
Appendix

A Extended Results & Architecture Details

A.1 Model Details

Model Size Layers Heads Hidden Dim. Max. Learning Rate Batch Size (β1, β2)

410M 24 16 1024 1.2 x 10−4 256 (0.9,0.95)
6B 28 32 4096 1.2 x 10−4 256 (0.9,0.95)
13B 40 40 5120 1.2 x 10−4 256 (0.9,0.95)
52B 52 64 8192 1.2 x 10−4 256 (0.9,0.95)

Optimal pre-training hyperparameters for PTQ based on results in Section 4

Weight decay Gradient clipping Dropout Half-precision data type

0.1 1.0 0 bf16

Table 2: Model architecture and training details

A.2 Evaluation Suite

Below is a detailed breakdown of the evaluation suite we evaluate our models with.

Benchmark Task Type Evaluation Metric

Copa (test set)(Wang et al., 2019) MC Completion MC Accuracy
Copa100 (dev set) (Wang et al., 2019) MC Completion MC Accuracy
HellaSwag (Zellers et al., 2019) MC Completion MC Accuracy
PIQAValidation (Bisk et al., 2020) MC Completion MC Accuracy
StoryCloze (Mostafazadeh et al., 2016) MC Completion MC Accuracy
WinoGrande (Sakaguchi et al., 2019) MC Co-referencing MC Accuracy
Paralex (Fader et al., 2013) Generation Likelihood (bytes)
LAMBADA (Paperno et al., 2016) Generation Exact String Match Accuracy

Table 3: An Overview of the 8 tasks we benchmark the zero-shot downstream performance of trained
models. QA and MC denotes Question Answering, and Multiple-choice respectively.

A.3 Task Result Breakdown

Model Size Data type PIQA HellaSwag WinoGrande LAMBADA Copa Copa100 StoryCloze Paralex Average

52B
FP16 83.19 82.48 70.01 75.47 79.40 81.00 85.87 61.05 77.31
W8A8 83.20 82.40 70.00 75.50 79.40 82.00 85.50 61.10 77.39
W4 80.20 72.22 66.30 66.85 78.20 83.00 82.56 60.43 73.72

13B
FP16 79.54 75.26 62.27 70.81 76.00 76.00 82.11 60.68 72.83
W8A8 79.20 74.60 62.90 69.90 76.00 75.00 82.20 60.90 72.59
W4 76.66 60.59 57.30 46.05 73.60 76.00 77.40 59.74 65.92

6B
FP16 79.50 74.20 61.20 70.50 75.40 79.00 81.50 60.10 72.67
W8A8 79.50 73.70 61.40 70.00 74.60 77.00 81.00 60.20 72.18
W4 76.93 62.92 56.43 55.40 74.00 72.00 77.21 59.01 66.74

410M
FP16 70.40 46.90 50.80 48.80 65.40 65.00 70.50 57.10 59.36
W8A8 70.00 46.80 51.50 47.80 64.00 64.00 69.70 57.00 58.85
W4 67.19 43.08 50.59 37.71 62.80 64.00 67.47 54.60 55.93

Table 4: Our fully trained models with hyper-parameters outlined in Table 2 show minimal PTQ
degradation.

18

D
at

a
ty

pe
PI

Q
A

H
el

la
Sw

ag
W

in
oG

ra
nd

e
L

A
M

BA
D

A
C

op
a

C
op

a1
00

St
or

yC
lo

ze
Pa

ra
le

x
Av

er
ag

e
Av

er
ag

e
%

D
iff

wd
=0

.1
(g

c=
no

ne
)

