
A Solution of F subproblem

F subproblem is written as
min
F

∥F−P∥2F + α
∥∥∥A⊙ FFT

∥∥∥
1

s.t. F1q = 1m,0m×q ≤ F ≤ Y,
(1)

where P = KH+ 1mbT ∈ Rm×q is the output matrix of the model. We first reformulate Eq. (1)
column-wisely:

min
F

α

q∑
i=1

FT
.iAF.i +

q∑
i=1

FT
.iF.i − 2

q∑
i=1

PT
.iF.i

s.t. F1q = 1m,0m×q ≤ F ≤ Y,

(2)

where F.i and P.i are the i-th column of F and P respectively. Denote f = vec(F) ∈ Rmq,
p = vec(P) ∈ Rmq , y = vec(Y) ∈ Rmq , where vec(·) is the vectorization operator. Eq. (2) can be
further formulated as

min
f

1

2
fT

(
2Λ+

2

α
Imq×mq

)
f − 2

α
pTf

s.t.
mq∑
j=1,

j%m=i

fj = 1(∀ 0 ≤ i ≤ m− 1),0mq ≤ f ≤ y,
(3)

where % denotes the modulo operator, fj is the j-th element of vector f and Λ ∈ Rmq×mq is defined
as

Λ =


A 0m×m · · · 0m×m

0m×m A
. . .

...
...

. . . . . . 0m×m

0m×m · · · 0m×m A

 . (4)

Eq. (3) is a standard quadratic programming (QP) problem, which can be solved by any QP tools.

Improve the Scalability

Eq. (3) solves a QP problem with the computational complexity of O(m3q3) and the storage
complexity of O(m2q2). To reduce the computational complexity and the storage complexity, we
can approximately solve the original QP problem row-wisely, i.e., update the label confidence vector
f̃j by fixing other variables:

min
f̃j

1

2
f̃j

T
(2Djj +

2

α
)Iq×q f̃j + (

m∑
i=1,i̸=j

Dij f̃i
T
− 2

α
pT
j )f̃j

s.t. f̃j1q = 1,0q ≤ f̃j ≤ yj .

(5)

By this way, the original QP problem is transformed into a series of small QP problems, and the
computational complexity of the QP step is reduced from O(m3q3) to O(mq3), and the storage
complexity is reduced from O(m2q2) to O(q2).

Computational Complexity Comparison among the Regression based PLL Methods

Table S1 compares the computational complexity between the regression based PLL methods, i.e.,
AGGD (TPAMI 2022), PL-CLA (JCST 2021), SDIM (IJCAI 2019), DPCLS, and DPCLS-S (Scalable
DPCLS). DPCLS solves a QP problem with the computational complexity of O(m3q3), which is
the same as many SOTA PLL methods like AGGD, SDIM, and PL-CLA. DPCLS-S transforms the
original QP problem into a series of smaller QP problems, and the computational complexity of the
QP step is reduced from O(m3q3) to O(mq3), and the storage complexity is reduced from O(m2q2)
to O(q2). This approximation solution only slightly decreases the accuracy as shown in Table S2, but
largely improves the scalability.



Table S1: Computational complexity comparison between the linear regression based PLL methods.

AGGD PL-CLA SDIM DPCLS DPCLS-S

Computational complexity O(m3 +mk3 +m3q3) O(m3 +m3q3) O(m3 +m3q3) O(2m3 +m2 +m3q3) O(2m3 +m2 +mq3)

Table S2: Comparison between DPCLS and DPCLS-S, where DPCLS-S indicates scalable DPCLS.

