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Abstract

We revisit the classical problem of designing Budget-Feasible Mechanisms (BFMs)
for submodular valuation functions, which has been extensively studied since the
seminal paper of Singer [FOCS’10] due to its wide applications in crowdsourcing
and social marketing. We propose TripleEagle, a novel algorithmic framework for
designing BFMs, based on which we present several simple yet effective BFMs that
achieve better approximation ratios than the state-of-the-art work for both monotone
and non-monotone submodular valuation functions. Moreover, our BFMs are
the first in the literature to achieve linear complexities while ensuring obvious
strategyproofness, making them more practical than the previous BFMs. We
conduct extensive experiments to evaluate the empirical performance of our BFMs,
and the experimental results strongly demonstrate the efficiency and effectiveness
of our approach.

1 Introduction

In the celebrated Influence Maximization (IM) problem (e.g., [19, 21, 27]) an advertiser needs to
select some “seed users” in a social network, such that the influence spread caused by “Word-of-
Mouth” propagation is maximized. However, the users may want some rewards for serving as seeds
and also behave strategically to maximize their utilities. So the advertiser has to pay the users under
some budget B and ensure their truthfulness, besides maximizing the influence spread [36]. Another
similar problem arises in crowdsourcing markets (e.g., Amazon’s Mechanical Turk [1]), where a
crowdsourcing task owner needs to hire some strategic workers to perform a crowdsourcing task and
pay them under a budget, with the goal of maximizing the crowdsourcing revenue [4, 25, 37, 38].

Motivated by the above applications, Singer [35] initiates the studies on budget-feasible mechanism
design, where a buyer needs to select a set S of strategic sellers with private costs from a ground set
N with |N | = n and pay them under a budget B, such that the valuation f(S) is maximized while
ensuring that the sellers report their private costs truthfully. Singer [35] considers a monotone and
submodular valuation function f(·) and adopts a value oracle model where f(X) can be obtained
for all X ⊆ N . Following Singer [35]’s work, a lot of BFMs have been proposed; almost all
of the theoretical studies in this line put their emphasis on improving the approximation ratios of
the proposed BFMs (as elaborated in Sec. 1.1), and many studies have applied BFMs to various
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application scenarios such as mobile crowdsensing, federated learning, experimental design, social
advertising, vehicle sharing, data pricing, team formation, cellular traffic planning, and so on.

1.1 Main Results of the Related Work

There exist BFMs concentrating on different valuation functions including (monotone or non-
monotone) submodular functions, additive, XOS and subadditive functions. We review them sepa-
rately in the following.

BFMs for monotone subomdular valuation functions: Singer [35] proposes a 117.7-approximation
BFM. Chen et al. [13] improve the work of [35] by proposing a 7.91-approximation BFM, and they
also propose a lower bound of 2 (resp.

√
2 + 1) for the approximation ratio of any randomized (resp.

deterministic) BFM for submodular valuation functions. Jalaly and Tardos [23, 24] further propose
an improved 5-approximation BFM. It is noted that all the above mentioned BFMs are randomized
and incur a polynomial number (at least Ω(n2)) of value oracle queries. The studies of [23, 24, 35]
also propose BFMs with exponential time complexity, among which the randomized BFM proposed
by [23, 24] achieve the best ratio of 4. Recently, Balkanski et al. [9] propose the first deterministic
BFM with polynomial running time, which achieves a ratio of 4.75 by usingO(n2 log n) value oracle
queries, and they also show a lower bound of 4.5 for the ratio of their proposed BFM.

Observing the large number of participants in some BFM applications such as crowdsourcing, some
studies [4, 23, 24] have also considered a “large market” model where the additional assumptions
of cmax

B ≈ 0 or vmax

OPT ≈ 0 are made, with cmax (resp. vmax) denoting the maximum cost (resp.
valuation) of any single element. Under these assumptions, Anari et al. [4] and Jalaly and Tardos
[23, 24] show that there exist 3-approximation and 2.58-approximation BFMs using O(n2) and
O(n6) value oracle queries, respectively. However, their time complexity still can be too high for
large markets, and the additional assumptions mentioned above may not always hold. For example,
in the influence maximization problem, the advertiser’s budget could be relatively small even though
the social network has billion-scale, so cmax

B ≈ 0 may not be true. Therefore, in this work we will
consider the original BFM model of [35].

