
A Omitted expressions

Derivation of interim belief update. Given user consent decisions, the agent updates the prior µ to
form interim beliefs as follows. For a user i who provided consent (xi = 1), with its revealed cookie
�i = ', the interim belief µ̃i,0 2 �(⇥) is given elementwise by

µ̃i,0(#) = P(✓i = # | xi = 1,�i = ')

=
P(xi = 1 | �i = ', ✓i = #)P(�i = ', ✓i = #)

P(xi = 1,�i = ')

=
P (xi = 1 | ✓i = #)p(�i = ', ✓i = #)P
#0 P(xi = 1 | ✓i = #0)P(�i = ', ✓i = #0)

=
q#µ(',#)P
#0 q#0µ(',#0)

.

Similarly, for a user i who did not provide consent (xi = 0), its cookie is not revealed and thus
interim beliefs are given by

µ̃i,0(#) = P(✓i = # | xi = 0)

=
P(xi = 0 | ✓i = #)P(✓i = #)

P(xi = 0)

=
P(xi = 0 | ✓i = #)

P
' P(�i = ', ✓i = #)

P
#0 P(xi = 0 | ✓i = #0)

P
'0 P(�i = '0, ✓i = #0)

=
(1� q#)

P
' µ(',#)

P
#0(1� q#0)

P
'0 µ('0,#0)

.

Cohort belief update. Given a set of cohort beliefs across users µ = (µ1, . . . , µn) and a set of
recommendation-response pairs L, the agent forms updated beliefs µ0 = (µ0

1, . . . , µ
0
n) via a Bayesian

update, µ0 = f(µ,L). This update is carried out independently for each user i. Let µi denote the
agent’s current belief on user i’ cohort ✓i, and denote Li = {(ai, ci,a)} as the pairs that correspond to
user i. The updated belief µ0

i is given by µ0
i = (µ0

i(✓
1), . . . , µ0

i(✓
d)) = fi(µi,Li) where each µ0

i(#)
is given by

µ0
i(#) = P(✓i = # | Li)

=

Q
(ai,ci,a)2Li

P(Ci,a = ci,a | Ai = ai, ✓i = #)P(✓i = #)
P

#0
Q

(ai,ci,a)2Li
P(Ci,a = ci,a | Ai = ai, ✓i = #0)P(✓i = #0)

=

Q
(ai,ci,a)2L1

i
p̄i,ai(#)

Q
(ai,ci,a)2L0

i
(1� p̄i,ai(#))µi(#)

P
#0
Q

(ai,ci,a)2L1
i
p̄i,ai(#

0)
Q

(ai,ci,a)2L0
i
(1� p̄i,ai(#

0))µi(#0)

where L1
i (resp. L0

i ) are the responses where the user clicked (resp. did not click) on the recommen-
dation and p̄i,a(#) is the expected click probability given # defined as

p̄i,a(#) = E↵i⇠LogNormal(⇢#,�2
#)
[pi,a(↵i)]

where the click probability pi,a from (1) has been written as pi,a(↵i) to make the dependence on user
i’s topic affinities explicit.

Confidence weights. The confidence weights w̄i,a,t in (2) are computed as the expected binomial
probability for seeing the current response counts ri,a,t given the agent’s current belief on user i’s
cohort #i, i.e., w̄i,a,t = E#i⇠µi,t [pt(Ii,a,t, ri,a,t,#i)]. The binomial probability pt(Ii,a,t, ri,a,t,#i) is
defined as

pt(Ii,a,t, ri,a,t,#i) =

✓
Ii,a,t
ri,a,t

◆
p̄i,a(#i)

ri,a,t(1� p̄i,a(#i))
Ii,a,t�ri,a,t

where Ii,a,t is the current impression count for user-ad pair (i, a), ri,a,t is the current click click for
(i, a), and p̄i,a(#i) = E↵i⇠LogNormal(⇢#i

,�2
#i

)[pi,a(↵i)] is the expected click probability.
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B Recommendation procedure

Algorithm 1: Recommendation procedure.