FP
16

75
.3

5
60

.5
8

55
.4

1
56

.5
9

73
.2

0
71

.0
0

77
.0

2
58

.7
5

65
.9

9
-0

.0
9

IN
T

8
75

.3
5

60
.3

6
55

.2
5

57
.6

9
73

.2
0

70
.0

0
76

.7
0

58
.6

2
65

.9
0

wd
=0

.0
1

(g
c=

no
ne

)
FP

16
75

.0
3

60
.5

5
55

.2
5

59
.0

1
72

.0
0

69
.0

0
77

.5
3

58
.9

9
65

.9
2

-0
.2

6
IN

T
8

74
.4

8
60

.1
0

55
.4

9
60

.1
4

72
.4

0
67

.0
0

77
.2

1
58

.8
7

65
.7

1

wd
=0

.0
01

(g
c=

no
ne

)
FP

16
75

.9
0

60
.7

1
55

.8
0

58
.1

6
73

.0
0

71
.0

0
76

.6
4

58
.5

0
66

.2
1

-1
.3

6
IN

T
8

75
.6

3
60

.5
2

54
.7

8
55

.1
5

71
.8

0
70

.0
0

77
.2

1
57

.9
6

65
.3

8

dt
yp

e=
bf

16
(w

d=
0.

1)
FP

16
75

.6
8

60
.9

2
55

.9
6

57
.6

0
71

.4
0

71
.0

0
75

.8
1

59
.0

5
65

.9
3

0.
32

IN
T

8
75

.9
5

60
.7

0
56

.8
3

58
.3

2
71

.4
0

71
.0

0
75

.6
2

59
.0

6
66

.1
1

dt
yp

e=
fp

16
(w

d=
0.

1)
FP

16
73

.8
3

59
.9

6
55

.9
6

56
.1

4
72

.0
0

67
.0

0
75

.9
4

58
.3

3
64

.8
9

-0
.7

6
IN

T
8

74
.1

6
59

.7
5

55
.6

4
56

.0
5

71
.6

0
64

.0
0

75
.8

8
58

.1
2

64
.4

0

dt
yp

e=
bf

16
(w

d=
0.

01
)

FP
16

74
.9

7
60

.7
9

55
.4

9
57

.5
2

72
.0

0
68

.0
0

75
.8

8
58

.7
4

65
.4

2
0.

77
IN

T
8

75
.0

8
60

.5
1

55
.8

8
59

.3
1

72
.6

0
69

.0
0

76
.0

0
58

.8
4

65
.9

0

dt
yp

e=
fp

16
(w

d=
0.

01
)

FP
16

74
.8

1
58

.1
1

54
.9

3
57

.3
1

70
.2

0
71

.0
0

74
.6

7
58

.2
5

64
.9

1
-1

.7
3

IN
T

8
73

.6
1

56
.9

0
54

.2
2

53
.0

2
71

.6
0

69
.0

0
74

.6
7

57
.9

2
63

.8
7

gc
=1

.0
(w

d=
0.

00
1)

FP
16

74
.6

5
60

.0
3

54
.7

8
59

.0
1

71
.6

0
67

.0
0

76
.9

6
58

.9
2

65
.3

7
0.

41
IN

T
8

74
.9

2
59

.9
1

54
.6

2
59

.6
9

72
.2

0
68

.0
0

76
.9

6
58

.9
0

65
.6

5

gc
=n

on
e

(w
d=

0.
00

1)
FP

16
75

.9
0

60
.7

1
55

.8
0

58
.1

6
73

.0
0

71
.0

0
76

.6
4

58
.5

0
66

.2
1

-1
.3

6
IN

T
8

75
.6

3
60

.5
2

54
.7

8
55

.1
5

71
.8

0
70

.0
0

77
.2

1
57

.9
6

65
.3

8

dr
op

ou
t=

0.
0

FP
16

75
.6

8
60

.9
2

55
.9

6
57

.6
0

71
.4

0
71

.0
0

75
.8

1
59

.0
5

65
.9

3
0.

32
IN

T
8

75
.9

5
60

.7
0

56
.8

3
58

.3
2

71
.4

0
71

.0
0

75
.6

2
59

.0
6

66
.1

1

dr
op

ou
t=

0.
1

FP
16

74
.7

6
58

.8
7

54
.3

8
57

.2
3

71
.6

0
68

.0
0

76
.4

5
58

.3
6

64
.9

6
0.