Glass Ecoli Steel Yeast Optdigits Usps
DPCLS .560±.051 .833±.014 .638±.022 .507±.026 .984±.002 .968±.004

DPCLS-S .544±.049 .821±.023 .633±.022 .496±.018 .982±.001 .966±.004

B Proof of Theorem 1 and Theorem 2

B1. Proof of Theorem 1
Definition 1. Denote H be a family of functions that map X to [0, 1] and S = {x1, x2, ..., xm} is a
set of fixed samples. The empirical Rademacher complexity of H to set S is defined as

R̂S(H) =
1

m
E

[
sup
h∈H

m∑
i=1

σih(xi)

]
, (6)

where (σ1, σ2, ..., σm) are Rademacher variables, and each of them is an independent uniform
random variable taking value in {−1,+1}.

The square loss function of DPCLS is ∥F−XW∥2F . F can be divided into the sum of the ground-
truth label matrix FG ∈ Rm×q and false-positive label matrix N ∈ Rm×q. So we can rewrite the
square loss function as ∥FG +N−XW∥2F . Based on Definition 1, let H = W ×N be the family
of functions of DPCLS, i.e., (W,N) ∈ H. ℓ is the square loss function of DPCLS, the Rademacher
complexity with respective to H and ℓ can be expressed as

R̂S(ℓ ◦ H) =
1

m
E

[
sup
h∈H

m∑
i=1

σiℓ(h(xi),FGi)

]
. (7)

Note that the square loss is 2q-Lipschitz. According to [1], Eq. (7) is upper bounded by

R̂S(ℓ ◦ H) ≤ 2
√
2q

m
E

sup
h∈H

m∑
i=1

q∑
j=1

σij(xiW.j −Nij)

 , (8)

where σij is the Rademacher variable which takes value in {−1, 1} . W.j is j-th column of classifier
W. Denote X̂ = [X̂1; X̂2; ...; X̂q] ∈ Rq×d, X̂q =

∑n
i=1 σiqxi. Without loss of generality, we

assume the complexity of classifier W and the sparsity of N are upper bounded by ϵ1 and ϵ2
respectively, i.e., ∥W∥F ≤ ϵ1 and ∥N∥1 ≤ ϵ2. The right side of Eq. (8) can be relaxed as:
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√
2q

m
E
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h∈H

⟨WT, X̂⟩+ ∥N∥1

]
≤ 2

√
2q

m
E
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h∈H

∥W∥F
∥∥∥X̂∥∥∥

F
+ ∥N∥1

]
≤ 2

√
2q

m
E
[
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ϵ1
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F
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]
.

(9)

We assume each sample is normalized, i.e., ∥xi∥2 ≤ 1, it is easy to prove that

Eσ

∥∥∥X̂∥∥∥2
F
= Eσ

 q∑
j=1

∥∥∥X̂j

∥∥∥2
2

 = Eσ

 q∑
j=1

∥∥∥∥∥
m∑
i=1

σijxi

∥∥∥∥∥
2

2

 ≤ mq. (10)

According to Eq. (9) and Eq. (10) we have Theorem 1

R̂S(ℓ ◦ H) ≤
2
√
2q(

√
mqϵ1 + ϵ2)

m
. (11)
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B2. Proof of Theorem 2 Inequality 1

Denote F ∈ {0, 1}m×q and D ∈ {0, 1}m×m the partial label matrix and the to be optimized semantic
dissimilarity matrix. Let FG and D̂ be the ground-truth label matrix and the ground-truth dissimilarity
matrix. Denote ∆F = FG − F. We aim to minimize the adversarial prior between the semantic
dissimilarity matrix and similarity matrix, i.e.,

∥∥D⊙ FFT
∥∥
1
. The following inequality holds

⟨(F+∆F)(F+∆F)
T, D̂⟩ ≤ ⟨FFT,D⟩. (12)

Expand Eq. (12), we have

⟨∆F∆F
T, D̂⟩ ≤ ⟨FFT,D− D̂⟩ − ⟨F∆F

T, D̂⟩ − ⟨∆FF
T, D̂⟩

= ⟨FFT,D− D̂⟩+ ⟨F∆F
T,−D̂⟩+ ⟨∆FF

T,−D̂⟩

≤ ∥F∥2F
∥∥∥D− D̂

∥∥∥
F
+ 2 ∥F∥F

∥∥∥D̂∥∥∥
F
∥∆F∥F .

