
A Preliminaries502

Here we describe preliminaries necessary for Appendices B and C. This includes some basic properties503

of the Laplace–Beltrami operator on compact manifolds, partitions of unity subordinate to atlases,504

function spaces such as Hölder, Sobolev and Besov, and general Gaussian random elements on505

Banach spaces.506

A.1 Laplace–Beltrami Operator and Subordinate Partitions of Unity507

Recall that M denotes a compact Riemannian manifold. The Laplace-Beltrami operator ∆ on M508

is self-adjoint and positive semi-definite [40, Theorem 2.4]. Let (L2(M), ⟨·, ·⟩) denote the Hilbert509

space of square integrable functions on M with respect to the standard Riemannian volume measure.2510

By standard theory [10, 20], there exists an orthonormal basis {fj}∞j=0 of L2(M) consisting of the511

eigenfunctions of ∆, such that ∆fj = λjfj with λj ≥ 0. We assume that the pairs (λj , fj) are sorted512

such that 0 = λ0 ≤ λj ≤ λj+1. The growth of λj can be characterized as follows.513

Result 10 (Weyl’s Law). There exists a constant C > 0 such that for all j large enough514

C−1j2/d ≤ λj ≤ Cj2/d (16)

Proof. See Chavel [10], Chapter 1.515

Following De Vito et al. [13] and Große and Schneider [21] we fix a family T = (Ul, ϕl, χl)
L
l=1516

of M, where L ∈ N, the local coordinates ϕl : Ul ⊂ M → Vl = ϕl(Ul) ⊂ Rd are smooth517

diffeomorphisms, and the functions χl form a partition of the unity subordinate to {Ul}Ll=1, i.e.518

χl ∈ C∞(M), supp(χl) ⊂ Ul, 0 ≤ χl ≤ 1 and
∑

l χl = 1.3 For convenience and without loss of519

generality we assume that Vl ⊂ [0, 1]d and that it is of the form Vl = (al, bl)
d, 0 < al < bl1.4 With520

this, we can start defining function spaces on M.521

A.2 Hölder Spaces522

We start with the manifold versions of the Euclidean Hölder spaces Cγ
(
Rd
)
, whose definitions may523

be found, for instance, in Giné and Nickl [18] and Triebel [42].524

Definition 11 (Hölder spaces). For all γ > 0 we define the Hölder space Cγ(M) on the manifold525

M to be the space of all f : M → R satisfying526

∥f∥Cγ(M) =

L∑
l=1

∥∥(χlf) ◦ ϕ−1
l

∥∥
Cγ(Rd)

< ∞. (17)

Since the charts ϕl are smooth, Definition 11 can be easily seen to be independent of the chosen atlas,527

with equivalence of norms.528

A.3 Sobolev and Besov Spaces529

We now introduce the manifold versions of the Sobolev and Besov spaces, whose definitions in the530

standard Euclidean case may be found, for instance, in Triebel [42]. For Sobolev spaces we use the531

Bessel-potential-based definition, following De Vito et al. [13].532

Definition 12 (Sobolev spaces). For any s > 0 we define the Sobolev space Hs(M) on the manifold533

M as the Hilbert space of functions f ∈ L2(M) such that ∥f∥2Hs(M) = ⟨f, f⟩Hs(M) < ∞ where534

⟨f, g⟩Hs(M) =

∞∑
j=0

(1 + λj)
s⟨f, fj⟩L2(M)⟨g, fj⟩L2(M). (18)

2Strictly speaking, L2(M) consists of equivalence classes with respect to the almost everywhere equality.
3We can choose L finite by compactness of M.
4To see this, take ϕ̃l = exp−1

xl
and define ϕl = Tl ◦ ϕ̃l where Tl is an appropriate affine transformation. We

can assume that Vl = (al, bl)
d by positivity of the injectivity radius at xl.
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Remark 13. It is easy to see that substituting (1 + λj)
s in Equation (18) with β(α+ λj)

s or with535

α+ βλs
j for any α, β > 0 results in the same set of functions and an equivalent norm. The former536

follows from Borovitskiy et al. [8], eq. (109). The latter follows from the Binomial Theorem.537

For Besov spaces we follow Coulhon et al. [11] and Castillo et al. [9] and define them in terms of538

approximations by low-frequency functions. We fix a function Φ ∈ C∞(R+,R+) such that K =539

supp(Φ) ⊂ [0, 2] and Φ(x) = 1 for x ∈ [0, 1]. We also define functions Φj by Φj(x) = Φ
(
2−jx

)
.540

Coulhon et al. [11], Corollary 3.6 shows that the operators Φj(
√
∆) defined by functional calculus—541

discussed, for instance, in Borovitskiy et al. [8]—are bounded in the space Lp(M) for all 1 ≤ p ≤542

∞.5 Moreover, it shows that f = limj→∞ Φj(
√
∆)f in Lp(M) for every f ∈ Lp(M). Φj(

√
∆)f543

can intuitively be considered as a version of f filtered by a low-pass filter. More explicitely we can544

write545

Φj

(√
∆
)
f =

∑
j≥0

Φ
(√

λj

)
⟨fj , f⟩fj (19)

which is indeed a filtered version of f as Φ has compact support. The next definition introduces the546

Besov spaces Bs
p,q(M), which are formulated in terms of quality-of-approximation by low-frequency547

functions.548

Definition 14 (Besov spaces). For any s > 0 and 1 ≤ p, q ≤ ∞ we define the Besov space Bs
p,q(M)549

on the manifold M as the space of functions f ∈ Lp(M) such that ∥f∥Bs
p,q(M) < ∞ where550

∥f∥Bs
p,q(M) =

∥f∥Lp +
(∑

j≥0

(
2js∥Φj(

√
∆)f − f∥Lp

)q)1/q
if q < +∞

∥f∥Lp + supj≥0 2
js∥Φj(

√
∆)f − f∥Lp if q = +∞.

(20)

It turns out that Bs
2,2(M) coincide with the Sobolev spaces Hs(M), in the sense that they define551

the same set of functions and equivalent norms. The same is known for Besov and Sobolev spaces552

on Rd—see for instance Giné and Nickl [18] section 4.3.6—and even on manifolds if one follows553

the construction of Triebel [42], pages 7.3–7.4 for Besov spaces. Since our definition is somewhat554

non-standard, we present the proof.555

Proposition 15. For all s > 0, Hs(M) = Bs
2,2(M) as sets and there exist two constants C1, C2 > 0556

such that for all f ∈ Hs(M) = Bs
2,2(M) we have557

C1∥f∥Hs(M) ≤ ∥f∥Bs
2,2(M) ≤ C2∥f∥Hs(M). (21)

Proof. It is enough to prove (21), the rest will follow automatically. The main technical tools used in558

the proof are Result 10 and summation by parts. Let K = supp(Φ). For the upper bound, notice that559

∥f∥2Bs
2,2(M) =

∑
j≥0

22js
∥∥∥Φj

(√
∆
)
f − f

∥∥∥2
L2(M)

(22)

=
∑
j≥0

22js
∑

l:
√
λl /∈2jK

|⟨fl, f⟩2|
2 (23)

≤
∑
j≥0

22js
∑

l:
√
λl>2j

|⟨fl, f⟩2|
2
. (24)

The last inequality results from the fact that [0, 1] ⊂ K. By Weyl’s law Result 10 there exists a560

constant c > 0 such that λl ≤ cl2/d. Without loss of generality we can assume that c = 22r, r ∈ N.561

Since
√
λl > 2j implies l > 2d(j−r) we have562

∥f∥2Bs
2,2(M) ≤

∑
j≥0

22js
∑

l>2d(j−r)

|⟨fl, f⟩2|
2 (25)

=
∑
j≤r

22js
∑

l>2d(j−r)

|⟨fl, f⟩2|
2
+
∑
j>r

22js
∑

l>2d(j−r)

|⟨fl, f⟩2|
2 (26)

≤r22rs∥f∥2L2(M) + 22rs
∑
j≥0

22js
∑
l>2dj

|⟨fl, f⟩2|
2
. (27)

5The space Lp(M) is the Banach space of functions (or rather their equivalence classes) that are integrable
when raised to the power p, see for instance Triebel [41] for details on these spaces.
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Now let Rj =
∑

l>2dj |⟨fl, f⟩2|
2 and SJ =

∑J
j=0 2

2js ≤ 22s

22s−12
2Js, S−1 = 0. Write563 ∑

j≥0

22js
∑
l>2dj

|⟨fl, f⟩2|
2
=
∑
j≥0

(Sj − Sj−1)Rj (28)

=
∑
j≥0

Sj(Rj −Rj+1)− S0R1 (29)

≤
∑
j≥1

Sj(Rj −Rj+1) (30)

=
∑
j≥0

Sj

∑
2dj<l≤2(j+1)d

|⟨fl, f⟩2|
2 (31)

≤ 22s

22s − 1

∑
j≥0

22js
∑

2dj<l≤2(j+1)d

|⟨fl, f⟩2|
2 (32)

≤ 22s

22s − 1

∑
j≥0

∑
2dj<l≤2(j+1)d

l2s/d|⟨fl, f⟩2|
2 (33)

≤ c′s22s

22s − 1

∑
j≥0

∑
2dj<l≤2(j+1)d

λs
l |⟨fl, f⟩2|

2 (34)

=
c′s22s

22s − 1

∑
l>2d

λs
l |⟨fl, f⟩2|

2 (35)

≤ c′s22s

22s − 1

∑
l≥0

λs
l |⟨fl, f⟩2|

2
. (36)

