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Abstract

Counterfactual fairness requires that a person would have been classified in the
same way by an AI or other algorithmic system if they had a different protected
class, such as a different race or gender. This is an intuitive standard, as reflected
in the U.S. legal system, but its use is limited because counterfactuals cannot be
directly observed in real-world data. On the other hand, group fairness metrics (e.g.,
demographic parity or equalized odds) are less intuitive but more readily observed.
In this paper, we use causal context to bridge the gaps between counterfactual
fairness, robust prediction, and group fairness. First, we motivate counterfactual
fairness by showing that there is not necessarily a fundamental trade-off between
fairness and accuracy because, under plausible conditions, the counterfactually fair
predictor is in fact accuracy-optimal in an unbiased target distribution. Second,
we develop a correspondence between the causal graph of the data-generating
process and which, if any, group fairness metrics are equivalent to counterfactual
fairness. Third, we show that in three common fairness contexts—measurement
error, selection on label, and selection on predictors—counterfactual fairness is
equivalent to demographic parity, equalized odds, and calibration, respectively.
Counterfactual fairness can sometimes be tested by measuring relatively simple
group fairness metrics.

1 Introduction

The increasing use of artificial intelligence and machine learning in high stakes contexts such as
healthcare, hiring, and financial lending has driven widespread interest in algorithmic fairness. A
canonical example is risk assessment in the U.S. judicial system, which became well-known after a
2016 investigation into the recidivism prediction tool COMPAS revealed significant racial disparities
[2]. There are several metrics one can use to operationalize fairness. These typically refer to a
protected class or sensitive label, such as race or gender, and define an equality of prediction rates
across the protected class. For example, demographic parity, also known as statistical parity or group
parity, requires equal classification rates across all levels of the protected class [7].

However, there is an open challenge of deciding which metrics to enforce in a given context [e.g., 24,
44]. Appropriateness can vary based on different ways to measure false positive and false negative
rates and the costs of such errors [19] as well as the potential trade-offs between fairness and accuracy
[11, 12, 21, 55]. Moreover, there are well-known technical results showing that it is impossible to
achieve the different fairness metrics simultaneously, even to an ϵ-approximation [10, 30], which
suggest that a practitioner’s context-specific perspective may be necessary to achieve satisfactory
outcomes [4].

A different paradigm, counterfactual fairness, requires that a prediction would have been the same if
the person had a different protected class [31]. This matches common intuitions and legal standards
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Figure 1: A pipeline to detect and enforce counterfactual fairness. This is facilitated by Theorem 2, a
correspondence between group fairness metrics and counterfactual fairness, such that tools to detect
and enforce group fairness can be applied to counterfactual fairness.

[25]. For example, in McCleskey v. Kemp (1987), the Supreme Court found "disproportionate impact"
as shown by group disparity to be insufficient evidence of discrimination and required evidence that
"racial considerations played a part." The Court found that there was no merit to the argument that
the Georgia legislature had violated the Equal Protection Clause via its use of capital punishment
on the grounds that it had not been shown that this was [sic] "because of an anticipated racially
discriminatory effect." While judges do not formally specify causal models, their language usually
evokes such counterfactuals; see, for example, the test of "but-for causation" in Bostock v. Clayton
County (2020).

We take a new perspective on counterfactual fairness by leveraging causal context. First, we provide
a novel motivation for counterfactual fairness from the perspective of robust prediction by showing
that, with certain causal structures of the data-generating process, counterfactually fair predictors are
accuracy-optimal in an unbiased target distribution (Theorem 1). The contexts we consider ihave two
important features: the faithfulness of the causal structure, in the sense that no causal effects happen
to be precisely counterbalanced, which could lead to a coincidental achievement of group fairness
metrics, and that the association between the label Y and the protected class A is "purely spurious,"
in the sense that intervening on A does not affect Y or vice versa.

Second, we address the fundamental challenge in enforcing counterfactual fairness, which is that,
by definition, we never directly observe counterfactual information in the real world. To deal with
this, we show that the causal context connects counterfactual fairness to observational group fairness
metrics (Theorem 2 and Corollary 2.1), and this correspondence can be used to apply tools from
group fairness frameworks to the ideal of achieving counterfactual fairness (Figure 1). For example,
the fairness literature has developed techniques to achieve group fairness through augmenting the
input data [13, 27, 42], data generation [1], or regularization [45]. With this pipeline, these tools
can be applied to enforce counterfactual fairness by achieving the specific group fairness metric that
corresponds to counterfactual fairness in the given context. In particular, we show that in each fairness
context shown in Figure 2, counterfactual fairness is equivalent to a particular metric (Corollary 2.2).
This correspondence can be used to apply tools built for group fairness to the goal of counterfactual
fairness or vice versa.

Finally, we conduct brief experiments in a semi-synthetic setting with the Adult income dataset [3]
to confirm that a counterfactually fair predictor under these conditions achieves out-of-distribution
accuracy and the corresponding group fairness metric. To do this, we develop a novel counterfactually
fair predictor that is a weighted average of naive predictors, each under the assumption that the
observation is in each protected class (Theorem 3).
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Figure 2: DAGs for three causal contexts in which a counterfactually fair predictor is equivalent
to a particular group fairness metric. Measurement error is represented with the unobserved true
label Ỹ in a dashed circle, which is a parent of the observed label Y , and selection is represented
with the selection status S in a rectangle, indicating an observed variable that is conditioned on in
the data-generating process, which induces an association between its parents. Bidirectional arrows
indicate that either variable could affect the other.