31
IN

T
8

74
.2

7
58

.7
0

54
.8

5
58

.3
5

71
.8

0
68

.0
0

76
.9

6
58

.1
8

65
.1

4

dr
op

ou
t=

0.
4

FP
16

74
.9

2
55

.8
0

54
.7

0
58

.9
8

71
.0

0
66

.0
0

74
.0

3
57

.9
1

64
.1

7
-0

.2
7

IN
T

8
74

.7
6

55
.7

7
54

.1
4

59
.6

9
69

.4
0

66
.0

0
74

.0
9

57
.9

5
63

.9
8

dr
op

ou
t=

0.
8

FP
16

67
.7

9
30

.8
7

50
.5

1
37

.1
2

67
.0

0
65

.0
0

61
.9

4
29

.1
6

51
.1

7
-0

.5
7

IN
T

8
67

.7
9

30
.7

5
50

.1
2

36
.5

2
66

.6
0

65
.0

0
61

.7
4

28
.9

1
50

.9
3

19

B Extended Weight & Activation Analysis

B.1 Weight Distributions

0.5 0.0 0.5

102

105

block:0

0.5 0.0 0.5

102

105

block:1

0.5 0.0 0.5

102

105

block:2

0.5 0.0 0.5

102

105

block:3

0.5 0.0 0.5

102

105

block:4

0.5 0.0 0.5

102

105

block:5

0.5 0.0 0.5

102

105

block:6

0.5 0.0 0.5

102

105

block:7

0 1

102

105

block:8

0.5 0.0 0.5

102

105

block:9

0.5 0.0 0.5

102

105

block:10

0.5 0.0 0.5

102

105

block:11

0.5 0.0 0.5

102

105

block:12

0.5 0.0 0.5

102

105

block:13

0.5 0.0 0.5

102

105

block:14

0.5 0.0 0.5

102

105

block:15

0.5 0.0 0.5

102

105

block:16

0.5 0.0 0.5

102

105

block:17

0.5 0.0 0.5

102

105

block:18

0.5 0.0 0.5

102

105

block:19

0.5 0.0 0.5

102

105

block:20

0.5 0.0 0.5

102

105

block:21

0.5 0.0 0.5

102

105

block:22

0.5 0.0 0.5

102

105

block:23

0.5 0.0 0.5

102

105

block:24

0.5 0.0 0.5

102

105

block:25

0.5 0.0 0.5

102

105

block:26

0.5 0.0

102

105

block:27

dtype=bf16 (wd=0.01) dtype=fp16 (wd=0.01)

Figure 6: Weight distributions for attn-kqv-proj layers comparing fp16 and bf16 variants.

20

0.5 1.0

101

103
block:0

0.5 1.0 1.5
100

101

102

block:1

0.5 1.0 1.5

101

103 block:2

1 2

101

103
block:3

1 2

101

103
block:4

0.5 1.0 1.5
100

101

102

block:5

0.5 1.0 1.5
100

101

102

block:6

0.5 1.0 1.5

101

103 block:7

0.5 1.0 1.5

101

103
block:8

0.5 1.0
100

101

102

block:9

0.5 1.0 1.5
100

101

102

block:10

0.5 1.0 1.5
100

101

102

block:11

0.5 1.0 1.5
100

101

102

block:12

1 2
100

101

102

block:13

1 2
100

101

102

block:14

1 2
100

101

102

block:15

1 2
100

101

102

block:16

1 2
100

101

102

block:17

1 2
100

101

102

block:18

1 2
100

101

102

block:19

1 2
100

101

102

block:20

1 2
100

101

102

block:21

0.5 1.0 1.5
100

101

102

block:22

0.5 1.0 1.5
100

101

102

block:23

0.5 1.0 1.5
100

101

102

block:24

0.5 1.0 1.5
100

101

102

block:25

0.5 1.0
100

101

102

block:26

0.5 1.0
100

101

102

block:27

dtype=bf16 (wd=0.01) dtype=fp16 (wd=0.01)

Figure 7: Gain parameter distributions of the first layernorm comparing fp16 and bf16 variants.