Where we have used Result 10 to get existence of c′ such that l2/d ≤ c′λl. This proves the upper564

bound with C2 = r22rs
(
1 + c′s22s

22s−1

)
. The proof for the lower bound is similar.565

Proposition 15 provides a characterization of the Sobolev spaces Hs(M). There is yet another charac-566

terization of these spaces that will be useful later, in terms of charts. We present this characterization567

as part of the following result.568

Theorem 16. On the Sobolev space Hs(M), the following norms are equivalent:569

∥f∥Hs (M) =

( ∞∑
j=0

(1 + λj)
s⟨f, fj⟩2L2(M)

)1/2

(37)

∥f∥Bs
2,2(M) = ∥f∥L2 +

(∑
j

(
2js∥Φj(

√
∆)f − f∥L2(M)

)2)1/2

(38)

∥f∥Hs
T (M) =

(
L∑

l=1

∥∥(χlf) ◦ ϕ−1
l

∥∥2
Hs(Rd)

)1/2

(39)

Proof. The equivalence between ∥·∥Hs(M) and ∥f∥Bs
2,2(M) is given by Proposition 15. The equiva-570

lence between ∥·∥Hs(M) and ∥f∥Hs
T (M) is proved in De Vito et al. [13].571

A.4 Gaussian Random Elements572

Here we recall the definition of a Gaussian process as a Banach-space-valued random variable,573

following for instance van Zanten and van der Vaart [49].574

Definition 17 (Gaussian random element). Let (B, ∥·∥B) be a Banach space, and f be a Borel575

random variable with values in B almost surely. We say that f is a Gaussian random element if b∗(f)576

is a univariate Gaussian random variable for every bounded linear functional b∗ on B.577
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Random variables of this kind are also sometimes called Gaussian in the sense of duality. One should578

think of a Gaussian random element as a generalization of a Gaussian process, but which is better-579

behaved from a function-analytic point of view and in particular does not require the process to be an580

actual function—as opposed to, for instance, a distribution. Many connections between the usual581

Gaussian processes and Gaussian random elements exist, see Lifshits [27], Ghosal and van der Vaart582

[17], Appendix I, van der Vaart and van Zanten [46] for details. The following observation about583

Gaussian random elements will be useful later.584

Lemma 18. A Gaussian process f on the manifold M with almost surely continuous sample paths is585

a Gaussian random element in the Banach space (C(M), ∥·∥∞) of continuous functions on M.586

Proof. Since C(M) is separable, this follows from Lemma I.6 in Ghosal and van der Vaart [17].587

B Technical Lemmas588

This section contains the lemmas used in Appendix C. In this section the expression a ≲ b means589

a ≤ Cb for some constant C > 0 whose value is irrelevant for our claims. We start by an upper590

bound on the metric entropy of Sobolev balls on M with respect to the uniform norm.591

Lemma 19 (Entropy of Sobolev balls). For all s > 0 let Hs
1 =

{
f ∈ Hs(M) : ∥f∥Hs(M) ≤ 1

}
.592

Define the ε-covering number of Hs
1 with respect to the norm ∥·∥L∞(M) by593

N
(
ε,Hs

1 , ∥·∥L∞(M)

)
= argmin

J∈N

∃h1, .., hJ ∈ Hs
1 : Hs

1 ⊂
J⋃

j=1

B
(
hj , ε, ∥·∥L∞(M)

) (40)

where B
(
hj , ε, ∥·∥L∞(M)

)
stands for the ∥·∥L∞(M) ball with center hj and radius ε.594

For any ν > 0, there exist C, ε0 > 0 such that for every ε ≤ ε0595

lnN
(
ε,H

ν+d/2
1 , ∥·∥L∞(M)

)
≤ Cε−

d
ν+d/2 , (41)

where the left-hand side of the inequality above, as a function of ε, is called the metric entropy596

of the Sobolev ball Hν+d/2
1 with respect to the uniform norm ∥·∥L∞(M).597

Proof. Using the charts we will reduce the problem to the entropy of the unit ball of the Sobolev598

space Hν+d/2
(
[0, 1]d

)
for which the upper bound is known. Take f ∈ H

ν+d/2
1 and look for an599

approximation of f by f̃ of the form600

f̃ =

L∑
l=1

χl(hl ◦ ϕl) (42)

for some functions hl : Vl → R where Vl ⊆ Rd. We have601 ∥∥f − f̃
∥∥
L∞(M)

=
∥∥ L∑
l=1

χl(hl ◦ ϕl − f)
∥∥
L∞(M)

≤
L∑

l=1

∥∥χl(hl ◦ ϕl − f)
∥∥
L∞(Ul)

(43)

≤
L∑

l=1

∥∥hl ◦ ϕl − f
∥∥
L∞(Ul)

≤
L∑

l=1

∥∥hl − f ◦ ϕ−1
l

∥∥
L∞(Vl)

(44)

≤ L max
1≤l≤L

∥∥hl − f ◦ ϕ−1
l

∥∥
L∞([0,1]d)

. (45)

This means that to approximate f by f̃ uniformly on M we need to choose the functions hl that602

approximate f ◦ ϕ−1
l well with respect to the uniform norm on [0, 1]d.603

Next, we show that the functions f ◦ ϕ−1
l are contained in an Euclidean Sobolev ball of radius R,604

with R depending only on ν and the atlas. We use Große and Schneider [21], Lemma 2.16 to get605

6Importantly, also the remark just above Große and Schneider [21], Lemma 2.1, that allows us to consider
Besov spaces Bs

2,2 coinciding with the Sobolev spaces Hs instead of the Besov spaces Bs
2,∞.
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from the second line to the third, and R is the constant hidden behind the notation ≲ in the last line.606 ∥∥∥f ◦ ϕ−1
l

∥∥∥
Hs([0,1]d)

=
∥∥∥ L∑
l′=1

(χl′f) ◦ ϕ−1
l

∥∥∥
Hs([0,1]d)

≤
L∑

l′=1

∥∥∥(χl′f) ◦ ϕ−1
l

∥∥∥
Hs([0,1]d)

(46)

=

L∑
l′=1

∥∥∥(χl′f) ◦ ϕ−1
l′ ◦ ϕl′ ◦ ϕ−1

l

∥∥∥
Hs([0,1]d)

(47)

≲
L∑

l′=1

∥∥∥(χl′f) ◦ ϕ−1
l′

∥∥∥
Hs([0,1]d)

≲ ∥f∥Hs(M). (48)

Without loss of generality we assume R = 1. By the Euclidean counterpart [18, Theorem 4.3.36] of607

the result we are proving, we have608

lnN
(
ε,H

ν+d/2
1

(
[0, 1]d

)
, ∥·∥L∞([0,1]d)

)
≲ ε−

d
ν+d/2 . (49)

Let h1, .., hJ ∈ H
ν+d/2
1 be such that Hν+d/2

1 ([0, 1]d) ⊂ ∪J
j=1B

(
hk, ε/L, ∥·∥L∞([0,1]d)

)
. Then for609

any f ∈ H
ν+d/2
1 there exists a sequence {jl}Ll=1 ⊆ {1, .., J} such that610

∥∥f −
L∑

l=1

χl(hjl ◦ ϕl)
∥∥
L∞(M)

< L
ε

L
= ε. (50)

This shows that N
(
ε,Hs

1 , ∥·∥L∞(M)

)
≤ LJ , where L is just the number of charts, proving the claim.611

612

For the related diffusion spaces [13], the RKHS corresponding to the heat (diffusion) kernels, Castillo613

et al. [9] uses the results of Coulhon et al. [11] to bound the entropy in terms of a wavelet frame614

instead of relying on charts. We believe this alternative proof scheme should work in our case as well.615

However, we could not, to the best of our effort, get a tight enough bound for the Sobolev spaces by616

directly using the results of Coulhon et al. [11] and therefore we chose to rely on charts instead.617

The next two theorems will be useful to characterize the RKHS of the extrinsic Matérn process on M.618

We start by a lemma relating the RKHS of the restriction of a Gaussian process to the original one.619

Lemma 20. Assume that k is a kernel on Rd, f ∼ GP(0, k) with almost surely continuous sample620

paths and H̃ is the RKHS of k. If M ⊆ Rd is a submanifold, then the RKHS H corresponding to the621

restricted process f|M is the set of all restrictions g|M of functions g ∈ H̃ equipped with the norm622

∥h∥H = inf
g∈H̃, g|M=h

∥g∥H̃. (51)

Moreover there always exists an element g ∈ H̃ such that g|M = f and ∥g∥H̃ = ∥f∥H.623

Proof. Lemma 5.1 in Yang and Dunson [53].624

The last result will be used to characterize the RKHS of the extrinsic Matérn Gaussian processes625

using trace and extension operators. The second ingredient for this is the following.626

Theorem 21. If s > D−d
2 then the restriction operator extends to a bounded linear map Trs :627

Hs
(
RD
)

→ Hs−D−d
2 (M). Moreover, for every u > 0 there exists a bounded right inverse628

Exu : Hu(M) → Hu+D−d
2

(
RD
)

such that Tru+D−d
2

◦Exu = IHu(M).629

Proof. Theorem 4.10 in Große and Schneider [21].630

The last two results allow us to characterize the RKHS of the extrinsic Matérn process on M.631

Proposition 22. The RKHS H of a restricted extrinsic Matérn process f with smoothness parameter632

ν on M is norm equivalent to the Sobolev space Hν+d/2(M).633
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Proof. Using Lemma 20, the RKHS H can be characterized as the set of functions f : M → R that634

are the restrictions of some g ∈ H̃, where H̃ is the RKHS of the ambient Matérn process f̃ , with635

∥f∥H = inf
g∈H̃, g|M=f

∥g∥H̃. (52)

Since H̃ is norm-equivalent to the Sobolev space7 Hν+D/2
(
RD
)

