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Abstract

Self-supervised learning (SSL) has great potential for molecular representation
learning given the complexity of molecular graphs, the large amounts of unlabelled
data available, the considerable cost of obtaining labels experimentally, and the
hence often only small training datasets. The importance of the topic is reflected
in the variety of paradigms and architectures that have been investigated recently,
most focus on designing views for contrastive learning. In this paper, we study
SSL based on persistent homology (PH), a mathematical tool for modeling topo-
logical features of data that persist across multiple scales. It has several unique
features which particularly suit SSL, naturally offering: different views of the
data, stability in terms of distance preservation, and the opportunity to flexibly
incorporate domain knowledge. We (1) investigate an autoencoder, which shows
the general representational power of PH, and (2) propose a contrastive loss that
complements existing approaches. We rigorously evaluate our approach for molec-
ular property prediction and demonstrate its particular features in improving the
embedding space: after SSL, the representations are better and offer considerably
more predictive power than the baselines over different probing tasks; our loss
increases baseline performance, sometimes largely; and we often obtain substantial
improvements over very small datasets, a common scenario in practice.

1 Introduction

Self-supervised learning (SSL) has great potential for molecular representation learning given the
complexity of molecules, the large amounts of unlabelled data available, the considerable cost of
obtaining labels experimentally, and the resulting often small datasets. The importance of the topic is
reflected in the variety of paradigms and architectures that are investigated [Xia et al., 2023a].

Most existing approaches use contrastive learning (CL) as proposed in [You et al., 2020]. CL aims at
learning an embedding space by comparing training samples and encouraging representations from
positive pairs of samples to be close in the embedding space while representations from negative
pairs are pushed away from each other. However, usually, each given molecule is considered as its
own class, that is, a positive sample pair consists of two different views of the same molecule; and all
other samples in a batch are used as the negative pairs during training. We observe that this represents
a very coarse-grained comparison basically ignoring all commonalities and differences between
the given molecules. Therefore also current efforts in molecular CL are put in constructing views
that capture the possible relations between molecules: GraphCL [You et al., 2020] proposes four
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Figure 1: Topological fingerprints are constructed using a filter (e.g., atom number) and recording
resulting topological structures in a PD which is then vectorized.

simple augmentations (e.g., drop nodes), but fix two per dataset; JOAO [You et al., 2021] extends
the former by automating the augmentation selection; GraphLoG [Xu et al., 2021] optimizes in a
local neighborhood of the embeddings, based on similarity, and globally, using prototypes based on
semantics; and SimGRACE [Xia et al., 2022] creates views using a second encoder, a perturbed
version of the molecule’s ones; also most recent works follow this paradigm [Wu et al., 2023].

Quality of Embedding Spaces is Underinvestigated. Although differences in performance are often
observed, they seem marginal and are not yet fully comprehended. With a few exceptions, the models
are usually evaluated over the MoleculeNet benchmark [Wu et al., 2018a] only, a set of admittedly
rather diverse downstream tasks. While those certainly provide insights into model performance,
recent evaluation papers have pointed out that the picture may be very different when the models are
evaluated in more detail [Sun et al., 2022, Wang et al., 2022a, Akhondzadeh et al., 2023, Deng et al.,
2022]. In particular, [Akhondzadeh et al., 2023] propose to use linear probing to analyse the actual
power of the representations instead of a few, specific downstream tasks. This type of evaluation is
also common in other areas of DL [Chen et al., 2020]. [Deng et al., 2022] consider other, smaller
datasets, and compare to established machine learning (ML) approaches.

We study molecular SSL based on persistent homology (PH). PH is a mathematical tool for mod-
eling topological features of data that persist across multiple scales. In a nutshell, the molecule graph
can be constructed sequentially using a custom filter, such that atom nodes and the corresponding bond
edges only appear once they meet a given criterion (e.g., based on atomic mass); see Figure 1. PH then
captures this sequence in a persistence diagram (PD), and the area has developed various methods to
translate these diagrams into topological fingerprints, which can be used for ML [Ali et al., 2022].
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Figure 2: TDL may yield great improve-
ments in the low-data scenario; ClinTox.

Topological fingerprints have been used for supervised
ML over molecules by chemists [Krishnapriyan et al.,
2021, Demir et al., 2022] and recent work in AI has shown
promising results compared to the commonly used ECFP
embeddings [Rogers and Hahn, 2010]. Moreover, many
of these fingerprints have been shown to be stable, in
the sense that distances between the PDs are reflected in
the distances between the corresponding fingerprints. We
point out that the unique features of topological finger-
prints particularly suit molecular SSL, naturally offering:
different views of the data (i.e., by switching the filter func-
tion), stability in terms of distances, and the opportunity
to flexibly incorporate domain knowledge.

Our Idea. We consider the topological fingerprints of the molecules in the pre-training data as views
and exploit their stability to model the distances between the given molecules (i.e., instead of between
a molecule and/or its views). In particular, we use them for fine-grained supervision in SSL.

Contributions.

• We propose a topological distance contrastive loss (TDL) which, as outlined above, shapes the
embedding space by providing supervision for the relationships between molecules, especially the
ones in the data. TDL is complementary and can be flexibly and efficiently applied to complement
any CL approach. We extensively evaluate it combining TDL with four established CL models.

• We also consider alternative paradigms for comparison: we study a straightforward topological
fingerprints autoencoder (TAE).

• Our evaluation particularly focuses on the potential in improving the embedding space and we
demonstrate the gain in representation power in detail empirically (see Section 4.1): TDL en-
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ables the models to learn, in a sense, calibrated distances; considerably improves linear probing
performance; and the fine-grained supervision may mitigate deficiencies of individual models.

• Over downstream data (see Section 4.2) the performance increases depend more on the model and
data. Notably, TDL is able to considerably improve GraphCL and make it competitive with SOTA.
Moreover, TDL strongly improves various models in the low-data scenario (see Figure 2).

Our implementation is available at https://github.com/LUOyk1999/Molecular-homology.

2 Background and Related Works

Graph Homology. Molecules are graphs G = (V,E) with nodes V , the atoms, and bond edges E.
In algebraic topology, graph homology considers such a graph G as a topological space. We focus on
simplices: every node is a 0-simplex, and every edge is a 1-simplex. In the context of graphs, we
obtain a 1-dimensional simplicial complex X = V ∪ E in an easy way, by considering the simplices
induced by G; the dimension is determined by the maximal dimension of the contained simplices.

Persistent Homology (PH). We introduce the most important concepts and, for more details, refer to
[Dey and Wang, 2022, Edelsbrunner and Harer, 2022]. Persistent homology is a mathematical tool
for modeling topological features of data that persist across multiple scales, comparable to different
resolutions. These features are captured in persistent diagrams which, in turn, can be vectorized in
fingerprints. We outline the process simplified below and in Figure 1; see Appendix A for details.

First, the goal is to construct a nested sequence of subgraphs G1 ⊆ ... ⊆ GN = G (1 ≤ i ≤ N ). As
described above, these graphs can be considered as simplicial complexes, hence we have simplices
which we can record in a persistence diagram. To this end, we consider one of the most common types
of filtration methods: sublevel/superlevel filtrations. A sublevel filtration is a function f : X → R
over all simplices. A simple such function f can be a node-valued function (e.g., map atom nodes
to their atomic number) that is expanded to the edges as f(u, v) = max(f(u), f(v)). Denote
by Xa the sublevel set of X , consisting of simplices whose filtration function values ≤ f(a),
Xa = {x ∈ X|f(x) ≤ f(a)}. As the threshold value a increases from minv∈V f(v) to maxv∈V f(v),
let Ga be the subgraph of G induced by Xa; i.e., Ga = (Va, Ea) where Va = {v ∈ Xa} and
Ea = {ers ∈ Xa}. This process yields a nested sequence of subgraphs G1 ⊆ G2 ⊆ ... ⊆ GN = G.
As Xa grows to X , new topological structures gradually appear (born) and disappear (die).

Second, a persistence diagram (PD) is obtained as follows. For each topological structure σ, PH
records its first appearance and its first disappearance in the filtration sequence. And this is represented
by a unique pair (bσ, dσ), where 1 ≤ bσ ≤ dσ ≤ N . We call bσ the birth time of σ, dσ the death time
of σ and dσ − bσ the persistence of σ. PH records all these birth and death times of the topological
structures in persistence diagram PD(G) = {(bσ, dσ)|σ ∈ Hk(Gi)}, where Hk(Gi) denotes the
k-th homology group of Gi, and in practice, k typically takes values 0 or 1. This step is rather
standard and corresponding software is available [Otter et al., 2017].

PH in ML. The vectorization of PDs for making them applicable in ML has been studied extensively
[Ali et al., 2022], and proposals range from simple statistical descriptions to more complex persistence
images (PIs) [Adams et al., 2017]. In a nutshell, for PIs, the PD is considered as a 2D surface,
tranformed using a Gaussian basis function, and finally discretized into a vector. Furthermore, the
Euclidean distance between PIs is stable with respect to the 1-Wasserstein distance between PDs
[Adams et al., 2017], which essentially means that the former is bounded by a constant multiple of
the latter. We focus on PIs based on the promising results reported in supervised settings [Demir et al.,
2022, Krishnapriyan et al., 2021]. Our study was inspired by the ToDD framework, applying pre-
trained vision transformers to custom 2D topological fingerprints [Demir et al., 2022]. Interestingly,
they use the distances between the transformer’s molecule representations to construct a suitable
dataset for subsequent supervised training using triplet loss. Our focus is on SSL and we apply the
ToDD fingerprints as more complex, expert fingerprints in comparison to the ones based on atomic
mass only. Recently, various other approaches of integrating PH into ML are explored, but these are
only coarsely related to our work (e.g., [Horn et al., 2022, Yan et al., 2022]).

Molecular SSL. Since the foundational work of [Hu* et al., 2020], who have proposed several
effective methods, such as the node context prediction task ContextPred, the area is advancing at
great pace [Xia et al., 2023a, Xie et al., 2022]. Our proposal falls into the category of contrastive
learning as introduced in Section 1. Our study focuses on the potential of PH to complement existing
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models such as [You et al., 2020] and follow-up approaches. There are other related CL approaches
to which we do not aim to compare to directly; e.g., works including 3D geometry [Liu et al., 2022a,
Stärk et al., 2022] or considerably scaling up the pre-training data [Ross et al., 2022, Zhou et al.,
2023]. In contrast, our focus is on improvement through exploiting unused facets of the data.

SSL based on Distances. We found only few works that explicitly incorporate distances into SSL.
With regard to graphs, [Kim et al., 2022] exploit the graph edit distance between a graph and views
to similarly represent the actual distance in the embedding space inside the loss function (i.e., vs.
invariance to the view transformation). This distance computation is feasible since it can be easily
obtained based on the transformation. Our work focuses on exploring in how far distances in terms of
PH can be applied towards the same goal; moreover, this makes it feasible to model the distances
between given samples. [Wang et al., 2022b] consider a loss very similar to our proposal based on
the more coarse-grained ECFPs, instead of PIs, but they focus on chemistry aspects instead of SSL
more generally. Also [Zha et al., 2022] model distances between given samples in the context of CL
in a similar way, but in the context of a supervised scenario, where the distances are the differences
between given regression labels; note that they also list other coarser related works. [Taghanaki et al.,
2021] apply custom distances inside a triplet loss but similarly exploit label information, in order to
select the positive and negative samples. Beyond that, distances have been applied to obtain hard
negatives [Zhang and Re, Demir et al., 2022], and are exploited in various other ways rather different
from our method. For instance, several recent approaches aim to structure the embedding space by
exploiting correlations between samples which are, in turn, obtained using nearest neighbors [Caron
et al., 2020, Dwibedi et al., 2021, Ge et al., 2023]. Also methods considering equivariance between
view transformations implicitly model distances [Chuang et al., 2022, Devillers and Lefort, 2023].