In summary, we make three main contributions:

1. We provide a novel motivation for counterfactual fairness from the perspective of robust
prediction by showing that, in certain causal contexts, the counterfactually fair predictor is
accuracy-optimal in an unbiased target distribution (Theorem 1).

2. We provide criteria for whether a causal context implies equivalence between counterfactual
fairness and each of the three primary group fairness metrics (Theorem 2) as well as seven
derivative metrics (Corollary 2.1).

3. We provide three causal contexts, as shown in Figure 2, in which counterfactual fairness
is equivalent to a particular group fairness metric: measurement error with demographic
parity, selection on label with equalized odds, and selection on predictors with calibration
(Corollary 2.2).

For a running example, consider the case of recidivism prediction with measurement error, as shown
in Figure 2a, where X is the set of predictors of recidivism, such as past convictions; Ỹ is committing
a crime; Y is committing a crime that has been reported and prosecuted; and A is race, which in this
example affects the likelihood crime is reported and prosecuted but not the likelihood of crime itself.
In this case, we show that a predictor is counterfactually fair if and only if it achieves demographic
parity.

2 Related work

Previous work has developed a number of fairness metrics, particularly demographic parity [7], equal-
ized odds [23], and calibration [19]. Verma and Rubin [48] details 15 group fairness metrics—also
known as observational or distributional fairness metrics—including these three, and Makhlouf,
Zhioua, and Palamidessi [34] details 19 causal fairness metrics, including counterfactual fairness
[31]. Many notions of fairness can be viewed as specific instances of the general goal of invariant
representation [18, 53, 55, 56]. Much contemporary work in algorithmic fairness develops ways
to better enforce certain fairness metrics, such as through reprogramming a pretrained model [54],
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contrastive learning when most data lacks labels of the protected class [8], and differentiating between
critical and non-critical features for selective removal [16].

Several papers have criticized the group fairness metrics and enriched them correspondingly. For
example, one can achieve demographic parity by arbitrarily classifying a subset of individuals in
a protected class, regardless of the other characteristics of those individuals. This is particularly
important for subgroup fairness, in which a predictor can achieve the fairness metric for one category
within the protected class but fail to achieve it when subgroups are considered across different
protected classes, such as people who have a certain race and gender. This is particularly important
given the intersectional nature of social disparities [14], and metrics have been modified to include
possible subgroups [29].

Well-known impossibility theorems show that fairness metrics such as the three listed above cannot
be simultaneously enforced outside of unusual situations such as a perfectly accurate classifier, a
random classifier, or a population with equal rates across the protected class, and this is true even to
an ϵ-approximation [10, 30, 40]. Moreover, insofar as fairness and classification accuracy diverge,
there appears to be a trade-off between the two objectives. Two well-known papers in the literature,
Corbett-Davies et al. [12] and Corbett-Davies and Goel [11], detail the cost of fairness and argue for
the prioritization of classification accuracy. More recent work on this trade-off includes a geometric
characterization and Pareto optimal frontier for invariance goals such as fairness [55], the cost
of causal fairness in terms of Pareto dominance in classification accuracy and diversity [37], the
potential for increases in fairness via data reweighting in some cases without a cost to classification
accuracy [32], and showing optimal fairness and accuracy in an ideal distribution given mismatched
distributional data [17].

Our project uses the framework of causality to enrich fairness metric selection. Recent work has used
structural causal models to formalize and solve a wide range of causal problems in machine learning,
such as disentangled representations [41, 50], out-of-distribution generalization [41, 49, 50], and the
identification and removal of spurious correlations [47, 50]. While Veitch et al. [47] focuses on the
correspondence between counterfactual invariance and domain generalization, Remark 3.3 notes that
counterfactual fairness as an instance of counterfactual invariance can imply either demographic parity
or equalized odds in the two graphs they analyze, respectively, and Makar and D’Amour [33] draw
the correspondence between risk invariance and equalized odds under a certain graph. The present
work can be viewed as a generalization of these results to correspondence between counterfactual
fairness, which is equivalent to risk invariance when the association is "purely spurious," and each of
the group fairness metrics.

3 Preliminaries and Examples

For simplicity of exposition, we focus on binary classification with an input dataset X ∈ X and
a binary label Y ∈ Y = {0, 1}, and in our data we may have ground-truth unobserved labels
Ỹ ∈ {0, 1} that do not always match the potentially noisy observed labels Y . The goal is to estimate
a prediction function f : X 7→ Y , producing estimated labels f(X) ∈ {0, 1}, that minimizes
E[ℓ(f(X), Y )] for some loss function ℓ : Y × Y 7→ R. There are a number of popular fairness
metrics in the literature that can be formulated as conditional probabilities for some protected class
A ∈ {0, 1}, or equivalently, as independence of random variables, and we can define a notion of
counterfactual fairness.
Definition 1. (Demographic parity). A predictor f(X) achieves demographic parity if and only if:

P(f(X) = 1 | A = 0) = P(f(X) = 1 | A = 1) ⇐⇒ f(X) ⊥ A

Definition 2. (Equalized odds). A predictor f(X) achieves equalized odds if and only if:

P(f(X) = 1 | A = 0, Y = y) = P(f(X) = 1 | A = 1, Y = y) ⇐⇒ f(X) ⊥ A | Y

Definition 3. (Calibration). A predictor f(X) achieves calibration if and only if:

