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Abstract

In this paper, we present a novel robust framework for low-level vision tasks,
including denoising, object removal, frame interpolation, and super-resolution,
that does not require any external training data corpus. Our proposed approach
directly learns the weights of neural modules by optimizing over the corrupted
test sequence, leveraging the spatio-temporal coherence and internal statistics of
videos. Furthermore, we introduce a novel spatial pyramid loss that leverages the
property of spatio-temporal patch recurrence in a video across the different scales
of the video. This loss enhances robustness to unstructured noise in both the spatial
and temporal domains. This further results in our framework being highly robust
to degradation in input frames and yields state-of-the-art results on downstream
tasks such as denoising, object removal, and frame interpolation. To validate the
effectiveness of our approach, we conduct qualitative and quantitative evaluations
on standard video datasets such as DAVIS, UCF-101, and VIMEO90K-T.1

1 Introduction

Recently, video enhancement [54, 42, 43, 1, 12, 18, 49, 32] and editing [56, 11, 24, 50] tasks have
attracted much attention in the computer vision community. Most of these tasks are ill-posed
problems, i.e., they do not have a unique solution. For example, enhancement tasks such as video
frame interpolation can have infinitely many plausible solutions. Therefore, the aim is to find a
visually realistic solution coherent in both the space and time domain for such tasks.

Priors play a critical role in finding reasonable solutions to these ill-posed problems by learning
spatio-temporal constraints. In recent years, deep learning has emerged as the most promising
technique [54, 13, 39, 38, 4, 2, 43, 49, 22] for leveraging data to create priors that enforce these
spatio-temporal constraints. However, the generalization of these data-driven priors mainly relies on
data distribution at training time.

In the current era of short video platforms such as TikTok, Instagram reels, YouTube shorts, and Snap,
millions of new artistic elements (e.g., new filters, trends, etc.) are introduced daily. This trend causes
substantial variations between the train and the test sets, which results in diminished effectiveness of
the learned prior. Moreover, frequent fine-tuning or frequent training to improve the efficacy of the
prior significantly hamper the scalability of such models.

1Navigate to the webpage for video results.
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Furthermore, the existing video enhancement approaches assume clean and sharp input frames, which
may not always be the case due to factors like bad lighting conditions during the scene capture
or video compression for internet transmission. These factors introduce noise in the clean video
signal, and feeding such noisy input frames to video enhancement approaches results in suboptimal
enhancements.

To address these challenges, we propose a novel Video Dynamics Prior (VDP) that leverages the
internal statistics of a query video sequence to perform video-specific enhancement tasks. By utilizing
a video’s internal statistics, our approach eliminates the need for curated training data. Thus, removing
the constraints with regard to encountering test time variations. Additionally, we introduce a spatial
pyramid loss that enhances robustness in the temporal domain, enabling our method to handle noisy
input frames encountered at test time.

VDP utilizes two fundamental properties of a video sequence: (1) Spatio-temporal patch (ST patch)
recurrence and (2) Spatio-temporal consistency. ST patch recurrence is a fundamental finding [34]
that reveals significant recurrence of small ST patches (e.g., 5x5x3 or 7x7x3) throughout a natural
video sequence. To leverage this strong prior, we employ an LSTM-Convolution-based architecture,
which is detailed in Sec. 3. Moreover, to leverage the ST patch recurrence property across scales
in a video, we introduced a novel spatial pyramid loss. In Sec. 3.5, we demonstrate that our novel
spatial pyramid loss helps the VDP model to be more robust to unstructured noise in both spatial and
temporal domains.

Further, our approach considers the next frame prediction task to initialize our recurrent architecture.
The task aims to auto-regressively predict the next frame, taking the current frame and previous frames
information as context. We leveraged architecture from such a task as it promotes the spatio-temporal
consistency in the processed video frames and models the complex temporal dynamics required
for various downstream tasks. In our approach, we first formulate a next-frame prediction model
with unknown parameters. Then depending on the downstream task, we maximize the observation
likelihood with slight modification in the objective function.

This paper presents three key contributions to the field of video processing. Firstly, we introduce a
novel inference time optimization technique that eliminates the need for training data collection to
learn neural module weights for performing tasks. Secondly, we propose a novel spatial pyramid
loss and demonstrate its effectiveness in providing robustness to spatial and temporal noise in
videos. Lastly, we showcase the superior performance of our approach in multiple downstream video
processing tasks, including video denoising, video frame interpolation, and video object removal.
Our method outperforms current baselines and exhibits robustness in case noisy frames are provided
as input for enhancement.

The rest of the paper is organized as follows. In Sec. 2, we briefly introduce the background work done
in the area of video enhancement tasks. In Sec. 3, we discuss our methodology and key components
of our architecture. Sec. 4-7, we briefly describe the video processing tasks and accompanying
modifications to the objective function for dealing with different tasks at hand. Finally, we conclude
our work in Sec. 9.

2 Related Works

Over the past decades, many research efforts have been made to increase the efficacy of video
enhancements. Traditional methods like [33, 16, 51] utilized affine-estimation based motion approach
to perform video enhancement tasks. However, these methods were very limited in their capability of
learning a good representation of videos to generalize well on various scenes. All of this changed with
the recent developments in deep learning techniques that considerably improve the representation of
videos and deliver high performance gains on video enhancement tasks.