Others. While our focus on CL and distances hints at a close relationship to deep metric learning
[KAYA and BİLGE, 2019], these works usually do not have explicit distances for supervision but, for
instance, exploit labels. Observe that this indicates the unique nature of the distances PH provides us
with. Lastly, SSL more generally [Rethmeier and Augenstein, 2023] has naturally been inspiration
for molecular SSL and is certainly one reason why the field was able to advance so fast. We use its
insights by putting focus on linear probing and investigating dimensional collapse [Hua et al., 2021].

3 Methodology

The main goal of SSL is to learn an embedding space that faithfully reflects the complexity of
molecular graphs, captures the topological nature of the molecular representation space overall,
and whose representations can be effectively adapted given labels during fine-tuning. We propose
methods based on persistent homology and show that they naturally suit SSL. First, persistence
images (or comparable topological fingerprints) offer great versatility in that they are able to flexibly
represent knowledge about the graphs and allow for incorporating domain knowledge. Second, they
capture this knowledge based on persistence diagrams, which is very different from - and hence likely
complementary to - the common graph representation methods in deep learning. Third, and most
importantly, their stability represents a unique feature, which makes them ideal views for SSL.

We study two SSL approaches based on PH and evaluate them in detail in terms of both their impact
on representation power (see Section 4.1) and on downstream performance (see Section 4.2):

• In order to study the impact of PH on SSL in general, we consider a simple autoencoder architecture.
• Since we consider topological fingerprints to represent information that is complementary to

that used in existing approaches (we also show that they are not ideal alone) and because their
topological nature can be used to improve the latter in unique ways, we developed a loss function
based on contrastive learning that complements existing approaches.

In this paper, our focus is on obtaining initial insights about the potential PH offers for molecular
SSL, hence we chose one basic solution and one providing unique impact. There are certainly other
promising ways to be investigated in the future.

3.1 Topological Fingerprints AutoEncoder (TAE)

Autoencoders are designed to reconstruct certain inputs given context information for the input
graph G. We consider topological fingerprints IG as the reconstruction targets, specifically, PIs.
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Figure 4: Overview of Topological Distance Contrastive Learning.

Figure 3: Comparison of molecule similarity based on PIs to
similarity between corresp. ECFPs (blue: 20% most similar).

The model itself employs a typical
graph encoder ε(·) for computing em-
beddings hv for the individual nodes
v ∈ V ; for simplicity, we write hV =
ε (G), where hV = {hv|v ∈ V } rep-
resents all node representations. Next,
we pass it through a projection head
g(·) and readout function R(·) (e.g.,
mean pooling) to obtain the graph-
level representation hG = R(g(hV )).
Hence the context is the particular
knowledge the graph encoder was de-
signed to exploit; in our evaluation, we consider the commonly used GIN [Xu et al.] in order to ease
comparison with related works. As our loss formula for this topological fingerprints autoencoder
(TAE) we use the regular mean squared error: LTAE =

∑
G MSE (hG, IG) .

Observations. Given stable fingerprints such as PIs, one main usual criticism for autoencoders, the
fact that they fail to capture inter-molecule relationships, does not apply if the model is able to reliably
learn the PIs, which we show TAE does; in particular, we observe a strong correlation between PIs
and their reconstructions (see Table 7). The successful application of topological fingerprints in
supervised learning and the simplicity of the model justify the study of TAE for analysis, however,
we note that the PIs employed may not necessarily capture all information which is critical for a
particular downstream task. For example, Figure 3 shows that PIs may offer a generally fitting
embedding space, in that randomly chosen molecule pairs with similar standard fingerprints based on
substructures (blue, Tanimoto similarity of ECFPs) have rather similar PIs (x-axis, cosine similarity).
However, there is a clear difference for the two depicted datasets, sometimes PIs as shown here,
based on the ToDD filtration Demir et al. [2022], fail to fully capture structural similarity; and this
is directly reflected in performance (see Table 4). While optimization on a case-by-case basis w.r.t.
the choice of fingerprints is possible, this is not in the spirit of foundational SSL, requires expert
knowledge or extensive tuning, and may still not be sufficient. For that reason, we suggest to apply
them together with existing approaches and show that they offer unique benefits.

3.2 Topological Distance Contrastive Loss (TDL)

Contrastive learning aims at learning an embedding space by comparing training samples and
encouraging representations from positive pairs of examples to be close in the embedding space while
representations from negative pairs are pushed away from each other. Current approaches usually
consider each sample as its own class, that is, a positive pair consists of two different views of it;
and all other samples in a batch are used as the negative pairs during training. We observe that this
represents a very coarse-grained comparison basically ignoring all commonalities and differences
between the given molecules; this is also why current efforts in graph CL focus on constructing views
that capture the possible relations between molecules.
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Our Idea, Figure 4. We exploit the stability of topological fingerprints such as PIs to model the
distances between the given molecules (i.e., instead of just views of the same molecule) and to
use them for fine-grained supervision in SSL (recall that stability means the distances between
PIs reflect those between the topological persistence diagrams). This is very different from and
complementary to related works in that it structures the embedding space in a different way. The
fingerprints are usually constructed in a way so that they capture information about the molecular
graph structure; even if they do not capture the entire complexity of the molecules, they represent
some, probably important aspects. Moreover, based on the topological nature, they may capture
aspects not represented by the commonly used graph embeddings. In particular, they offer a way to
flexibly integrate expert knowledge into molecular SSL; observe that the usually employed GNNs
have dimensions based on the available molecule information, hence including additional information,
even if available only for some of the data, requires architecture changes.

We consider a batch of N graphs, {Gi}i∈[1,N ]. Similar as above, we first extract graph-level
representation vectors hGi using a graph encoder ε(·), followed by a readout function R(·). Here,
we apply the projection head g(·) later, to map the graph representations to another latent space and
obtain the final graph embedding zi. Specifically, we apply a two-layer MLP and hence a non-linear
transformation, known to enhance performance [Chen et al., 2020]: zi = g (R (ε (Gi)))
Let Gn be the sample under consideration. Instead of constructing an artificial view, we consider all
possible positive pairs of samples (Gn, Gm) together with a set of stable, topological fingerprints
{Ii}i∈[1,N ] for all graphs. Note that these can be computed rather efficiently, and they have to be
computed only once for the given pre-training data. In a nutshell, our loss adapts the regular NT-Xent
[Sohn, 2016, Oord et al., 2018, Wu et al., 2018b] by considering only those negative pairs (Gn, Gk)
of samples where the Euclidean distance dis (In, Ik) between the corresponding fingerprints is
greater than the one between In and Im. We compute the similarity score as sim (zn, zm) =
zn

⊤zm/ ∥zn∥ ∥zm∥, and consider a temperature parameter τ and indicator function I[·] ∈ {0, 1} as
usual. Our topological distance contrastive loss (TDL) is defined as follows, for the n-th sample:

LTDLn
=

1

N − 1

∑
m∈[1,N ],
m ̸=n

− log
esim(zn,zm)/τ∑

k∈[1,N ],
k ̸=n

I[dis(In,Ik)≥dis(In,Im)] · esim(zn,zk)/τ

TDL can be flexibly and efficiently applied to complement any graph CL framework, e.g., in the form
Ln = Lothers + λLTDLn

, where λ determines its impact. In our evaluation, we used λ = 1.

Further Intuition. Essentially, TDL provides a form of regularization. It encourages the model to
push molecule representations less far away from the sample under consideration if they are similar to
it in terms of the topological fingerprints. Given the stability of those, we hence obtain an embedding
space with better calibrated distances (i.e., distances in terms of PH, between persistence diagrams of
the molecule graphs). This can be partly observed theoretically, in the directions of the gradients; see
Appendix I for an initial analysis. We show this empirically by calculating the correlation between
distances between the molecule representations after pre-training and the PIs (see Table 1), and by
visualizing the distances in Figure 5. Our evaluation further shows that the fine-grained supervision
may solve deficiencies of CL models in that it forces them to capture crucial features of the input.
Further, the improved embedding space particularly suits low-data downstream scenarios.

On Views. While we consider the modeling of the sample relationships to be most unique and offer
great potential to complement other models, we note that TDL can be similarly applied over views.

4 Evaluation

• Do TAE and TDL lead to, in a sense, calibrated distances in the representation space?
• Do we obtain improved representations more generally, based on established SSL metrics?
• What impact do we see on downstream performance, and does it justify our proposal?

Our Models. We apply both TAE and TDL with different filtration functions, marked by a subscript.
First, we apply a most simple filtration atom based on atomic mass. This allows showing that, even
by considering less information than the baseline GNNs, which additionally apply atom chirality
and connectivity, topological modeling may exploit additional facets of the data. Since TAE is a
standalone model, atomic mass is not enough to let it fully capture the molecular nature. For that
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Table 1: Pearson correlation coefficients (%) between distances in embedding space and distances
between corresponding PIs, for samples from various MoleculeNet datasets. Highlighted are clear
decreases and clear increases (i.e., considering standard deviation).

Tox21 ToxCast Sider ClinTox MUV HIV BBBP Bace

ContextPred 31.2 (0.4) 2.5 (0.0) 61.6 (0.2) 15.6 (0.5) 37.2 (0.1) 20.6 (0.1) 3.7 (0.3) 12.7 (0.2)
+ TAEahd 35.6 (0.3) 12.2 (0.6) 60.6 (0.3) 6.2 (1.6) 55.9 (0.1) 30.9 (0.1) 2.7 (0.7) 25.9 (0.2)

GraphCL 15.6 (0.4) 7.4 (0.8) 52.6 (0.2) 16.7 (0.8) 35.4 (0.2) 18.3 (0.2) 6.2 (1.8) 10.5 (0.2)
+ TDLatom 55.4 (0.2) 14.5 (0.4) 66.6 (0.3) 21.9 (0.7) 65.2 (0.3) 41.5 (0.1) 7.0 (1.4) 34.1 (0.3)

JOAO 25.1 (0.8) 3.2 (1.7) 62.4 (0.3) 20.2 (1.3) 48.0 (0.2) 29.5 (0.3) 2.7 (1.4) 24.8 (0.3)
+ TDLatom 49.3 (0.3) 14.6 (2.1) 65.2 (0.1) 26.2 (1.0) 60.2 (0.2) 40.6 (0.4) 6.7 (0.8) 36.0 (0.4)

SimGRACE 10.3 (2.9) 9.8 (0.6) 59.9 (1.1) 4.8 (1.6) 26.5 (0.3) 21.6 (0.2) 9.5 (2.1) 4.4 (0.1)
+ TDLatom 48.8 (0.9) 12.8 (1.7) 61.5 (0.2) 20.2 (0.5) 71.9 (0.1) 49.1 (0.2) 8.5 (2.0) 38.9 (0.1)

GraphLoG 16.8 (0.2) 2.9 (0.5) 34.2 (0.2) 3.6 (0.8) 20.4 (0.1) 9.4 (0.2) 3.3 (0.9) 12.6 (0.2)
+ TDLatom 44.2 (0.4) 11.8 (1.3) 50.5 (0.4) 22.4 (1.2) 63.9 (0.1) 46.2 (0.2) 1.9 (0.4) 40.3 (0.1)

reason, we consider three filtrations (atomic mass, heat kernel signature, node degree) and concatenate
the corresponding PIs, denoted by ahd. Finally, to show the real potential of PH, we include the
ToDD filtration Demir et al. [2022], which combines atomic mass with additional domain knowledge,
partial charge and bond type, inside a more complex multi-dimensional filtration. See Appendix A.

Baselines & Datasets. For a comprehensive evaluation, we apply TDL on a variety of existing CL
approaches: GraphCL, JOAO, GraphLoG, and SimGRACE (see Section 1). Note that this goes far
beyond other CL extensions which are often evaluated with a single approach only [You et al., 2021,
Xia et al., 2023b]. We also study TAE on top of the established ContextPred [Hu* et al., 2020], to get
an idea of its complementary nature. Model configurations and experimental settings are described
in Appendix A. For pre-training, we considered the most common dataset following [Hu* et al.,
2020], 2 million unlabeled molecules sampled from the ZINC15 database [Sterling and Irwin, 2015].
For downstream evaluation, we focus on the MoleculeNet benchmark [Wu et al., 2018a] here, the
appendix contains experiments on several other datasets.

