
Banana: Banach Fixed-Point Network for Pointcloud
Segmentation with Inter-Part Equivariance

– Supplementary Material –

Congyue Deng1∗ Jiahui Lei2∗ Bokui Shen1 Kostas Daniilidis2,3 Leonidas Guibas1

1 Stanford University 2 University of Pennsylvania 3 Archimedes, Athena RC
{congyue, willshen, guibas}@cs.stanford.edu, {leijh, kostas}@cis.upenn.edu

This supplementary document provides proof for the statements in the main paper, as well as net-
work and training details including the compute. We also provide a supplemental video for a quick
introduction to our method and additional results. We will also make our code public upon paper
acceptance.

S.1 Proof for Part Permutations (Sec 3.4)

In this section, we show that [0, 1]N×P /SP is a complete metric space with metric

d (ŷ1, ŷ2) := min
σ∈SP

‖y1σ − y2‖.

S.1.1 Well-Definednes of d

As d is defined on equivalent classes, we need to show the well-definedness of d in that d is inde-
pendent of the choice of representatives. Suppose y1 = y′

1, y2 = y′
2, then by the definition of

equivalent classes, ∃σ1, σ2 ∈ SP , s.t. y1σ1 = y′
1, y2σ2 = y′

2. On one side,

d(ŷ1, ŷ2) = min
σ∈SP

‖y1σ − y2‖ ≤ ‖y1σ1σ
−1
2 − y2‖

= ‖y1σ1 − y2σ2‖ = d(ŷ′
1, ŷ

′
2).

Similarly, we also have d(ŷ′
1, ŷ

′
2) ≤ d(ŷ1, ŷ2), and thus d(ŷ1, ŷ2) = d(ŷ′

1, ŷ
′
2).

S.1.2 d as a Metric

To show that d is a metric, we need to show its positivity, symmetry, and triangle inequality.

Positivity. Suppose ŷ1 6= ŷ2. Then ∀σ ∈ SP ,y1σ 6= y2. This implies

d(ŷ1, ŷ2) = min
σ∈SP

‖y1σ − y2‖ > 0

as SP is a finite set and taking minimum over it strictly preserves inequality. Similarly, we can show
that d(ŷ, ŷ) ≥ 0. Together with

d(ŷ, ŷ) = min
σ∈SP

‖yσ − y‖ ≤ ‖y1− y‖ = ‖y − y‖ = 0,

we get d(ŷ, ŷ) = 0.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Symmetry. For any ŷ1, ŷ2, we have

d(ŷ1, ŷ2) = min
σ∈SP

‖y1σ − y2‖

= min
σ∈SP

‖y1σσ
−1 − y2σ

−1‖

= min
σ∈SP

‖y1 − y2σ
−1‖

= min
σ∈SP

‖y2σ
−1 − y1‖

= min
σ′∈SP

‖y2σ
′ − y1‖ = d(ŷ2, ŷ1).

Here we use the symmetry of the standard Euclidean norm ‖ · ‖, the l2-distance perseverance of
permutation matrices, and the fact that σ ∈ SP ⇐⇒ σ−1 ∈ SP due to the group structure of SP .

Triangle inequality.

d(ŷ1, ŷ3) = min
σ∈SP

‖y1σ − y3‖ = min
σ∈SP

‖y1σ − y2σ
′ + y2σ

′ − y3‖, ∀σ′ ∈ SP

= min
σ′∈SP

min
σ∈SP

‖y1σ − y2σ
′ + y2σ

′ − y3‖

≤ min
σ′,σ∈SP

‖y1σ − y2σ
′‖+ ‖y2σ

′ − y3‖

= min
σ′,σ∈SP

‖y1σσ
′−1 − y2σ

′σ′−1‖+ ‖y2σ
′ − y3‖

= min
σ′,σ′′∈SP

‖y1σ
′′ − y2‖+ ‖y2σ

′ − y3‖

= min
σ′′∈SP

‖y1σ
′′ − y2‖+ min

σ′′∈SP

‖y2σ
′ − y3‖

= d(ŷ1, ŷ2) + d(ŷ2, ŷ3).

S.1.3 Completeness of
(
[0, 1]N×P /SP , d

)
To show the completeness of this space, we need to show that every Cauchy sequence converges
to a point in this space. Suppose {ŷi : i ∈ N} is a Cauchy sequence satisfying ∀ε > 0, ∃N >
0, s.t. ∀i, j > M, d(ŷi, ŷj) < ε. Let {yi : i ∈ N} be a sequence of arbitrarily selected representa-
tives from each ŷi, it is a bounded sequence in [0, 1]N×P , and thus have a convergent subsequence
{yik : k ∈ N} with limit limk→∞ yik = y∗ ∈ [0, 1]N×P by the BolzanoWeierstrass theorem.