(see the appendix in Borovitskiy636

et al. [8]), by the trace and extension theorem Theorem 21 for every f ∈ H637

∥f∥H ≲ ∥Ex(f)∥Hν+D/2(RD) ≲ ∥f∥
Hν+D/2−D−d

2 (M)
= ∥f∥Hν+d/2(M). (53)

Similarly, for every g ∈ H̃ with g|M = f we have638

∥f∥Hν+d/2(M) =
∥∥g|M∥∥Hν+d/2(M)

≲ ∥g∥Hν+D/2(RD) ≲ ∥g∥H̃. (54)

Hence, taking the infimum we obtain639

∥f∥Hν+d/2(M) ≲ inf
g∈H̃, g|M=f

∥g∥H̃ = ∥f∥H. (55)

640

The next lemma describes the RKHS of the intrinsic Matérn processes, including truncated variants.641

This result is easy to obtain since we have defined them in terms of the Karhunen–Loève expansions.642

Lemma 23. Denote by HJ the RKHS of the intrinsic Matérn Gaussian process with smoothness643

parameter ν truncated at the level J ∈ N∪ {∞}. Recall that {fj}∞j=1 denotes the orthonormal basis644

of the Laplace–Beltrami eigenfunctions. The space HJ is norm equivalent—with constants depending645

only on ν, κ and σ2
f—to the set of functions f =

∑J
j=1 bjfj , bj ∈ R with the inner product646 〈 J∑

j=1

bjfj ,

J∑
j=1

b′jfj
〉
HJ

=

J∑
j=1

(1 + λj)
ν+d/2

bjb
′
j . (56)

In particular, HJ ⊂ Hν+d/2(M) for all J , and for every h ∈ HJ we have ∥h∥HJ
= ∥h∥Hν+d/2(M).647

Proof. By direct computation, the covariance k of the (truncated) intrinsic Gaussian process is648

k(x, x′) =
σ2
f

Cν,κ

J∑
j=1

(
2ν

κ2
+ λj

)−(ν+d/2)

fj(x)fj(x
′). (57)

Hence the kernel operator K : L2(M) → L2(M) defined by (Kf)(x) =
∫
M k(x, x′)f(x′) dx′649

is diagonal in the basis {fj}Jj=1, with Kfj =
σ2
f

Cν,κ

(
2ν
κ2 + λj

)−(ν+d/2)
fj . Then Theorem 4.2 in650

Kanagawa et al. [23] implies that HJ consists of functions of form f =
∑J

j=1 ajfj satisfying651

∥f∥2HJ
=

σ2
f

Cν,κ

J∑
j=1

(
2ν

κ2
+ λj

)ν+d/2

|aj |2 < ∞. (58)

Using the simple inequality min
(
2ν
κ2 , 1

)
≤

2ν
κ2 +λ

1+λ ≤ max
(
2ν
κ2 , 1

)
, we find that this space is norm652

equivalent to the space H
ν+d/2
J of functions f =

∑J
j=1 ajfj satisfying653

∥f∥2
H

ν+d/2
J

=

J∑
j=1

(1 + λj)
ν+d/2|aj |2 < ∞. (59)

The comparison constants

√
σ2
f

Cν,κ
min

(
1, 2ν

κ2

)
and

√
σ2
f

Cν,κ
max

(
1, 2ν

κ2

)
only depend on ν, κ, σ2

f .654

7Actually, this norm-equivalence is the only property of the Gaussian process we use in the proofs. Any other
Gaussian process satisfying this would also work, not only the Matérn processes from Borovitskiy et al. [8].
This is of potential interest since other Euclidean kernels, such as Wendland kernels [51], are known to possess
RKHS’ which are norm-equivalent to those of the Matérn kernel.
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Having characterized the RKHS of the processes, we now prove that they can be seen as Gaussian655

random elements in the Banach space (C(M), ∥·∥∞) of continuous functions on M.656

Corollary 24. The intrinsic Matérn Gaussian processes of Definition 4, their truncated versions657

as in Theorem 6 as well as the extrinsic Matérn Gaussian processes of Definition 7 are Gaussian658

random elements in (C(M), ∥·∥∞).659

Proof. By Lemma 18 it suffices to show that the processes have almost surely continuous sample660

paths. The Euclidean Matérn Gaussian processes have continuous sample paths, implying the same661

for their restrictions, the extrinsic Matérn Gaussian processes on M. For the intrinsic Matérn process,662

we use lemma Lemma 27 below.663

The last corollary allows us to use the same proof scheme as van der Vaart and van Zanten [47]664

through the control of the so-called concentration functions that we shall define later. It is also665

important that we work with Gaussian random elements in C(M)—and not only with the classical666

notion of Gaussian process—as the concentration functions are defined using the Gaussian random667

element RKHS defined in van Zanten and van der Vaart [49], which can be different from the classical668

RKHS. Fortunately, when the process is a Gaussian random element in C(M), van Zanten and669

van der Vaart [49], Theorem 2.1 implies that the two notions of RKHS coincide.670

In order to extend convergence rates results with respect to the empirical L2-norm to convergence671

rates with respect to the full L2-norm, we need to show regularity properties of the prior process’672

sample paths. Kolmogorov’s continuity criterion is a standard tool in probability theory to show that673

a given stochastic process has a Hölder continuous version: we re-prove it here because we will need674

a form of the result which gives explicit control of the Hölder norms, which is not usually included in675

the statement of the theorem.676

In the following, if h is a random variable under the probability measure Π, we define677

Π[h] =

∫
hΠ(dh) (60)

for the expectation of h with respect to Π, assuming integrability.678

Lemma 25 (Kolmogorov’s continuity criterion). If g ∼ Π is a zero mean Gaussian process on [0, 1]d679

Π
[
|g(x)− g(y)|2

]
≤ C∥x− y∥2ρ (61)

for some 0 < ρ ≤ 1 and C > 0, then there exists a version of g with samples paths in Cα
(
[0, 1]d

)
680

for every 0 < α < ρ. Moreover for every α < ρ this version satisfies Π
[
∥g∥2Cα([0,1]d)

]
≤ C ′ where681

C ′ < +∞ depends only on C, ρ and α.682

Proof. Take x, y ∈ [0, 1],M > 0 and q ∈ N. Since the random variable g(x)− g(y) is Gaussian we683

have684

Π
[
|g(x)− g(y)|2q

]
=

(2q)!

2qq!
Π
[
|g(x)− g(y)|2

]q
≤ Cq∥x− y∥2ρq (62)

where Cq := Cq (2q)!
2qq! . We consider the 2q-th power for a reason that will become clear later in the685

proof. Therefore by Markov’s inequality for every x, y ∈ [0, 1]d we have686

Π[|g(x)− g(y)| > u] ≤ Cqu
−2q∥x− y∥2qρ (63)

Now take X = ∪k≥1Xk, Xk = 2−kZd ∩ [0, 1]d. Then the previous inequality applied to any687

x, y ∈ Xk adjacent, where we see Xk as a graph where two vertices are connected if they differ by at688

most one coordinate, and u = M2−kα implies689

Π
[
|g(x)− g(y)| > M2−kα

]
≤ CqM

−2q2−2kq(ρ−α) (64)
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Summing over k ≥ 1 and adjacent points in X—and there are at most C2kd of them where C > 0 is690

an absolute constant—gives us for q > d
2(ρ−α) , where we may take q = d

(ρ−α) , that691

Π[∃x, y ∈ X,x, y adjacent, |g(x)− g(y)| > M∥x− y∥α] (65)

≤
∑
k≥1

∑
x,y∈X adjacent

Π
[
|g(x)− g(y)| > M2−kα

]
(66)

≤ C
∑
k≥1

2kdCqM
−2q2−2kq(ρ−α) =

CCq

22q(ρ−α)−d − 1
M−2q. (67)

In particular for all q > max
(
1, d

2(ρ−α)

)
we have692

Π

( sup
x,y∈X adjacent

|g(x)− g(y)|
∥x− y∥α

)2
 ≤2 + 2

∫ ∞

1

MΠ

[
sup

x,y∈X adjacent

|g(x)− g(y)|
∥x− y∥α

> M

]
dM

(68)
≤CC,α,ρ (69)

for some constant CC,α,ρ < +∞. In particular K = supx,y∈X adjacent
|g(x)−g(y)|
∥x−y∥α is finite almost693

surely. Since X is dense in [0, 1]d and g is almost surely uniformly continuous on X , g admits a694

unique continuous extension to [0, 1]d on an almost sure event A. Let us define695

∀x ∈ [0, 1]d, g(x) =

{
lim

y→x,y∈X
g(y) on A

0 otherwise
(70)

For any x, y ∈ [0, 1]d and xn → x, yn → y, xn, yn ∈ X we have696

|g(x)− g(y)| ≤ lim inf
n→∞

|g(x)− g(xn)|+ |g(xn)− g(yn)|+ |g(yn)− g(y)| (71)

≤ lim inf
n→∞

|g(x)− g(xn)|+K∥xn − yn∥α + |g(yn)− g(y)| (72)

=K∥x− y∥α (73)

Hence g is α-Hölder continuous on [0, 1]d with the same constant K and,using (a+ b)2 ≤ 2(a2+ b2)697

that is valid for every a, b > 0, we have698

Π
[
∥g∥2Cα([0,1]d)

]
≤ 2Π

[(
sup
x∈X

g(x)2
)]

+ 2Π

( sup
x,y∈X adjacent

|g(x)− g(y)|
∥x− y∥α

)2
 (74)

≤ 2Π
[
(|g(0)|+K)

2
]
+ 2Π

( sup
x,y∈X adjacent

|g(x)− g(y)|
∥x− y∥α

)2
 (75)