4.1 Analysis of Representations after Pre-training

Calibrated Distances in Embedding Space, Tables 1, 7, 9, Figure 5.

Figure 5: Normalized Euclidean dis-
tances for pairs of embeddings after pre-
training of same/different Bace class,
dark/light: PIToDD, green; GraphCL,
blue; GraphCL+TDLToDD, red.

TAE successfully learns the PI space for the molecules
in MoleculeNet in the sense that there is a strong corre-
lation between the PIs and their reconstructions (Table 7,
appendix). For TDL, we observe for all baselines consid-
erable increases in terms of correlation between distances
in PI space and in representation space; we use the embed-
dings from linear probing. There are two notable excep-
tions and generally smaller increases on one dataset, BBBP.
We also compared the ROGI score [Aldeghi et al., 2022]
which, in a nutshell, measures in how far (dis)similarity of
molecules (i.e., we use Euclidean distance of embeddings)
is reflected in label similarity (Table 9, appendix). This
gives us some idea in terms of downstream labels and the
mixed results reflect the variety of the data. Finally, the
alignment figure on the right clearly visualizes that the PI
embedding space is much more fine-grained in terms of
distances than the GNN space, and that the distribution of
GraphCL seems to get correctly adapted in that distances
between “positive” pairs generally shrink below the ones of “negative” pairs.

Mitigating Dimensional Collapse, Figure 6. One of the most interesting of our findings is the
fact that GraphCL and GraphLoG suffer from dimensional collapse (i.e., the embeddings span a
lower-dimensional subspace instead of the entire available embedding space, [Wang et al., 2022a]
also observe this for GraphCL) and that TDL successfully mitigates this. This can be observed in
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Figure 6: Singular values of covariance matrices of the representations; Bace (left), Clintox (right).

Table 2: Linear/MLP probing: molecular property prediction; binary classification, ROC-AUC (%).

Tox21 ToxCast Sider ClinTox MUV HIV BBBP Bace Average

PIatom 56.9 (0.3) 51.5 (0.4) 56.1 (0.5) 45.5 (1.1) 58.6 (0.7) 68.4 (0.6) 47.1 (0.4) 48.6 (0.7) 54.08
PIToDD 65.8 (0.3) 50.3 (0.3) 58.1 (0.5) 56.9 (1.3) 55.7 (0.9) 70.8 (0.4) 57.1 (0.7) 67.8 (0.8) 60.31
ECFP 68.8 (0.3) 57.0 (0.2) 62.3 (0.3) 69.2 (0.8) 66.1 (0.4) 69.4 (0.2) 63.2 (0.3) 73.6 (0.8) 66.20
ECFP ∥ PIToDD 69.6 (0.4) 56.3 (0.3) 60.9 (0.6) 76.7 (1.1) 64.0 (0.6) 71.6 (0.5) 63.0 (0.4) 76.8 (1.0) 67.36
PIatom, MLP 57.2 (0.5) 52.5 (0.4) 56.6 (0.7) 49.8 (1.4) 60.5 (1.6) 69.9 (0.4) 48.8 (1.0) 53.3 (1.1) 56.08
PIToDD, MLP 66.7 (0.3) 52.5 (0.4) 58.6 (0.6) 61.8 (1.6) 60.1 (0.4) 71.6 (0.7) 57.3 (0.9) 68.2 (1.3) 62.03
ECFP, MLP 70.1 (0.4) 59.8 (0.4) 59.6 (0.6) 67.8 (0.9) 61.7 (0.8) 69.1 (1.0) 58.6 (1.3) 72.1 (1.7) 64.85
ECFP ∥ PIToDD, MLP 71.1 (0.6) 57.8 (0.4) 59.2 (0.7) 80.7 (2.1) 64.9 (1.1) 72.8 (1.7) 63.1 (0.8) 76.7 (0.9) 68.28
TAEahd 67.7 (0.2) 61.2 (0.2) 55.8 (0.3) 58.1 (0.7) 70.2 (0.8) 72.5 (0.5) 61.1 (0.2) 74.3 (0.2) 65.11
TAEToDD 70.4 (0.2) 60.8 (0.1) 61.1 (0.1) 68.4 (0.7) 72.3 (0.3) 73.9 (0.2) 61.6 (0.4) 67.6 (0.6) 67.01

ContextPred 68.4 (0.3) 59.1 (0.2) 59.4 (0.3) 43.2 (1.7) 71.0 (0.7) 68.9 (0.4) 59.1 (0.2) 64.4 (0.6) 61.69
+ TAEahd 69.7 (0.1) 59.2 (0.2) 59.5 (0.3) 56.1 (1.1) 76.5 (0.9) 68.9 (0.2) 61.1 (0.4) 65.6 (0.5) 64.58
+ TAEToDD 69.0 (0.1) 59.8 (0.4) 60.0 (0.4) 53.3 (1.3) 70.8 (0.3) 70.0 (0.7) 60.9 (0.5) 62.7 (0.5) 63.31
GraphCL 64.4 (0.5) 59.4 (0.2) 54.6 (0.3) 59.8 (1.2) 70.2 (1.0) 63.7 (2.3) 62.4 (0.7) 71.1 (0.7) 63.20
+ TDLatom 72.0 (0.4) 61.1 (0.2) 59.7 (0.6) 65.3 (1.3) 76.1 (0.9) 68.2 (1.1) 65.4 (0.9) 76.4 (1.1) 68.02
+ TDLToDD 72.7 (0.5) 60.8 (0.4) 58.9 (0.8) 64.1 (1.7) 72.7 (1.4) 69.7 (1.2) 64.5 (0.8) 76.1 (1.3) 67.44
JOAO 70.6 (0.4) 60.5 (0.3) 57.4 (0.6) 54.1 (2.6) 69.8 (1.9) 68.1 (0.9) 63.7 (0.3) 71.2 (1.0) 64.42
+ TDLatom 70.5 (0.3) 60.4 (0.2) 57.8 (1.5) 54.6 (1.3) 74.2 (1.6) 68.2 (0.6) 65.2 (0.3) 72.7 (3.1) 65.41
+ TDLToDD 71.7 (0.4) 61.3 (0.3) 58.9 (0.7) 52.4 (1.7) 69.6 (1.7) 69.9 (0.6) 64.1 (0.5) 72.6 (0.9) 65.06
SimGRACE 64.6 (0.4) 59.1 (0.2) 54.9 (0.6) 63.4 (2.6) 67.4 (1.2) 66.3 (1.5) 65.4 (1.2) 67.8 (1.3) 63.61
+ TDLatom 68.6 (0.3) 61.1 (0.2) 59.5 (0.4) 62.2 (1.7) 69.7 (2.0) 69.5 (1.8) 60.6 (0.5) 72.1 (0.7) 65.41
+ TDLToDD 70.1 (0.3) 60.3 (0.3) 59.1 (0.3) 65.1 (1.4) 71.4 (1.1) 71.1 (0.7) 64.9 (0.6) 73.4 (0.8) 66.93
GraphLoG 67.2 (0.2) 57.9 (0.2) 57.9 (0.3) 57.8 (0.9) 64.2 (1.1) 65.0 (1.3) 54.3 (0.7) 72.3 (0.9) 62.08
+ TDLatom 72.1 (0.3) 62.0 (0.2) 60.7 (0.2) 56.6 (0.8) 73.0 (0.9) 70.4 (0.9) 61.2 (0.4) 76.8 (0.7) 66.59
+ TDLToDD 70.7 (0.2) 60.7 (0.3) 61.5 (0.3) 59.5 (0.5) 72.9 (1.8) 71.6 (0.8) 62.1 (0.3) 80.1 (0.4) 67.39

Table 3: Linear probing: given two molecules, predict distance between their PIs; MSE.

Tox21 ToxCast Sider ClinTox MUV HIV BBBP Bace

ContextPred 6.330 (0.007) 5.351 (0.084) 22.227 (0.102) 4.234 (0.039) 2.342 (0.001) 6.127 (0.009) 4.907 (0.072) 3.591 (0.038)
+ TAEahd 5.970 (0.002) 5.263 (0.003) 21.262 (0.070) 4.255 (0.023) 1.851 (0.003) 5.752 (0.023) 4.901 (0.024) 3.069 (0.012)

GraphCL 6.873 (0.011) 5.440 (0.031) 24.019 (0.059) 4.537 (0.006) 2.411 (0.006) 5.996 (0.006) 5.666 (0.003) 3.858 (0.007)
+ TDLatom 5.371 (0.031) 5.191 (0.023) 20.641 (0.022) 4.231 (0.025) 1.645 (0.004) 5.001 (0.022) 4.936 (0.002) 2.375 (0.008)

JOAO 6.465 (0.032) 5.277 (0.010) 21.299 (0.085) 4.277 (0.118) 2.061 (0.001) 5.418 (0.016) 4.995 (0.036) 2.782 (0.004)
+ TDLatom 5.642 (0.011) 5.187 (0.010) 20.515 (0.044) 4.185 (0.027) 1.749 (0.004) 5.011 (0.028) 4.979 (0.015) 2.377 (0.002)

SimGRACE 10.015 (0.050) 13.387 (4.770) 26.514 (0.049) 4.669 (0.017) 2.591 (0.005) 6.150 (0.023) 6.167 (0.035) 13.054 (0.938)
+ TDLatom 5.359 (0.005) 5.263 (0.016) 20.630 (0.034) 4.071 (0.042) 1.545 (0.007) 4.714 (0.033) 5.131 (0.011) 2.296 (0.003)

GraphLoG 6.877 (0.012) 5.279 (0.004) 24.073 (0.038) 4.482 (0.055) 2.857 (0.004) 6.591 (0.015) 5.029 (0.079) 3.918 (0.004)
+ TDLatom 5.814 (0.032) 5.212 (0.018) 21.441 (0.044) 4.237 (0.015) 1.719 (0.005) 4.669 (0.010) 4.962 (0.015) 2.235 (0.005)

the singular values of the covariance matrix of the representations, where vanishing values hint at
collapsed dimensions. The phenomenon has recently been observed in computer vision and there are
only initial explanations to date [Hua et al., 2021]. However, here, we observe the collapse only over
the downstream data. Our hypothesis is that TDL’s fine-grained supervision forces the models to
capture relevant features, which they might have neglected otherwise. We also depict the graphs for
SimGRACE and JOAO, which look very different, reflecting the variety of the approaches. There is
basically no difference for JOAO(+TDL), while TDL shrinks the values for SimGRACE; the latter is
less optimal and needs further investigation.
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Table 4: Binary classification over MoleculeNet; ROC-AUC, % Pos. is min/med/max for multi-task.