BFMs for non-monotone subomdular valuation functions: When the valuation function is non-
monotone and submodular, Amanatidis et al. [2, 3] propose a 505-approximation BFM leveraging
the continuous greedy algorithm in [28], while Balkanski et al. [9] achieve a 64-approximation under
O(n2 log n) time complexity. Very recently, Huang et al. [22] propose a randomized BFM with an
improved approximation ratio of (3 +

√
5)2 ≈ 27.4 under O(n log n) time complexity.

BFMs for other valuation functions: There also exist BFMs for additive valuation functions [4,
13, 18, 35], among which Gravin et al. [18] achieve the best-known approximation ratios of 2 and 3
for randomized and deterministic BFMs, respectively. For subaddtive and XOS valuation functions,
the work of [9, 10] proposes BFMs using demand oracle queries, as it is known that no BFMs with
polynomial number of value oracle queries can achieve any ratio better than n0.5−ϵ for these valuation
functions [35].

1.2 Limitations of Prior Art and Our Contributions
Despite the great progress on BFM design in a dozen years as described above, the existing BFMs
for submodular valuations still suffer from several major deficiencies. First, all of them have at least
Ω(n2) query complexity, which can be impractical for large markets. Second, it is unclear whether
their approximation ratios can be further improved (both for randomized and deterministic BFMs).
Third, from a practical point of view, their algorithmic frameworks for achieving truthfulness still
have some serious drawbacks. To understand these, we explain their techniques in the following.

The BFMs in [4, 10, 13, 23, 24, 35] have used sealed-bid auctions roughly described as follows:
the sellers first report their costs and then are sorted according to the non-increasing order of their
densities (i.e., the ratios of their marginal gains to costs), and finally the mechanism selects some
winners with the largest densities and ensures truthfulness using Myerson’s lemma [32]. However,
sealed-bid auctions have been criticized for lacking practicability [6, 9, 26, 30], because it is hard for
the players to verify truthfulness and to trust the auctioneer, resulting in strategic behaviours.

To address the issues of sealed-bid auctions, there is growing interest in designing “simple mecha-
nisms” (e.g., [7, 15, 30, 31, 33]). The seminal work of Milgrom and Segal [31] proposes a new class
of auctions dubbed clock auctions, where each player can be offered by multiple descending prices
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and remains active only if the player accepts the last offered price, and eventually the mechanism
selects some active players as the winners and pay them the last offered prices. Milgrom and Segal
[31] indicate that clock auctions satisfy obvious strategyproofness and several other properties (e.g.,
group strategyproofness, transparency, and unconditional winner privacy) not possessed by sealed-bid
auctions. Inspired by [31], Balkanski et al. [9] propose a BFM using clock auction with the following
design: they make O(log2 n) guesses on OPT using a “doubling trick” similar to that in online
learning theory [34], and create O(log2 n) candidate solutions without violating B by offering each
active seller a new price for each guessed OPT, and the final winners are selected from the best
candidate solutions. The clock auction BFM in [22] adopts a similar framework as [9], but uses
random sampling to handle non-monotone submodular valuation functions.

Although clock auctions are considered to be more practical than sealed-bid auctions [9], we argue
that they sometimes still lack practicability, as enquiring a player with too many descending prices
may be time-consuming and cause the effect that the player loses patience and quits the auction early.
We hereby propose the concept of pricing complexity of clock auctions:

Definition 1 The (worst-case) pricing complexity of a clock auction is the maximum number of prices
it offers to any player participating in the auction.