21

0.5 0.0 0.5

102

105

block:0

0.0 0.5

102

105

block:1

0.5 0.0 0.5

102

105

block:2

0.5 0.0 0.5

102

105

block:3

0.5 0.0 0.5

102

105

block:4

0.5 0.0 0.5

102

105

block:5

0.5 0.0 0.5

102

105

block:6

0.25 0.00 0.25

102

105

block:7

0.5 0.0 0.5

102

105

block:8

0.25 0.00 0.25

102

105

block:9

0.25 0.00 0.25

102

105

block:10

0.25 0.00 0.25

102

105

block:11

0.25 0.00 0.25

102

105

block:12

0.25 0.00 0.25

102

105

block:13

0.25 0.00 0.25

102

105

block:14

0.25 0.00 0.25

102

105

block:15

0.250.00 0.25

102

105

block:16

0.0 0.5

102

105

block:17

0.0 0.5

102

105

block:18

0.250.00 0.25

102

105

block:19

0.5 0.0 0.5

102

105

block:20

0.0 0.5

102

105

block:21

0.250.00 0.25

102

105

block:22

0.25 0.00 0.25

102

105

block:23

0.5 0.0

102

105

block:24

0.25 0.00 0.25

102

105

block:25

0.25 0.00 0.25

102

105

block:26

0.25 0.00 0.25

102

105

block:27

ours_6b bloom_7.1b opt_6b

Figure 8: Weight distributions of attn-kqv-proj layers comparing our model against OPT-6B &
BLOOM-7.1B

22

0.5 1.0 1.5

101

103

block:0

0.5 1.0 1.5

101

103

block:1

0.5 1.0 1.5

101

103

block:2

0.5 1.0 1.5

101

103

block:3

0.5 1.0 1.5

101

103

block:4

0.5 1.0 1.5

101

103

block:5

0 1

101

103

block:6

0.5 1.0 1.5

101

103

block:7

0.5 1.0 1.5

101

103

block:8

0.5 1.0 1.5

101

103

block:9

0.5 1.0 1.5

101

103

block:10

0.5 1.0 1.5

101

103

block:11

0.5 1.0 1.5

101

103

block:12

0.5 1.0 1.5

101

103

block:13

0.5 1.0 1.5

101

103

block:14

0.5 1.0 1.5

101

103

block:15

0.5 1.0 1.5

101

103

block:16

0.5 1.0 1.5

101

103

block:17

0.5 1.0 1.5

101

103

block:18

0.5 1.0 1.5

101

103

block:19

0.5 1.0 1.5

101

103

block:20

0.5 1.0 1.5

101

103

block:21

0.5 1.0 1.5

101

103

block:22

0.5 1.0 1.5

101

103

block:23

0.5 1.0 1.5

101

103

block:24

0.5 1.0 1.5

101

103

block:25

0.5 1.0 1.5

101

103

block:26

0.5 1.0 1.5

101

103

block:27

ours_6b bloom_7.1b opt_6b

Figure 9: Gain parameter distributions of the first layernorm comparing our model against OPT-6B.
Note that in OPT-6B, all layernorm gain parameters across the network are set to 1.0.

23

B.2 All Layers Analysis

0.0

0.5

1.0

1.5

2.0

RM
SE

(X
,X

)

1e 5 dtype=bf16 (wd=0.01) dtype=fp16 (wd=0.01)

0.0

0.5

1.0

1.5

2.0

1 t

t

i=
1st

d(
X i

)

0.00

0.02

0.04

0.06

0.08

st
d(

g)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Network Depth
0

20

40

60

||W
|| 2

Figure 10: Input activation RMSE and token STD are higher in the fp16 variant for most
attn-kqv-proj. A similar trend exists for the first layernorm gain STD and weight spectral
norm.