≤ 4Π
[
g(0)2 +K2

]
+ 2Π

( sup
x,y∈X adjacent

|g(x)− g(y)|
∥x− y∥α

)2
 (76)

≤ CC,α,ρ < +∞ (77)

where for the last inequality we have also used g(0) ∈ L2. Moreover g is a version of g: for all699

x ∈ [0, 1]d we have by definition limy∈X,y→x g(y) = g(y) almost surely, and Π
[
|g(x)− g(y)|2

]
≤700

C∥x− y∥2ρ → 0 as y → x, y ∈ X , hence the uniqueness of the limit in probability implies that for701

all x ∈ [0, 1]d g(x) = g(x) almost surely, ie that g is a version of g(x). Finally, if α < α′ < ρ, then702

since the two versions corresponding to α and α′ are continuous, they must be indistinguishable.703

Remark 26. We see in the last proof that we can replace Π
[
∥g∥2Cα([0,1]d)

]
≤ CC,α,ρ in the statement704

by Π
[
∥g∥rCα([0,1]d)

]
≤ C ′

C,α,ρ,r for any r > 0, even though we will only use r = 2 in the following.705
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The next lemma applies our version of Kolmogorov’s criterion, Lemma 25, to the intrinsic Matérn706

processes on M by considering charts. Another idea would be to use Driscoll’s Theorem—given707

in Kanagawa et al. [23], Theorem 4.9—and the Sobolev embedding theorem—De Vito et al. [13],708

Theorem 4—but that would only give us that the sample paths are almost surely in Cγ(M) for every709

0 < γ < ν − d/2, γ /∈ N, whereas here we improve the range of index to γ < ν. As we will see710

in Appendix C, we need to ensure that this property holds somewhat uniformly with respect to the711

truncation parameter, which is why we tracked the constants in our proof of Kolmogorov’s criterion.712

As we will see, the main difficulty in the proof of the next result will be to tackle the case of regularity713

strictly larger than 1.714

Lemma 27. Let f ∼ Πn be an intrinsic Matérn process with smoothness parameter ν > 0 truncated715

at Jn ∈ N ∪ {∞}. Then for every γ < ν we have716

sup
n

Πn

[
∥f∥2Cγ(M)

]
< ∞. (78)

Proof. We start by the case ν ≤ 1. Take 1 ≤ l ≤ L and define hl = (χlf) ◦ ϕ−1
l . Then hl is a717

Gaussian process with covariance kernel given by718

∀x, y ∈ Vl, K̃(x, y) = χl ◦ ϕ−1
l (x)K(x, y)χl ◦ ϕ−1

l (y) (79)

where K(x, y) = Πn

[(
f ◦ ϕ−1

l (x)
)(
f ◦ ϕ−1

l

)
(y)
]

is the covariance kernel of f . This has an RKHS719

that we denote H̃. The goal is to apply Lemma 25 to hl. For all x, y ∈ Vl, where we recall that we720

can assume that Vl = (al, bl), 0 < al < bl < 1, we have721

Πn

[
|hl(x)− hl(y)|2

]
=K̃(x, x) + K̃(y, y)− 2K̃(x, y) (80)

=
∥∥∥K̃(x, ·)− K̃(y, ·)

∥∥∥2
H̃

(81)

= sup
∥φ∥H̃=1

∣∣∣〈K̃(x, ·)− K̃(y, ·), φ
〉∣∣∣2 (82)

= sup
∥φ∥H̃=1

|φ(x)− φ(y)|2 (83)

≤ sup
∥φ∥H̃=1

∥φ∥2Cν(Vl)
∥x− y∥2ν (84)

In order to apply Lemma 25, it suffices to show that we have a continuous embedding H̃ ↪→ Cν(Vl).722

H̃ is by definition the completion of723

{
p∑

i=1

αiK̃(xi, ·) : p ≥ 1, αi ∈ R, xi ∈ Vl

}
(85)

=

{
p∑

i=1

αi

(
χl ◦ ϕ−1

l

)
(xi)

(
χl ◦ ϕ−1

l

)
(·)K

(
ϕ−1
l (xi), ϕ

−1
l (·)

)
: p ≥ 1, αi ∈ R, xi ∈ Vl

}
(86)

equipped with the RKHS norm724

∥∥∥∥∥
p∑

i=1

αiK̃(xi, ·)

∥∥∥∥∥
2

H̃

=

p∑
i,j=1

αiαj

(
χl ◦ ϕ−1

l

)
(xi)

(
χl ◦ ϕ−1

l

)
(xj)K

(
ϕ−1
l (xi), ϕ

−1
l (xj)

)
(87)
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Hence by definition of the Sobolev space Hν+d/2(M) and the equality ∥·∥H = ∥·∥Hν+d/2(M) on H725

we have726 ∥∥∥∥∥
p∑

i=1

αiK̃(xi, ·)

∥∥∥∥∥
2

Hν+d/2(Rd)

(88)

=

∥∥∥∥∥
p∑

i=1

αi

(
χl ◦ ϕ−1

l

)
(xi)

(
χl ◦ ϕ−1

l

)
(·)K(ϕ−1

l (xi), ϕ
−1
l (·))

∥∥∥∥∥
2

Hν+d/2(Rd)

(89)

≤

∥∥∥∥∥
p∑

i=1

αi

(
χl ◦ ϕ−1

l

)
(xi)K(ϕ−1

l (xi), ·)

∥∥∥∥∥
2

Hν+d/2(M)

(90)

=

∥∥∥∥∥
p∑

i=1

αi

(
χl ◦ ϕ−1

l

)
(xi)K(ϕ−1

l (xi), ·)

∥∥∥∥∥
2

H

(91)

=

p∑
i,j=1

αiαj

(
χl ◦ ϕ−1

l

)
(xi)

(
χl ◦ ϕ−1

l

)
(xj)K

(
ϕ−1
l (xi), ϕ

−1
l (xj)

)
(92)

=

∥∥∥∥∥
p∑

i=1

αiK̃(xi, ·)

∥∥∥∥∥
2

H̃

. (93)

Therefore by completion we find a continuous embedding H̃ ↪→ Hν+d/2
(
Rd
)

with ∥·∥Hν+d/2(Rd) ≤727

∥·∥H̃ on H̃. By the Sobolev Embedding Theorem in Rd—see for instance Triebel [41], Section 2.7.1,728

Remark 2—we have B
ν+d/2
2,2

(
Rd
)
= Hν+d/2

(
Rd
)
↪→ Cν

(
Rd
)
, which implies H̃ ↪→ Cν

(
Rd
)

by729

composition. Therefore there exists a constant C = Cν such that730

∀x, y ∈ Vl,Πn

[
|hl(x)− hl(y)|2

]
≤ C∥x− y∥2ν (94)

Hence, by applying Lemma 25 there exists a version h̃l of hl with almost surely α-Hölder continuous731

sample paths for every α < ν. Now consider h̃ :=
∑L

l=1 h̃l ◦ ϕl. Then h̃ is a version of h because,732

for all a ∈ Ul733

Π
[
h(a) ̸= h̃(a)

]
= Π

[
L∑

l=1

hl(ϕl(a)) ̸=
L∑

l=1

h̃l(ϕl(a))

]
(95)

≤ Π
[
∪L
l=1

{
hl(ϕl(a)) ̸= h̃l(ϕl(a))

}]
(96)

≤
L∑

l=1

Π
[
hl(ϕl(a)) ̸= h̃l(ϕl(a))

]
(97)

= 0 (98)

the last equality being true from the fact the each h̃l is a version of hl. Moreover734

Π

[∥∥∥h̃∥∥∥2
Cα(M)

]
=

L∑
l=1

Π

[∥∥∥(χlh̃
)
◦ ϕ−1

l

∥∥∥2
Cα(Rd)

]
(99)

≲
L

max
l=1

Π
[
∥hl∥2Cα([0,1]d)

]
(100)

≤ CC,α,ν,T (101)

still using Lemma 25 and fact that the χl and ϕl are smooth, hence the additional dependence in T in735

the last constant.736
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We now turn to the general case. The proof will be similar to the one of Ghosal and van der Vaart737

[17], Proposition I.3 although we need to control the Hölder norms, work through charts and precisely738

show that the kernel is regular. Assume for simplicity that d = 1, 1 < ν ≤ 2, otherwise it suffices739

to introduce coordinates and to proceed by induction on ⌊ν⌋. Let l ∈ {1, . . . , L}, and as before740

define K̃(x, y) =
(
χl ◦ ϕ−1

l

)
(x)
(
χl ◦ ϕ−1

l

)
(y)K

(
ϕ−1
l (x), ϕ−1

l (y)
)

the RKHS of hl = (χlf) ◦ ϕ−1
l741

as well as H̃ its RKHS.742

First, let us construct an L2-derivative ḣl of hl—where here L2 = L2(Ω,F ,P) with (Ω,F ,P) the743

underlying probability space—namely a square integrable process on Vl such that744

Π

[∣∣∣∣hl(x+ h)− hl(x)

h
− ḣl(x)

∣∣∣∣2
]
→ 0 (102)

as h → 0, for all x ∈ Vl. For this we will first show that ∂K̃
∂x (x, ·) ∈ H̃ for every x ∈ Vl and that745 ∥∥∥∥∥∂K̃∂x (x, ·)− ∂K̃

∂x
(x′, ·)

∥∥∥∥∥
H̃

≤ Cν |x− x′|ν−1 (103)

We first show that K̃(x+h,·)−K̃(x,·)
h is a Cauchy net in H̃. We have746 ∥∥∥∥∥K̃(x+ h, ·)− K̃(x, ·)
h

− K̃(x+ h′, ·)− K̃(x, ·)
h′

∥∥∥∥∥
H̃

(104)