It can be seen from above that the BFMs in [9] have O(log2 n) pricing complexity, which could
still be large for impatient sellers. In fact, Balkanski et al. [9] raise an open question of “whether
there exist even simpler families of budget feasible mechanisms with which one can obtain constant
approximations mechanisms”, and prove that posted-price mechanisms are insufficient for deriving
a constant ratio. Note that posted-price mechanisms (e.g., [12]) are perhaps the simplest form of
truthful mechanisms; these mechanisms show each player one “take-it-or-leave-it” price and hence
have O(1) pricing complexity. The main difference between posted-price mechanisms and clock
auctions is about how they deal with any seller u who accept the offered price: it is mandatory to
select such a seller u as a winner in posted-pricing mechanisms, while clock auctions may not follow
this rule (this implies that clock auctions have the additional power of use “side observations” on
the other sellers’ behavior to decide whether u should be a winner). However, from a practical
perspective, clock auctions with low pricing complexities are almost as simple as posted-pricing
mechanisms, because both of them can be efficiently implemented and can be easily understood by
the players for ensuring truthfulness.

In this paper, we address all the deficiencies of the existing BFMs mentioned above by presenting
TripleEagle, a novel clock auction framework that brings us several simple, fast, effective, and
practical BFMs. Specifically, we show that:

• For monotone submodular functions, there exist a randomized BFM and a deterministic
BFM with the approximation ratios of

√
13+5
2 ≈ 4.3 and 2 +

√
6 ≈ 4.45, respectively; both

of them use at most O(n) value oracle queries. This improves the best-known ratio of 4.75
in [9] (using O(n2 log n) value oracle queries) for this long-standing problem.

• For non-monotone submodular functions, there exists a randomized BFM with an approxi-
mation ratio of 12, using at most O(n) value oracle queries. This improves the best-known
ratio of (3 +

√
5)2 ≈ 27.4 of the randomized BFM proposed in [22] using (n log n) value

oracle queries.
• Under the assumption of [9, 13] that each seller’s cost is no more than B, our TripleEagle

BFMs offer each seller only one price; without this assumption, at most one additional price
query is needed in total. Therefore, our BFMs only have O(1) pricing complexity, which
provides a confirmative answer to the open question of Balkanski et al. [9] mentioned above,
because TripleEagle is virtually as simple as a posted-pricing mechanism.

• We conduct extensive experiments using the applications of influence maximization and
crowdsourcing. The experimental results show that, compared to the state-of-the-art BFMs
proposed in [9, 22–24], our BFMs are faster in orders of magnitude, while achieving
significantly better valuations of the winning sellers.

Compared to [9], our TripleEagle framework has an essentially different design roughly explained as
follows. Instead of offering multiple descending prices to each seller through blindly guessing OPT
as in [9], we adopt a pricing rule inspired by the simple yet fundamental law of supply and demand in
economics [17]. Specifically, TripleEagle processes the sellers in an arbitrary order and calculates the
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price offered to a new “supplier” (i.e., an unprocessed seller) based on the “current supply” (i.e., the
valuation of already processed sellers who accepted the offered prices). Therefore, the offered prices
in TripleEagle tend to decrease when there are more sellers. Finally, TripleEagle tries to return a set
of sellers with the maximum ratios of marginal gains to prices under the budget B. Due to this novel
design, TripleEagle only needs one scan over the sellers and offer one price to each seller, while still
achieving a better approximation ratio than [9].

As far as we know, our work is the first attempt on reducing both the time complexity and pricing
complexity of BFMs. We analogize a low pricing complexity to the “Triple Eagle” hole score in
golf 2, and believe that our ideas have the potential to be applied to other clock auction problems.

2 Preliminaries

Following [35], we assume that each seller in a ground set N has a private cost c(u) ≥ 0 and there is
a submodular valuation function defined on the power set of N satisfying ∀X ⊆ N : f(X) ≥ 0 and

∀X,Y ⊆ N : f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ) (1)

We say that f(·) is monotone if ∀X ⊆ Y ⊆ N : f(X) ≤ f(Y ), otherwise it is non-monotone.
For simplicity, we call f(X | Y ) ≜ f(X ∪ Y ) − f(Y ) as the marginal gain of X with respect
to Y for all X,Y ⊆ N , and we use c(X) and p(X) (∀X ⊆ N ) as shorthand for