Internal Learning. In the recent past, a considerable number of deep internal learning approaches
were put forth to perform image enhancement tasks using just a single test image [37, 46, 3, 10, 28,
36, 29, 48]. Such approaches utilize patch recurrence property in a natural image as a strong prior
to deal with inverse problems such as image denoising [46, 10, 21], super-resolution [37, 46, 29],
and object removal [46]. However, when such internal learning approaches are directly applied to
videos for enhancement tasks, it creates flickering artifacts in the processed video [55, 19]. These
artifacts arise as image-based methods fail to maintain a video’s temporal consistency, a critical
component of a video signal. Extending the deep internal-learning based approach to videos remains
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Figure 1: Model pipeline: We are given X1, . . . , Xt frames of a person exercising (depicted in
the Fig). Here, we start by sampling z0 ∼ N (0, I) as an initial latent representation. Our model
comprises two key modules: (i) the Frame Decoder Network (FDNet) and (ii) the Latent Frame
Predictor Network (LFPNet), depicted in the figure. These modules, together form the pipeline of our
VDP model, as shown in (iii). We optimize the weights of these neural modules on this specific input
sequence by doing backpropagation over the loss pertaining to the task at hand.

a challenging problem. There are very few works proposed in the area that deal with videos, and all
of these works are tailored towards a specific video enhancement task [57, 56]. In this paper, we
extend a deep internal-learning based framework to the video space that effectively explores various
video enhancement tasks such as denoising, super-resolution, frame interpolation and inpainting,
utilizing a single structure of our VDP model.

Flow Guided Methods. In the image processing tasks, most of the methods utilize the 2D CNN
modules. However, if we use such models in standalone settings, we often find that they are inept
at processing the additional temporal dimension present in a video sequence. In order to overcome
the temporal consistency problem, some researchers have opted for an optical-flow based approach
to capture the motion occurring in the videos [54, 9, 42, 26, 15, 20, 12]. Essentially, they model
the flow of the video sequences by doing explicit motion estimation. Then they perform warping
operations (motion compensation) to generate enhanced video frames. These optical-flow based
approaches have found plenty of applications in tasks such as video denoising [54, 42], video super-
resolution [54, 12, 6, 5], video object removal [11, 52], video frame interpolation [54, 2, 17, 14, 23].
However, accurate motion estimation using optical flow is inherently challenging and computationally
expensive. Therefore, deep neural networks such as RAFT [44] and SPyNet [27] are employed to
estimate optical flow. These networks rely on lots of training data to learn to predict the optical flow.
This double reliance on data by both the video enhancement approach and optical flow prediction
networks can introduce dataset biases. Further, we showcase that the flowbased models for video
super-resolution and frame interpolation tasks are not robust to noise or artifacts arising from capturing
the scene in low-lighting or bad lighting conditions. In our work, instead of explicitly performing
motion estimation and motion compensation, we utilize LSTM-Conv decoder networks represented
in Fig. 1 to capture the temporal information implicitly. Furthermore, our method is able to infer
context directly from the test video sequence itself. Thus, mitigating the problems arising from
dataset biases. Additionally, we empirically demonstrate that our approach is stable for tasks like
super-resolution and frame interpolation, even in the presence of noisy input frames sequence.

3 Model Overview

Given a video sequence as context, we perform various video-specific processing tasks on this
sequence of frames. In traditional settings, the training data is used to learn good representations that
capture the patterns in the video sequences. However, in our case of no data, we rely on a proper
choice of a deep neural network that can capture the ST patch recurrence property of a video as an
informative prior for the video processing task at hand. Our model for performing all video-specific
tasks is a combination of two modules. (1) The latent frame predictor network and (2) The frame
decoder network as depicted in Fig. 1.(iii).

3.1 Latent Frame predictor Network (LFPNet)

The task of the latent frame predictor network is to maintain the spatio-temporal consistency of the
video. It learns the dynamics of a video sequence in latent space, i.e., it models the temporal relations
between the frames in latent space. We use LSTM cells as the building block for this module as they
implicitly capture the temporal relation between the latent frames. This LFPNet module (is inspired
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by [7, 39]) g(·) : Rd → Rd, has a fully-connected layer, followed by four LSTM layers with 1024
cells each, and a final output fully-connected layer. The output fully-connected layer takes the last
hidden state from LSTM (ht+1) and outputs ẑt+1 after tanh(·) activation.

3.2 Frame Decoder Network (FDNet)

This network maps the frame embeddings from the latent space to the image space, i.e, f(·) : Rd →
Rc×h×w. The architecture for our VDP’s frame decoder network is depicted in the Fig. 1.(i). The
residual skip connections in our architecture play a crucial role in the performance of our module
FDNet by addressing the vanishing gradient problem and facilitating faster convergence.

3.3 Formulation of Video Dynamics Prior

For our proposed Video Dynamics Prior or VDP prior we only rely on the two modules namely
LFPNet and FDNet. We start by sampling an initial latent noise vector z0 ∼ N (0, I) where z0 ∈ RD.
Here, D is the dimension of latent space. For our experiments, we keep the dimension D of latent
space as 1024. Now, as illustrated in Fig. 1, we pass this z0 embedding through the ‘LFPNet’ and
obtain the next frame embedding z1. We then pass z1 through the frame decoder network to obtain the
next image frame X̂1. Mathematically, we can write the expression for the forward pass to obtain the
future frame as X̂t+1 = f(g(zt)). Where, f : RD → Rc×h×w denotes the frame decoder network
(§3.2) that maps the latent space to image space i.e. Xt+1 = f(zt+1). Function g(·) denotes the
latent frame predictor network. This network takes the latent embedding at the current step as the
input and predicts the latent embedding at the next step as the output, i.e., zt+1 = g(zt). Leveraging
future frame prediction task helps in initializing the LFPNet in the latent space.

3.4 Neural Module Weights Optimization

Since we optimize the weights of neural modules (LFPNet and FDNet) using a corrupted sequence,
reconstruction loss alone is not enough to find a visually plausible enhancement of the input video.
Hence, we introduce a few other regularization losses.

Reconstruction Loss: We use a combination of L1 and perceptual loss to formulate the reconstruc-
tion loss. It is given by Eqn. 1,

Lrec = ‖Xt+1 − f(g(zt))‖+ ‖φ(Xt+1)− φ(f(g(zt)))‖. (1)

Here, φ(·) in the Eqn. 1 denotes the pre-trained VGG network on ImageNet [31]. Xt, X̂t denotes the
input and reconstructed video frames at timestep t, respectively.