Tox21 ToxCast Sider ClinTox MUV HIV BBBP Bace Average

# Molecules 7,831 8,575 1,427 1,478 93,087 41,127 2,039 1,513 -
# Tasks 12 617 27 2 17 1 1 1
% Positives 2.4/4.6/12.0 0.2/1.3/20.5 1.5/66.3/92.4 7.6/50.6/93.6 0.03/0.03/0.03 3.5 76.5 45.7

No pretrain (GIN) 74.6 (0.4) 61.7 (0.5) 58.2 (1.7) 58.4 (6.4) 70.7 (1.8) 75.5 (0.8) 65.7 (3.3) 72.4 (3.8) 67.15

AD-GCL [Suresh et al., 2021] 76.5 (0.8) 63.0 (0.7) 63.2 (0.7) 79.7 (3.5) 72.3 (1.6) 78.2 (0.9) 70.0 (1.0) 78.5 (0.8) 72.67
iMolCLR [Wang et al., 2022b] 75.1 (0.7) 63.5 (0.4) 59.4 (1.0) 81.0 (2.6) 74.7 (1.9) 77.3 (1.2) 69.6 (1.2) 77.3 (1.0) 72.24
Mole-BERT [Xia et al., 2023b] 76.8 (0.5) 64.3 (0.2) 62.8 (1.1) 78.9 (3.0) 78.6 (1.8) 78.2 (0.8) 71.9 (1.6) 80.8 (1.4) 74.04
SEGA [Wu et al., 2023] 76.7 (0.4) 65.2 (0.9) 63.6 (0.3) 84.9 (0.9) 76.6 (2.4) 77.6 (1.3) 71.8 (1.0) 77.0 (0.4) 74.17

TAEahd 75.2 (0.8) 63.1 (0.3) 61.9 (0.8) 80.6 (1.9) 74.6 (1.8) 73.5 (2.1) 67.5 (1.1) 82.5 (1.1) 72.36
TAEToDD 76.8 (0.9) 64.0 (0.5) 61.9 (0.8) 79.3 (3.6) 75.8 (3.2) 75.9 (1.1) 70.4 (0.8) 81.6 (1.4) 73.22

ContextPred 75.7 (0.7) 63.9 (0.6) 60.9 (0.6) 65.9 (3.8) 75.8 (1.7) 77.3 (1.0) 68.0 (2.0) 79.6 (1.2) 70.89
+ TAEahd 76.4 (0.5) 63.2 (0.4) 62.0 (0.7) 74.6 (4.4) 76.7 (1.6) 77.7 (1.2) 68.9 (1.1) 80.7 (1.6) 72.53
+ TAEToDD 75.7 (0.4) 63.1 (0.3) 61.3 (0.5) 72.1 (1.3) 77.2 (1.8) 77.6 (1.1) 69.6 (0.9) 80.1 (1.4) 72.09
GraphCL 73.9 (0.7) 62.4 (0.6) 60.5 (0.9) 76.0 (2.7) 69.8 (2.7) 78.5 (1.2) 69.7 (0.7) 75.4 (1.4) 70.78
+ TDLatom 75.3 (0.4) 64.4 (0.3) 61.2 (0.6) 83.7 (2.7) 75.7 (0.8) 78.0 (0.9) 70.9 (0.6) 80.5 (0.8) 73.71
+ TDLToDD 75.2 (0.7) 64.2 (0.3) 61.5 (0.4) 85.2 (1.8) 75.9 (2.1) 77.9 (0.8) 69.9 (0.9) 81.2 (1.9) 73.88
JOAO 75.0 (0.3) 62.9 (0.5) 60.0 (0.8) 81.3 (2.5) 71.7 (1.4) 76.7 (1.2) 70.2 (1.0) 77.3 (0.5) 71.89
+ TDLatom 75.5 (0.3) 63.8 (0.2) 60.6 (0.5) 76.8 (1.5) 73.8 (1.9) 78.3 (1.2) 70.3 (0.5) 78.7 (0.6) 72.22
+ TDLToDD 75.2 (0.3) 63.6 (0.2) 61.6 (0.6) 80.7 (3.3) 74.6 (1.6) 77.4 (0.9) 71.3 (0.8) 81.0 (2.2) 73.18
SimGRACE 74.4 (0.3) 62.6 (0.7) 60.2 (0.9) 75.5 (2.0) 75.4 (1.3) 75.0 (0.6) 71.2 (1.1) 74.9 (2.0) 71.15
+ TDLatom 74.7 (0.5) 63.0 (0.3) 59.5 (0.4) 73.7 (1.5) 75.9 (1.6) 77.3 (1.1) 69.5 (0.9) 79.1 (0.5) 71.59
+ TDLToDD 75.6 (0.4) 63.3 (0.5) 59.9 (0.8) 82.4 (2.5) 75.6 (2.0) 76.1 (1.3) 69.9 (0.8) 78.9 (1.6) 72.71
GraphLoG 75.0 (0.6) 63.4 (0.6) 59.3 (0.8) 70.1 (4.6) 75.5 (1.6) 76.1 (0.8) 69.6 (1.6) 82.1 (1.0) 71.43
+ TDLatom 76.1 (0.7) 63.7 (0.4) 59.9 (1.0) 75.7 (3.5) 75.7 (1.2) 76.2 (1.8) 69.6 (1.2) 82.2 (1.5) 72.39
+ TDLToDD 75.9 (0.8) 63.5 (0.7) 63.4 (0.3) 79.8 (1.9) 75.6 (1.1) 76.2 (1.6) 70.7 (0.9) 82.1 (1.9) 73.39

Linear Probing, Tables 2, 3, 10. We evaluated extensively using a linear layer on the representations
of the pre-trained graph encoders over the MoleculeNet data in terms of binary classification and a
custom distance prediction task. The probing, also in terms of MLPs, demonstrates that PIs possess a
complementary nature to ECFP. Furthermore, TAE, which we developed for comparison purposes
only, is competitive with the baselines and improves ContextPred. In Appendix C, we additionally
show some results over the more challenging activity cliff data. Apart from JOAO+TDL, where
the results are mixed, TDL yields overall impressive increases. Interestingly, the more complex
ToDD-based version is not always better than the simpler one.

Discussion. The results demonstrate that both TAE and TDL successfully approach the PI space
in terms of distances between molecules. Yet, it also has to be noted that the PIs we chose do
not always capture the main characteristics of the sample space, as seen for BBBP. Similarly, the
mixed ROGI scores, which incorporate downstream labels, hint at a varied downstream performance.
Nevertheless, the specifics of particular downstream datasets should not be confused with the more
general molecular representation space. In that respect, especially TDL has been proven effective
overall in improving representation power in a variety of probing tasks for all baselines. We have also
shown that, on closer look, the effects can be very different with the considered baselines, depending
on their individual deficiencies. For JOAO, we have seen an improvement in distance representation
but not as large improvements thereafter, suggesting that it captures similar features already. Recall,
however, that JOAO “only” adapts GraphCL in that it chooses between views more flexibly. In this
regard, TDL represents a more efficient adaptation of GraphCL, which turns out to be also more
effective in terms of SSL generally, as we show next.

4.2 Evaluation on Downstream Tasks

Transfer Learning Benchmarks, Tables 4, 12, Figure 12. First, note that the MoleculeNet
benchmark contains various types of data. We have already observed the strong differences between
Bace and BBBP in terms of our PIs. Here we additionally have some very large datsets and some
with very many tasks; in both we expect the labels and their correlation to have increasing impact and
reduce the one of the original embedding space. We report some most recent works that used the
same pre-training data to provide a context for interpreting our results. As expected, TAE alone only
reaches decent average performance, yet surpasses SOTA on ClinTox and Bace and also considerably
improves ContextPred there. We see more variability than above in the effects TDL has on the
individual baselines. We do not observe a general impact of dataset balance. To learn about the
impact of labels the influence of multiple tasks, we ran some models also on individual tasks of the
multi-task data and observe larger increases for TDL there (see figures in Appendix D). Altogether,
the table shows mixed results for SimGRACE; some improvement for GraphLoG and, with a single
exception, also for JOAO; and large improvements for GraphCL. Notably, when using the stronger
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Figure 7: Performance over smaller datasets, subsets of Bace (left) and ClinTox (right).

ToDD filtration, TDL demonstrates convincing improvements across all baselines and makes them
competitive with SOTA.

The Low-Data Scenario, Figures 2, 7, 13, 14. Inspired by the impressive increases we see in the
quality of representations after pre-training, we experimented with considerably smaller datasets.
This is a scenario which is relevant in practice since proprietary data from costly experiments is often
only available in small numbers [Tom et al., 2023]. Here we see clearly that the improvement in
representation space is reflected in downstream performance. There is still some dependence on the
dataset but, overall, TDL often yields remarkable improvements. The introduction figure shows that
also other models show room for improvement; note that GraphMVP uses 3D information.

Further Analysis. Due to space constraints, we present only the most impactful findings in this
section and the rest in the appendix, in particular: (1) Ablation Studies. Our approach offers great
variability in terms of, for instance, the graph encoder, the construction of the PIs, or even the type
of topological fingerprint more generally. (2) Unsupervised learning. We observe similar but less
pronounced trends, likely due to the smaller size of the data and fewer features available. (3) PIs
w/o SSL. In view of the promising results with PIs in supervised ML [Krishnapriyan et al., 2021,
Demir et al., 2022], we consider the PIs with XGB and SVM, our approaches based on pre-training
are better. (4) Other datasets. We conducted experiments over several other datasets, including
activity-cliff data, where TDL is shown beneficial more generally.

Discussion. In this section, we have shown results very different from the ones we usually see. In
the benchmark, we observe some improvements and, for GraphCL+TDL, numbers competitive with
SOTA, but they do not reach the general, large impact we saw in Section 4.1. However, we have such
impact over smaller data. Altogether, TDL offers great benefits for all baselines we considered:

• It leads to much better calibrated distances in the representation space in terms of PH. Since
the magnitude of increase is generally remarkable but varies with the data, this shows potential for
further improvement, especially, in terms of choosing the right PIs.

• It considerably improves representations in terms of established SSL metrics.
• Downstream performance reflects this gain of representation power specifically in the low-

data scenario. Given the importance of this kind of data in the real world and the deficiencies
of the models we checked, we conclude that our proposal is not only novel and different in its
distance-based modeling, but also that it advances molecular SSL in important aspects empirically.

5 Conclusions

In this paper, we focus on the quality of representations in molecular SSL, an important topic which
has not been addressed greatly to date. We propose a novel approach of shaping the embedding
space based on distances in terms of fingerprints from persistent homology. We have evaluated our
topological-distance-based contrastive loss extensively, and show that it solves deficiencies of existing
models and considerably improves various baselines in terms of representation power. In future work,
we plan to analyze the relationship between specific PIs and downstream data in more detail, to
further improve our approach, include external knowledge, and to put more focus on regression tasks.
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A Datasets and Experimental Details

Pre-training Datasets. As usual, for GNN pre-training, we use a minimal set of node and bond
features that unambiguously describe the two-dimensional structure of molecules from the ZINC15
database following previous works [Hu* et al., 2020].

• Node features:
– Atom number: [1, 118]
– Chirality tag: {unspecified, tetrahedral cw, tetrahedral ccw, other}

• Edge features:
– Bond type: {single, double, triple, aromatic}
– Bond direction: {–, endupright, enddownright}

We note that the atom number implicitly provides domain knowledge in that it captures important
knowledge about the atom’s charge.

Downstream Task Datasets. We focus on molecular property prediction, where we adopt the widely-
used 8 binary classification datasets contained in MoleculeNet [Wu et al., 2018a]. In addition, we
experimented with 4 regression tasks from various low-data domains in line with the same setting as
[Liu et al., 2022a]. We provide detailed information of these datasets in Table 5 and more information
can be found in [Liu et al., 2022a]. To further evaluate the usefulness of our models, we also use
the opioids-related datasets from [Deng et al., 2022]. The number (percentage) of activity cliff (AC)
molecules are summarized in Table 6. Notably, among MDR1, MOR, DOR and KOR, nearly half
molecules are equipped with activity cliff scaffolds. Finally, scaffold-split [Ramsundar et al., 2019] is
used to splits graphs into train/val/test set as 80%/10%/10% which mimics real-world use cases.

Table 5: Summary for the molecule datasets.

Dataset Task # Tasks # Molecules

BBBP Classification 1 2,039
Tox21 Classification 12 7,831

ToxCast Classification 617 8,576
Sider Classification 27 1,427

ClinTox Classification 2 1,478
MUV Classification 17 93,087
HIV Classification 1 41,127
Bace Classification 1 1,513

ESOL Regression 1 1,128
Lipo Regression 1 4,200

Malaria Regression 1 9,999
CEP Regression 1 29,978

Table 6: Summary of activity cliffs in the opioids datasets.

Dataset MDR1 CYP2D6 CYP3A4 MOR DOR KOR

# Mol. AC. Scaff. (%) 594 (41.3) 710 (31.0) 926 (25.2) 1,627 (46.1) 1,342 (41.6) 1,502 (45.2)
Task Classification Classification Classification Classification Classification Classification

# Tasks 1 1 1 1 1 1

Computing Environment. The experiments are conducted with two RTX 3090 GPUs.