P(Y = 1 | A = 0, f(X) = 1) = P(Y = 1 | A = 1, f(X) = 1) ⇐⇒ Y ⊥ A | f(X)

Definition 4. (Counterfactual fairness). A predictor f(X) achieves counterfactual fairness if and
only if for any a, a′ ∈ A:

f(X(a)) = f(X(a′))
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In this case, x(0) and x(1) are the potential outcomes. That is, for an individual associated with
data x ∈ X with protected class a ∈ A, their counterfactual is x(a′) where a′ ∈ A and a ̸= a′.
The counterfactual observation is what would obtain if the individual had a different protected class.
We represent causal structures as directed acyclic graphs (DAGs) in which nodes are variables and
directed arrows indicates the direction of causal effect. Nodes in a solid circle are observed variables
that may or may not be included in a predictive model. A dashed circle indicates an unobserved
variable, such as in the case of measurement error in which the true label Ỹ is a parent of the observed
label Y . A rectangle indicates an observed variable that is conditioned on in the data-generating
process, typically denoted by S for a selection effect, which induces an association between its
parents. For clarity, we decompose X into X⊥

A , the component that is not causally affected by A, and
X⊥

Y , the component that does not causally affect Y (in a causal-direction graph, i.e., X affects Y ) or
is not causally affected by Y (in an anti-causal graph, i.e., Y affects X). In general, there could be a
third component that is causally connected to both A and Y (i.e., a non-spurious interaction effect).
This third component is excluded through the assumption that the association between Y and A in
the training distribution is purely spurious [47].
Definition 5. (Purely spurious). We say the association between Y and A is purely spurious if
Y ⊥ X | X⊥

A , A.

In other words, if we condition on A, then the only information about Y is in X⊥
A (i.e., the component

of the input that is not causally affected by the protected class). We also restrict ourselves to cases in
which A is exogenous to the causal structure (i.e., there is no confounder of A and X or of A and Y ),
which seems reasonable in the case of fairness because the protected class is typically not caused by
other variables in the specified model.

Despite the intuitive appeal and legal precedent for counterfactual fairness, the determination of
counterfactuals is fundamentally contentious because, by definition, we do not observe counterfactual
worlds, and we cannot run scientific experiments to test what would have happened in a different
world history. Some counterfactuals are relatively clear, but counterfactuals in contexts of protected
classes such as race, gender, and disability can be ambiguous. Consider Bob, a hypothetical Black
criminal defendant being assessed for recidivism who is determined to be high-risk by a human judge
or a machine algorithm. The assessment involves extensive information about his life: where he has
lived, how he has been employed, what crimes he has been arrested and convicted of before, and
so on. What is the counterfactual in which Bob is White? Is it the world in which Bob was born to
White parents, the one in which Bob’s parents were themselves born to White parents, or another
change further back? Would Bob still have the same educational and economic circumstances?
Would those White parents have raised Bob in the same majority-Black neighborhood he grew up in
or in a majority-White neighborhood? Questions of counterfactual ambiguity do not have established
answers in the fairness literature, either in philosophy [35], epidemiology [46], or the nascent machine
learning literature [28], and we do not attempt to resolve them in the present work.

Additionally, defining counterfactual fairness in a given context requires some identification of
the causal structure of the data generating process. Fortunately, mitigating this challenge is more
technically tractable than mitigating ambiguity, as there is an extensive literature on how we can
learn about the causal structure, known as as causal inference [15] or causal discovery when we have
minimal prior knowledge or assumptions of which parent-child relationships do and do not obtain
[43]. The literature also contains a number of methods for assessing counterfactual fairness given
a partial or complete causal graph [9, 20, 51, 52, 57]. Again, we do not attempt to resolve debates
about appropriate causal inference strategies in the present work, but merely to provide a conceptual
tool for those researchers and practitioners who are comfortable staking a claim of some partial or
complete causal structure of the context at hand.

To ground our technical results, we briefly sketch three fairness contexts that match those in Figure 2
and will be the basis of Corollary 2.2. First, measurement error [6] is a well-known source of fairness
issues as developed in the "measurement error models" of Jacobs and Wallach [26]. Suppose that
COMPAS is assessing the risk of recidivism, but they do not have perfect knowledge of who has
committed crimes because not all crimes are reported and prosecuted. Thus, X causes Ỹ , the actual
committing of a crime, which is one cause of Y , the imperfect labels. Also suppose that the protected
class A affects whether the crime is reported and prosecuted, such as through police bias, but does
not affect the actual committing of a crime. A also affects X , other data used for the recidivism
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prediction. This is represented by the causal DAG in Figure 2a, which connects counterfactual
fairness to demographic parity.

Second, a protected class can affect whether individuals are selected into the dataset. For example,
drugs may be prescribed on the basis of whether the individual’s lab work X indicates the presence
of disease Y . People with the disease are presumably more likely to have lab work done, and the
socioeconomic status A of the person (or of the hospital where their lab work is done) may make them
more likely to have lab work done. We represent this with a selection variable S that we condition on
by only using the lab work data that is available. This collider induces an association between A and
Y . This is represented by the causal DAG in Figure 2b, which connects counterfactual fairness to
equalized odds.

Third, individuals may be selected into the dataset based on predictors, X , which cause the label Y .
For example, loans may be given out with a prediction of loan repayment Y based on demographic
and financial records X . There may be data only for people who choose to work with a certain
bank based on financial records and a protected class A. This is represented by the causal DAG in
Figure 2c, which connects counterfactual fairness to calibration.