We would like to show that ŷ∗ ∈ [0, 1]N×P /SP is the limit point of {ŷi} using proof by contra-
diction. Suppose it is not, then ∃ε0 > 0, s.t. ∀M > 0, ∃j0 > M, s.t. d(ŷj0 , ŷ

∗) ≥ ε0. By the
convergence of {yik}, ∃M1, s.t. ∀ik ≥ k > M1, ‖yik − y∗‖ < ε0/3. On the other hand, because
{ŷi} is Cauchy, ∃M2, s.t. , ∀i, j > M2, d(ŷi, ŷj) < ε0/3. Now let M = max(M1,M2), then for
ik, j0 > M , we have

ε0 ≤ d(ŷj0 , ŷ
∗) ≤ d(ŷj0 , ŷik) + d(ŷik , ŷ

∗) < ε0/3 + ‖yik − y∗‖ < ε/3 + ε/3.

A contradiction!

S.2 Proof for Network Equivariance (Sec. 4)

Suppose y is binary, when xn,xm belong to different parts (p(m) 6= p(n)),
∑

p∈P ynpymp = 0.
The weighted message passing can be written as

V′
n =

∑
m∈N

yny
t
m φ(Vm −Vn,Vn)

/ ∑
m∈N

yny
t
m

=
∑
m∈N

∑
p∈P

ynpymp φ(Vm −Vn,Vn)

/ ∑
m∈N

yny
t
m

=
∑

p(m)=p(n)

φ(Vm −Vn,Vn)

/ ∑
m∈N

yny
t
m.

2

Now apply a transformation A = (T1, · · · ,TP) ∈ SE(3)P to the input per-point features V, it
transforms Vn,Vm into

Vn 7→
P∑

p=1

ynp(VnRp + tp), Vm 7→
P∑

p=1

ymp(VmRp + tp).

When p(m) = p(n),
∑P

p=1(ymp − ynp) = 0, and the right-hand side of the above equation then
turns into∑
p(m)=p(n)

φ

(P∑
p=1

ymp(VmRp + tp)−
P∑

p=1

ynp(VnRp + tp),

P∑
p=1

ynp(VnRp + tp)

)/ ∑
m∈N

yny
t
m

=
∑

p(m)=p(n)

φ

(P∑
p=1

ynp((Vm −Vn)Rp + tp) +

P∑
p=1

(ymp − ynp)(VmRp + tp),

P∑
p=1

ynp(VnRp + tp)

)/ ∑
m∈N

yny
t
m

=
∑

p(m)=p(n)

φ

(P∑
p=1

ynp((Vm −Vn)Rp + tp),

P∑
p=1

ynp(VnRp + tp)

)/ ∑
m∈N

yny
t
m

=
∑

p(m)=p(n)

φ

(
(Vm −Vn)Rp(n) + tp(n),VnRp(n) + tp(n)

)/ ∑
m∈N

yny
t
m.

By the part-wise equivariance of φ, this is equal to V′
nRp(n) + tp(n).

S.3 Network Lipschitz (Sec. 4)

Here we provide an (informal) explanation of why our SE(3)-equivariant message passing architec-
ture is helpful to a small network Lipschitz. We consider a metric on per-point segmentation labels
and features defined by d(y,y′) := maxn ‖yn − y′

n‖2, d(V,V′) := maxn ‖Vn − V′
n‖2. This

is a mixture of l∞-norm across points and l2-norm for per-point features. Intuitively, the l∞-norm
is for dimensionality-independent properties, where the Lipschitz constant of the network won’t
drastically increase as the number of points increases.

For a message-passing layer f(V,y) as defined in Eq. (14), denote the edge operator between pairs
of adjacent points φnm = φ(Vm − Vn,Vm), and its difference of function outputs with inputs
(V,y) and (V′,y′) can be upper-bounded by

d(f(V,y), f(V′,y′))

= max
n

∥∥∥∥∥∑
m∈N

pnmφnm∑
m∈N pnm

−
∑
m∈N

p′nmφ′
nm∑

m∈N p′nm

∥∥∥∥∥
= max

n

(∥∥∥∥∥∑
m∈N

pnmφnm∑
m∈N pnm

−
∑
m∈N

pnmφ′
nm∑

m∈N pnm

∥∥∥∥∥+
∥∥∥∥∥∑
m∈N

pnmφ′
nm∑

m∈N pnm
−
∑
m∈N

p′nmφ′
nm∑

m∈N p′nm

∥∥∥∥∥
)

≤ max
n

(∥∥∥∥∥∑
m∈N

pnm∑
m∈N pnm

∥∥∥∥∥ · ‖φnm − φ′
nm‖+

∑
m∈N

‖φ′
nm‖ ·

∥∥∥∥ pnm∑
m∈N pnm

− p′nm∑
m∈N p′nm

∥∥∥∥
)

As both sup
∥∥∥∑m∈N

pnm∑
m∈N pnm

∥∥∥ and sup
∑

m∈N ‖φ′
nm‖ can be upper-bounded by constants,

bounding ‖φnm − φ′
nm‖ and

∥∥∥ pnm∑
m∈N pnm

− p′
nm∑

m∈N p′
nm

∥∥∥ w.r.t. d(y,y′) and d(V,V′) are key
to the Lipschitz bound of f(V,y).