Model Configurations. Following [Hu* et al., 2020], we adopt a 5-layer Graph Isomorphism
Network (GIN) [Xu et al.] with 300-dimensional hidden units as the backbone architecture. We
use mean pooling as the readout function. During the pre-training stage, GNNs are pre-trained for
100 epochs with batch-size as 256 and the learning rate as 0.001. During the fine-tuning stage, we
train for 100 epochs with batch-size as 32, dropout rate as 0.5, and report the test performance using
ROC-AUC at the best validation epoch. To evaluate the learned representations, we follow the linear
probing (linear evaluation) [Akhondzadeh et al., 2023], where a linear classifier (1 linear layer) is
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trained on top of the frozen backbone. We probe two types of properties from the representation: the
first is the molecular properties of downstream tasks, for which we use the same settings as fine-tuning
and report ROC-AUC; the second is topological fingerprints (PIs) of downstream molecular graphs,
for which we train for 50 epochs with batch-size as 256, dropout rate as 0.0, and report MSE and
Pearson correlation coefficients between distances in embedding space and corresponding PI space.
The experiments are run with 10 different random seeds, and we report mean and standard deviation.

Performance Comparison. We compare the proposed method with existing self-supervised graph
representation learning algorithms (i.e. InfoGraph [Sun et al., 2019], EdgePred [Hamilton et al.,
2017], ContextPred [Hu* et al., 2020], AttrMask [Hu* et al., 2020], GraphLoG [Xu et al., 2021],
iMolCLR [Wang et al., 2022b], AD-GCL [Suresh et al., 2021], JOAO [You et al., 2021], SimGRACE
[Xia et al., 2022], GraphCL [You et al., 2020], GraphMAE [Hou et al., 2022], MGSSL [Zhang et al.,
2021], GPT-GNN [Hu et al., 2020], G-Contextual [Rong et al., 2020], G-Motif [Rong et al., 2020],
GraphMVP [Liu et al., 2022a]). We report the results from their own papers with two exceptions:
(1) for GraphMAE and GraphLoG, they reported the test performance of the last epoch; and (2)
MGSSL and SimGRACE, they only used 3 random seeds; and (3) iMolCLR used ~10M molecules
for pre-training. We reproduce the results of these four models with the same protocol as [Hu* et al.,
2020], utilizing the pre-trained models originally provided by the respective papers.

Topological Fingerprints. We set the highest dimension in the simplicial complex to 1. This doesn’t
impact performance because molecular graphs, being planar, rarely possess loops of length 3; in fact,
the majority of loops exhibit a length of 5 or more.

Firstly, we use the sublevel filtration method. In terms of filtration functions, we use atomic number.
For every molecular graph, we utilize an extended persistence module [Cohen-Steiner et al., 2009,
Yan et al., 2022] to compute persistent diagrams (as depicted in Figure 1 of [Yan et al., 2022]) and
then vectorize them to get PIs as topological fingerprints. The extended module incorporates a
additional reverse process. Through this module, all loop features created will be killed in the end.
As an example, in Figure 1, a 1-dim extended persistence point that can be captured is (t4, t2). This
is because the loop feature is born at time t4 and then dies at time t2 in the reverse process. Note that
we only use atomic number as filtration functions for TDLatom. In addition to the atomic number, we
also investigate the heat kernel signature (hks) with temperature values t = 0.1 [Sun et al., 2009] and
node degree as filtration functions. Observe that this is more geometric information, compared to the
domain knowledge encoded in the atomic number (atom). Considering that TAE is a straightforward
model and there is too little information for PIatom, we concatenated these 3 PIs as reconstruction
targets for TAEahd.

We have also considered a specific filtration function from ToDD [Demir et al., 2022], which
incorporates atomic mass and, additionally, partial charges and bond types inside a so-called multi-
VR filtration. In a nutshell, for each of those three types of information, we do not simply consider
the given filtration, but construct a 2D filtration by filtering: in one dimension according to the above
information and in the second dimension according to a VR filtration capturing the distances between
atoms (Figure 5 in [Demir et al., 2022] illustrates this kind of filtration well.) Lastly, the 3 2D PIs are
concatenated, and we compute distances based on the combination of PIs. In Appendix G, we report
ablation results for various filtrations.

In order to explore the effectiveness of PIs, we calculate the widely-used Tanimoto coefficient [Bajusz
et al., 2015] of the extended connectivity fingerprints (ECFPs) [Rogers and Hahn, 2010] between two
molecules as their chemical similarity on 8 downstream tasks datasets. Then, we pick the molecule
pairs with top 20% similarity as ‘similar’ ones (Blue) and the left 80% molecule pairs in the datasets
are ‘random’ pairs (Yellow). In final, we calculate the cosine similarity of these molecule pairs based
on PIs. Figure 8 shows molecules with similar ECFPs have rather similar PIs.

It is computationally efficient to apply topological fingerprints method. Extracting and computing
PIatom for 2M molecular graphs from ZINC15 dataset only spent 20 minutes in a single workstation
with 8-core CPU, 64 GB of memory.

TAE+ Models. We hypothesize that TAE gives other pre-training approach a good initial embedding
space to start from. Therefore, this pre-training strategy is to first perform TAE pre-training and then
other models pre-training. We study TAE+EdgePred, TAE+AttrMask and TAE+ContextPred.

TDL. The temperature parameter τ is set to 0.1.
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TDL over Views. Like any other contrastive loss function, TDL can be utilized as a standalone
objective by considering views. Here, we show preliminary experiments using a formulation based
on the loss of GraphCL [You et al., 2020], we also use its augmentations. A minibatch of N graphs is
processed through contrastive learning, resulting in 2N augmented graphs. We denote the augmented
views for the nth graph in the minibatch as zn,i and zn,j , and modify TDL as follows:

Lviews
TDLn

=
1

N − 1

∑
m∈[1,N ]

− log
exp (sim (zn,i, zm,j) /τ)∑

k∈[1,N ] I[dis(In,i,Ik,j)≥dis(In,i,Im,j)] · exp (sim (zn,i, zk,j) /τ)

(a) Bace (b) BBBP (c) ClinTox (d) Sider

(e) Tox21 (f) ToxCast (g) HIV (h) MUV

Figure 8: Similarity histograms of PIs on 8 downstream datasets. Cosine similarity measures the
similarity between the PIs while ‘Random’ (Yellow) and ‘Similar’ (Blue) are defined by the similarity
between ECFPs.

B Analysis of Embeddings

Table 7: The Pearson correlation coefficient between real PIs and reconstructed PIs (i.e., TAE’s
embeddings) on the downstream data (the full dataset), after pre-training. We also report the overlap
of the downstream data with the pre-training data, but do not observe considerable impact here.

Tox21 ToxCast Sider ClinTox MUV HIV BBBP Bace

# Molecules 7,831 8,575 1,427 1,478 93,087 41,127 2,039 1,513
# Molecules in ZINC15 628 (8%) 608 (7%) 1 (0%) 51 (4%) 7599 (8%) 925 (2%) 100 (5%) 0 (0%)

TAEahd 0.8572 0.7744 0.5939 0.8642 0.9044 0.7359 0.8660 0.8514
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Table 8: 5-nearest neighbors classifier of CL methods for 8 downstream datasets, ROC-AUC (%).

Tox21 ToxCast Sider ClinTox MUV HIV BBBP Bace Average

PIatom 58.8 51.1 58.7 50.9 50.2 64.8 55.2 75.5 58.15
PIToDD 62.7 51.7 56.3 64.9 49.7 63.9 56.7 68.7 59.33
ECFP 63.8 54.6 59.1 50.7 54.0 68.1 59.3 77.0 60.82

GraphCL 65.3 55.8 60.6 56.4 52.0 70.4 57.9 71.4 61.23
GraphCL + TDLatom 67.2 56.7 62.6 57.5 54.4 71.1 62.0 70.7 62.78
GraphCL + TDLToDD 68.0 56.5 61.6 63.5 54.1 70.3 62.5 66.9 62.93

JOAO 66.3 55.7 59.9 57.2 53.2 72.0 58.9 70.2 61.67
JOAO + TDLatom 66.9 55.4 58.9 62.5 52.7 69.1 60.1 70.4 62.00
JOAO + TDLToDD 67.1 56.8 60.5 61.2 51.5 67.7 59.5 72.7 62.13

SimGRACE 64.2 56.1 58.3 46.7 55.1 68.2 58.4 70.4 59.67
SimGRACE + TDLatom 66.1 56.3 61.9 68.4 52.4 71.3 63.6 77.3 64.66
SimGRACE + TDLToDD 67.3 58.1 60.2 77.5 52.2 68.3 67.8 76.7 66.01

GraphLoG 63.0 55.9 59.8 68.9 52.2 68.2 56.8 79.4 63.02
GraphLoG + TDLatom 66.7 57.3 60.9 67.3 50.0 68.4 63.6 77.5 63.96
GraphLoG + TDLToDD 67.4 56.9 61.7 58.2 53.1 72.1 63.8 78.2 63.92

Table 9: ROGI scores, lower score means smoother embedding space in terms of downstream labels.

ClinTox Bace BBBP Sider

GraphCL 0.4496 0.7883 0.7033 0.6863
GraphCL + TDLatom 0.4549 0.7623 0.6973 0.7213
JOAO 0.4675 0.7900 0.7344 0.7320
JOAO + TDLatom 0.4668 0.7673 0.7284 0.7284
SimGRACE 0.4722 0.7919 0.7874 0.7308
SimGRACE + TDLatom 0.4594 0.7635 0.6989 0.7004
GraphLoG 0.4456 0.7480 0.6908 0.6815
GraphLoG + TDLatom 0.4789 0.8161 0.7167 0.7320

Alignment Analysis. To evaluate alignment, we construct positive and negative molecule pairs.
Positive pairs in a dataset are defined as those sharing identical molecular properties, while negative
pairs exhibit differing properties. We randomly select 10k positive and negative pairs of molecular
graphs from the Bace, BBBP, Clintox, and Sider datasets. Subsequently, we compute the normalized
Euclidean distance of the embeddings and illustrate the results via a histogram, as depicted in Figure 9
and Figure 10. We apply TDL on top of GraphCL, SimGRACE, JOAO, and GraphLoG to represent
the impact of TDL on the baselines.

The normalized curves demonstrate significant differences in the embedding space among different
models in the distance dimension. It is observable that TDL refines the distribution of distances to
more closely align with that of PIs. The distinction between TDLToDD and TDLatom explains why
TDLatom does not enhance JOAO because JOAO’s curve shows that it is in fact possible to get such an
atom PIs’ distribution. Furthermore, JOAO reveals that additional domain knowledge beyond atom
can be effectively incorporated via TDLToDD.

C Additional Linear Probing

We continue with linear probing for molecular properties using the more challenging activity cliff
dataset. In Table 10, we show that TDL often yields improvements.

D Additional Benchmark Results

Primary Results. The main results on 8 molecular property prediction tasks are listed in Table 11.
Note that all SSL methods in Table 11 are pre-trained on the same dataset based on ZINC15. We
observe that the average performance of GraphCL+TDL has surpassed these existing SSL methods.
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Figure 9: Evaluating alignment in the embedding space influenced by TDLatom. Dark/light shades
denote positive/negative pairs, respectively. Blue illustrates the embedding of baselines, red depicts
the embedding of baselines+TDLatom, and green represents PIatom.

Table 10: Linear evaluation of molecular property prediction using opioids-related datasets in
classification task, repeated 30 times with 30 different seeds, ROC-AUC (%).