4 Counterfactual fairness and robust prediction

Characterizations of the trade-off between prediction accuracy and fairness treat them as two compet-
ing goals [e.g., 11, 12, 21, 55]. That view assumes the task is to find an optimal model f∗(X) that
minimizes risk (i.e., expected loss) in the training distribution X,Y,A ∼ P :

f∗(X) = argmin
f

EP [ℓ(f(X), Y )]

However, the discrepancy between levels of the protected class in the training data may itself be due
to biases in the dataset, such as measurement error, selection on label, and selection on predictors.
As such, the practical interest may not be risk minimization in the training distribution, but out-of-
distribution (OOD) generalization from the training distribution to an unbiased target distribution
where these effects are not present.

Whether the counterfactually fair empirical risk minimizer also minimizes risk in the target distribution
depends on how the distributions differ. Because a counterfactually fair predictor does not depend
on the protected class, it minimizes risk if the protected class in the target distribution contains no
information about the corresponding labels (i.e., if protected class and label are uncorrelated). If the
protected class and label are correlated in the target distribution, then risk depends on whether the
counterfactually fair predictor learns all the information about the label contained in the protected
class. If so, then its prediction has no reason to vary in the counterfactual scenario. Theorem 1
motivates counterfactual fairness by stating that, for a distribution with bias due to selection on label
and equal marginal label distributions or due to selection on predictors, the counterfactually fair
predictor is accuracy-optimal in the unbiased target distribution.

Theorem 1. Let FCF be the set of all counterfactually fair predictors. Let ℓ be a proper scoring rule
(e.g., square error, cross entropy loss). Let the counterfactually fair predictor that minimizes risk on
the training distribution X,Y,A ∼ P be:

f∗(X) := argmin
f∈FCF

EP [ℓ(f(X), Y )]

Then, f∗ also minimizes risk on the target distribution X,Y,A ∼ Q with no selection effects, i.e.,

f∗(X) = argmin
f

EQ[ℓ(f(X), Y )]

if either of the following conditions hold:

1. The association between Y and A is due to selection on label and the marginal distribution
of the label Y is the same in each distribution, i.e., P (Y ) = Q(Y ).

2. The association between Y and A is due to selection on predictors.

In the context of measurement error, there are not straightforward conditions for the risk minimization
of the counterfactually fair predictor because the training dataset contains Y , observed noisy labels,
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and not Ỹ , the true unobserved labels. Thus any risk minimization (including in the training
distribution) depends on the causal process that generates Y from Ỹ .

5 Counterfactual fairness and group fairness

Causal structures imply conditional independencies. For example, if the only causal relationships are
that X causes Y and Y causes Z, then we know that X ⊥ Z | Y . On a directed acyclic graph (DAG),
following Pearl and Dechter [38], we say that a variable Y dependence-separates or d-separates
X and Z if X and Z are connected via an unblocked path (i.e., no unconditioned collider in which
two arrows point directly to the same variable) but are no longer connected after removing all arrows
that directly connect to Y [22]. So in this example, Y d-separates X and Z, which is equivalent to
the conditional independence statement. A selection variable S in a rectangle indicates an observed
variable that is conditioned on in the data-generating process, which induces an association between
its parents and thereby does not block the path as an unconditioned collider would. For Theorem 2,
Corollary 2.1, and Corollary 2.2, we make the usual assumption of faithfulness of the causal graph,
meaning that the only conditional independencies are those implied by d-separation, rather than
any causal effects that happen to be precisely counterbalanced. Specifically, we assume faithfulness
between the protected class A, the label Y , and the component of X on which the predictor f(X)
is based. If the component is not already its own node in the causal graph, then faithfulness would
apply if the component were isolated into its own node or nodes.

For a predictor, these implied conditional independencies can be group fairness metrics. We can restate
conditional independencies containing X⊥

A as containing f(X) because, if f(X) is a counterfactually
fair predictor, it only depends on X⊥

A , the component that is not causally affected by A. In Theorem 2,
we provide the correspondence between counterfactual fairness and the three most common metrics:
demographic parity, equalized odds, and calibration.
Theorem 2. Let the causal structure be a causal DAG with X⊥

Y , X⊥
A , Y , and A, such as in Figure 2.

Assume faithfulness between A, Y , and f(X). Then:

1. Counterfactual fairness is equivalent to demographic parity if and only if there is no
unblocked path between X⊥

A and A.

2. Counterfactual fairness is equivalent to equalized odds if and only if all paths between X⊥
A

and A, if any, are either blocked by a variable other than Y or unblocked and contain Y .

3. Counterfactual fairness is equivalent to calibration if and only if all paths between Y and
A, if any, are either blocked by a variable other than X⊥

A or unblocked and contain X⊥
A .

Similar statements can be made for any group fairness metric. For example, the notion of false
negative error rate balance, also known as equal opportunity [23], is identical to equalized odds but
only considers individuals who have a positive label (Y = 1). The case for this metric is based on
false negatives being a particular moral or legal concern, motivated by principles such as "innocent
until proven guilty," in which a false negative represents an innocent person (Y = 1) who is found
guilty (f(X) = 0). False negative error rate balance is assessed in the same way as equalized odds
but only with observations that have a positive true label, which may be consequential if different
causal structures are believed to obtain for different groups.

Table 1 shows the ten group fairness metrics presented in Verma and Rubin [48] that can be ex-
pressed as conditional independencies. Theorem 2 specified the correspondence between three of
these (demographic parity, equalized odds, and calibration), and we extend to the other seven in
Corollary 2.1.