(13)

Due to the characteristics of PLL, at least one false-positive label exists in each PLL data set, i.e.,
∥∆F∥F ≥ 1. In this way, we have

⟨∆F∆F
T, D̂⟩ ≤ ∥F∥2F

∥∥∥D− D̂
∥∥∥
F
∥∆F∥F + 2 ∥F∥F

∥∥∥D̂∥∥∥
F
∥∆F∥F . (14)

Assume the smallest eigenvalue of D̂ is λD̂ and λD̂ ≥ 0, we have ⟨∆F∆F
T, D̂⟩ ≥ λD̂ ∥∆F∥2F .

Moreover, ∥F∥2F is upper bounded by m (the number of samples) and q (the number of classes), i.e.,
∥F∥2F ≤ mq. Eq. (14) can be further relaxed as

λD̂ ∥∆F∥2F ≤ mq
∥∥∥D− D̂

∥∥∥
F
∥∆F∥F + 2

√
mq

∥∥∥D̂∥∥∥
F
∥∆F∥F . (15)

Let
∥∥∆̄F

∥∥
F

be the average distance of each sample between FG and F (i.e.,
∥∥∆̄F

∥∥
F

=
1
m ∥FG − F∥F ). Dividing m on both sides of Eq. (15), we finally have∥∥∆̄F

∥∥
F
≤ q

λD̂

∥∥∥D− D̂
∥∥∥
F
+

2
√
q

λD̂

√
m

∥∥∥D̂∥∥∥
F
. (16)

We can find that as the number of samples m increases, the upper bound of
∥∥∆̄F

∥∥
F

decreases, which
indicates that more training samples will push the partial label matrix to be close to the ground-truth
one and achieve better PLL performance. Moreover, a smaller error between D and D̂ implies a
smaller upper bound of

∥∥∆̄F

∥∥
F

, which indicates a better dissimilarity matrix can help achieve a
better label matrix.

B3. Proof of Theorem 2 Inequality 2

Denote ∆D = D̂−D. According to the adversarial relationship and dissimilarity propagation of
DPCLS, we assume each sample and its k neighborhoods belong to the same class, then the following
inequality holds

⟨FGFG
T,D+∆D⟩+Tr((D+∆D)L(D+∆D)T) ≤ ⟨FFT,D⟩+Tr((DLDT). (17)

Expand Eq. (17), we have

⟨∆D
T∆D,L⟩ ≤ ⟨FFT − FGFG

T,D⟩ − 2⟨∆D,DL⟩ − ⟨FGFG
T,∆D

T⟩
= ⟨FFT − FGFG

T,D⟩+ 2⟨∆D,−DL⟩+ ⟨FGFG
T,−∆D

T⟩

≤
∥∥∥FFT − FGFG

T
∥∥∥
F
∥D∥F + 2 ∥D∥F ∥L∥F ∥∆D∥F + ∥FG∥2F ∥∆D∥ .

(18)

Assume that at least one corresponding position of D̂ and D has different values, i.e., ∥∆D∥F ≥ 1,
we have

⟨∆D
T∆D,L⟩ ≤

∥∥∥FFT − FGFG
T
∥∥∥
F
∥D∥F ∥∆D∥F +2 ∥D∥F ∥L∥F ∥∆D∥F +∥FG∥2F ∥∆D∥ .