Dataset MDR1 CYP2D6 CYP3A4
ROC ↑ PRC ↑ ROC ↑ PRC ↑ ROC ↑ PRC ↑

GraphCL 0.832 (0.172) 0.674 (0.256) 0.512 (0.205) 0.019 (0.017) 0.763 (0.147) 0.327 (0.258)
GraphCL + TDLatom 0.928 (0.081) 0.736 (0.241) 0.590 (0.251) 0.032 (0.043) 0.817 (0.133) 0.296 (0.183)

Dataset MOR DOR KOR
ROC ↑ PRC ↑ ROC ↑ PRC ↑ ROC ↑ PRC ↑

GraphCL 0.789 (0.060) 0.595 (0.108) 0.730 (0.065) 0.382 (0.091) 0.801 (0.048) 0.593 (0.099)
GraphCL + TDLatom 0.797 (0.050) 0.601 (0.109) 0.760 (0.065) 0.432 (0.117) 0.802 (0.063) 0.598 (0.105)

Additionally, we also apply TDL on both AD-GCL and iMolCLR, with results in the table showing
that TDL still provides good improvements.

Individual Tasks. In Table 4, we observe that SimGRACE+TDL performs poorly on Sider and
ClinTox. To learn about the influence of multiple tasks, we run SimGRACE and GraphLoG on
individual tasks of Sider and ClinTox. Figure 12 shows increases for TDLatom. We hence conclude
that the task correlation is exploited by the models considerably during fine-tuning in the multi-task
setting, such that the improved SSL representation (which likely does not fit every downstream task
under consideration) provided by TDL has less impact.

Activity Cliff Dataset. We also evaluate our methods using the opioids-related datasets. We fine-tune
GraphCL and GraphCL+TDL and observe that GraphCL+TDL outperformes GraphCL, as shown in
the Table 12. This result is interesting in itself since it is often argued that SSL based on similarity in
“just” the geometric space (i.e., ignoring domain knowledge about, e.g., matching pairs or activity
cliffs) may yield problems in practice. However, here, we observe that increased power of SSL
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Figure 10: Evaluating alignment in the embedding space influenced by TDLToDD. Dark/light shades
denote positive/negative pairs, respectively. Blue illustrates the embedding of baselines, red depicts
the embedding of baselines+TDLToDD, and green represents PIToDD.

(a) GraphCL (b) GraphLoG

Figure 11: Singular values of covariance matrices of the representations; Pre-training datasets.

representation helps to increase the performance of existing methods, even on AC data - likely also
because they have issues that still need to be resolved, such as the dimensional collapse we observed.

Additional Pre-training Data. Additionally, we validate the effectiveness of our methods on another
pre-training dataset, GEOM (50K) [Liu et al., 2022a]. For an evaluation, we study TAE and apply
TDL on GraphCL and JOAO. We follow all pre-training and fine-tuning settings of [Liu et al., 2022a],
with the only difference being that we pre-train our models for 200 epochs instead. We compare
the results from their original paper. As shown in Table 13, TAE alone reaches decent average
performance, and surpasses SOTA on ClinTox and HIV. And we report the performance in regressive
property prediction in Table 14 which shows that TDL enhances GraphCL and JOAO on many
datasets. Please note that we considered these experiments only to obtain initial estimates; the GEOM
data (which we used to be able to compare to related works) itself is too small for real pre-training if
the basleline models are not able to exploit the 3D nature of the conformers.
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Table 11: Results for 8 molecular property prediction tasks on ZINC15. For each downstream task,
we report the mean (and standard deviation) ROC-AUC of 10 seeds.

Tox21 ToxCast Sider ClinTox MUV HIV BBBP Bace Average

# Molecules 7,831 8,575 1,427 1,478 93,087 41,127 2,039 1,513 -

No pretrain 74.6 (0.4) 61.7 (0.5) 58.2 (1.7) 58.4 (6.4) 70.7 (1.8) 75.5 (0.8) 65.7 (3.3) 72.4 (3.8) 67.15

InfoGraph 73.3 (0.6) 61.8 (0.4) 58.7 (0.6) 75.4 (4.3) 74.4 (1.8) 74.2 (0.9) 68.7 (0.6) 74.3 (2.6) 70.10
GraphLoG 75.0 (0.6) 63.4 (0.6) 59.3 (0.8) 70.1 (4.6) 75.5 (1.6) 76.1 (0.8) 69.6 (1.6) 82.1 (1.0) 71.43

JOAO 75.0 (0.3) 62.9 (0.5) 60.0 (0.8) 81.3 (2.5) 71.7 (1.4) 76.7 (1.2) 70.2 (1.0) 77.3 (0.5) 71.89
SimGRACE 74.4 (0.3) 62.6 (0.7) 60.2 (0.9) 75.5 (2.0) 75.4 (1.3) 75.0 (0.6) 71.2 (1.1) 74.9 (2.0) 71.15
GraphMAE 75.2 (0.9) 63.6 (0.3) 60.5 (1.2) 76.5 (3.0) 76.4 (2.0) 76.8 (0.6) 71.2 (1.0) 78.2 (1.5) 72.30

MGSSL 75.2 (0.6) 63.3 (0.5) 61.6 (1.0) 77.1 (4.5) 77.6 (0.4) 75.8 (0.4) 68.8 (0.6) 78.8 (0.9) 72.28

TDLatom 75.8 (0.5) 62.1 (0.5) 62.2 (0.9) 79.1 (3.8) 75.2 (2.3) 76.9 (0.9) 66.5 (1.8) 78.4 (1.1) 72.02
TDLviews

atom 75.7 (0.3) 64.3 (0.5) 61.5 (0.5) 80.7 (2.9) 73.3 (1.4) 77.6 (0.8) 70.5 (0.9) 80.6 (1.1) 73.02

EdgePred 76.0 (0.6) 64.1 (0.6) 60.4 (0.7) 64.1 (3.7) 74.1 (2.1) 76.3 (1.0) 67.3 (2.4) 79.9 (0.9) 70.27
TAEahd + EdgePred 77.2 (0.4) 63.8 (0.5) 60.1 (0.7) 72.2 (2.4) 75.9 (1.7) 76.8 (1.0) 68.1 (0.8) 81.5 (1.4) 71.95

AttrMask 76.7 (0.4) 64.2 (0.5) 61.0 (0.7) 71.8 (4.1) 74.7 (1.4) 77.2 (1.1) 64.3 (2.8) 79.3 (1.6) 71.15
TAEahd + AttrMask 76.6 (0.2) 64.0 (0.3) 58.2 (1.3) 71.6 (3.7) 75.5 (2.1) 77.2 (0.6) 68.7 (0.7) 81.0 (1.1) 71.60

ContextPred 75.7 (0.7) 63.9 (0.6) 60.9 (0.6) 65.9 (3.8) 75.8 (1.7) 77.3 (1.0) 68.0 (2.0) 79.6 (1.2) 70.89
TAEahd + ContextPred 76.4 (0.5) 63.2 (0.4) 62.0 (0.7) 74.6 (4.4) 76.7 (1.6) 77.7 (1.2) 68.9 (1.1) 80.7 (1.6) 72.53

GraphCL 73.9 (0.7) 62.4 (0.6) 60.5 (0.9) 76.0 (2.7) 69.8 (2.7) 78.5 (1.2) 69.7 (0.7) 75.4 (1.4) 70.78
GraphCL + TDLatom 75.3 (0.4) 64.4 (0.3) 61.2 (0.6) 83.7 (2.7) 75.7 (0.8) 78.0 (0.9) 70.9 (0.6) 80.5 (0.8) 73.71

AD-GCL 76.5 (0.8) 63.0 (0.7) 63.2 (0.7) 79.7 (3.5) 72.3 (1.6) 78.2 (0.9) 70.0 (1.0) 78.5 (0.8) 72.67
AD-GCL + TDLatom 75.1 (0.5) 64.5 (0.6) 60.9 (1.3) 79.4 (2.8) 74.4 (1.7) 77.4 (0.9) 71.9 (1.1) 82.1 (1.4) 73.21

iMolCLR 75.1 (0.7) 63.5 (0.4) 59.4 (1.0) 74.7 (1.9) 81.0 (2.6) 77.3 (1.2) 69.6 (1.2) 77.3 (1.0) 72.24
iMolCLR + TDLatom 75.9 (0.6) 63.7 (0.3) 60.7 (0.8) 83.8 (1.9) 75.1 (1.3) 76.7 (0.7) 71.2 (0.9) 78.5 (1.3) 73.20

(a) Sider (b) Sider (c) ClinTox (d) ClinTox

Figure 12: Performance on individual tasks of the multi-task data. We report the mean ROC-AUC of
10 seeds.

Table 12: Results for molecular property prediction using opioids-related datasets in classification
tasks, repeated 30 times with 30 different seeds, ROC-AUC (%).

Dataset MDR1 CYP2D6 CYP3A4
ROC ↑ PRC ↑ ROC ↑ PRC ↑ ROC ↑ PRC ↑

GraphCL 0.912 (0.152) 0.766 (0.211) 0.558 (0.216) 0.079 (0.143) 0.803 (0.155) 0.310 (0.224)
GraphCL + TDLatom 0.934 (0.126) 0.770 (0.233) 0.565 (0.261) 0.082 (0.116) 0.815 (0.159) 0.418 (0.245)

Dataset MOR DOR KOR
ROC ↑ PRC ↑ ROC ↑ PRC ↑ ROC ↑ PRC ↑

GraphCL 0.861 (0.040) 0.738 (0.105) 0.804 (0.038) 0.532 (0.076) 0.859 (0.044) 0.701 (0.085)
GraphCL + TDLatom 0.879 (0.036) 0.741 (0.093) 0.821 (0.049) 0.566 (0.092) 0.861 (0.041) 0.718 (0.058)
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Table 13: Results for 8 molecular property prediction tasks on GEOM. For each downstream task,
we report the mean (and standard deviation) ROC-AUC of 3 seeds with scaffold splitting. Note that
GraphMVP uses 3D geometry (conformers), while other models do not.

Tox21 ToxCast Sider ClinTox MUV HIV BBBP Bace Average

# Molecules 7,831 8,575 1,427 1,478 93,087 41,127 2,039 1,513 -

No pretrain 74.6 (0.4) 61.7 (0.5) 58.2 (1.7) 58.4 (6.4) 70.7 (1.8) 75.5 (0.8) 65.7 (3.3) 72.4 (3.8) 67.15

InfoGraph 73.0 (0.7) 62.0 (0.3) 59.2 (0.2) 75.1 (5.0) 74.0 (1.5) 74.5 (1.8) 69.2 (0.8) 73.9 (2.5) 70.10
EdgePred 74.5 (0.4) 60.8 (0.5) 56.7 (0.1) 55.8 (6.2) 73.3 (1.6) 75.1 (0.8) 64.5 (3.1) 64.6 (4.7) 65.64

ContextPred 73.3 (0.5) 62.8 (0.3) 59.3 (1.4) 73.7 (4.0) 72.5 (2.2) 75.8 (1.1) 71.2 (0.9) 78.6 (1.4) 70.89
AttrMask 74.2 (0.8) 62.5 (0.4) 60.4 (0.6) 68.6 (9.6) 73.9 (1.3) 74.3 (1.3) 70.2 (0.5) 77.2 (1.4) 70.16
GPT-GNN 75.3 (0.5) 62.2 (0.1) 57.5 (4.2) 57.8 (3.1) 76.1 (2.3) 75.1 (0.2) 64.5 (1.1) 77.6 (0.5) 68.27
GraphLoG 73.0 (0.3) 62.2 (0.4) 57.4 (2.3) 62.0 (1.8) 73.1 (1.7) 73.4 (0.6) 67.8 (1.7) 78.8 (0.7) 68.47

G-Contextual 75.2 (0.3) 62.6 (0.3) 58.4 (0.6) 59.9 (8.2) 72.3 (0.9) 75.9 (0.9) 70.3 (1.6) 79.2 (0.3) 69.21
G-Motif 73.2 (0.8) 62.6 (0.5) 60.6 (1.1) 77.8 (2.0) 73.3 (2.0) 73.8 (1.4) 66.4 (3.4) 73.4 (4.0) 70.14
GraphCL 75.0 (0.3) 62.8 (0.2) 60.1 (1.3) 78.9 (4.2) 77.1 (1.0) 75.0 (0.4) 67.5 (3.3) 68.7 (7.8) 70.64

JOAO 74.4 (0.7) 62.7 (0.6) 60.7 (1.0) 66.3 (3.9) 77.0 (2.2) 76.6 (0.5) 66.0 (0.6) 72.9 (2.0) 69.57
GraphMVP 74.5 (0.4) 62.7 (0.1) 62.3 (1.6) 79.0 (2.5) 75.0 (1.4) 74.8 (1.4) 68.5 (0.2) 76.8 (1.1) 71.69

GraphMVP-C 74.4 (0.2) 63.1 (0.4) 63.9 (1.2) 77.5 (4.2) 75.0 (1.0) 77.0 (1.2) 72.4 (1.6) 81.2 (0.9) 73.07

TAEahd 74.9 (0.3) 62.3 (0.3) 60.2 (0.9) 81.9 (2.5) 71.2 (1.4) 77.6 (1.2) 70.9 (3.3) 78.4 (1.6) 72.18

Table 14: Results for 4 molecular property prediction tasks (regression) on GEOM. For each
downstream task, we report the mean (and standard variance) RMSE of 3 seeds with scaffold
splitting.