We have so far restricted ourselves to a binary classifier f(X) ∈ {0, 1}. Here, we denote this as a
decision f(x) = d ∈ D = {0, 1} and also consider probabilistic classifiers that produce a score s
that can take any probability from 0 to 1, i.e., f(x) = s ∈ S = [0, 1] = P(Y = 1). The metrics
of balance for positive class, balance for negative class, and score calibration are defined by Verma
and Rubin [48] in terms of score. Verma and Rubin [48] refer to calibration for binary classification
(Definition 3) as "conditional use accuracy equality." To differentiate these, we henceforth refer to
the binary classification metric as "binary calibration" and the probabilistic classification metric as
"score calibration."
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Table 1: Group fairness metrics from Verma and Rubin [48].

Name Probability Definition Independence
Definition

Demographic Parity P(D = 1 | A = 0) = P(D = 1 | A = 1) D ⊥ A

Conditional
Demographic Parity

P(D = 1 | A = 0, L = l) = P(D = 1 | A = 1, L = l) D ⊥ A | L = l

Equalized Odds P(D = 1 | A = 0, Y = y) = P(D = 1 | A = 1, Y = y) D ⊥ A | Y

False Positive
Error Rate Balance

P(D = 1 | A = 0, Y = 0) = P(D = 1 | A = 1, Y = 0) D ⊥ A | Y = 0

False Negative
Error Rate Balance

P(D = 0 | A = 0, Y = 1) = P(D = 0 | A = 1, Y = 1) D ⊥ A | Y = 1

Balance for
Negative Class

E[S | A = 0, Y = 0] = E[S | A = 1, Y = 0] S ⊥ A | Y = 0

Balance for
Positive Class

E[S | A = 0, Y = 1] = E[S | A = 1, Y = 1] S ⊥ A | Y = 1

Conditional Use
Accuracy Equality
(i.e., Calibration)

P(Y = y | A = 0, D = d) = P(Y = y | A = 1, D = d) Y ⊥ A | D

Predictive Parity P(Y = 1 | A = 0, D = 1) = P(Y = 1 | A = 1, D = 1) Y ⊥ A | D = 1

Score Calibration P(Y = 1 | A = 0, S = s) = P(Y = 1 | A = 1, S = s) Y ⊥ A | S

Corollary 2.1. Let the causal structure be a causal DAG with X⊥
Y , X⊥

A , Y , and A, such as in
Figure 2. Assume faithfulness between A, Y , and f(X). Then:

1. For a binary classifier, counterfactual fairness is equivalent to conditional demographic
parity if and only if, when a set of legitimate factors L is held constant at level l, there is no
unblocked path between X⊥

A and A.
2. For a binary classifier, counterfactual fairness is equivalent to false positive error rate

balance if and only if, for the subset of the population with negative label (i.e., Y = 0), there
is no path between X⊥

A and A, a path blocked by a variable other than Y , or an unblocked
path that contains Y .

3. For a binary classifier, counterfactual fairness is equivalent to false negative error rate
balance if and only if, for the subset of the population with positive label (i.e., Y = 1), there
is no path between X⊥

A and A, a path blocked by a variable other than Y , or an unblocked
path that contains Y .

4. For a probabilistic classifier, counterfactual fairness is equivalent to balance for negative
class if and only if, for the subset of the population with negative label (i.e., Y = 0), there is
no path between X⊥

A and A, a path blocked by a variable other than Y , or an unblocked
path that contains Y .

5. For a probabilistic classifier, counterfactual fairness is equivalent to balance for positive
class if and only if, for the subset of the population with positive label (i.e., Y = 1), there is
no path between X⊥

A and A, a path blocked by a variable other than Y , or an unblocked
path that contains Y .

6. For a probabilistic classifier, counterfactual fairness is equivalent to predictive parity if
and only if, for the subset of the population with positive label (i.e., D = 1), there is no path
between Y and A, a path blocked by a variable other than X⊥

A , or an unblocked path that
contains X⊥

A .
7. For a probabilistic classifier, counterfactual fairness is equivalent to score calibration if

and only if there is no path between Y and A, a path blocked by a variable other than X⊥
A ,

or an unblocked path that contains X⊥
A .
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Table 2: Experimental results: Robust prediction

Source Accuracy Target Accuracy

Naive FTU CF Naive FTU CF Target
Trained

Measurement Error 0.8283 0.7956 0.7695 0.8031 0.8114 0.8204 0.8674

Selection on Label 0.8771 0.8686 0.8610 0.8566 0.8652 0.8663 0.8655

Selection on Predictors 0.8659 0.656 0.8658 0.8700 0.8698 0.8699 0.8680

This general specification can be unwieldy, so to illustrate this, we provide three real-world examples
shown in Figure 2: measurement error, selection on label (i.e., "post-treatment bias" or "selection
on outcome" if the label Y is causally affected by X), and selection on predictors. These imply
demographic parity, equalized odds, and calibration, respectively.
Corollary 2.2. Assume faithfulness between A, Y , and f(X).

1. Under the graph with measurement error as shown in Figure 2a, a predictor achieves
counterfactual fairness if and only if it achieves demographic parity.

2. Under the graph with selection on label as shown in Figure 2b, a predictor achieves
counterfactual fairness if and only if it achieves equalized odds.

3. Under the graph with selection on predictors as shown in Figure 2c, a predictor achieves
counterfactual fairness if and only if it achieves calibration.