0

1

2

RM
SE

(X
,X

)

1e 5 ours_6b bloom_7.1b opt_6b

0.00

0.25

0.50

0.75

1.00

1 t

t

i=
1st

d(
X i

)

0.00

0.05

0.10

0.15

st
d(

g)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Network Depth
0

10

20

||W
|| 2

Figure 11: In line with Figure 10, the less quantization robust OPT-6B model has significantly higher
RMSE(X,X̂) and average token activation STD for all attn-kqv-proj layers. Note that all gain
parameters seem to have been hard coded to 1.0 in OPT-6B.

24

B.3 Outlier analysis

We classify a feature dimension as an outlier dimension if the same dimension is classified as an
outlier across 20 random samples from the C4 validation set (Raffel et al., 2020). These samples
are fixed when experimenting with different outlier definitions. As mentioned in Section 4, we
experimented with the definition outlined in Dettmers et al. (2022) where a hidden feature dimension
is classified as outlier dimension if the activation magnitudes (denoted as α) are greater than 6.0
(α > 6) at more than 25% of layers and 6% of tokens. However, we find 0 outlier dimensions
across all of our 6B variants and fully trained models using this definition. As a result, following
the methodology outlined in Dettmers et al. (2022), we manually searched for the lowest threshold
such that only one dimension is classified as outlier in our smallest (410M) fully trained model. As
shown in Table 5, even classifying outlier dimensions using the searched threshold of 4.2 resulted in
most variants having 0 outlier dimensions. We further experimented with not fixing the threshold and
using z-score outlier detection i.e. classify a feature as a high-magnitude if α > Cσ + µ, where σ
and µ denote sample standard deviation and mean. We were not able to establish clear trends with
this method either as shown in Table 5.

Table 5: Outlier statistic using different thresholding rules Top Table: constant threshold α > 4.2
Bottom Table: adaptive threshold α > 4σtoken + µtoken

Variant #Outliers %Seq Affected %Layers Affected

{all other variants} 0 0 0
dtype=fp16 (wd=0.01) 6 68.4 65.5

ours_410M 1 25.0 26.3
ours_6B 0 0 0

dropout=0.1 2 44.0 40.5
dropout=0.4 2 44.9 42.9
dropout=0.8 1 19.2 25

wd=0.1 (gc=none) 2 28.0 39.3
wd=0.01 (gc=none) 0 0 0
wd=0.001 (gc=none) 2 34.3 34.5

dtype=bf16 (wd=0.1) 2 33.0 36.9
dtype=fp16 (wd=0.1) 2 41.1 42.9
dtype=bf16 (wd=0.01) 0 0 0
dtype=fp16 (wd=0.01) 8 66.2 64.3

ours_410M 55 88.2 86.2
ours_6B 7 65.5 56

C Extended Literature Review

The need for compression techniques that scale to large language model settings has become increas-
ingly urgent with larger and larger models (Treviso et al., 2022; Yao et al., 2023). There has been
a renewed focus on efficiency techniques (Gale et al., 2019; Ogueji et al., 2022; Ahia et al., 2021).
Quantization as a form of model compression of large language models has become increasingly
relevant as a way to minimize memory requirements and minimize compute intensity (Dettmers et al.,
2022; Xiao et al., 2022; Frantar et al., 2022; Park et al., 2022a; Kim et al.).

Model Efficiency at Inference Time Research in model compression mostly falls in the categories
of quantization techniques (Jacob et al., 2018; Courbariaux et al., 2014; Hubara et al., 2016; Gupta
et al., 2015), efforts to start with a network that is more compact with fewer parameters, layers or
computations (architecture design) (Howard et al., 2017; Iandola et al., 2016; Kumar et al., 2017),
student networks with fewer parameters that learn from a larger teacher model (model distillation)
(Hinton et al., 2015) and finally pruning by setting a subset of weights or filters to zero (Louizos
et al., 2017; Wen et al., 2016; LeCun et al., 1990; Hassibi et al., 1993a; Ström, 1997; Hassibi et al.,
1993b; See et al., 2016; Narang et al., 2017; Frantar & Alistarh, 2023; Sanh et al., 2020). Often, a

25

combination of compression methods might be applied. For example, pruning might be combined
with other efficiency-improving methods, e.g. quantization or faster search algorithms.