ESOL Lipo Malaria CEP Average

No pretrain 1.178 (0.044) 0.744 (0.007) 1.127 (0.003) 1.254 (0.030) 1.07559

AttrMask 1.112 (0.048) 0.730 (0.004) 1.119 (0.014) 1.256 (0.000) 1.05419
ContextPred 1.196 (0.037) 0.702 (0.020) 1.101 (0.015) 1.243 (0.025) 1.06059
GraphMVP 1.091 (0.021) 0.718 (0.016) 1.114 (0.013) 1.236 (0.023) 1.03968

TAEahd 1.129 (0.019) 0.723 (0.006) 1.105 (0.014) 1.265 (0.018) 1.05552

JOAO 1.120 (0.019) 0.708 (0.007) 1.145 (0.010) 1.293 (0.003) 1.06631
JOAO + TDLatom 1.086 (0.013) 0.713 (0.004) 1.120 (0.007) 1.265 (0.008) 1.04613

GraphCL 1.127 (0.023) 0.722 (0.004) 1.143 (0.015) 1.317 (0.010) 1.07725
GraphCL + TDLatom 1.082 (0.008) 0.707 (0.009) 1.113 (0.007) 1.294 (0.011) 1.04943
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Figure 13: Performance over smaller datasets. Each datapoint is the mean ROC-AUC of 10 different
splits while keeping scaffolds, with standard deviations shown as error bars. From the upper left to
the lower right: Bace, ClinTox, Sider, BBBP, Tox21, ToxCast, HIV, MUV.
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Figure 14: Performance over smaller datasets. Each datapoint is the mean ROC-AUC of 10 different
splits while keeping scaffolds, with standard deviations shown as error bars. From the upper left to
the lower right: Bace, BBBP, Clintox, Sider.

E Low-Data Scenario

Here we perform a more detailed experiment to illustrate how model performances change with
increasing numbers of training samples. We fine-tune multiple models (GraphCL, JOAO, GraphLoG
and SimGRACE) and TDL versions on 8 molecular property prediction datasets with training sets of
different size. The experiment of each low-data size is run with 10 different subsets of the original
training sets while keeping scaffolds. Figure 13 and Figure 14 show that TDL often yields remarkable
improvements. Specifically, we observe that TDL’s impact seems to depend on two factors: (1) in
how far it is able to resolve issues of the baseline (e.g., the dimensional collapse of GraphCL), and
(2) in how far the PIs used for TDL “suit” the dataset considered (see also Figure 8). We observe that
the latter yields a task which needs to be solved together with domain experts (i.e., finding the best
knowledge to use to create PIs).
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F Unsupervised Learning

Datasets. In the unsupervised context, we adopted various molecular benchmarks from TUDataset
[Morris et al., 2020], including NCI1, MUTAG, PROTEINS, and DD. Table 15 shows statistics for
datasets.

Table 15: Summary for molecular datasets from the benchmark TUDataset.

Dataset # Molecules # Class Avg. # Nodes Avg. # Edges

NCI1 4,110 2 29.87 32.30
MUTAG 188 2 17.93 19.79

PROTEINS 1,113 2 39.06 72.82
DD 1,178 2 284.32 715.66

Configurations. For the unsupervised graph classification task, we first train a representation model
contrastively using unlabeled data, then fix the representation model and train the classifier using
labeled data. Following GraphCL [You et al., 2020], we employ a 5-layer GIN with a hidden size
of 128 as our representation model and utilize an SVM as our classifier. The GIN is trained with
a batch size of 128 and a learning rate of 0.001. Regarding graph representation learning, models
are trained for 20 epochs and tested every 10 epochs. We conduct a 10-fold cross-validation on
every dataset. For each fold, we utilize 90% of the total data as the unlabeled data for contrastive
pre-training and the remaining 10% as the labeled testing data. Every experiment is repeated 5 times
using different random seeds, with mean and standard deviation of accuracies (%) reported. We
apply TDL on GraphCL and SimGRACE. The temperature parameter τ for TDL here is chosen from
{0.1, 0.2, 0.5, 1.0, 10.0}. Besides adding a TDL to the loss function in CL approaches, we did not
make any modifications to the models.

Results. Table 16 displays the comparison among different models for unsupervised learning,
revealing that a general performance improvement is achieved with the TDL. We also compute the
normalized Euclidean distance of embeddings from these unsupervised datasets, and the histogram is
illustrated in Figure 15. The findings are consistent with our prior observations in transfer learning;
however, the impact may not be as substantial due to the smaller number of training samples.

Table 16: Results of unsupervised learning. For each datasets, we report the mean (and standard
deviation) accuracies of 5 seeds.

NCI1 MUTAG DD PROTEINS

GraphCL 77.87 (0.41) 86.80 (1.34) 78.62 (0.40) 74.39 (0.45)
GraphCL + TDLatom 80.06 (0.37) 89.12 (0.79) 79.88 (0.47) 75.59 (0.48)

SimGRACE 79.12 (0.44) 89.01 (1.31) 77.44 (1.11) 75.35 (0.09)
SimGRACE + TDLatom 80.08 (0.31) 89.47 (1.09) 79.01 (0.84) 75.39 (0.57)

G Ablation Studies

Different Filtrations - Geometry. Firstly, we consider detailed ablations of the filtration functions
used in the graph filtration step of TAEahd. That is, we use individual PIs (i.e., each PI is/was
constructed based on a separate filtration function) instead of concatenation as reconstruction targets
for TAEahd. Consequently, we obtain 3 individual TAEs based on different PIs. We also conduct an
experiment that involves integrating these 3 TAEs during the fine-tuning of downstream tasks. More
specifically, we individually fine-tune these models, concatenate their embeddings after the readout,
and finally project through a projection head for downstream task prediction. As demonstrated in
Table 17, concatenation during fine-tuning (FT) does indeed combine the advantages of individual
filtrations. These filtrations are very generic and the method is flexible in terms of what is useful
downstream. That is, this approach would allow domain experts to flexibly use their own filtrations
in combinations and together with existing methods, in dependence on the specific downstream data.
This also suits the well-known fact that specific downstream data may benefit from specific domain
knowledge.
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Figure 15: Evaluating alignment in unsupervised datasets. Dark/light shades denote positive/negative
pairs, respectively. Blue illustrates the embedding of baselines, red depicts the embedding of
baselines+TDLatom, and green represents PIatom.

For TDL, the filtration based on atom number provided overall best performance; we ran all exper-
iments on PIs concatenated as above as well. We plan to investigate more in this direction in the
future.

Different Filtrations - Domain Knowledge. Furthermore, we show results about incorporating
different kinds of domain knowledge, here, atomic radius and electron affinity, as filtration functions.
For TAE, we conduct two experiments: (1) We pre-train TAE using individual PIs generated by
atomic radius and electron affinity as reconstruction targets; (2) We concatenate these 5 PIs (with the
previous 3 PIs) as reconstruction targets. For TDL, we use these two individual PIs as topological
fingerprints and apply TDL on GraphCL. Table 17 shows that these two domain knowledge-based
filtration functions achieve commendable average performance. Yet, in summary, we do not observe
considerable differences. Our hypothesis is that, similar to the atomic number, these kinds of domain
knowledge capture the difference between the atoms, and hence are not too different overall. Based
on this investigation, we plan to experiment with more complex sources of domain knowledge (e.g.,
the polarity of atoms, which is important information for the possible relationships between atoms).

Different Filtrations - Multiple Dimensions. Here we consider the multidimensional Vietoris-Rips
(multi-VR) filtration [Demir et al., 2022]. And we use the atomic number, heat kernel signature with
t = 0.1 and node degree as filtration functions in the first dimension, respectively. Then we compute
PDs and then vectorize them to get 3 PIs. Finally, we concatenate these 3 PIs as reconstruction targets
to pre-train TAE.

No Filtrations. Please observe first that our study’s (initial) research question has been the exploration
of the usefulness of PH and topological fingerprints for molecular SSL. Based on our investigation
(see also Figure 8), there is one very interesting outcome of our research and follow-up research
question related to TDL: TDL is an instance of a more general proposal “XDL”, a novel loss function
for pre-training which is exploits distances between training samples. We conducted some initial
experiments only using the Tanimoto distance between standard ECFP fingerprints and obtain decent
results; see Table 17. In future research, we will investigate the generality and potential impact of
XDL more (e.g., combining ECFPs and topological fingerprints).

Different Vectorizations of PDs. Persistence Vectorizations transform the obtained Persistent
Homology information (PDs) into either a functional or a feature vector form. This representation
is more suitable for ML tools compared to PDs. In our study, we employ Persistence Images
for vectorization. Apart from this, we also explored other stable vectorizations for TAE, such as
Persistence Landscapes [Bubenik et al., 2015] and Silhouettes [Chazal et al., 2014]. As shown
in Table 18, ablation experiments demonstrate that Persistence Images outperform the other two
vectorization techniques.

Hyperparameters Analysis. We further perform a sensitivity analysis on the parameter λ of
GraphCL + TDLToDD across 8 downstream molecular tasks. The results are presented in Table 19. It
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is noteworthy that as λ decreases, the weight of TDL also decreases, leading to a noticeable decline
in performance. This observation underscores the effectiveness of TDL.

Table 17: Ablation study results for 8 molecular property prediction tasks on ZINC15. For each
downstream task, we report the mean (and standard deviation) ROC-AUC of 10 seeds.