6 Experiments

We conducted brief experiments in a semi-synthetic setting to show that a counterfactually fair
predictor achieves robust prediction and group fairness. We used the Adult income dataset [3] with a
simulated protected class A, balanced with P (A = 0) = P (A = 1) = 0.5. For observations with
A = 1, we manipulated the input data to simulate a causal effect of A on X: P (race = Other) =
0.8. With this as the target distribution, we produced three biased datasets that result from each
effect produced with a fixed probability for observations when A = 1: measurement error (P = 0.8),
selection on label (P = 0.5), and selection on predictors (P = 0.8).

On each dataset, we trained three predictors: a naive predictor trained on A and X , a fairness through
unawareness (FTU) predictor trained only on X , and a counterfactually fair predictor based on an
average of the naive prediction under the assumption that A = 1 and the naive prediction under the
assumption A = 0, weighted by the proportion of each group in the target distribution.
Theorem 3. Let X be an input dataset X ∈ X with a binary label Y ∈ Y = {0, 1} and protected
class A ∈ {0, 1}. Define a predictor:

fnaive := argmin
f

E[ℓ(f(X,A), Y )]

where f is a proper scoring rule. Define another predictor:

fCF := P(A = 1)fnaive(X, 1) + P(A = 0)fnaive(X, 0)

If the association between Y and A is purely spurious, then fCF is counterfactually fair.

For robust prediction, we show that the counterfactually fair (CF) predictor has accuracy in the target
distribution near the accuracy of a predictor trained directly on the target distribution. For group
fairness, we show that the counterfactually fair predictor achieves demographic parity, equalized
odds, and calibration, corresponding to the three biased datasets. Results are shown in Table 2
and Table 3, and code to reproduce these results or produce results with varied inputs (number of
datasets sampled, effect of A on X , probabilities of each bias, type of predictor) is available at
https://github.com/jacyanthis/Causal-Context.
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Table 3: Experimental results: Fairness metrics

Demographic
Parity

Difference (CF)

Equalized
Odds

Difference (CF)

Calibration
Difference (CF)

Measurement Error -0.0005 0.0906 -0.8158

Selection on Label 0.1321 -0.0021 0.2225

Selection on Predictors 0.1428 0.0789 0.0040

7 Discussion

In this paper, we provided a new argument for counterfactual fairness—that the supposed trade-
off between fairness and accuracy [12] can evaporate under plausible conditions when the goal is
accuracy in an unbiased target distribution (Theorem 1). To address the challenge of trade-offs
between different group fairness metrics, such as their mutual incompatibility [30] and the variation
in costs of certain errors such as false positives and false negatives [19], we provided a conceptual tool
for adjudicating between them using knowledge of the underlying causal context of the social problem
(Theorem 2 and Corollary 2.1). We illustrated this for the three most common fairness metrics, in
which the bias of measurement error implies demographic parity; selection on label implies equalized
odds; and selection on predictors implies calibration (Corollary 2.2), and we showed a minimal
example by inducing particular biases on a simulated protected class in the Adult income dataset.

There are nonetheless important limitations that we hope can be addressed in future work. First, the
counterfactual fairness paradigm still faces significant practical challenges, such as ambiguity and
identification. Researchers can use causal discovery strategies developed in a fairness context [5, 20]
to identify the causal structure of biases in real-world datasets and ensure theory like that outlined in
this paper can be translated to application. Second, a key assumption in our paper and related work
has been the assumption that associations between Y and A are "purely spurious," a term coined by
Veitch et al. [47] to refer to cases where, if one conditions on A, then the only information about Y in
X is in the component of X that is not causally affected by A. This has provided a useful conceptual
foothold to build theory, but it should be possible for future work to move beyond the purely spurious
case, such as by articulating distribution shift and deriving observable signatures of counterfactual
fairness in more complex settings [36, 39].

8 Acknowledgments

We thank Bryon Aragam, James Evans, and Sean Richardson for useful discussions.

References
[1] Kartik Ahuja et al. “Conditionally Independent Data Generation”. In: Proceedings of the

Thirty-Seventh Conference on Uncertainty in Artificial Intelligence. Ed. by Cassio de Campos
and Marloes H. Maathuis. Vol. 161. Proceedings of Machine Learning Research. PMLR, July
2021, pp. 2050–2060.

[2] Julia Angwin et al. “Machine Bias”. In: ProPublica (2016). (Visited on 08/20/2023).
[3] Barry Becker and Ronny Kohavi. Adult. 1996. DOI: 10 . 24432 / C5XW20. (Visited on

08/21/2023).
[4] Andrew Bell et al. “The Possibility of Fairness: Revisiting the Impossibility Theorem in

Practice”. In: 2023 ACM Conference on Fairness, Accountability, and Transparency. Chicago
IL USA: ACM, June 2023, pp. 400–422. DOI: 10.1145/3593013.3594007. (Visited on
08/05/2023).
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A Proofs

Theorem 1. Let FCF be the set of all counterfactually fair predictors. Let ℓ be a proper scoring rule
(e.g., square error, cross entropy loss). Let the counterfactually fair predictor that minimizes risk on
the training distribution X,Y,A ∼ P be:

f∗(X) := argmin
f∈FCF

EP [ℓ(f(X), Y )]

Then, f∗ also minimizes risk on the target distribution X,Y,A ∼ Q with no selection effects, i.e.,

f∗(X) = argmin
f

EQ[ℓ(f(X), Y )]

if either of the following conditions hold:

1. The association between Y and A is due to selection on label and the marginal distribution
of the label Y is the same in each distribution, i.e., P (Y ) = Q(Y ).