Input parameters. (n, l,m,⇥,�, T , {⇢✓,�✓}, u0, {q✓}, µ, k,�, ",L0, Tb, T )

Initialize users. For each user i 2 [n], sample:
• cookie-cohort pairs (�i, ✓i) ⇠ µ

• topic affinities ↵i ⇠ LogNormal(⇢✓i ,�2
✓i
)

• consent decision xi ⇠ Bernoulli(q✓i)

Form interim beliefs. For each user i 2 [n]:
if xi = 1 then // user provided consent

µ̃i(#) q#µ(�i,#)P
#0 q#0µ(�i,#0) , # 2 ⇥

else // user withheld consent

µ̃i(#) 
(1�q#)

P
' µ(',#)P

#0 (1�q#0 )
P

'0 µ('0,#0) , # 2 ⇥

end

Offline responses. Form priors using L0: µi,0  f(µ̃i,L0), i 2 [n]

Online recommendations.
for t = 1, . . . , T do

Define current ad pool At by sampling l items uniformly without replacement from T
if mod (t, Tb) = 0 then // retraining step

Update cohort beliefs: µi,t  f(µi,t�1,Lt \ Lt�Tb), i 2 [n]
Compute weights: w̄i,a,t  E#i⇠µi,t [pt(ri,a,t,#i)], i 2 [n]
Update factor estimates:

(ût, v̂t) argmin(u,v)2U⇥V

P
(ai,ci,a)2Lt

w̄i,a,t(u>
i va � ri,a,t)2+

�

✓P
i2[n] kuik2 +

P
a2[m] kvak2

◆�

else
Propagate cohort beliefs: µt  µt�1

Propagate factor estimates: (ût, v̂t) (ût�1, v̂t�1)
end
Recommend ads: for each i 2 [n], recommend at ai,t via

ai,t =

⇢
argmaxa2At

û>
i,tv̂a,t w.p. 1� "

a ⇠ U(At) w.p. "

Append responses: Lt+1  Lt [ {ai,t, ca,i,t}
end
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C Simulator and experiments

Our simulator was built upon RecSim (21) (source code at https://github.com/emiehling/
cookie-consent/). The high-level architecture of our simulator is illustrated in Fig. 1 of Section 4.
Additional details (with references to objects in the source code) are provided below.

Advertisement and user samplers. The advertisement sampler object (AdvertisementSampler)
defines the distribution of each ad feature, here assumed to simply be the ad’s topic. Similarly, the
user sampler object (UserStateSampler) defines the distribution of each user feature, described by
the joint cookie-cohort prior, the opt-in distribution, and the statistics of the user’s topic affinities. The
ad sampler and user sampler objects are used to define a gym environment for the recommendation
procedure (via MultiUserEnvironment and RecSimGymEnv). Ads are resampled in each round
whereas users remain fixed for the duration of the episode.

Users and the recommender agent. Each user is described by the class RSUserModel. This class
contains the user’s choice model, i.e., the logit model dictating the binary click decision given the
recommended ad (see the method simulate_response).

Given the collections of ads and users, the recommender agent makes recommendations according to
an "-greedy bandit (see the pseudocode in Section B).

Retraining consists of first updating the cohort beliefs (via the methods update_cohort_beliefs
and get_click_probabilities, see Appendix A for the expressions), updating weights w̄i,a,t,
and recomputing the matrix factor estimates (via get_estimated_factors, see (2)). Estimation is
carried out via stochastic gradient descent with a learning rate of 0.01, regularization weight of 0.01,
and a stopping threshold on the mean-squared error of "thresh = 0.001. Latent factors are assumed to
be of dimension k = 50.

Experimental setup. Simulations were run in Python 3.8 on an Intel(R) Xeon(R) CPU E5-2667
v2 (3.30GHz). Unless otherwise stated, baseline parameters of the simulation environment were as
follows: n = 1000 users, m = 200 ads, ad candidate size l = 50, batch size Tb = 1, offline response
set L0 = ?, exploration probability " = 0.1, and binary cookie and cohort spaces. Simulations were
averaged over 500 runs/episodes.

The experimental setup can be extended in a variety of directions to investigate additional interesting
questions. One direction is to extend the feature description of the ads (beyond topic) to include
features that reflect ad quality and location. This would enable studying how the recommender
system treats minority populations (compared to majority populations). Additionally, augmenting the
simulator with the ability to handle a changing user pool would allow for analysis of the cold start
problem.
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D Sensitivity analyses

Sensitivity analyses on cohort errors were carried out by independently varying the prior µ, batch size
Tb, offline response set L0, and topic affinity means (⇢0, ⇢1) with fixed parameters n = 200 users,
m = 200 topics, ad pool size l = 50, latent factor dimension k = 50, and |⇥| = |�| = 2. Plots
illustrate error means and standard deviations (red: ✓ = 0, blue ✓ = 1, solid: consent group, dashed:
non-consent group) over 50 episodes. Baseline parameters are:

µ =


0.4 0.1
0.1 0.4

�
, Tb = 1, L0 = ?, (⇢0/m, ⇢1/m) = (0.3, 0.7)

Prior. The impact of the prior µ was studied in three cases dictated by the degree of informativeness
of the cookie for inferring the cohort.