= sup
∥φ∥H̃=1

〈
K̃(x+ h, ·)− K̃(x, ·)

h
− K̃(x+ h′, ·)− K̃(x, ·)

h′ , φ

〉
H̃

(105)

= sup
∥φ∥H̃=1

φ(x+ h)− φ(x)

h
− φ(x+ h′)− φ(x)

h′ (106)

= sup
∥φ∥H̃=1

∫ 1

0

[φ′(x+ th)− φ′(x+ th′)] dt (107)

≤ sup
∥φ∥H̃=1

∥φ′∥Cν−1(Vl)
|h− h′|ν−1 (108)

≤ sup
∥φ∥H̃=1

∥φ∥Cν(Vl)
|h− h′|ν−1 (109)

As in the case ν ≤ 1, we can show show that H̃ ↪→ Cν
(
Rd
)
. This implies that for a constant C = Cν747 ∥∥∥∥∥K̃(x+ h, ·)− K̃(x, ·)

h
− K̃(x+ h′, ·)− K̃(x, ·)

h′

∥∥∥∥∥
H̃

≤ C|h− h′|ν−1 (110)

As |h− h′|ν−1 → 0 when h, h′ → 0, because ν > 1, this proves that K̃(x+h,·)−K̃(x,·)
h is a Cauchy748

net in H̃: by completeness of H̃ it converges in H̃ to a limit g. Since convergence in H̃ implies749

pointwise convergence by the general properties of RKHSs, the limit g satisfies750

∀y, g(y) = lim
h→0

K̃(x+ h, y)− K̃(x, y)

h
=

∂K̃

∂x
(x, y) (111)

Hence the partial derivative ∂K̃
∂x (x, y) exists for all y and g = ∂K̃

∂x (x, ·) ∈ H̃. Moreover, by751

the isometry hl(x) ∈ L2 7→ Π[hl(x)hl(·)] = K̃(x, ·) ∈ H̃, we deduce that hl is actually L2-752

differentiable, with an L2-derivative denoted as ḣl, and that the derivative process ḣl is Gaussian, as753

it is an L2 limit of Gaussian random variables, satisfying Π
[
ḣl(x)ḣl(y)

]
=
〈

∂K̃
∂x (x, ·),

∂K̃
∂x (y, ·)

〉
H̃

.754

Having established the existence of an L2-derivative ḣl of the process hl, we would like now to755

show that ḣl possesses a (γ − 1)-regular version for every γ < ν. For this, we would like to apply756

Lemma 25 to ḣl.757
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For this notice that, still by isometry, for all h > 0758

Π

[∣∣∣ḣl(x)− ḣl(y)
∣∣∣2] = ∥∥∥∥∥∂K̃∂x (x′, ·)− ∂K̃

∂x
(x, ·)

∥∥∥∥∥
2

H̃

(112)

≤ 3

∥∥∥∥∥K̃(x′ + h, ·)− K̃(x′, ·)
h

− ∂K̃

∂x
(x′, ·)

∥∥∥∥∥
2

H̃

(113)

+ 3

∥∥∥∥∥K̃(x+ h, ·)− K̃(x, ·)
h

− ∂K̃

∂x
(x, ·)

∥∥∥∥∥
2

H̃

(114)

+ 3

∥∥∥∥∥K̃(x+ h, ·)− K̃(x, ·)
h

− K̃(x′ + h, ·)− K̃(x′, ·)
h

∥∥∥∥∥
2

H̃

(115)

Therefore by the same arguments as above, we have759

Π

[∣∣∣ḣl(x)− ḣl(y)
∣∣∣2]1/2 =

∥∥∥∥∥∂K̃∂x (x′, ·)− ∂K̃

∂x
(x, ·)

∥∥∥∥∥
H̃

(116)

≤ lim inf
h→0

∥∥∥∥∥K̃(x+ h, ·)− K̃(x, ·)
h

− K̃(x′ + h, ·)− K̃(x′, ·)
h

∥∥∥∥∥
H̃

(117)

≤ lim inf
h→0

sup
∥φ∥H̃=1

∫ 1

0

|φ′(x+ th)− φ′(x′ + th)|dt (118)

≤ lim inf
h→0

Cν |x− x′|ν−1 (119)

= Cν |x− x′|ν−1 (120)

Therefore we can now apply Lemma 25 to ḣl and find a version h̃′
l of ḣl with sample paths in760

Cα−1(Vl) almost surely for all α < ν and such that761

∀α < ν,Π

[∥∥∥h̃′
l

∥∥∥2
Cα−1(Vl)

]
≤ Cν,α < +∞ (121)

Take any cl ∈ (al, bl) and consider h̃l := hl(cl) +
∫ ·
cl
h̃′
l(t) dt. Then since h̃′

l is almost surely in762

Cα−1(Vl), h̃l is has almost surely Cα(Vl) sample paths. Moreover, it is easy to check using our763

previous results that h̃l has an L2-derivative given by h̃′
l. This implies that h̃l is a version of hl:764

indeed, for any H ∈ L2, the function x 7→ Π
[(

h̃l(x)− hl(x)
)
H
]

can be seen to have a vanishing765

derivative, and is equal to 0 at x = cl, hence Π
[(

h̃l(x)− hl(x)
)
H
]
= 0 for every H ∈ L2 and766

x ∈ Vl which implies that for every x ∈ Vl h̃l(x) = hl(x) almost surely.767

Consider now h̃ =
∑L

l=1 h̃l ◦ ϕl. Then, arguing as in the case ν ≤ 1, we find that h̃ is a version of768

h with Cα(M) sample paths for every α < ν, and that for every α < ν we have Π

[∥∥∥h̃∥∥∥2
Cα(M)

]
≤769

Cα,ν < +∞.770

771

Using the last result and known properties of the Euclidean Matérn processes, we prove the next772

lemma that shows in a way that all of the Matérn processes presented in this paper are sub-Gaussian,773

uniformly with respect to the truncation parameter in the case of the truncated intrinsic Matérn774

process, and live in Hölder spaces with appropriate exponents. This result will be used to control775

Hölder norms when going from the empirical L2-norm to the full L2-norm. We use the notation776

Πn in the next result to emphasize that the prior depends on the sample size when we consider a777

truncated intrinsic Matérn process.778
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Lemma 28. For Πn the prior in either Definition 4, Theorem 6 or Definition 7, for every ν > 0 and779

γ < ν, γ /∈ N, there exists a constant σ(f) = σγ(f) independent of n such that780

∀x > 0,Πn

[
∥f∥Cγ(M) > (x+ 1)σ(f)

]
≤ 2e−x2/2 (122)

Proof. We start by the restriction f of an extrinsic Matérn process f̃ to M, as in Definition Defini-781

tion 7. By section 3.1 in van der Vaart and van Zanten [47], for every γ < ν we have f̃ ∈ Cγ
(
[0, 1]D

)
782

almost surely. By lemma I.7 in Ghosal and van der Vaart [17], for every γ < ν f̃ is a gaussian random783

element in the Banach space Cγ
(
[0, 1]D

)
. In particular, by the Borell-Sudakov-Tsirelson inequality784

(proposition I.8 in Ghosal and van der Vaart [17]) we have :785

∀x > 0,Π

[∥∥∥f̃∥∥∥
Cγ([0,1]D)

> (x+ 1)σ
(
f̃
)]

≤ 2e−x2/2 (123)

where σ
(
f̃
)
= Π

[∥∥∥f̃∥∥∥2
Cγ([0,1]D)

]1/2
< ∞. Since M is smooth, the restriction f also satisfies786

∀x > 0,Π
[
∥f∥Cγ(M) > (x+ 1)σ(f)

]
≤ 2e−x2/2 (124)

perhaps for a possibly larger constant σ(f).787

The case of the intrinsic Matérn process f ∼ Πn truncated at Jn ∈ N ∪ {∞} follows in the same788

way, as we have shown in Lemma 27 that supn≥1 Πn

[
∥f∥2Cα(M)

]
≤ Cα,ν .789

In order to apply Bernstein’s inequality when going from the empirical L2-norm to the full L2-norm,790

we will also need this following extrapolation lemma.791

Lemma 29. For any function g : M → R and γ /∈ N we have792

∥g∥∞ ≲ ∥g∥
d

2γ+d

Cγ(M)∥g∥
2γ

2γ+d

2 (125)

Proof. We use lemma 15 from van der Vaart and van Zanten [47] and push it through charts. More793

precisely we have, using Bγ
∞,∞

(
[0, 1]D

)
= Cγ

(
[0, 1]D

)
for γ /∈ N, that794

∥g∥∞ ≤
∑
l

∥∥(χlg) ◦ ϕ−1
l

∥∥
L∞(Vl)

(126)

≲max
l

∥∥(χlg) ◦ ϕ−1
l

∥∥ d
2γ+d

Cγ(Vl)

∥∥(χlg) ◦ ϕ−1
l

∥∥ 2γ
2γ+d

L2(Vl)
(127)

By definition of the the manifold Hölder spaces this gives795

∥g∥∞ ≲ ∥g∥
d

2γ+d

Cγ(M) max
l

∥∥(χlg) ◦ ϕ−1
l

∥∥ 2γ
2γ+d

L2(Vl)
(128)

Finally since the χl’s are bounded, the charts are smooth and p0 is lower bounded we have796 ∥∥(χlg) ◦ ϕ−1
l

∥∥2
L2(Vl)

=

∫
Vl

∣∣(χlg) ◦ ϕ−1
l (y)

∣∣2dy ≲
∫
Ul

g2(x)p0(x)µ(dx) ≲ ∥g∥22 (129)

which gives the result.797

Having established regularity properties for our prior processes, we now turn to the so-called small798

ball problem: we want to find sharp lower bounds on Π[∥f∥∞ < ε] where f ∼ Π is our prior process.799