2. The association between Y and A is due to selection on predictors.

Proof. Counterfactual fairness is a case of counterfactual invariance. By Lemma 3.1 in Veitch et al.
[47], this implies X is X⊥

A -measurable. Therefore,

argmin
f∈FCF

EP [ℓ(f(X), Y )] = argmin
f∈FCF

EP [ℓ(f(X
⊥
A ), Y )]

Following the same reasoning as Theorem 4.2 in Veitch et al. [47], it is well-known that under
squared error or cross entropy loss the risk minimizer is f∗(x⊥

A) = EP [Y | x⊥
A]. Because the

target distribution Q has no selection (and no confounding because A is exogenous in the case of
counterfactual fairness), the risk minimizer in the target distribution is the same as the counterfactually
fair risk minimizer in the target distribution, i.e., EQ[Y | x] = EQ[Y | x⊥

A]. Thus our task is to show
EP [Y | x⊥

A] = EQ[Y | x⊥
A].

Selection on label is shown in Figure 2b. Because X⊥
A does not d-separate Y and A, f∗(X) depends

on the marginal distribution of Y , so we need an additional assumption that P (Y ) = Q(Y ). We can
use this with Bayes’ theorem to show the equivalence of the conditional distributions,

Q(Y | X⊥
A ) =

Q(X⊥
A | Y )Q(Y )∫

Q(X⊥
A | Y )Q(Y )dy

(A.1)

=
P (X⊥

A | Y )Q(Y )∫
P (X⊥

A | Y )Q(Y )dy
(A.2)

=
P (X⊥

A | Y )P (Y )∫
P (X⊥

A | Y )P (Y )dy
(A.3)

= P (Y | X⊥
A ), (A.4)

where the first and fourth lines follow from Bayes’ theorem, the second line follows from the causal
structure (X causes Y ), and the third line follows from the assumption that P (Y ) = Q(Y ). This
equality of distributions implies equality of expectations.

Selection on predictors is shown in Figure 2c. Because X⊥
A d-separates Y and A, f∗(X) does

not depend on the marginal distribution of Y , so we immediately have an equality of conditional
distributions, Q(Y | X⊥

A ) = P (Y | X⊥
A ), and equal distributions have equal expectations, EP [Y |

x⊥
A] = EQ[Y | x⊥

A].

Theorem 2. Let the causal structure be a causal DAG with X⊥
Y , X⊥

A , Y , and A, such as in Figure 2.
Assume faithfulness between A, Y , and f(X). Then:

1. Counterfactual fairness is equivalent to demographic parity if and only if there is no
unblocked path between X⊥

A and A.

2. Counterfactual fairness is equivalent to equalized odds if and only if all paths between X⊥
A

and A, if any, are either blocked by a variable other than Y or unblocked and contain Y .
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X⊥
AYA

(a) Example of an unblocked path between A and X⊥
A

X⊥
AYA

(b) Example of a blocked path between A and X⊥
A

Figure 3: Examples of an unblocked path and a blocked path in a causal DAG.

3. Counterfactual fairness is equivalent to calibration if and only if all paths between Y and
A, if any, are either blocked by a variable other than X⊥

A or unblocked and contain X⊥
A .

Proof. For a predictor f(X) to be counterfactually fair, it must only depend on X⊥
A .

1. By Definition 1, demographic parity is achieved if and only if X⊥
A ⊥ A. In a DAG, variables

are dependent if and only if there is an unblocked path between them (i.e., no unconditioned
collider in which two arrows point directly to the same variable). For example, Figure 3a
shows an unblocked path between A and X⊥

A .

2. By Definition 2, equalized odds are achieved if and only if X⊥
A ⊥ A | Y . If there is no path

between X⊥
A and A, then X⊥

A and A are independent under any conditions. If there is a
blocked path between X⊥

A and A, and it has a block that is not Y , then X⊥
A and A remain

independent because a blocked path induces no dependence. If there is an unblocked path
between X⊥

A and A that contains Y , then Y d-separates X⊥
A and A, so X⊥

A and A remain
independent when conditioning on Y . On the other hand, if there is a blocked path between
X⊥

A and A and its only block is Y , then conditioning on the block induces dependence. If
there is an unblocked path that does not contain Y , then X⊥

A and A are dependent.

3. With Definition 3, we can apply analogous reasoning to the case of equalized odds. Cali-
bration is achieved if and only if Y ⊥ A | X⊥

A . If there is no path between Y and A, then
Y and A are independent under any conditions. If there is a blocked path between Y and
A, and it has a block is not X⊥

A , then Y and A remain independent because a blocked path
induces no dependence. If there is an unblocked path between Y and A that contains X⊥

A ,
then X⊥

A d-separates Y and A, so Y and A remain independent when conditioning on X⊥
A .

On the other hand, if there is a blocked path between Y and A and its only block is X⊥
A ,

then conditioning on the block induces dependence. If there is an unblocked path that does
not contain X⊥

A , then Y and A are dependent.

Corollary 2.1. Let the causal structure be a causal DAG with X⊥
Y , X⊥

A , Y , and A, such as in
Figure 2. Assume faithfulness between A, Y , and f(X). Then:

1. For a binary classifier, counterfactual fairness is equivalent to conditional demographic
parity if and only if, when a set of legitimate factors L is held constant at level l, there is no
unblocked path between X⊥

A and A.