Quantization Techniques Quantization can be used to speed up inference and relax hardware
requirements, as has been shown for e.g., 8-bit (Quinn & Ballesteros, 2018), 4-bit (Aji & Heafield,
2020) and recently also below 3-bit quantization (Park et al., 2022a) of neural machine translation
models. Park et al. (2022a) utilize non-uniform quantization to achieve high compression ratios.
However, this method requires the use of specialized kernels for compressed (2-bit/4-bit) weights
and floating point activations and involve finding the binary representations using expensive iterative
search or QAT. Similar to Park et al. (2022a), Frantar et al. (2022) also demonstrate compression
of model parameters to 3 or 4-bit precision allowing inference off a single A100 GPU. However,
they also perform weight-only quantization limiting the speedup as the activations are kept at higher
precision (FP16).

Quantization reduces the number of bits needed to represent model weights which minimizes both the
memory and latency required to serve a model. Often, the goal is to quantize the bit representation
while preserving equivalent performance. Quantization approaches can be broadly categorized into:

1. Quantization-aware training (QAT) (Zafrir et al., 2019; Krishnamoorthi, 2018) involves
pre-training with simulated quantization, enabling parameters to adjust to lower precision
grids. This requires estimating the derivative of non-differentiable quantization operators,
performing full backpropagation throughout the entire model, and training with the entire
training dataset. However, this method can be computationally expensive, particularly for
large language models.

2. Quantization-aware finetuning (QAF) (Yao et al., 2022; Frantar et al., 2022; Zhuo et al.,
2022; Li et al., 2021; Hubara et al., 2020; Nagel et al., 2020) is a more efficient approach
that utilizes a pretrained model and a small subset of training data (i.e., hundreds of samples)
to optimize performance under quantization. By simulating quantization and optimizing a
small range of parameters at a time, no backpropagation is needed while the quantization
loss can be reduced.

3. One-shot post-training quantization (PTQ) (Xiao et al., 2022; Dettmers et al., 2022)
unlike QAT and QAF, does not involve optimization. Instead, it directly maps data from a
high precision range to a low precision range based on a hand-picked mapping function.

Given the complexities of successfully training a large language model (Zhang et al., 2022; Rae et al.,
2021), post-training quantization (PTQ) methods are extremely attractive as these techniques require
the least modification to pretrained parameters. This is the focus of our exploration in this work.

C.1 Introduction to Post-Training Integer Quantization Approaches

Below section introduces widely used quantization methods and provides context about the differences
between these methods. The quantization strategy for weights and activations can be broadly classified
into three categories:

C.1.1 Weight-only Quantization

Weight-only quantization has proven extremely effective in making large language models accessible
by enabling inference in a resource-constrained environment while maintaining the FP16 model
quality (Gerganov, 2023; Frantar et al., 2022; Zeng et al., 2022; Sheng et al., 2023). Weight-only
quantization provides improvements in latency due to a reduction in time taken for parameter fetching
from GPU global memory, however, the actual Matrix-Matrix multiplication (GEMM) operations
are carried out at higher precision in FP16 - allowing modest gains on platforms without dedicated
lower-precision GEMM operations support.

C.1.2 Weight and Activation Quantization

As large language models are scaled, progressively they become compute-bound and the improve-
ments due to weight-only quantization stagnate. However, in this regime, using efficient kernels that
leverage specialized lower-precision cores in modern GPUs to directly perform the actual Matrix-
Matrix multiplication operation at lower precision enables large latency gains - due to the increased

26

throughput of INT8 tensor cores over FP16 Tensor Cores (Nvidia). As this quantization technique
scales the best, this is our focus in this work.

To-date quantization of both the activations and weights of very large models (>6.7B parameters)
has proven challenging - leading to a large drop in performance (Dettmers et al., 2022).