This will be crucial in order to control the concentration functions. In fact, it is well-known that800

this problem is closely related to the estimation of the metric entropy of the unit ball of the RKHS801

of f with respect to the uniform norm: see Li and Linde [26] for details. Since we have already802

characterized the RKHS of our processes in Proposition 22 and Lemma 23, we are able to lower803

bound the small-ball probabilities. The technicality here involves getting a bound uniform in the804

truncation parameter for the truncated intrinsic Matérn process, as the truncated Matérn process is a805

sequence of priors rather than a fixed prior.806
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Lemma 30. If f ∼ Πn the prior in either Definition 4 and Theorem 6 or Definition 7 with smoothness807

parameter ν > 0, then there exist two constants C, ε0 > 0 that do not depend on n such that for all808

ε ≤ ε0 we have − lnΠn[∥f∥∞ < ε] ≤ Cε−
d
ν .809

Proof. Because the processes are Gaussian random elements in C(M), their stochastic process810

RKHS given by Proposition 22 coincide with their Gaussian random element RKHS. Hence, for811

the non-truncated intrinsic and the extrinsic Matérn processes the result is a direct application of812

Lemma 19 and Li and Linde [26], Theorem 1.2.813

For the intrinsic Matérn process truncated at Jn it is not immediately clear that the constants C, ε0814

can be taken independent of n, and we go through the proof of Li and Linde [26], Proposition 3.1 to815

see this. We first need a crude upper bound of the form816

− lnΠn[∥f∥∞ < ε] ≤ cε−c (130)

for some possibly large constant c > 0. To get such a bound, we use Castillo et al. [9], Proposition 3817

which shows the existence of a universal constant C > 0 such that818

∀ε ≤ min(1, 4σ(f)) − lnΠn[∥f∥∞ < ε] ≤ Cn(ε) ln

(
6n(ε)(1 ∨ σ(f))

ε

)
(131)

where σ(f) = Πn

[
∥f∥2∞

]1/2
and n(ε) is defined in Li and Linde [26] by819

max{j ≥ 0 : 4lj(f) ≥ ε}, lj(f) = inf

Πn


∥∥∥∥∥∥
∑
j≥0

Zjhj

∥∥∥∥∥∥
2

∞

 : f
(d)
=
∑
j≥0

Zjhj

 (132)

with
(d)
= standing for the equality in distributions and the infimum being taken over every possible820

decomposition
∑

j≥0 Zjhj with hj ∈ C(M), Zj being a sequence of IID N(0, 1) random variables821

as in Definition 4, and the series being required to converge uniformly almost surely.822

The function f =
∑Jn

j=0

(
2ν
κ2 + λj

)− ν+d/2
2 Zjfj is a valid decomposition. Therefore823

lJ(f) ≤ Πn


∥∥∥∥∥∥

Jn∑
j=J

(
2ν

κ2
+ λj

)− ν+d/2
2

Zjfj

∥∥∥∥∥∥
2

∞


1/2

. (133)

Still by the Sobolev Embedding Theorem and by Weyl’s Law, given in Result 10, for every γ >824

max(d/2, ν) there exists a constant C = Cγ,M such that for all J ∈ N, allowing C to change from825

line to line, we have826

Πn


∥∥∥∥∥∥

Jn∑
j=J+1

(1 + λj)
− ν+d/2

2 Zjfj

∥∥∥∥∥∥
2

∞

 ≤ C2Πn


∥∥∥∥∥∥

Jn∑
j=J+1

(1 + λj)
− ν+d/2

2 Zjfj

∥∥∥∥∥∥
2

Hγ(M)

 (134)

= C2
Jn∑

j=J+1

(1 + λj)
−(ν+d/2−γ) (135)

≤ C2
Jn∑

j=J+1

(j + 1)
−(1+2(ν−γ)/d) (136)

≤ C2
∑
j>J

(j + 1)
−(1+2(ν−γ)/d) (137)

≤ C2(J + 1)
−2(ν−γ)/d (138)

By choosing J = 0 this gives us σ(f) ≤ C independent of n. Moreover, by choosing J ≥827

Cε−
d

2(ν−γ) , again for a comparison constant C independent of n, this gives us n(ε) ≤ Cε−
d

2(ν−γ)828

for C independent of n. This implies using Castillo et al. [9], Proposition 3 that829

− lnΠn[∥f∥∞ < ε] ≤ Cε−C (139)
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for C > 0 independent of n.830

With this crude bound we can now continue the proof of Li and Linde [26], Proposition 3.1. For this,831

we need a metric entropy estimate. For this notice that for all J ∈ N ∪ {∞} we have BHJ (0, 1) ⊂832

BH∞(0, 1) = BHν+d/2(M)(0, 1), and therefore using Lemma 19 we have the metric entropy estimate833

lnN(BHJ (0, 1)) ≤ Cε−
d

ν+d/2 (140)

for a constant C > 0 independent of J . Therefore following the proof of proposition 3.1 in Li and834

Linde [26] we find − lnΠn[∥f∥∞ < ε] ≤ Cε−
d
ν for every ε ≤ ε0, where C, ε0 > 0 are constants835

independent of n.836

This concludes this section and we now turn to the proofs of our main results.837

C Proofs838

We recall that in the following the expression a ≲ b means a ≤ Cb for some constant C > 0 whose839

value is irrelevant for our claims. We first define our notation for Gaussian likelihood and probability840

distribution of the sample.841

Definition 31. For every x ∈ Mn and f : M → R we define pf,x,y to be the joint distribution842

corresponding to the marginal px = p0 and conditional py|x = N(f(x), σ2
εI), where f(x) is the843

vector with entries f(xi). Expectations with respect to pf,x,y we denote by Ef,x,y and to p0 by Ex.844

Following van der Vaart and van Zanten [47], Theorem 1, which is valid for any compact space hence845

also for M, we can deduce a posterior contraction rate with respect to the empirical L2-norm8846

∥f∥n =

(
1

n

n∑
i=1

f(xi)
2

)1/2

(141)

by studying first the so-called concentration functions with respect to the uniform norm. This is the847

object of the following lemma. We again recall that the prior Πn may depend on n if we consider a848

truncated intrinsic Matérn process.849

Theorem 32. Let Πn denote the prior in either Theorem 5, Theorem 6 or Theorem 8 with smoothness850

parameter ν. Let Hn denote the corresponding RKHS. Define the concentration function for851

f0 ∈ C(M) and ε > 0 by852

φf0(ε) = − lnΠn[∥f∥∞ < ε] + inf
f∈Hn: ∥f−f0∥∞<ε

∥f∥2Hn
. (142)

Then if f0 ∈ Hβ(M) ∩Bβ
∞,∞(M), β > 0 we have φf0(εn) ≤ nε2n for εn a multiple of n−min(ν,β)

2ν+d .853

Proof. The first term on the right-hand side of Equation (142) is bounded by Cε−d/ν by Lemma 30.854

To bound the second term, we assume, without loss of generality,9 that ν ≥ β. Consider an855

approximation f = Φj(
√
∆)f0 of f0, where cε ≤ 2−βj ≤ ε and c > 0 is an absolute constant. Since856

we assume f0 ∈ Bβ
∞,∞(M), by definition of Bβ

∞,∞(M) we have857

∥f0 − f∥∞ ≤ ∥f0∥Bβ
∞,∞(M)2

−βj ≲ ε (143)

where in the last inequality the Bβ
∞,∞(M)-norm is the constant implied by notation ≲. We now858

show that859

∥f∥2H ≲ ε−
2
β (ν−β+d/2) (144)

8This is actually a seminorm, but we follow the rest of the literature in referring to it as a norm.
9Because Hβ(M) ∩ Bβ

∞,∞(M) ⊆ Hmin(β,ν)(M) ∩ B
min(β,ν)
∞,∞ (M), if β > ν then f0 ∈ Hβ(M) ∩

Bβ
∞,∞ ⊆ Hν(M) ∩Bν

∞,∞(M) gives a rate of n− ν
2ν+d = n−min(β,ν)

2ν+d .
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First notice that by Lemma 23 and Proposition 22, for any prior considered here we have H ⊆860

Hν+d/2(M) and ∥·∥H ≤ ∥·∥Hν+d/2(M) for a constant C that does not depend on n. Hence using861

Result 10 and properties of Φ we have862

∥f∥2H ≲ ∥f∥2Hν+d/2(M) (145)

=
∑
l≥0

(1 + λl)
ν+d/2Φ2

(
2−j
√
λl

)
|⟨fl, f0⟩|2 (146)

≤
∑

l:
√
λl≤2j+1

(1 + λl)
ν+d/2−β(1 + λl)

β |⟨fl, f0⟩|2 (147)

≤ 2(j+1)(2ν−2β+d)
∑

l:
√
λl≤2j+1

(1 + λl)
β |⟨fl, f0⟩|2 (148)

≤ 2(j+1)(2ν−2β+d)
∑
l≥0

(1 + λl)
β |⟨fl, f0⟩|2 (149)

= 2(j+1)(2ν−2β+d)∥f0∥2Hβ(M) (150)

≤ 22(ν−β+d/2)c−
2
β (ν−β+d/2)∥f0∥2Hβ(M)ε

− 2
β (ν−β+d/2) (151)

Our assumption ν ≥ β implies that863

2

β
(ν − β + d/2) ≥ d

β
≥ d

ν
. (152)