Spatial Pyramid Loss: It has been well established that small ST patches of size 5 × 5 × 3 recur
within and across the scales for a video. Additionally, bicubic downscaling of a video results in
coarsening of the edges in the downscaled video. This results in the downscaled video to have
less motion speed and less motion blur. Both of these properties are extremely useful for video
enhancement tasks. Hence, to utilize such lucrative properties of a video, we introduced spatial
pyramid loss. For this loss, we scale down the input image to 3 levels (h,wk2 where k is 2,4,8) using a
downsampler and calculate the reconstruction loss for each level. It is given by Eqn. 2,

Lspl =
∑

i=2,4,8

‖di(Xt+1)− di(f(g(zt)))‖. (2)

Here, Xt+1 denotes the input video frames at timestep t + 1. di(·) in the Eqn. 2 denotes the
downsampler network and i denotes scale of downsampler. For example, d2(·) : Rc×h×w →
Rc×h/2×w/2.

Variation Loss: This is a variant of Total variational loss introduced in the paper [30]. Variation loss
smoothens the frames while preserving the edge details in the frame. It is given by Eqn. 3,

Lvar(X̂t) =

H−1∑
i=1

W−1∑
j=1

‖x̂tij − x̂t(i−1)j‖+ ‖x̂
t
ij − x̂ti(j−1)‖. (3)
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Figure 2: (i) Video B is generated by replacing the second frame of video A. (ii) Top row depicts the
video obtained during the early round of optimization of the objective given by Eq. 4 for video B.
Further, the average Mutual information [41] of video(intermediate) is much closer to video A. (iii)
The loss plot depicts the convergence of our VDP model for in five different settings.

Here, x̂tij denotes the pixel of the processed video frames (X̂t = f(g(zt−1))) at timestep t and
location X̂t[i, j].

Final Loss: We combine all the losses together into a final loss term as follows,

Lfinal =

T−1∑
t=0

λrecLrec + λsplLspl + λvarLvar. (4)

3.5 Robustness of Video Dynamics Prior

In this section, we explore the internal learning properties of our model. For thorough exploration, we
perform various experiments to explore the spatio-temporal patch recurrence [34] in natural videos
using our model. In the past, authors of the papers [10, 46] have explored the utilization of the patch
recurrence property in images by the deep learning models to perform various enhancement tasks.
Following these prior works, we extend such understanding to the non-trivial spatio-temporal patch
(or ST-patch) recurrence phenomenon exhibited by our model.

We design a simple experiment where we have a natural video sequence A denoted as Va =
{X1, X2, X3} and depicted in Fig. 2.(i). We create another sequence Vb by replacing the frame X2

with a random noisy frame Xnf resulting in Vb = {X1, Xnf, X3}. As shown in Fig. 2. (ii), the noisy
frame is fairly independent of frames X1 or X3 hence, we get mutual information between these
frames close to zero. This replacement of frame X2 with Xnf results in higher entropy [45] of the
video sequence Vb (larger diversity in temporal dimension→ lower ST patch recurrence→ lower
self-similarity→ higher entropy of sequence) in comparison to original sequence Va(lower diversity
in temporal dimension→ higher ST patch recurrence→ higher self-similarity→ lower entropy of
sequence). Hence when the VDP model is optimized over both the sequences Va and Vb, it requires
a longer duration for loss convergence as depicted by Fig. 2.(iii). During the optimization over the
video sequence Vb, our model obtains the sequence resembling Va (given by Vintermediate in Fig. 2.(ii))
in early rounds of optimization, near the epochs where we observe the first dip in the convergence
curve and before ending up overfitting sequence Vb.

We conducted such experiments on our model under five different settings. 1) Using only L1
reconstruction loss (given by Eqn. 1) on video Va. 2) Using only L1 reconstruction loss on video
Vb. 3) Using only L1 reconstruction loss and spatial pyramid loss (given by Eqn. 2) on video Vb. 4)
Using only L1 reconstruction loss and variation loss (given by Eqn. 3) on video Vb. 5) Using L1
reconstruction loss, spatial pyramid loss, and variation loss on video Vb.

The energy plot in Fig. 2(iii) represents the trend in MSE loss for the aforementioned five settings. It
can be observed that in the absence of any noise in the video signal (yellow), the model fits the input
quickly. The quick convergence can be attributed to higher ST patch recurrence in video sequence
A. The VDP model optimized over the video sequence Vb using only the L1 reconstruction loss
(green) provides some impedance to the temporal noise but quickly overfits the noise after a couple
of iterations. Further, the VDP model optimized under setting 3 (red) or 4 (blue) provides higher
impedance to noise than setting 2 but still converges after a few hundred epochs. However, when the
VDP model is optimized using setting 5 (cyan), it provides considerably higher impedance to the
noise in the temporal domain.
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(a) Poisson Noise (λ = 25) (c) UDVD  (PSNR = 21.1294 )(b) FastDVDnet (PSNR = 18.8148 )

(e) Ours  (PSNR = 31.2694) (f) Ground Truth(d) M2F2  (PSNR = 18.8224 )

Figure 3: Video Denoising: Frame from a video in the DAVIS dataset denoised using different
approaches. (a) Frame corrupted with additive poisson noise of intensity 25 (relative to intensity
range [0-255]). Figure (b) depicts the denoised frames generated by FastDVDnet [43] method. Figure
(c) depicts the denoised frame generated by UDVD [35] method. Figure (d) depicts the denoised
frame generated by M2F2 [8] method. Figure (e) depicts the denoised frames generated by our
method. Figure (f) shows the clean ground truth frames.
Table 1: Quantitative video denoising results: To evaluate our method, we calculate the Avg PSNR
score between the generated noise-free video and ground truth video. The σ denotes the standard
deviation for the added Gaussian noise to the frames. While the λ denotes the intensity of additive
Poisson noise. For all baselines and our method, the score is calculated on the DAVIS dataset [25].
Also, blue (bold) denotes the best score. Please note we use pretrained models for baselines provided
by the authors. The baselines marked with ∗ denote a data-driven baseline.