2. For a binary classifier, counterfactual fairness is equivalent to false positive error rate
balance if and only if, for the subset of the population with negative label (i.e., Y = 0), there
is no path between X⊥

A and A, a path blocked by a variable other than Y , or an unblocked
path that contains Y .

3. For a binary classifier, counterfactual fairness is equivalent to false negative error rate
balance if and only if, for the subset of the population with positive label (i.e., Y = 1), there
is no path between X⊥

A and A, a path blocked by a variable other than Y , or an unblocked
path that contains Y .

4. For a probabilistic classifier, counterfactual fairness is equivalent to balance for negative
class if and only if, for the subset of the population with negative label (i.e., Y = 0), there is
no path between X⊥

A and A, a path blocked by a variable other than Y , or an unblocked
path that contains Y .
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5. For a probabilistic classifier, counterfactual fairness is equivalent to balance for positive
class if and only if, for the subset of the population with positive label (i.e., Y = 1), there is
no path between X⊥

A and A, a path blocked by a variable other than Y , or an unblocked
path that contains Y .

6. For a probabilistic classifier, counterfactual fairness is equivalent to predictive parity if
and only if, for the subset of the population with positive label (i.e., D = 1), there is no path
between Y and A, a path blocked by a variable other than X⊥

A , or an unblocked path that
contains X⊥

A .

7. For a probabilistic classifier, counterfactual fairness is equivalent to score calibration if
and only if there is no path between Y and A, a path blocked by a variable other than X⊥

A ,
or an unblocked path that contains X⊥

A .

Proof. Each of these seven metrics can be stated as a conditional independence statement, as shown
in Table 1, and each of the seven graphical tests of those statements can be derived from one of the
three graphical tests in Theorem 2. Note that the graphical test for a binary classifier is the same as
that for the corresponding probabilistic classifiers because the causal graph does not change when
f(X⊥

A ) changes from a binary-valued (i.e., f(X) ∈ {0, 1}) function to a probability-valued function
(i.e., f(X) ∈ [0, 1]).

From demographic parity:

1. Conditional demographic parity is equivalent to demographic parity when some set of
legitimate factors L is held constant at some value l.

From equalized odds:

2. False positive error rate balance is equivalent to equalized odds when considering only the
population with negative label (i.e., Y = 0).

3. False negative error rate balance is equivalent to equalized odds when considering only the
population with positive label (i.e., Y = 1).

4. Balance for negative class is equivalent to equalized odds for probabilistic classifiers when
considering only the population with negative label (i.e., Y = 0).

5. Balance for positive class is equivalent to equalized odds for probabilistic classifiers when
considering only the population with negative label (i.e., Y = 1).

From binary calibration:

6. Predictive parity is equivalent to binary calibration when considering only the population
with positive label (i.e., D = 1).

7. Score calibration is equivalent to binary calibration for probabilistic classifiers.

Corollary 2.2. Assume faithfulness between A, Y , and f(X).

1. Under the graph with measurement error as shown in Figure 2a, a predictor achieves
counterfactual fairness if and only if it achieves demographic parity.

2. Under the graph with selection on label as shown in Figure 2b, a predictor achieves
counterfactual fairness if and only if it achieves equalized odds.

3. Under the graph with selection on predictors as shown in Figure 2c, a predictor achieves
counterfactual fairness if and only if it achieves calibration.

Proof. By Theorem 2:
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1. Observe in Figure 2a that the only path between X⊥
A and A is blocked by Y , so counterfactual

fairness implies demographic parity. Because the only block in that path is Y , counterfactual
fairness does not imply equalized odds. And the only path between Y and A (a parent-child
relationship) is unblocked and does not contain X⊥

A , so counterfactual fairness does not
imply calibration.

2. Observe in Figure 2b that the only path between X⊥
A and A is unblocked (because S is

necessarily included in the predictive model), so counterfactual fairness does not imply
demographic parity. Because that path contains Y , counterfactual fairness implies equalized
odds. And the only path between Y and A is unblocked (because S is necessarily included
in the predictive model) and does not contain X⊥

A , so counterfactual fairness does not imply
calibration.

3. Observe in Figure 2c that the only path between X⊥
A and A is unblocked (because S is

necessarily included in the predictive model), so counterfactual fairness does not imply
demographic parity. Because that path does not contain Y , counterfactual fairness does
not imply equalized odds. And the only path between Y and A is unblocked (because S is
necessarily included in the predictive model) and contains X⊥

A , so counterfactual fairness
implies calibration.

Theorem 3. Let X be an input dataset X ∈ X with a binary label Y ∈ Y = {0, 1} and protected
class A ∈ {0, 1}. Define a predictor:

fnaive := argmin
f

E[ℓ(f(X,A), Y )]

where f is a proper scoring rule. Define another predictor:

fCF := P(A = 1)fnaive(X, 1) + P(A = 0)fnaive(X, 0)

If the association between Y and A is purely spurious, then fCF is counterfactually fair.

Proof. Notice that fCF does not depend on A directly because the realization of A is not in the
definition. To show that fCF also does not depend on A indirectly (i.e., through X), consider that a
purely spurious association means that Y ⊥ X | X⊥

A , A. Therefore, the naive predictor:

fnaive(X,A) = P(Y = 1|X,A)

= P(Y = 1|X⊥
A , A)

Because X⊥
A is the component of X that is not causally affected by A, there is no term in fCF that

depends on A, which means fCF is counterfactually fair.
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