Hence we have ε−d/ν ≤ ε−
2
β (ν−β+d/2) which gives us φf0(ε) ≲ ε−

2
β (ν−β+d/2). It is then easy to864

check that εn = Mn− β
2ν+d satisfies φf0(εn) ≤ nε2n for M > 0 large enough.865

From this we deduce an upper bound on the error in the empirical L2 norm ∥·∥n, i.e. on the Euclidean866

distance between the posterior Gaussian process f and the ground truth function f0 evaluated at data867

locations xi.868

Lemma 33. Let Πn denote the prior in either Theorem 5, Theorem 6 or Theorem 8 with smoothness869

parameter ν > 0. Fix f0 ∈ Hβ(M) ∩Bβ
∞,∞(M) with β > 0. Then870

Ef∼Πn(·|x,y)∥f − f0∥qn ≤ εqn (153)

for all q ≥ 1 and εn a constant multiple of n−min(ν,β)
2ν+d with constant depending on f0, q, ν.871

Proof. By Theorem 32 for εn a multiple of n−min(β,ν)
2ν+d , we have φf0(εn) ≤ nε2n. By virtue of this,872

the proof of Theorem 1 and Proposition 11 of van der Vaart and van Zanten [47] imply the result.873

Indeed, the proof of Theorem 1 relies solely on the fact that φf0(εn/2) ≤ nε2n and an application of874

van der Vaart and van Zanten [47], Proposition 11. We have φf0(εn) ≤ nε2n ≤ n(2εn)
2 and hence875

the condition is satisfies with εn replaced by 2εn. Moreover, even if van der Vaart and van Zanten876

[47], Theorem 1 is formulated for q = 2, van der Vaart and van Zanten [47], Proposition 11 gives a877

result for all q ≥ 1.878

Notice that for the last result we only assumed ν, β > 0, and therefore require no constraints on the879

smoothness parameters. We now turn to the proofs of our main results, Theorems 5, 6 and 8. For880

them, the extra assumption min(β, ν) > d/2 is needed in order to go from the empirical L2 norm to881

the true L2(p0) norm, leveraging regularity of the ground truth function and the Gaussian process.882

The value d/2 in this assumption is not surprising, as by the Sobolev embedding theorem this is the883

minimal natural requirement to guarantee that f0 and functions in the support of the prior are at least884

continuous.885

Proof of Theorems 5, 6 and 8. Given the technical lemmas from Appendix B and Lemma 33, the886

proof is similar to the one of Theorem 2 in van der Vaart and van Zanten [47]. We include it for887

completeness and to point out the differences in our context.888
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Take εn ∝ n−min(β,ν)
2ν+d satisfying φf0(εn/2) ≤ nε2n (such a rate exists by Theorem 32). Then for889

each n there exists an element fn ∈ Hn, where this notation refers to the RKHS corresponding to890

Πn, satisfying891

∥fn∥2H ≤ nε2n ∥fn − f0∥∞ ≤ εn/2. (154)
Hence for any γ such that d/2 < γ < ν, γ /∈ N, any s > 0, τ > 0 and an indexed family of events892

Ar that is to be chosen in the future we have893

ε−q
n Ex,y Ef∼Πn(·|x,y)∥f − f0∥qL2(p0)

≲ ε−q
n Ex,y Ef∼Πn(·|x,y)∥fn − f0∥qL2(p0)

(155)

+ ε−q
n Ex,y Ef∼Πn(·|x,y)∥f − fn∥qL2(p0)

(156)

≲ 1 + ε−q
n Ex,y Ef∼Πn(·|x,y)∥f − fn∥qL2(p0)

(157)

= 1 + Ex,y

∫ ∞

0

qrq−1Πn(B(r) | x,y) dr (158)

where the events B(r) are defined by B(r) =
{
∥f − fn∥L2(p0)

> εnr
}

. Denote894

B(I)(r) = {2∥f − fn∥n > εnr} (159)

B(II)(r) =
{
∥f∥Cγ(M) > τ

√
nεnr

s
}

(160)

B(III)(r) =
{
∥f∥Cγ(M) ≤ τ

√
nεnr

s, 2∥f − fn∥n ≤ εnr < ∥f − fn∥L2(p0)

}
. (161)

Then B(r) ⊆ B(I)(r) ∪ B(II)(r) ∪ B(III)(r) and thus895

ε−q
n Ex,y Ef∼Πn(·|x,y)∥f − f0∥qL2(p0)

≲ 1 + Ex,y

∫ ∞

0

rq−1Πn

(
B(I)(r) | x,y

)
dr (162)

+ Ex,y

∫ ∞

0

rq−11Ac
r
dr (163)

+ Ex,y

∫ ∞

0

rq−11Ar
Πn

(
B(II)(r) | x,y

)
dr (164)

+ Ex,y

∫ ∞

0

rq−11Ar
Πn

(
B(III)(r) | x,y

)
dr. (165)

For the first term, by Lemma 33 applied conditionally on the xi-values, for which we got a bound on896

the integrated empirical L2 norm uniformly on the design points, we have897

Ex,y

∫ ∞

0

rq−1Πn

(
B(I)(r) | x,y

)
dr ≲ Ex,y Ef∼Πn(·|x,y)∥f − f0∥qn (166)

≲ Ex,y Ef∼Πn(·|x,y)∥f − fn∥qn + ∥f0 − fn∥q∞ (167)

≲ εqn (168)
Moreover, by Lemma 14 in van der Vaart and van Zanten [47] applied with r in the notation of the898

reference being equal to
√
nεnr

s, for each r > 0 the event899

Ar(x) =


∫ p

(f)
y|x(y)

p
(f0)
y|x (y)

Πn(df) ≥ e−nε2nr
2s

Πn[∥f − f0∥∞ < εnr
s]

 (169)

is such that900

p
(f0)
y|x [Ac

r(x)] ≤ e−nε2nr
2s/8 (170)

Therefore, by Fubini’s Theorem, since nε2n ≥ n
d

2ν+d ≥ 1 the second term is bounded by901

E(f0)
x,y

∫ ∞

0

rq−11Ac
r(x)

dr =

∫ ∞

0

rq−1 Ex

[
E(f0)
y|x [Ac

r(x)]
]
dr (171)

≤
∫ ∞

0

rq−1e−nε2nr
2s/8 dr (172)

≤
∫ ∞

0

rq−1e−r2s/8 dr (173)

≤ C (174)
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where C = Cs,q < ∞. It remains to bound the last two terms. By Bayes’ Rule, we have the equality902

Πn

[
∥f∥Cγ(M) > τ

√
nεnr

s|y
]
=

∫
∥f∥Cγ (M)>τ

√
nεnrs

Πn
i=1

dp
(n)
f,x

dp
(n)
f0,x

Πn(df)∫
Πn

i=1

dp
(n)
f,x

dp
(n)
f0,x

Πn(df)

(175)

therefore on Ar(x) we have903

Πn

[
∥f∥Cγ(M) > τ

√
nεnr

s|y
]

(176)

≤ enε
2
nr

2s

Πn[∥f − f0∥∞ < εnrs]

∫
∥f∥Cγ (M)>τ

√
nεnrs

Πn
i=1

dp
(n)
f,x

dp
(n)
f0,x

Πn(df) (177)

Hence taking expectation and using Fubini–Tonelli’s Theorem gives904

E(f0)
xy

[
1Ar(x)Πn

[
∥f∥Cγ(M) > τ

√
nεnr

s|y
]]

(178)

≤ enε
2
nr

2s

Πn[∥f − f0∥∞ < εnrs]
E(f0)
xy

[∫
∥f∥Cγ (M)>τ

√
nεnrs

Πn
i=1

dp
(n)
f,x

dp
(n)
f0,x

Πn(df)

]
(179)

=
enε

2
nr

2s

Πn[∥f − f0∥∞ < εnrs]
Πn

[
∥f∥Cγ(M) > τ

√
nεnr

s
]

(180)

Therefore the third term can be bounded by905

E(f0)
x,y

∫ ∞

0

rq−11Ar
Πn

(
B(II)(r) | x,y

)
dr (181)

≤
∫ ∞

0

rq−1 enε
2
nr

2s

Πn[∥f − f0∥∞ < εnrs]
Πn

[
∥f∥Cγ(M) > τ

√
nεnr

s
]
dr (182)

Now using Lemma 28, for a possibly small constant c > 0 independent of n, we have906

Πn

[
∥f∥Cγ(M) > τ

√
nεnr

s|y
]
≤ e−cnτ2ε2nr

2s

(183)

Moreover, by using the bound on the concentration function in Theorem 32 and Ghosal and van der907

Vaart [17], Proposition 11.19, we can assume that908

Πn

[
∥f − f0∥∞ <

√
nεnr

s
]
≥ e−c−1nε2nr

2s

. (184)

Therefore the third term is bounded by909

E(f0)
x,y

∫ ∞

0

rq−11Ar
Πn

(
B(II)(r) | x,y

)
dr ≤

∫ ∞

0

rq−1e−cnτ2ε2nr
2s

ec
−1nε2nr

2s

dr (185)

≤
∫ ∞

0

rq−1e−r2sdr < ∞ (186)

if τ2c > 1 + c−10. It remains to bound the last term.910
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We have by the same arguments as above that911

Ex,y

∫ ∞

0

rq−11Ar
Πn

(
B(III)(r) | x,y

)
dr (187)

= Ex,y

∫ ∞

0

rq−11Ar(x) (188)

×Πn

[
∥f∥Cγ(M) ≤ τ

√
nεnr

s, 2∥f − fn∥n ≤ εnr ≤ ∥f − fn∥2|y
]
dr (189)

≤
∫ ∞

0

rq−1 enε
2
nr

2s

Πn[∥f − f0∥∞ < εnrs]
(190)

× Ex Πn

[
∥f∥Cγ(M) ≤ τ

√
nεnr

s, 2∥f − fn∥n ≤ εnr ≤ ∥f − fn∥2
]
dr (191)