Metric Additive Noise Type Noise Level M2F2 [8]∗ FastDVDnet [43]∗ UDVD [35]∗ Ours

PSNR Gaussian (σ = 20) 34.89 35.77 35.12 35.74
PSNR Gaussian (σ = 30) 33.21 34.04 33.92 34.07

PSNR Poisson (λ = 25) 18.19 19.02 22.08 31.96
PSNR Poisson (λ = 30) 17.12 18.03 20.98 30.07

We observe a similar phenomenon when optimizing our model with a larger void filled with noisy
frames. Additionally, when we optimize our VDP model over a noisy video (here, every frame
in the video sequence consists of Gaussian noise), we do not see convergence at all. We attribute
this behavior of our VDP model to promoting self-similarity of the st-patches over the output video
sequence. Moreover, incorporating the spatial pyramid loss introduces frame matching at multiple
levels of coarse scale. This encourages a more structured signal in the output and provides a higher
impedance to the unstructured noise. We performed the same experiment over 250 different video
sequences (randomly sampled from different datasets like Vimeo-90K, DAVIS, and UCF101) and
came up with similar findings as given by Fig. 2.(iii).

4 Video Denoising

In this section, we present our VDP model utilized for the video denoising task. A noisy video can
be defined as the combination of a clean video signal and additive noise. As shown in the previous
section, our VDP model exhibits higher impedance to the noise signal and lower impedance to the
clean video signal. Exploiting this property, we propose a denoiser for video sequences. Unlike
traditional approaches, our denoiser does not require data collection, as we demonstrate that the final
loss function (Eqn. 4) alone is sufficient for effective video denoising.

We optimize our model parameters on the noisy test-time video sequence using the loss function
given by Eqn. 4. We then use these optimized LFPNet & FDNet modules for generating high-
quality clean video frames. The new enhanced video frames for each timestamp can be obtained by
X̂t+1 = f(g(zt)).

The presence of noise in a video can be attributed to various factors, such as non-ideal video capture
settings or lossy video streaming over the internet. While curating training datasets for baselines, it

6



DAIN

Soft-

Splat

GT

Frame 1 Noisy Frame 2 Frame 3

Interpolated 

Frame

Interpolated 

Frame

Ours

RIFE

Figure 4: Video Frame Interpolation: In order to compare our method to existing baseline methods,
we conducted visual comparisons using three frames for each method. We introduced Gaussian noise
(σ = 15) in the second frame and tasked all methods with interpolating frames between them. It
can be observed that our method not only denoises the second noisy input frame but also generates
denoised intermediate frames. This is in contrast to other baseline methods that interpolate noise
along with the clean signal.

Table 2: Quantitative video frame interpolation results: For the evaluation of our method we
calculate the Avg PSNR and SSIM score between the generated interpolated video frames and ground
truth video. For all baselines and our method, the score is calculated on the UCF101 dataset [40]. The
color blue (bold) denotes the best performance. Please note we use pretrained models for baselines
provided by the authors. The baselines marked with ∗ denote a data-driven baseline.

Metrics # Noisy Frames Noise level ToFlow [54]∗ DAIN [2]∗ SoftSplat [23]∗ RIFE [14]∗ Ours

PSNR None None 34.68 35.00 35.39 35.41 35.41
SSIM None None 0.9677 0.968 0.970 0.970 0.970

PSNR 2nd Frame σ = 15 20.30 20.87 18.25 20.22 34.92
SSIM 2nd Frame σ = 15 0.514 0.521 0.4012 0.512 0.918

is common to assume that the additive noise follows a Gaussian distribution. However, at test time,
when this additive noise is drawn from a Poisson distribution, the performance of baseline models
deteriorates significantly. In contrast, our VDP model, optimized on the test sequence by minimizing
the loss given in Eqn. 4, achieves highly effective denoising results. Fig. 3 provides a qualitative
comparison between our method and the baselines, clearly demonstrating the superior performance
of our approach.

To further evaluate the effectiveness of our method, we conduct experiments on the DAVIS dataset
using different noise settings. We compare our model against state-of-the-art baselines and present
the quantitative evaluation in Table. 1. The results highlight the superiority of our method in video
denoising tasks, showcasing its robustness in handling diverse noise distributions. We encourage
readers to refer to our supplementary material for additional video results.

5 Video Frame Interpolation

Frame interpolation is a challenging task that involves generating intermediate frames between the
given frames in a video sequence. The primary objective is to synthesize high-quality and realistic
frames that accurately capture the spatio-temporal coherence of the original video. However, existing
baseline methods for frame interpolation assume that the input video consists of high-quality frames
without any noise. In real-world settings, video sequences often contain noise due to non-ideal
capturing conditions, which poses challenges and diminishes the performance of these baseline
methods. Such limitations are addressed by our VDP model.
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Figure 5: Video Super Resolution: Comparison of results of the ‘Cameraman’ sequence from
VIMEO-90K-T dataset. Gaussian noise of std σ = 5 is added to the lower-resolution input frames.
(a) High-resolution noise-free ground truth frame. (b) Patch from higher resolution frame generated
by BiCubic method. (c) Patch from higher resolution generated by BasicVSR++ [5]. (d) Patch from
higher resolution frame generated by EDVR [49] method. (e) Patch from the higher resolution by
Ours VDP method. (f) Patch from higher resolution ground truth frame. Note the noise suppression
and details of the camera in the patch generated by our method compared to baselines.

Table 3: Quantitative video super-resolution results: For the evaluation of our method, we calcu-
late the Avg PSNR and SSIM scores between the generated super-resolution video and ground truth
video for all baselines along with our method. The score is calculated on the standard VIMEO-90K-T
dataset. Best results in the table are shown in blue (bold). Please note we use pretrained models for
baselines provided by the authors. The baselines marked with ∗ denote a data-driven baseline.