Partially informative: µ =


0.4 0.1
0.1 0.4

�

(q0, q1) = (0.25, 0.25) (q0, q1) = (0.25, 0.5) (q0, q1) = (0.25, 0.75)

Fully informative: µ =


0.5 0
0 0.5

�

(q0, q1) = (0.25, 0.25) (q0, q1) = (0.25, 0.5) (q0, q1) = (0.25, 0.75)

Uninformative: µ =


0.25 0.25
0.25 0.25

�

(q0, q1) = (0.25, 0.25) (q0, q1) = (0.25, 0.5) (q0, q1) = (0.25, 0.75)
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For a partially informative prior (any µ that does not have identical rows), knowledge of a user’s
cookie partially reveals the user’s cohort. The resulting cohort errors are consistent with Fig. 2 of
Section 5.1. For the fully informative prior, the agent is completely certain of users’ cohorts for
users who opted-in (the agree group), but still possesses uncertainty for users who did not opt-in (the
disagree group). Lastly, for the uninformative prior, revelation of a user’s cookie does not inform the
user’s cohort (as the likelihoods of seeing cookie values are identical across cohorts) and the agent
must infer cohorts solely from differences in response behavior.

Batch size. The batch size, Tb, dictates how many responses to collect from each user before
retraining. Values for the batch size were varied in the range Tb 2 {1, 2, 10}.

Tb = 1:

(q0, q1) = (0.25, 0.25) (q0, q1) = (0.25, 0.5) (q0, q1) = (0.25, 0.75)

Tb = 2:

(q0, q1) = (0.25, 0.25) (q0, q1) = (0.25, 0.5) (q0, q1) = (0.25, 0.75)

Tb = 10:

(q0, q1) = (0.25, 0.25) (q0, q1) = (0.25, 0.5) (q0, q1) = (0.25, 0.75)

Intuitively, for the same number of observations, cohort estimation errors are the same across various
batch sizes (e.g., updates may be less frequent but they contain more data). However, waiting until a
batch update (Tb > 1) results in more interactions where the users face greater disparate estimation
errors (compared to the Tb = 1 case).

5



Size of offline response set. The offline response set, L0, is a set of recommendation-responses
that are available before the online recommendation process. Recommendations in the offline set,
L0, were generated uniformly at random with responses generated by the users’ choice models.
Simulations were run for |L0| = {0, 1, 5}, differing in the number of offline responses assumed
available from each user.

|L0| = 0:

(q0, q1) = (0.25, 0.25) (q0, q1) = (0.25, 0.5) (q0, q1) = (0.25, 0.75)

|L0| = 1:

(q0, q1) = (0.25, 0.25) (q0, q1) = (0.25, 0.5) (q0, q1) = (0.25, 0.75)

|L0| = 5:

(q0, q1) = (0.25, 0.25) (q0, q1) = (0.25, 0.5) (q0, q1) = (0.25, 0.75)

The impact of the offline response set does not appear to have a significant effect on the evolution of
the cohort errors.
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Similarity of topic affinities. The sensitivity to similarity of topic affinities was studied by increasing
similarities of the synthetic affinities via means (normalized by topic count m) (⇢0/m, ⇢1/m) 2
{(0.3, 0.7), (0.4, 0.6), (0.5, 0.5)}.

(⇢0/m, ⇢1/m) = (0.3, 0.7):

(q0, q1) = (0.25, 0.25) (q0, q1) = (0.25, 0.5) (q0, q1) = (0.25, 0.75)

(⇢0/m, ⇢1/m) = (0.4, 0.6):

(q0, q1) = (0.25, 0.25) (q0, q1) = (0.25, 0.5) (q0, q1) = (0.25, 0.75)

(⇢0/m, ⇢1/m) = (0.5, 0.5):

(q0, q1) = (0.25, 0.25) (q0, q1) = (0.25, 0.5) (q0, q1) = (0.25, 0.75)

The agent’s ability to distinguish users based on their responses depends on the similarities of affinities
across users in different cohorts. Intuitively, as the topic affinities across cohorts become more similar,
the agent requires more responses to reach the same level of estimation error (since users from
different cohorts behave more similarity as topic similarity grows). The extreme case of identical
statistics of users’ affinities across cohorts ((⇢0/m, ⇢1/m) = (0.5, 0.5)) results in the agent being
unable to resolve any uncertainty over users’ cohorts (since user responses are uninformative for their
cohort).
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