≤
∫ ∞

0

rq−1e(c+1)nε2nr
2s

(192)

×
∫
∥f∥Cγ (M)≤τ

√
nεnrs,εnr≤∥f−fn∥2

p0[∥f − fn∥2 ≥ 2∥f − fn∥n]Πn(df) dr. (193)

As the squared empirical L2-norm is a sample average of the true L2-norm, the probability in the912

integrand can be controlled easily via a concentration inequality. As in van der Vaart and van Zanten913

[47], we use Bernstein’s inequality—van der Vaart and Wellner [48], Lemma 2.2.9—to find that914

p0[∥f − fn∥2 ≥ 2∥f − fn∥n] = p0

[
∥f − fn∥2n − ∥f − fn∥22 ≤ −3

4
∥f − fn∥2n

]
(194)

≤ exp

(
−9n

16

∥f − fn∥22
∥f − fn∥2∞

)
(195)

Moreover, by Lemma 29, since γ /∈ N we have915

∥f − fn∥∞ ≲ ∥f − fn∥
d

2γ+d

Cγ(M)∥f − fn∥
2γ

2γ+d

2 (196)

Using the Sobolev Embedding Theorem—De Vito et al. [13], Theorem 4—∥f − fn∥Cγ(M) ≲916

∥fn∥H + ∥f∥Cγ(M) ≲ τ
√
nεnr

s whenever ∥f∥Cγ(M) ≤ τ
√
nεnr

s. Therefore, for a constant c > 0917

we have918

p0[∥f − fn∥2 ≥ 2∥f − fn∥n] ≤ exp

−cn
∥f − fn∥22

∥f − fn∥
2d

2γ+d

Cγ(M)∥f − fn∥
4γ

2γ+d

2

 (197)

≤ e−cτ
− 2d

2γ+d n
2γ

2γ+d r
2d

2γ+d
(1−s)

(198)

Hence, we can bound the last term by919

Ex,y

∫ ∞

0

rq−11Ar
Πn

(
B(III)(r) | x,y

)
dr (199)

≤
∫ ∞

0

rq−1e(c+1)nε2nr
2s

e−cτ
− 2d

2γ+d n
2γ

2γ+d r
2d

2γ+d
(1−s)

dr. (200)

We have n
2γ

2γ+d = n
(
n− d/2

2γ+d

)2
. Since εn ≲ n−min(ν,β)

2ν+d and min(ν, β) > d/2, we have nε2n ≲920

n
2γ

2γ+d for some γ ∈ (d/2, ν). Moreover, for this choice of γ and s small enough we have 2d
2γ+d (1−921

s) ≥ 2s, which proves that for some possibly small constant C > 0 the fourth term is bounded by922

C−1

∫ ∞

0

rq−1e−CrC
−1

dr < ∞ (201)

This concludes the proof.923
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D Expressions for Pointwise Worst-case Errors924

Let k be a kernel on some abstract input domain X , and let Hk be the respective RKHS. Consider n925

input values X ⊆ X and let σ2
ε > 0 be the noise variance. Define926

mk,X,f,ε(t) = KtX(KXX + σ2
εI)

−1(f(X) + ε), (202)

v(i)(t) = vk,X(t) = k(t, t)−KtX

(
KXX + σ2

εI
)−1

KXt. (203)

Proposition 34. With notation above927

v(i)(t) = sup
f∈Hk,∥f∥Hk

≤1

Eε∼N(0,σ2
εI)

|f(t)−mk,X,f,ε(t)|2. (204)

Proof. To simplify notation, we shorten Eε∼N(0,σ2
εI)

to E and denote α = KtX(KXX + σ2
εI)

−1.928

First of all, by direct computation,929

Emk,X,f,ε(t) = αf(X), (205)

Emk,X,f,ε(t)
2 = αf(X)f(X)⊤α⊤ + σ2

εαα⊤. (206)

Write930

E|f(t)−mk,X,f,ε(t)|2 = f(t)2 − 2f(t)Emk,X,f,ε(t) + Emk,X,f,ε(t)
2 (207)

= f(t)2 − 2f(t)αf(X) +αf(X)f(X)⊤α⊤ + σ2
εαα⊤ (208)

= (f(t)−αf(X))
2
+ σ2

εαα⊤ (209)

=
〈
k(t, ·)−

n∑
j=1

αjk(xj , ·), f
〉2
Hk

+ σ2
εαα⊤. (210)

As ∥g∥Hk
= supf∈Hk,∥f∥Hk

≤1⟨g, f⟩Hk
, implying supf∈Hk,∥f∥Hk

≤1⟨g, f⟩
2
Hk

= ∥g∥2Hk
, we have931

sup
f∈Hk

∥f∥Hk
≤1

E|f(t)−mk,X,f,ε(t)|2 =
∥∥∥k(t, ·)− n∑

j=1

αjk(xj , ·)
∥∥∥2
Hk

+ σ2
εαα⊤ (211)

= k(t, t)− 2αKXt +αKXXα⊤ + σ2
εαα⊤

αKXt

(212)

= k(t, t)−αKXt = k(t, t)−KtX(KXX + σ2
εI)

−1KXt

vk,X(t)

.

(213)

932

We now move to the misspecified case. Consider the RKHS Hc for some other kernel c : X ×X → R933

instead of Hk. Then, continuing from (210), write934

sup
f∈Hc

∥f∥Hc
≤1

E|f(t)−mk,X,f,ε(t)|2 =
∥∥∥c(t, ·)− n∑

j=1

αjc(xj , ·)
∥∥∥2
Hc

+ σ2
εαα⊤. (214)

The question is how to compute the norm on the right-hand side. There is not much hope of935

doing this exactly in the misspecified case, thus we consider approximations. To this end, we936

take some large set of locations X′ ⊆ X . Then we use ∥g∥2Hc
≈ g(X′)⊤C−1

X′X′g(X′) for g(·) =937

c(t, ·)−
∑n

j=1 αjc(xj , ·). As a result,938

sup
f∈Hc

∥f∥Hc
≤1

E|f(t)−mk,X,f,ε(t)|2 ≈ g(X′)⊤C−1
X′X′g(X

′) + σ2
εαα⊤ = ṽk,c,X(t) = v(e)(t) (215)

where v(e)(t) was first introduced in Section 4939

32



To compute spatial averages of this quantity, let gt(·) = c(t, ·) −
∑n

j=1 αjc(xj , ·), the same as g940

before, but now with explicit dependence on t. Similarly, put αt = KtX(KXX + σ2
εI)

−1. Then941

gt(X
′) = CX′ t −CX′ Xα⊤

t = CX′ t −CX′ X(KXX + σ2
εI)

−1KXt (216)

gt(X
′)⊤C−1

X′X′gt(X
′) = (CtX′ −αtCXX′)C−1

X′X′

(
CX′ t −CX′ Xα⊤

t

)
. (217)

From here we can also deduce that942

1

|X′|
∑
t∈X′

ṽk,c,X(t) =
1

|X′|
∑
t∈X′

gt(X
′)⊤C−1

X′X′gt(X
′) (218)

=
1

|X′|
tr
(
gX′(X′)⊤C−1

X′X′gX′(X′)
)

(219)

where gX′(X′) = CX′ X′−CX′ X(KXX+σ2
εI)

−1KXX′ .943

E Full Experimental Details944

All of our kernels were computed using GPJAX [32] and the GEOMETRIC KERNELS library. We945

use three manifolds, each represented by a mesh: (i) a dumbbell-shaped manifold represented as a946

mesh with 1556 nodes, (ii) a sphere represented by an icosahedral mesh with 2562 nodes, and (iii)947

the Stanford dragon mesh, preprocessed to keep only its largest connected component, which has948

100179 nodes. For the sphere, we also considered a finer icosahedral mesh with 10242, but this was949

found to have virtually no effect on the computed pointwise expected errors.950

We use extrinsic Matérn and Riemannian Matérn kernels with the following hyperparameters: σ2
f = 1951

and σ2
ε = 0.0005. For the truncated Karhunen–Loève expansion, we used J = 500 eigenpairs952

obtained from the mesh. We selected smoothness values to ensure norm-equivalence of the intrinsic953

and extrinsic kernels’ reproducing kernel Hilbert spaces, which was ν = 5/2 for the intrinsic model,954

and ν = 5/2 + d/2 for the extrinsic model, where d is the manifold’s dimension. We used different955

length scales for each manifold: κ = 200 for the dumbbell, κ = 0.25 for the sphere, and κ = 0.05956

for the dragon, selected to ensure that the Gaussian processes were neither approximately constant,957

nor white-noise-like. We considered data sizes of N = 50, N = 500, and N = 1000, respectively,958

for the dumbbell, sphere, and dragon, sampled uniformly from the mesh’s nodes, which in each case959

resulted in a reasonably-uniform distribution of points across the manifold. Finally, for the extrinsic960

pointwise error approximation, we used a subset X′ uniformly sampled from each mesh’s nodes, of961

size equal to the data size. For each respective test set, we used the full mesh. Each experiment was962

repeated for 10 different seeds.963

To set the length scales for the extrinsic process, we used maximum marginal likelihood optimization964

on the full data, except for the dumbbell whose full data size is small and for which we instead965

generated a larger set consisting of 500 points. We optimzied only the length scale, leaving all other966

hyperparameters fixed. We used ADAM with a learning rate of 0.005, and an initialization equal to967

the length scale κ of the intrinsic model, except for the dumbbell where this lead to divergence and968

we instead used an initial value of κ/4. We ran the optimizer for a total of 1000 steps. With these969

settings, we found empirically that maximum marginal likelihood optimization always converged.970
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