Metrics Noisy Frames Noisy Intensity BiCubic ToFlow [54]∗ EDVR [49]∗ BasicVSR++ [5]∗ Ours

PSNR 7 - 31.12 33.20 35.79 35.95 35.70
SSIM 7 - 0.870 0.920 0.937 0.940 0.936

PSNR 3 σ = 5 29.90 30.20 32.02 31.58 33.87
SSIM 3 σ = 5 0.796 0.712 0.758 0.720 0.878

For this task, we utilize the latent embeddings to perform the frame interpolation. First, we optimize
our VDP model parameters using the loss function given by Eqn. 4. Now, to generate intermediate
frames, we linearly interpolate the latent embeddings of the video using the equation.

Xintermediate = f(αzt+1 + (1− α)zt) ∀α ∈ (0, 1). (5)

Here, Xintermediate is the interpolated frame between the framesXt andXt+1. For example, to perform
a 4x frame interpolation, we select α = [0.25, 0.5, 0.75] in the Eqn. 5. To evaluate the performance
of our method, we conduct experiments on the UCF101 (triplet) dataset [2, 40] under two conditions:
1) ideal triplet input sequence, 2) triplet input sequence containing one noisy frame. We make a
qualitative comparison between our method and the baselines depicted in Fig. 4. It can be observed
from Fig. 4 that our method is more robust to noisy input and outputs the crisp intermediate frames
without noise, unlike baseline methods DAIN [2], SoftSplat [23] and RIFE [14].

Table. 6 represents the quantitative evaluation of our approach on the UCF-101 dataset. It can be
observed from the table that our method outperforms the existing baselines on PSNR and SSIM
metrics in the video frame interpolation task, further validating the effectiveness and suitability of
our approach for this task.

6 Video Super Resolution

Given our ever-increasing screen resolutions, there is a great demand for higher-resolution video
content. In this task, we are given a lower-resolution video sequence as input. We are tasked to
change this input to a higher-resolution video sequence.

For this task, we modify the loss objective given by Eqn. 4 as follows,

argmin
f,g

T−1∑
t=0

λrecLrec(Xt+1, dsc(f(g(zt)))) + λsplLspl(Xt+1, dsc(f(g(zt)))) + λvarLvar(f(g(zt))).

(6)
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Input Mask LongVIFGVCInterVI Ours

Figure 6: Video Object Removal. In the above figure, we describe a video object removal task.
The input in the figure represents the original video sequence frame without any alterations. The
InterVI [56], FGVC [11], and LongVI [24] in the figure represent the frames generated by removing
the object “car” from the video sequence. The rightmost frame depicts the removal of the object from
the video frame by our method. It can be observed that our method do not create hallucinations.

Table 4: Quantitative Object Removal results: We compare the average PSNR and SSIM scores
of our method with the existing baselines on the DAVIS dataset. The best performance is denoted by
the score in blue (bold). Please note we use pretrained models for baselines provided by the authors.
The baselines marked with ∗ denote a data-driven baseline.

Metrics DIP [46] DFGVI [53]∗ FGVC [11]∗ InterVI [56] LongVI [24] Ours

PSNR 26.03 27.57 31.92 30.86 31.80 32.06
SSIM 0.921 0.9289 0.9499 0.9350 0.9457 0.9512

The modified objective for the video super-resolution task is given by Eqn. 6. Here, function dsc(·)
denotes the downsampling function. For example, to perform 4x super-resolution, we would define
downsampling function as dsc : Rc×h×w → Rc×(h/4)×(w/4).

We evaluate our method for the video super-resolution task on the VIMEO90-K-T dataset and contrast
our model against the state-of-the-art baseline methods. We evaluate our method on two different
settings: 1) When sharp lower-resolution frames are provided, 2) When noisy lower-resolution frames
are provided. We perform a 4× super resolution of frames in the video sequences. We make a
qualitative comparison between our method and the baselines for the setting when noisy frames are
given as input frames, depicted in Fig. 7. It can be observed from Fig. 7 that our method outputs better
and noise-free higher resolution frames with more details in comparison to the baseline methods.
Table. 5 represents the quantitative evaluation of our approach. It can be observed from the table that
there is a significant drop in the performance of baselines to our method when a slight amount of
Gaussian noise is added to the input frames. We demonstrate empirically that our method is much
more robust to noise as compared to other baseline methods.

7 Video Object Removal

Unwanted items in a video can grab the viewers’ attention from the main content. In this task,
we remove such objects from the original video stream. For this task, we assume a mask M =
{mt}T1 ∀mt ∈ {0, 1}c×w×h is provided for each frame to remove an object from the video sequence.
To perform the removal of an object, we modify the objective function given by Eqn. 4 as follows,

argmin
f,g

T∑
t=1

λrecLrec(mtXt,mtf(g(zt−1)))+λsplLspl(mtXt,mtf(g(zt−1)))+λvarLvar(f(g(zt−1))).

(7)

We evaluate our method for the video object removal task on the DAVIS dataset. A qualitative
comparison between our method and the baselines can be seen in Fig. 6. It can be observed from
Fig. 6 that our method performs better than the existing methods in removing the object from the
video without creating any artifacts in the processed videos.

Table. 4 represents the quantitative evaluation of our approach. We perform the evaluation based on
the stationary mask setting. In this setting, a stationary mask is applied to all frames of the video
sequence. This setting helps us evaluate the model’s ability to generate temporally coherent frames
even if some information in the frames is consistently missing.
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8 Limitations

One severe limitation of our approach is that it is an offline approach, i.e., it can not be used in
real-time to perform video enhancements. One way to rectify this limitation is to work on reducing the
parameters for the frame decoder network. One suggestion is modifying the residual skip connection
from concatenation-based connections to additive connections. This would drastically reduce the
number of parameters to be trained with minimal effects on the efficacy of the model.

The second limitation of our approach is that it is a recurrent approach and can not be scaled using
multiple GPUs. This issue can be alleviated using a temporal attention-based approach that can have
long-term memory and is scalable across multiple GPUs.

Our approach, in its current stage, requires no data and is only able to perform low-level vision
tasks. However, to perform high-level vision tasks such as performing video segmentation or video
manipulation, we conjecture that external knowledge would be required, like a collection of external
datasets or a pretrained model on a such external dataset to aid our VDP method.

