rendering of environment state in our Selenium-based environment.
We show an example in Figure 5, which shows subtle differences, e.g. in font style and in element
sizes and positions.

13



Figure 5: Comparison of differences between the screenshots of the human demonstrations for MiniWob++
from Humphreys et al. (2022) (right) with how the same environment state is rendered in our Selenium-based
environment (left).

B Additional Technical Details

B.1 Beam Search

As mentioned in §3, we use beam search over tokens in the text decoder to produce a set of top-k
actions for a given state, along with their approximate probabilities. We refer to these as approximate
probabilities because they are subject to a length normalization factor (Wu et al., 2016) of 0.6 during
beam search, following Raffel et al. (2020). For MiniWob and WebShop, our experiments used k = 8
and k = 10, respectively.

B.2 Tree Search

Here we describe the details of the tree search approach described in §3.1. We adopt Monte Carlo
Tree Search (MCTS) (Coulom, 2006), and follow prior work which has integrated MCTS with neural
networks (Silver et al., 2017; Anthony et al., 2017), which we apply to MiniWob++ environments.
We performed a minimal amount of tuning to determine an approach that yielded improvements in
mean score over the greedy policy, even for the most challenging tasks.

Problem Setting We consider an environment with states S and actions A. The reward function,
r(s), returns a scalar corresponding to the reward given for transitioning to state s ∈ S, and is
described below. MiniWob++ environments are randomly generated, but transitions are deterministic
within an environment generated by a particular random seed. The transition function, f(s, a), returns
the state resulting from taking action a ∈ A in state s ∈ S.

Surrogate reward Rather than using the raw reward directly provided by the MiniWob++ environ-
ment, we consider a surrogate reward: r(s) = αs+ rt(s), where αs provides a small negative reward
that encourages shorter trajectories without unnecessary actions. rt(s) is the raw reward from the
MiniWob++ environment if s is a terminal state and the raw reward is > 0.8, or 0 otherwise. We use
αS = − 1

30 . As all tasks can be completed within 30 steps, this is small enough to ensure a positive
reward is possible for all tasks. Additionally, the penalty is small enough such that in practice the
agent should not be incentivized to sacrifice raw reward to reduce the number of steps taken.

Value network The value function vπ(s) for a given policy π is the expected future rewards from
state s if actions are selected according to policy π. The optimal value function, v∗(s), is the expected
future rewards if optimal actions are chosen. We attempt to learn an approximation of this function,
v̂φ(s) ≈ v∗(s), parameterized as a PIX2STRUCT-initialized model with parameters φ, which we refer
to as the value network. The model is trained on transitions from the human demonstrations, which
demonstrate close to optimal behavior in many cases. For every state in the human demonstrations,
we compute the actual future rewards for the given episode, according to the surrogate reward. We
map these future rewards to discrete bins and represent them as integers in the PIX2STRUCT decoder.
At inference time, we approximate the mean of the distribution over these discrete bins by considering
the top-n predictions from the model using beam search (with n = 3), weighted proportional to their
respective probabilities.
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Policy network For consistency with prior work, we will refer to the PIX2STRUCT model tuned to
generate actions (i.e. PIX2ACT) as the policy network, with parameters θ. The greedy policy πθ(s)
selects the action a with the highest approximate probability pθ(a|s) in the top-k beam (see §B.1),
subject to the conditions described in §3.

Search policy We can use lookahead search to implement a policy, π∗θ(s), which leverages interac-
tions with the environment (f(s, a) and r(s)) to select actions in a more optimal way than the greedy
policy πθ(s). Both the policy network and value network are used to constrain and prioritize the
search.

MCTS performs K rounds of traversing a search tree with nodes corresponding to states, and edges
corresponding to actions. Due to the computational cost of the policy and value networks, we
use a modest number of rounds, K = 16, for our experiments. The search tree is initialized with
a single root node for state s. Each round starts at s and traverses the tree. At each step t of a
given round, an action at is selected for state st, where at = maxaQ(st, a) + U(st, a). Q(st, a)
is an average reward over all rounds that have traversed the associated edge. It is based on actual
accumulated rewards during tree traversal and the value estimates of leaf states (described below).

U(st, a) = c∗pθ(a|s)∗
√
N(st)

1+n(st,a)
is a term that encourages exploration, where n(st, a) is the number

of times action a has been selected from state st, N(st) is the total number of times state st has been
visited, and c is a scalar hyperparameter that we set to 0.1. Following Silver et al. (2017), we use
the policy network to bias this exploration term. To constrain the search, we only consider the top-k
actions according to the policy network, where k = 8 in our experiments.