C.1.3 Quantization by Mixed-Precision Decomposition

In the quantization strategies mentioned above, even though the various weights and activations might
be stored in different precisions; all the computations in a single operation are carried out at the same
precision (FP16 or INT8). In contrast, LLM.int8() (Dettmers et al., 2022) proposes to decompose
the matrix multiplication to compute a small fraction of elements at a higher precision (FP16) while
the bulk of the computations is performed at low precision (INT8). This approach has a similar
footprint to that of weight-only quantization but practical latency gains are limited or potentially
worse. While this approach has theoretical latency benefits due to the bulk of the computation being
performed at lower precision, in practice without specialized hardware (Dash et al., 2022; Dash &
Mukhopadhyay, 2020), the lack of specialized kernels on GPUs and additional kernel calls required
to ready the inputs and weights for mixed-precision computation negates the projected benefits. In
this work we focus on exploring optimization choices which mitigate quantization trade-offs for both
weight-only quantization and the far more challenging weight and activation quantization.

We benchmark end-to-end inference speed for our weight and activation quantization recipe on our
52B model for both compute-bound (large batch size, long input sequence and short generation)
and memory-bandwidth-bound (small batch size, short input sequence and long generation) use
cases (Table 6). We use standard CUDA kernels that enable INT8 matrix multiplication. Across all
settings, we find that our vector-wise PTQ approach provides a 1.4-1.5x latency speedup (or 1.4-1.5x
throughput improvement) and around 40% memory footprint reduction over half-precision inference.
We note that mixed-precision decomposition (LLM.int8()) is slightly slower than half-precision
inference (Dettmers et al., 2022). Therefore, our PTQ approach is significantly faster than LLM.int8().
Additionally, Dettmers et. al. also show that LLM.int8() leads to slower matrix multiplication
compared to vector-wise PTQ.

Table 6: Latency, throughput and memory savings of INT8 Vector-wise quantization in various input
length, batch size, and output length settings for our 52B parameter model ran on 4 A100 40GB GPUs.
Benchmarks are conducted with standard CUDA kernels that enable INT8 matrix multiplication.

Latency (ms)
Batch Size Input Length Output Length Half-Precision (fp16) baseline INT8 Vector-wise Gain

Memory-bandwidth bound
1 60 1024 31015 22151 1.40
2 60 1024 31403 22311 1.41
4 60 1024 31789 22668 1.40

Compute bound
8 1024 1 1116 766 1.46

16 1024 1 2224 1561 1.43
8 2048 1 2254 1591 1.42

Throughput (tokens generated per second)
Batch Size Input Length Output Length Half-Precision (fp16) baseline INT8 Vector-wise Gain

Memory-bandwidth bound
1 60 1024 33.0 46.2 1.40
2 60 1024 32.6 45.9 1.41
4 60 1024 32.2 45.2 1.40

Compute bound
8 1024 1 0.9 1.3 1.44

16 1024 1 0.5 0.6 1.42
8 2048 1 0.4 0.6 1.43

GPU Peak Memory (GB)
Batch Size Input Length Output Length Half-Precision (fp16) baseline INT8 Vector-wise Reduction

Memory-bandwidth bound
1 60 1024 29.1 17.0 42%
2 60 1024 29.7 17.6 41%
4 60 1024 30.8 18.7 39%

Compute bound
8 1024 1 32.8 20.6 37%

16 1024 1 36.8 24.6 33%
8 2048 1 36.7 24.6 33%

27

	Introduction
	Background
	Methodology and Experimental Setup
	Methodology
	Experimental Setup

	Results and Discussion
	Weight and Activation Analysis
	Related Work
	Conclusion
	Acknowledgements
	Extended Results & Architecture Details
	Model Details
	Evaluation Suite
	Task Result Breakdown

	Extended Weight & Activation Analysis
	Weight Distributions
	All Layers Analysis
	Outlier analysis

	Extended Literature Review
	Introduction to Post-Training Integer Quantization Approaches
	Weight-only Quantization
	Weight and Activation Quantization
	Quantization by Mixed-Precision Decomposition