9 Conclusion

We conclude in this work that a video-specific approach is a way to go for a considerable number of
video processing tasks. Our VDP method not only performed better than the task-specific approaches
but also it is not hamstrung by the limited availability of either the computing power or the training
data. We demonstrate that the introduction of a spatial pyramid loss enhances the robustness of our
proposed VDP method. Leveraging this loss, we were able to achieve state-of-the-art results in all
enhancement tasks, even in the presence of noise in the input frames. One limitation of our method is
the long processing time compared to other methods at the test time inference. Nevertheless, it is
important to note that we do not require training as the other baseline methods (requires multiple GPU
hrs if not days). In the future, we will focus on improving efficiency to shorten the processing time
for increased practical utility. One great advantage of our approach is removing the data collection
requirement for such processing tasks. We hope that this step towards a data-free approach will
reduce the massive data mining across the internet and provide better data privacy measures.

10 Broader Impact

Our approach offers a significant advantage by eliminating the need for data collection in processing
tasks. This shift towards a data-free approach has the potential to mitigate the extensive data mining
activities conducted across the internet, thereby addressing concerns related to data privacy. By
reducing the reliance on data collection, our approach promotes more ethical and responsible use of
technology.

However, it is crucial to acknowledge that our approach also has some limitations. We believe
that addressing these challenges through ongoing research and development will contribute to the
continuous improvement and refinement of data-free approaches, thereby enhancing their broader
impact.
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A Comparison with cascaded models

Existing video enhancement approaches rely on clean and sharp input frames to perform the task
at hand. However, this is not always the case depending on the lighting condition of scene capture
or compressing a video stream to send it over the internet. All of these introduce noise in the clean
video signal. Applying video enhancement approaches in such conditions results in sub-optimal
enhancements, as demonstrated in the main paper. One other way of dealing with such conditions is
the use of a two-stage cascaded approach. For example, we have to provide super-resolute frames for
a noisy video sequence. We can get the solution by first denoising the frames and then processing
these with super-resolution approaches. However, this also results in error propagation from one
stage to another and results in artifacts.

To evaluate the aforementioned reasoning, we perform a two-stage cascaded approach for video
super-resolution and frame interpolation tasks. In this cascaded approach, we apply the frame denoiser
first and then apply the VSR or VFI model. For video denoiser we use the FastDVDnet [43]. Table. 5
and 6 describe the quantitative evaluation of baselines(cascaded approach) with our VDP model for
super-resolution and frame interpolation tasks. It can be observed that there is a deterioration in
results for the super-resolution task for the cascaded approach than directly applying the baseline.
This is primarily due to the fact that when the denoiser is applied in the first stage, it washes away
important details from the lower-resolution frames. When these frames are passed through the
video super-resolution baselines, the error from the first stage is propagated further. A qualitative
visualization of this is depicted in Fig. 7. However, for the frame interpolation task, the case is
reversed, and cascaded baseline approaches yield better results than only baseline approaches. It can
be seen from Table. 6 that the cascaded baselines perform better than only baseline approaches but
still perform worse than our VDP approach.
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(f) GT(c) BasicVSR++(a) Bicubic

(Noisy)

(e) Ours

(e) GT

(d) EDVR(b) Bicubic

(Denoised)

Figure 7: Video Super Resolution: Comparison of results of the ‘Cameraman’ sequence from
VIMEO-90K-T dataset. Gaussian noise of std σ = 5 is added to the lower-resolution input frames.
(a) Bicubic extrapolation of noisy low-resolution frame (b) Bicubic extrapolation of denoised low-
resolution frame. (c) Patch from higher resolution generated by BasicVSR++ [5] over the denoised
low-resolution frame. (d) Patch from higher resolution frame generated by EDVR [49] over the
denoised low-resolution frame. (e) Patch from the higher resolution by Ours VDP method. (f) Patch
from higher resolution ground truth frame. We use standard video denoiser FastDVDNet [43] to
denoise the input low-resolution video frames. Based on the figure, it appears that the denoiser used in
the first stage of the model removes vital information from the lower-resolution frames, which leads
to errors in the second stage. Our VDP model, on the other hand, preserves more details compared to
the baselines.

Table 5: Quantitative cascaded video super-resolution(4×) results: For the evaluation of our
method, we calculate the Avg PSNR and SSIM scores between the generated super-resolution video
and ground truth video for all baselines along with our method. The score is calculated on the
standard VIMEO-90K-T dataset. Best results in the table are shown in blue (bold). Please note we
use VSR baselines by cascading it with the video denoiser model FastDVDnet [43]. The baselines
marked with ∗ denote a data-driven baseline.

Metrics Noisy Frames Noisy Intensity BiCubic EDVR [49]∗ BasicVSR++ [5]∗ Ours

PSNR 3 σ = 5 27.78 31.56 31.03 33.87
SSIM 3 σ = 5 0.806 0.857 0.853 0.878

Also, we have shown in the main paper that denoisers like FastDVDnet [43] are also prone to
variations in noise distribution. This would hurt the efficacy of the cascaded models if the noise is
coming from a distribution other than the Gaussian distribution.

Table 6: Quantitative cascaded video frame interpolation results: For the evaluation of our
method, we calculate the Avg PSNR and SSIM score between the generated interpolated video frames
and ground truth video. For all baselines and our method, the score is calculated on the UCF101
triplet dataset. Please note we use VFI baselines by cascading it with the video denoiser model
FastDVDnet [43]. The color blue (bold) denotes the best performance. The baselines marked with ∗
denote a data-driven baseline.