(19)
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Similar to B2, we assume the smallest eigenvalue of L is λL and λL ≥ 0, we have ⟨∆D
T∆D,L⟩ ≥

λL ∥∆D∥2F . ∥D∥2F is upper bounded by m (the number of samples), i.e., ∥D∥2F ≤ m2. Since FG is
the ground truth label matrix, we have ∥FG∥2F = m. Eq. (19) can be further relaxed as

λL ∥∆D∥2F ≤ m
∥∥∥FFT − FGFG

T
∥∥∥
F
∥∆D∥F + 2m ∥L∥F ∥∆D∥F +m ∥∆D∥ . (20)

Let
∥∥∆̄D

∥∥
F

be the average distance of each corresponding position between D̂ and D (i.e.,∥∥∆̄D

∥∥
F
= 1

m2

∥∥∥D̂−D
∥∥∥
F

). Dividing m2 on both sides of Eq. (20), we finally have

∥∥∆̄D

∥∥
F
≤ 1

λLm

∥∥∥FFT − FGFG
T
∥∥∥
F
+

2

λLm
∥L∥F +

1

λLm
. (21)

Similar to B2, a larger number of training samples will reduce the distance between D and D̂, and
a smaller error between F and FG implies a smaller upper bound of

∥∥∆̄D

∥∥
F

, suggesting a better
dissimilarity matrix.

C Details of Compared Data Sets

Table S3: Characteristics of the synthetic data sets and the real-world partial label data sets, where
Avg. CLs means the average size of the candidate label set.

Type Data set # Examples # Features # Classes Avg. CLs

Synthetic
Data Set

Glass 214 9 6 -
Steel 1941 27 7 -
Ecoli 336 7 8 -
Yeast 1484 8 10 -

Optdigits 5620 64 10 -
Usps 9298 256 10 -
Isolet 1559 617 26 -
Orl 400 1024 40 -

Amazon 1500 1326 50 -
Bookmark 2500 1413 57 -

Real-world
Data Set

FG-NET 1002 262 78 7.48
Lost 1122 108 16 2.23

MSRCv2 1758 48 23 3.16
BirdSong 4998 38 13 2.18
Malagasy 5303 384 44 8.35

Soccer Player 17472 279 171 2.09
Yahoo! News 22991 163 219 1.91

We evaluated ten synthetic data sets and seven real-world partial label data sets from vari-
ous domains, whose details are shown in Table S3. The real-world data sets are publicly
available at http://palm.seu.edu.cn/zhangml/ and https://github.com/dhgarrette/
low-resource-pos-tagging-2013.

D Further Analysis

Hyper-parameters Sensitivity

Our DPCLS has four parameters, i.e., α, β, λ and k. Fig. S1 investigates their influence to DPCLS on
Lost and MSRCv2. As shown in Figs. S1 (a) - (b), when α and β are too large or too small, DPCLS
gives relatively poor performance. DPCLS reaches best performance when α is selected from {0.001,
0.01} and β is set to 0.001. Parameter λ controls the model complexity. We can observe from Fig. S1
(c) that the proposed model performs relatively stable when λ changes, and setting λ=0.05 is a good
choice on both Lost and MSRCv2. Fig. S1 (d) indicates that the performance of DPCLS is relatively
robust to different k.
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Table S4: Comparison between DPCLS and DPCLS-T, where DPCLS-T indicates a two-stage model.

FG-NET Lost MSRCv2 BirdSong Malagasy Soccer player Yahoo! News
DPCLS .077±.009 .770±.024 .557±.014 .751±.009 .676±.004 .532±.002 .626±.003

DPCLS-T .073±.018 .712±.018• .483±.014• .723±.014• .671±.005 .530±.003 .567±.003•

(a) Lost (b) MSRCv2
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Figure S1: Parameter sensitivity analysis for DPCLS. (a-b) Classification accuracies of DPCLS on
Lost and MSRCv2 by varying α and β; (c) Classification accuracies of DPCLS on Lost and MSRCv2
by varying λ; (d) Classification accuracies of DPCLS on Lost and MSRCv2 by varying k.

DPCLS VS. Two-stage Model

In Table S4 we compared DPCLS with a two-stage model (denoted as DPCLS-T) that performs
dissimilarity matrix construction and classifier learning separately. We find that the two-stage model
is significantly inferior to DPCLS, proving the advantage of end-to-end learning.
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