For network architectures with per-point operations such as PointNet, the second term is 0 as pnm =
p′nm ≡ 1{n=m} and the first term degenerates to φnm = φ(Vn). In such a case, limiting the

3

Lipschitz of the layer is equivalent to limiting ‖φ(Vn)−φ(Vm)‖ w.r.t. d(V,V′), which is directly
limiting the Lipschitz of the per-point operation φ and will affect the output range of the network.

For a message-passing network, the second term means the change of layer output caused by the
change of part assignments in the neighborhood N , which is bounded by sup ‖φnm‖ and the size of
N . The ablation study in the main paper focuses on the first term

‖φ(Vm −Vn,Vm)− φ(V′
m −V′

n,V
′
m).‖

For our SE(3)-equivariant message passing with local features, all computations in φ directly oper-
ates on Vn,Vm. But for canonicalization-based methods, geometric transformations (translations
and/or rotations) are first applied to Vn,Vm based on the input part assignment y, which introduce
excessive Lipschitz to φ w.r.t. y.

S.4 Network and Training Details

In our network, we use 2 weighted message-passing layers to extract the per-point SE(3)-equivariant
features, followed by 4 weighted message-passing layers with global invariant feature concatenation.
Output features are passed through a 3-layer MLP to obtain the final segmentation labels. All net-
work layers have latent dimension 128. For the neighborhood search in our message-passing layers,
we use a ball query with radius r = 0.3 with maximum k = 40 points. We use an Adam optimizer
with an initial learning rate of 0.001. All networks are trained on one single NVIDIA Titan RTX
24GB GPU.

S.5 Additional Experiments

S.5.1 Evaluation of Network Lipschitz (Sec. 5.3)

Here we plot the training-time Lipschitz regularization losses under l2-norm in Fig. S1. The losses
are applied to y samples both near the ground-truth fixed-point and uniformly distributed in the
space. As shown in the plot, the losses are zero almost everywhere.

Figure S1: Lipschitz regularization losses at training time. We apply the regularization to y
samples both near the ground-truth fixed-point (left) and uniformly distributed in the space (right).

S.5.2 Model Convergence and Inference Time

In our experiments, we set k = 20 iterations for evaluation. But in practice, we plot the IoU w.r.t. the
number of iterations in Fig. S2 and observe that the network prediction converges within ∼ k = 5
iterations.

The training time is the same as the standard training frameworks as it only takes a single-step
prediction with the ground-truth labels. If one wants to further incorporate Lipschitz regularization

4

losses into the training, more time is needed for the loss computation, especially for the adversarial
sampling which involves the computation of network gradients and iterative sampling. But as stated
in Sec. 4 and experimented in Sec. 5.3, we are not incorporating such regularizations in our current
framework.

Figure S2: IoU w.r.t. iterations. On average, the network converges within ∼ k = 5 iterations at
inference time.

S.5.3 Data Augmentation and Noise Stability

Data augmentation on part poses. We further compare our methods to the baselines under different
data augmentation settings: no augmentation, global pose augmentation SE(3), and per-part pose
augmentation SE(3)P . The results are in Tab. S1 below.

Data aug. None SE(3) SE(3)P

PointNet 46.15 ±3.18 44.01 ±2.43 43.07 ± 2.46

DGCNN 46.60 ±4.03 37.18 ±8.38 42.70 ± 4.22

VNN 47.09 ±1.84 51.96 ±8.11 46.29 ±13.67

Ours 82.84 ±8.13 84.76 ±7.67 76.22 ±13.26

Table S1: Data augmentation. Networks are trained with no augmentation, global pose augmenta-
tion (SE(3)), and per-part pose augmentation (SE(3)P).

Network stability to pointcloud noise. We show the noise-stability analysis of our method in
Fig. S3 below. We apply Gaussian noises to the test pointclouds with different standard deviations
ranging from 0 to 0.05 and evaluate the networks trained on clean pointclouds and trained with
augmentation of the same noise level as inference.

Figure S3: Noise-stability. We apply Gaussian noises to the input pointclouds with different stan-
dard deviations and test the networks trained on clean pointclouds (red) and trained with augmenta-
tion of the same noise level as inference (blue).

5

	Proof for Part Permutations (Sec 3.4)
	Well-Definednes of d
	d as a Metric
	Completeness of ([0,1]NP / SP, d)

	Proof for Network Equivariance (Sec. 4)
	Network Lipschitz (Sec. 4)
	Network and Training Details
	Additional Experiments
	Evaluation of Network Lipschitz (Sec. 5.3)
	Model Convergence and Inference Time
	Data Augmentation and Noise Stability