Metrics # Noisy Frames Noise level ToFlow [54]∗ DAIN [2]∗ SoftSplat [23]∗ RIFE [14]∗ Ours

PSNR 2nd Frame σ = 15 33.31 33.51 34.20 33.95 34.92
SSIM 2nd Frame σ = 15 0.882 0.891 0.898 0.892 0.918

B Ablation study

We performed ablation experiments to study the effect of losses for our video dynamics prior. We
report the quantitative results for all the enhancement tasks in Table. 7. It can be observed from
the denoising section of the table that spatial pyramid loss Lspl (given by Eqn. 2) is very important
to provide robustness to both the spatial and temporal domains. Additionally, it can be observed
that variation loss Lvar is very important for tasks like super-resolution, frame interpolation, and
object removal. In Fig. 8-11, we show a qualitative comparison between VDP model optimized with
different subsets of losses.
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(a) Poisson Noise (λ = 25) (c) ℒ𝑟𝑒𝑐+ℒ𝑠𝑝𝑙(b) ℒ𝑟𝑒𝑐

(f) Ground Truth(d) ℒ𝑟𝑒𝑐+ ℒ𝑣𝑎𝑟 (e) ℒ𝑟𝑒𝑐+ℒ𝑠𝑝𝑙+ ℒ𝑣𝑎𝑟

Figure 8: Video Denoising (Ablation): Frame from a video in the DAVIS dataset denoised using
loss functions. (a) Frame corrupted with additive poisson noise of intensity 25 (relative to intensity
range [0-255]). Figure (b) depicts the denoised frames generated by only Lrec. Figure (c) depicts
the denoised frame generated by Lrec + Lspl. Figure (d) depicts the denoised frame generated by
Lrec + Lvar. Figure (e) depicts the denoised frames generated by Lrec + Lspl + Lvar. Figure (f) shows
the clean ground truth frames.

Video denoising: It can be observed from Fig. 8 that only using the reconstruction loss Lrec results
in very suboptimal denoising. Optimizing for a high number of epochs using only Lrec results in the
total reconstruction of the noisy signal. Adding the variation loss Lvar to Lrec results in smoothening
of the video frame as can be observed from the Fig. 8. However, adding the spatial pyramid loss Lspl
to Lrec results in a very strong denoiser. This can also be observed in the quantitative evaluation given
by Table. 7.

Video Super Resolution: It can be observed from Fig. 9 that only using the reconstruction loss Lrec
results in suboptimal quality of super resolute frames with edginess in the texture. The addition of
the spatial pyramid loss Lspl to Lrec results in better texture in the high-resolution frames, yet some
edgyness in the texture remains. However, the addition of the variation loss Lvar to Lspl +Lrec results
in smoothening of the texture while retaining the edges. This can also be observed in the quantitative
evaluation given by Table. 7.

Video Frame Interpolation: It can be observed from Fig. 10 that only using the reconstruction loss
Lrec results in suboptimal quality of interpolated frames with rough textures and missing details. The
addition of the spatial pyramid loss Lspl to Lrec results in better texture and increased details in the
interpolated frames however, some edginess in the texture remains. However, the addition of the
variation loss Lvar to Lspl +Lrec results in smoothening of the texture while retaining the details. This
can also be observed in the quantitative evaluation given by Table. 7.

Video Object Removal: It can be observed from Fig. 11 that only using the reconstruction loss Lrec
results in suboptimal quality of interpolated region in the frames with rough textures and color jitter
artifacts. The addition of the spatial pyramid loss Lspl to Lrec results in better texture and reduced
jittering artifacts in the interpolated region in the frames. However, the addition of the variation loss
Lvar to Lspl + Lrec results in smoothening of the texture and merging of the inpainted region with the
background. This can also be observed in the quantitative evaluation given by Table. 7.

C Processing time

We would like to point out here that if we take cumulative training and inference time, then our
baseline would come out to be a better bargain in many scenarios, as depicted by Table. 8. To put it
in perspective, a data-heavy baseline requires an ample amount of time to train, even when provided
with perfect hyperparameters, making exploring different architectures quite expensive. In addition,
the training dataset is limited in terms of representing real-world scenarios; this would further increase
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(f) GT(a) Bicubic (c) ℒ𝑟𝑒𝑐+ℒ𝑠𝑝𝑙 (e) ℒ𝑟𝑒𝑐+ℒ𝑠𝑝𝑙+ ℒ𝑣𝑎𝑟(d) ℒ𝑟𝑒𝑐+ ℒ𝑣𝑎𝑟(b) ℒ𝑟𝑒𝑐

Figure 9: Video Super Resolution (Ablation): Comparison of results of the ‘Cameraman’ sequence
from VIMEO-90K-T dataset. (a) Bicubic extrapolation of low-resolution frame. (b) Patch from
higher resolution generated by utilizing only the reconstruction loss given by Eqn. 1. (c) Patch from
higher resolution frame generated by Lrec +Lspl (d) Patch from the higher resolution frame generated
by Lrec + Lvar. (e) Patch from the higher resolution frame generated by Lrec + Lspl + Lvar (f) Patch
from higher resolution ground truth frame.

(b) ℒ𝑟𝑒𝑐+ℒ𝑠𝑝𝑙Ground Truth frame (d) ℒ𝑟𝑒𝑐+ℒ𝑠𝑝𝑙+ ℒ𝑣𝑎𝑟(c) ℒ𝑟𝑒𝑐+ ℒ𝑣𝑎𝑟(a) ℒ𝑟𝑒𝑐

Figure 10: Video Frame Interpolation (Ablation): In order to compare our method with different
loss functions, we conducted a visual comparison. (a) Patch generated by utilizing only the recon-
struction loss given by Eqn. 1. (b) Patch generated by Lrec + Lspl (c) Patch generated by Lrec + Lvar.
(d) Patch generated by Lrec + Lspl + Lvar.

the spending time and effort in fine-tuning the network every time for a new setting. Please note that
the inference time for our method has been calibrated on one Nvidia A6000 GPU.

D Optimization Details

To optimize our model, we use a single Nvidia A6000 GPU with 48G memory to process a single
video at a time with 15-frame sequences of size 448x256. We optimize the modules LFPNet and
FDNet weights using the entire test sequence with the Adam optimizer at a learning rate in the range
of [0.0002, 0.002].