If we select an action at for state st which has never been previously selected from st, then the
simulation ends and we add a new leaf state, sL = f(st, a), to the search tree. If sL is not a
terminal state, then we estimate its value (i.e. future returns) using both the value network and a
rollout with the greedy policy. Specifically, following Silver et al. (2017), we estimate its value as
λ ∗ v̂φ(sL) + (1 − λ) ∗ vπθ (sL) where vπθ (sL) is equal to the actual returns from following the
policy πθ starting at sL for a maximum of 20 steps, with actual returns clipped to a minimum value
of 0. Is there λ is a mixing parameter that we set to 0.1. For challenging environments, rollouts may
be unlikely to find a terminal state with positive reward, and in such cases rollouts may not be very
informative. On the other hand, the value network can provide poor value estimates for certain states,
especially if they are not well represented in the human demonstrations. By combining both methods
we aim to provide a better approximation of the value of leaf states. Returns are propagated up the
tree to each parent s′ to update Q(s′, a). As Q(sL, a) is undefined prior to selecting a from sL for
the first time, we initialize Q(sL, a) for each action to be equal to the initial value estimate of sL plus
αs.

To understand the impact of rollouts and value estimates using the value network, in Table 3 we
compare mean scores over 12 challenging MiniWob++ tasks for different values of λ: 0 (rollout
only), 0.1 (both rollout and value network), and 1 (value network only). We also include the mean
score using the greedy policy for reference. These results use the policy network and value network
trained on the human demonstrations. The results show that using a combination of rollouts and the
value network gives the best results. The value network is primarily useful for challenging tasks that
require longer trajectories, such as number-checkboxes, relative to using rollouts only.

Greedy Policy λ = 0 (rollout only) λ = 0.1 λ = 1 (value network only)

28.8 74.2 78.3 57.4

Table 3: Mean scores for different policies over 12 challenging MiniWob++ tasks.

Once we have completed K rounds, π∗θ(s) selects the most visited action a for state s, and we begin
the process again at the subsequent state. We reuse the search tree for subsequent time steps for
efficiency, so we require only K − n(s, a) additional rounds for the subsequent state.

Policy improvement We can sample trajectories with π∗θ , then update θ by training πθ(s) to
approximate π∗θ(s) for each s in the sampled trajectories. This then also improves π∗θ(s), as θ informs
how the search space is constrained and prioritized. Therefore, we can continue to iteratively improve
πθ(s). To produce these trajectories, we randomly sample MiniWob++ tasks and seeds, and select
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actions according to π∗θ . We then filter trajectories where the raw reward is < 0.8. We then tune θ on
these new trajectories. For simplicity, we keep the value network (i.e. φ) fixed.

We initially found that tuning on trajectories from MCTS could be unstable, leading to an early loss
spike. To resolve this, we slightly decreased the learning rate (from 1e− 3 to 5e− 4) and increased
the number of warmup steps (from 1000 to 4000) relative to the hyperparameters used for behavioral
cloning.

B.3 Compute Details

We fine-tuned models using 64 Google Cloud TPU v3 cores.

C Additional Results

C.1 Variance Estimates

We evaluated results for MiniWob++ based on 100 randomly selected seeds for each of the 59 tasks.
To understand how results vary depending on which 100 seeds per task are used for evaluation, we
ran 3 trials with different evaluation seeds for the strongest PIX2ACT model reported in Table 3,
yielding mean scores of 96.2, 96.4, and 96.1; the standard deviation across these trials was 0.15. For
WebShop, there is a standard test set consisting of 500 instances, so selecting seeds for evaluation is
not necessary.

C.2 MiniWob++ Results Per Task

We show the performance of PIX2ACT (ours) on each of the 59 MiniWob++ tasks we study, compared
to other approaches, in Table 4. We compare with human crowdworker performance reported by
Humphreys et al. (2022), CC-Net (Humphreys et al., 2022), DOM-Q-Net (Jia et al., 2019), DOMNET
with workflow-guided execution (Liu et al., 2018), QWeb (Gur et al., 2018), RCI (Kim et al., 2023),
WebN-T5-3B (Gur et al., 2022), and WebGUM (Furuta et al., 2023a). We also report scores for
PIX2ACT and CC-Net with behavioral cloning (BC) only. We do not include scores for GlobalCNN
(Shi et al., 2017), which reported only human normalized success rates. Other than Humphreys et al.
(2022), prior work has primarily reported success rate (i.e. the percentage of episodes with positive
rewards), which can be equivalently mapped to the scores we report for tasks without partial rewards.
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Task Ours Ours (BC) Human CC-Net CC-Net (BC) DOMNET DOM-Q-Net QWeb RCI WebN-T5 WebGUM