Tox21 ToxCast Sider ClinTox MUV HIV BBBP Bace Average

No pretrain 74.6 (0.4) 61.7 (0.5) 58.2 (1.7) 58.4 (6.4) 70.7 (1.8) 75.5 (0.8) 65.7 (3.3) 72.4 (3.8) 67.15

TAEahd 75.2 (0.8) 63.1 (0.3) 61.9 (0.8) 80.6 (1.9) 74.6 (1.8) 73.5 (2.1) 67.5 (1.1) 82.5 (1.1) 72.36
TAEatom 74.6 (0.3) 61.8 (0.6) 62.5 (0.7) 71.0 (3.8) 75.7 (2.1) 75.5 (0.8) 67.0 (1.1) 78.6 (1.3) 70.84
TAEhks 75.5 (0.3) 62.7 (0.3) 59.0 (0.6) 79.3 (3.0) 75.5 (1.4) 73.5 (1.2) 68.6 (0.5) 82.5 (0.8) 72.08

TAEdegree 75.6 (0.6) 62.8 (0.5) 58.2 (0.8) 80.0 (1.3) 70.7 (2.0) 73.4 (1.6) 68.1 (0.8) 81.9 (0.6) 71.34
TAEConcatenation during FT 75.7 (0.6) 64.2 (0.4) 61.9 (1.2) 80.2 (2.1) 74.4 (2.9) 75.1 (1.1) 68.1 (0.8) 82.1 (1.1) 72.71

TAEAtomic radius 76.5 (0.6) 63.3 (0.7) 63.2 (1.4) 76.2 (2.6) 71.9 (2.7) 74.3 (1.3) 67.4 (1.3) 80.9 (1.7) 71.71
TAEElectron affinity 75.6 (0.6) 63.0 (0.7) 64.0 (0.7) 78.5 (1.9) 72.6 (2.8) 76.3 (1.6) 68.9 (1.0) 81.5 (1.3) 72.55

TAEConcatenation of 5 PIs 75.9 (0.4) 63.8 (0.3) 62.5 (0.6) 81.6 (2.4) 75.6 (1.4) 74.2 (0.9) 66.6 (0.9) 82.7 (1.2) 72.86

TAEMulti-VR filtration 75.8 (0.6) 63.4 (0.6) 62.0 (0.7) 76.8 (2.6) 75.1 (1.2) 76.4 (0.6) 69.9 (0.9) 81.7 (1.3) 72.64
TAEToDD 76.8 (0.9) 64.0 (0.5) 61.9 (0.8) 79.3 (3.6) 75.8 (3.2) 75.9 (1.1) 70.4 (0.8) 81.6 (1.4) 73.22

GraphCL 75.0 (0.3) 62.8 (0.2) 60.1 (1.3) 78.9 (4.2) 77.1 (1.0) 75.0 (0.4) 67.5 (3.3) 68.7 (7.8) 70.64
GraphCL + TDLatom 75.3 (0.4) 64.4 (0.3) 61.2 (0.6) 83.7 (2.7) 75.7 (0.8) 78.0 (0.9) 70.9 (0.6) 80.5 (0.8) 73.71

GraphCL + TDLAtomic radius 74.3 (0.3) 63.2 (0.3) 61.3 (0.4) 85.5 (1.5) 77.6 (2.4) 77.3 (1.3) 70.7 (0.6) 74.3 (1.3) 73.02
GraphCL + TDLElectron affinity 75.1 (0.3) 63.3 (0.4) 60.2 (0.6) 84.9 (3.0) 76.0 (1.4) 78.8 (1.9) 70.1 (0.6) 79.5 (1.1) 73.50

GraphCL + TDLToDD 75.2 (0.7) 64.2 (0.3) 61.5 (0.4) 85.2 (1.8) 75.9 (2.1) 77.9 (0.8) 69.9 (0.9) 81.2 (1.9) 73.88

GraphCL + TDLECFP 75.3 (0.4) 64.0 (0.2) 61.1 (0.6) 82.6 (2.8) 75.0 (1.1) 76.4 (0.9) 70.1 (0.7) 78.3 (1.7) 72.85

Table 18: Comparison of the different vectorizations.

Tox21 ToxCast Sider ClinTox MUV HIV BBBP Bace Average

TAEahd (Persistence Images) 75.2 (0.8) 63.1 (0.3) 61.9 (0.8) 80.6 (1.9) 74.6 (1.8) 73.5 (2.1) 67.5 (1.1) 82.5 (1.1) 72.36
TAEahd (Persistence Landscapes) 75.6 (0.5) 63.9 (0.5) 59.5 (0.8) 73.5 (2.9) 73.6 (0.9) 74.0 (1.4) 69.7 (1.6) 79.8 (1.4) 71.21

TAEahd (Silhouettes) 74.7 (0.6) 63.4 (0.6) 58.4 (0.7) 74.1 (2.4) 72.2 (1.6) 75.8 (1.4) 68.9 (0.9) 79.5 (1.4) 70.88

Table 19: Sensitivity analysis on the parameter λ.

GraphCL + TDLToDD Tox21 ToxCast Sider ClinTox MUV HIV BBBP Bace Average

λ = 0.1 74.2 (0.8) 63.1 (0.2) 60.8 (0.6) 76.4 (5.8) 73.3 (1.7) 77.2 (1.6) 70.2 (0.2) 71.6 (0.9) 70.85
λ = 0.5 74.0 (0.5) 63.2 (0.3) 60.0 (0.4) 78.6 (0.1) 73.6 (1.4) 77.2 (0.6) 69.9 (0.3) 76.2 (1.7) 71.59
λ = 1.0 75.2 (0.7) 64.2 (0.3) 61.5 (0.4) 85.2 (1.8) 75.9 (2.1) 77.9 (0.8) 69.9 (0.9) 81.2 (1.9) 73.88
λ = 2.0 74.8 (0.3) 63.6 (0.3) 61.7 (0.7) 85.8 (1.7) 74.9 (0.8) 77.2 (1.0) 71.0 (0.7) 81.8 (1.2) 73.85

Different GNN Backbones. We apply TDL on GraphCL. As shown in Table 20, we verify the
generality of TDL by experimenting with three popular GNN models: GIN [Xu et al.], GCN [Kipf
and Welling], and GraphSAGE [Hamilton et al., 2017]. Pre-training with GIN achieves the best
performance across datasets, hence our results confirm what has been observed in related works.
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Table 20: Comparison of the pre-training gains, represented in terms of averaged ROC-AUC (%),
obtained by using different GNN architectures on 8 datasets.

Model GCN GIN GraphSAGE

No pretrain 68.77 67.15 68.32
GraphCL 69.32 70.78 70.08

GraphCL + TDLatom 72.53 73.71 71.16

H PIs w/o SSL

Here we provide initial results for a comparison with 2 non pre-training ML models, i.e. support
vector machine (SVM) and XGB [Chen and Guestrin, 2016] to test the regular prediction on 5
molecular property prediction tasks using PIs as topological fingerprints. And we also conduct
smaller data experiments on SVM compared with TAE and TAE+ContextPred over 4 downstream
datasets. Note that we performed a hyperparameter search to produce these ML results. As can be
observed in Table 21 and Figure 16, the SSL methods provide large benefits. We are certainly aware
of the fact that there are more complex methods to use these PIs, yet this basic comparison gives a
good hint of how SSL based on PH compares to supervised methods more generally.

Table 21: Results of non pre-training method for molecular property prediction tasks on ZINC15,
ROC-AUC (%).

Tox21 Sider ClinTox BBBP Bace

SVM 53.9 53.8 60.1 56.6 72.3
XGB 64.7 58.5 55.7 61.6 73.8

ContextPred 75.7 60.9 65.9 68.0 79.6
TAEahd + ContextPred 76.4 62.0 74.6 68.9 80.7
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Figure 16: Performance of SVM over smaller datas. Each datapoint is the mean ROC-AUC of 10
different splits while keeping scaffolds, with standard deviations shown as error bars. From the left to
the right: Bace, BBBP, ClinTox, Sider.

I Theoretical Analysis of TDL

In this section, we delve into a theoretical analysis of TDL, which was initially introduced in
Section 3.2. We encourage readers to refer to Section 3.2 for any specific notation, terminology, or
formulation details.

Recall TDL is defined as follows:

LTDLn =
1

N − 1

∑
m∈[1,N ],

m̸=n

− log
exp (sim (zn, zm) /τ)∑

k∈[1,N ],
k ̸=n

I[dis(In,Ik)≥dis(In,Im)] · exp (sim (zn, zk) /τ)

29



For the sake of convenience, we re-index the subscripts of samples, ensuring that the subscripts di
satisfy the sorted distances from the n-th sample, i.e., dis(In, In) ≤ dis(In, Id1) ≤ dis(In, Id2) ≤
dis(In, Id3) ≤ ... ≤ dis(In, IdN−1

). Let sim (zn, zm) = znzm to streamline the derivations. We
thus obtain

LTDLn
=

1

N − 1

∑
j∈[1,N−1]

− log
e(zn·zdj /τ)∑

k∈[j,N−1] e
(zn·zdk/τ)

We then analyze the gradients with respect to different samples.

Lemma 1. The gradient of TDLn with respect to the sample di in latent space is formulated as:

∇zdi
LTDLn =

1

N − 1

 ∑
j∈[1,i]

ezn·zdi/τ∑
k∈[j,N−1] e

zn·zdk/τ
− 1

 · zn
τ
.

In particular, ∇zd1
LTDLn

∝ −zn and ∇zdN−1
LTDLn

∝ zn.

Proof. The results follow from direct computation. Let LTDLn,dj
= − log e

(
zn·zdj /τ

)
∑

k∈[j,N−1] e
(zn·zdk

/τ)
,

then we have:

LTDLn
=

1

N − 1

∑
j∈[1,N−1]

− log
e(zn·zdj /τ)∑

k∈[j,N−1] e
(zn·zdk/τ)

=
1

N − 1

∑
j∈[1,N−1]

LTDLn,dj

Next, we discuss ∇zdi
LTDLn,dj

:

∇zdi
LTDLn,dj

=


0 i < j(

e
zn·zdi/τ∑

k∈[j,N−1] e
zn·zdk

/τ − 1

)
· zn

τ i = j(
e
zn·zdi/τ∑

k∈[j,N−1] e
zn·zdk

/τ

)
· zn

τ i > j

Therefore, we conclude:

∇zdi
LTDLn =

1

N − 1
∇zdi

∑
j∈[1,N−1]

LTDLn,dj
=

1

N − 1

 ∑
j∈[1,i]

ezn·zdi/τ∑
k∈[j,N−1] e

zn·zdk/τ
− 1

 · zn
τ

Then we have:

∇zd1
LTDLn =

1

N − 1

(
ezn·zd1/τ∑

k∈[1,N−1] e
zn·zdk/τ

− 1

)
· zn
τ

The quantity
(

e
zn·zd1/τ∑

k∈[1,N−1] e
zn·zdk

/τ − 1

)
< 0 is a strictly negative scalar, allowing us to conclude

the derivative ∇zd1
LTDLn

is proportional to −zn.

Similarly, we have:

∇zdN−1
LTDLn

=
1

N − 1

 ∑
j∈[1,N−2]

ezn·zdN−1
/τ∑

k∈[j,N−1] e
zn·zdk/τ

 · zn
τ

Since
(∑

j∈[1,N−2]
e
zn·zdN−1

/τ∑
k∈[j,N−1] e

zn·zdk
/τ

)
> 0 we conclude in this case that the derivative

∇zdN−1
LTDLn

points in the direction zn.
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The stability provided by certain topological fingerprints serves as a mathematically grounded, well-
studied, and efficient proxy for stability with respect to graphs. TDL as our objective is based on the
stability of these topological fingerprints. Consequently, for each sample, we can determine a ranking
of all other samples. Lemma 1 provides the gradient with respect to different samples. Specifically,
samples that are distant from sample n in the topological space point in the direction −zn (negative
gradient direction), while those close to sample n point in the direction zn. Consequently, molecules
with more similar topological features are brought closer to each other in the embedding space.

J Potential of PH for Molecular ML

Persistent homology (PH) has emerged as a crucial method in topological data analysis, demonstrating
significant potential in decoding complex patterns within molecular data, including protein prediction
[Cang and Wei, 2017a,b, Nguyen et al., 2019, Xia and Wei, 2014, Liu et al., 2022b], virtual screening
[Cang et al., 2018], and drug design [Liu et al., 2021]. The many works on PH in chemistry show
that the domain is convinced by the usefulness of topological fingerprints already, and we therefore
believe that this kind of knowledge should be investigated in the context of SSL, assuming that the
latter becomes more important with the advancement of foundation models.

K Limitations & Broader Impact

Broader Impact. Graph data has a pervasive impact in many diverse fields and the popularity
certainly increases the danger of an application of the models with negative effects (even if just due
to ignorance). As pointed out in this work w.r.t. smaller data, we have to be aware of the assumptions
we make in our research to inform readers on how the results translate to the real world. Our goal
is to advance biomedicine, chemistry, and material science, where our research hopefully provides
benefits one day, for both the current society and future generations.

Limitations. We have tried our best in addressing common issues, by providing a very detailed
analysis, by considering TDL on top of various baselines, by also reporting mixed results, and by
providing all code. However, due to time and resource constraints, and the broadness of our study, we
were not able to experiment with a variety of topological fingerprints, analyze individual baselines
(e.g., the dimensional collapse) in more detail, or complete the theoretical investigations.
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