Video Denoising: For getting a good performance on the denoising task, we utilize the following
weights for the different losses; λrec = 1, λspl = 0.0001 and λvar = 0.0001. We observed that the
performance of our VDP denoiser plateaued after 3600 epochs.

Video Frame Interpolation: For getting a good performance on the frame interpolation task, we
utilize the following weights for the different losses; λrec = 1, λspl = 0.0001 and λvar = 0.0001. We
observed that the performance of our VDP frame interpolation model plateaued after 1800 epochs.

Table 7: Quantitative ablations results: To evaluate our method, we calculate the Avg PSNR score
between the generated noise-free video and ground truth video. blue (bold) denotes the best score.

Task Dataset Metric Additive Noise Type Noise Level Lrec Lrec + Lvar Lrec + Lspl Lrec + Lvar + Lspl

Denoising DAVIS PSNR Poisson (λ = 25) 20.58 24.63 30.14 31.96
PSNR Poisson (λ = 30) 20.11 23.82 29.81 30.07

Super-Resolution Vimeo-90KT PSNR 7 7 31.23 33.86 32.18 35.70
SSIM 7 7 0.890 0.924 0.915 0.936

Frame-interpolation UCF-101 PSNR 7 7 33.29 34.13 33.88 35.41
SSIM 7 7 0.943 0.945 0.963 0.970

Object Removal DAVIS PSNR 7 7 29.31 31.78 30.12 32.06
SSIM 7 7 0.9125 0.9451 0.9352 0.9512
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Input Mask (b) ℒ𝑟𝑒𝑐+ℒ𝑠𝑝𝑙 (d) ℒ𝑟𝑒𝑐+ℒ𝑠𝑝𝑙+ ℒ𝑣𝑎𝑟(c) ℒ𝑟𝑒𝑐+ ℒ𝑣𝑎𝑟(a) ℒ𝑟𝑒𝑐

Figure 11: Video Object Removal (Ablation). In the above figure, we describe a video object
removal task. The GT in the figure represents the original video sequence frame without any
alterations. (a) Patch generated by utilizing only the reconstruction loss given by Eqn. 1. (b) Patch
generated utilizing the loss given by Lrec + Lspl (c) Patch generated by utilizing the loss given by
Lrec + Lvar. (d) Patch generated by utilizing the loss given by Lrec + Lspl + Lvar.

Table 8: Training and inference time comparison with the best baselines. Note that the inference
time in the table is given as the time required to process per frame of a video.

Task Dataset size Resolution Ours Best Baseline
(Train + Infer) (Train + Infer)

Super-Resolution 38,990 (7 fr/v) 112× 64→ 448× 256 0 + 15s 300 hrs + 1s
Denoise 50 seq (3450 fr) 448× 256 0 + 12s 200 hrs + 0.1s
Object Removal 50 seq (3450 fr) 448× 256 0 + 8.5s 160 hrs + 8.3s
Frame Interpolation 3,782 triplets 448× 256 0 + 10s 120hrs + 0.08s

Video Super-Resolution : For getting a good performance on the VSR task, we utilize the following
weights for the different losses; λrec = 1, λspl = 0.01 and λvar = 0.0001. We observed that the
performance of our VDP SR model plateaued after 4200 epochs.

Video Object removal: For getting a good performance on the object removal task, we utilize the
following weights for the different losses; λrec = 1, λspl = 0.01 and λvar = 0.0001. We observed that
the performance of our VDP object removal model plateaued after 1800 epochs.

Additionally, we conducted our experiments using multiple random initializations of FDNet and
LFPNet modules and observed consistent quantitative results across all runs.

E Additional Details - FDNet

Each convolution layer is followed by batch normalization and a leaky rectified linear unit
(LeakyReLU; negative slope = 0.2), except for the last layer of the decoder. In the last layer
of the decoder, we use the sigmoid activation function. We utilize Pytorch for our implementation.

F Dataset Descriptions

Vimeo-90K-T [54] This dataset contains 7824 short clips downloaded from ’vimeo.com’. Each clip
only contains 7 frames per clip. We used this dataset for a video super-resolution task. The lower
resolution input frames have a size of 3× 112× 64 while the higher resolution frames have a size of
3× 448× 256.

DAVIS [25] This dataset contains 50 curated video clips, and each clip contains a unique object in
the clip. The dataset has masking annotation present for this object for each clip. Each frame in each
clip contains 1 mask annotation. There is 3450 total number of frames in this dataset. We used this
dataset for video denoising and object removal task. We resized the resolution of each clip for the
aforementioned tasks. The resolution of input frames for the task was of the size 3× 448× 256.

UCF [40] The UCF101 dataset contains videos with a large variety of human actions. We utilized
this dataset for the video frame interpolation task. We used this dataset under standard settings put
forth by paper [2]. There are 379 triplets with a resolution of 256 × 256 pixels.
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Table 9: We include LPIPS and FVD [47] metrics for completeness of quantitative evaluation of
enhancement tasks (video denoising, object removal, and video interpolation). FVD is a deep neural
network based metric that evaluates both the spatial and temporal quality of the processed video with
the ground truth video. FVD requires minimum of 16 frames in a sequence for evaluation. Hence, we
were unable to evaluate FVD for task like VFI and VSR on UCF101 triplet and Vimeo90KT datasets.

Task Method Dataset Noisy Frames Noise Intensity FVD↓ LPIPS↓ PSNR↑ SSIM↑
Denoise FastDVDnet DAVIS 3 λ = 25 1743 0.65 19.02 -
(Poisson) Ours 54 0.0056 31.96 -

Object FGVC DAVIS 7 - 580 0.0556 31.92 0.9499
Removal Ours 445 0.0408 32.06 0.9512

Inter- RIFE UCF101 2nd Frame σ = 15 - 0.412 20.22 0.512
-polation SoftSplat-LF - 0.624 18.25 0.401

Ours - 0.102 34.92 0.918

VSR EDVR Vimeo90KT 3 σ = 5 - 0.5051 32.02 0.758
BasicVSR++ - 0.5263 31.58 0.720
Ours 0.181 33.87 0.878
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