bisect-angle 96 32 92 97 29 — — — — — —
choose-date 79 6 97 97 12 0 100 — — 0 13
circle-center 96 52 96 97 36 — — — — — —
click-button 99 32 98 100 78 100 100 100 100 100 100
click-button-sequence 99 100 94 100 47 100 100 — 100 100 100
click-checkboxes 100 99 97 98 32 100 100 — 100 96 100
click-checkboxes-large 99 100 87 71 0 84 — — 94 22 99
click-checkboxes-soft 61 91 73 95 4 94 — — 72 54 98
click-checkboxes-transfer 100 76 98 99 36 64 — — 100 63 99
click-collapsible-2 97 31 97 98 17 99 — — 62 0 95
click-collapsible 94 80 99 100 81 100 — 100 100 0 98
click-color 99 88 97 100 82 100 — — 100 27 34
click-dialog 100 12 100 100 95 100 100 100 100 100 100
click-dialog-2 100 73 99 100 88 100 — — 100 24 43
click-link 98 86 99 99 59 100 100 100 100 100 100
click-option 100 0 99 99 21 100 100 — 100 87 100
click-pie 99 81 98 97 15 32 — 100 — 51 99
click-shades 99 76 91 100 4 99 — — 100 0 0
click-shape 94 19 88 95 11 64 — — 98 53 72
click-tab 100 54 99 100 95 100 100 100 100 74 100
click-tab-2 98 42 97 98 27 98 100 — 74 18 95
click-tab-2-easy 99 77 99 99 61 — — — — — —
click-tab-2-hard 97 0 96 98 19 — — — 76 12 95
click-tab-2-medium 100 7 97 99 54 — — — — — —
click-test 100 100 100 100 100 100 100 — 100 100 100
click-test-2 100 100 99 100 95 100 100 — 100 100 100
click-test-transfer 100 100 99 100 94 — — — — — —
click-widget 100 87 83 100 56 93 100 — 98 100 100
count-shape 70 0 82 85 21 76 — — 40 41 68
count-sides 100 38 98 100 74 — — — — — —
drag-box 99 100 99 100 61 — — — — — —
drag-item 100 85 98 100 61 — — — — — —
drag-items 100 64 93 99 13 — — — — — —
drag-items-grid 89 60 87 98 5 — — — — — —
drag-shapes 98 96 96 99 26 — — — — — —
drag-sort-numbers 95 8 92 97 11 — — — — — —
email-inbox-delete 100 99 99 100 22 — 100 — — — —
email-inbox-important 100 99 99 100 30 — — — — — —
enter-date 100 59 97 100 2 96 — 100 96 0 100
enter-text-2 97 100 91 98 4 — — — — — —
enter-time 100 78 98 97 4 90 — — 100 0 0
find-midpoint 96 74 94 97 35 — — — — — —
grid-coordinate 92 97 87 100 66 100 — — 100 49 100
identify-shape 100 94 98 100 68 100 — — 76 88 100
navigate-tree 99 7 98 99 32 99 100 100 86 91 100
number-checkboxes 84 26 96 99 0 — — — — — —
resize-textarea 99 100 94 100 27 — — — — — —
right-angle 97 100 87 98 26 — — — — — —
simple-algebra 100 99 86 75 3 — — — 100 — —
simple-arithmetic 100 67 96 86 38 — — — — — —
text-transform 92 91 86 60 19 — — — 80 — —
tic-tac-toe 83 76 71 83 32 47 — — 56 48 56
unicode-test 100 64 99 100 86 — — — — — —
use-autocomplete 99 95 98 100 7 98 — — 58 22 98
use-colorwheel 97 98 90 98 68 — — — — — —
use-colorwheel-2 95 100 94 95 38 — — — — — —
use-slider 92 69 98 91 18 — — — — — —
use-slider-2 100 9 97 95 3 — — — — — —
visual-addition 100 68 97 99 36 — — — — — —

average 96.2 66.5 94.3 96.3 38.7 — — — — — —

Table 4: Mean scores across 59 MiniWob++ tasks.
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