∑
u∈X c(u) and∑

u∈X p(u), respectively. We will consider clock auctions where each seller u ∈ N can be offered
by descending prices that are computed using public information, and we use p(u) to denote the
last price offered to u at any time. When a clock auction terminates, a set S ⊆ N can be selected
as winners only if p(S) ≤ B and each seller u ∈ S has never rejected any price offered to u. The
approximation ratio of S is defined as OPT/f(S), where OPT = f(O) and O is an optimal solution
to the problem max{f(X) : X ⊆ N ∧ c(X) ≤ B}. We will also consider randomized clock
auctions: such an auction is a deterministic clock auction for every realization of all its internal
random choices, and it clearly satisfies universal truthfulness [22]. For the simplicity of description,
we adopt the assumption made in [9, 13] that ∀v ∈ N : c(v) ≤ B, and we will show how to
remove this assumption later. In our algorithms, if the elements in a set X are sequentially inserted
into X , listed as {u1, · · · , uq} according to the order that they are inserted, then we call the subset
Y = {us, · · · , ut} ⊆ X(∀s, t : 1 ≤ s ≤ t ≤ q) as a regular subset of A, and also call Y a suffix
(resp. prefix) of X if t = q (resp. s = 1). Throughout the paper, we use u∗ to denote a seller in N
who has the maximum valuation, i.e., u∗ = argmaxu∈N f(u).

3 Randomized BFM for Monotone Submodular Valuations

In this section, we consider a monotone submodular valuation function f(·) and provide a randomized
BFM using the TripleEagle framework, as shown by Algorithm 1 (i.e., the TripleEagleRan algorithm).
Algorithm 1 takes as input a parameter α > 1 for setting a “reserve price” that will be explained
shortly. In Line 1, Algorithm 1 calls the LSDPricing procedure (i.e., Algorithm 2) to process all
sellers inN except u∗; each of these sellers is offered one price by Algorithm 2 and then Algorithm 2
returns a set A containing the sellers who accept their prices. After that, if f(A) ≥ f(u∗), then
Algorithm 1 calls Algorithm 2 again to process u∗ and finally returns a suffix of A respecting the
budget constraint (Lines 3-4). Otherwise, Algorithm 1 makes a random decision of returning either
u∗ or T (Lines 6-13), where T is a superset of A and is got by trying to include u∗ by offering u∗ a
“best effort” price of B − p(A).

It can be seen that Algorithm 2 offers each seller u a price Bf(u|A)
f(A)+αf(u∗) . This pricing rule is inspired

by the fundamental Law of Supply and Demand (LSD) in economics [17], as intuitively explained in
the following. First, note that A contains all the processed sellers who accept the offered prices, so
f(A) can be regarded as the current “supply” in the market, thus the price offered to a new “supplier”
(i.e., an unprocessed user u) should decrease with the increment of f(A). Second, the marginal gain
f(u | A) represents how much value the user u can contribute given the current supply f(A), so the
price offered to u should increase with f(u | A). Third, the factor αf(u∗) guarantees that no user
can be paid a price larger than B/α, which can be regarded as a “reserve price” of the buyer. Without
this reserve price, the winner set could have poor value due to the overpayment to some sellers.

2e.g., a “hole-in-one” on a par-five, see https://en.wikipedia.org/wiki/Par_(score)
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Algorithm 1: TripleEagleRan(α)
1 A← LSDPricing(∅,N \ {u∗}, αf(u∗));
2 if f(A) ≥ f(u∗) then
3 A← LSDPricing(A, {u∗}, αf(u∗));
4 S ← the largest suffix of A satisfying

∑
u∈S p(u) ≤ B;

5 else
6 Sample a random number Z from the uniform distribution U [0, 1];
7 if Z ≤ α

α+2 then
8 p(u∗)← B;S ← {u∗}
9 else

10 Set p(u∗) = B −
∑

u∈A p(u) and show u∗ the price p(u∗);
11 if u∗ accepts p(u∗) then T ← A ∪ {u∗} ;
12 else T ← A ;
13 S ← T ;

14 return S

Algorithm 2: LSDPricing(A,C, η)

1 foreach u ∈ C do
2 p(u)← B·f(u|A)

f(A)+η ; Show u the price p(u);
3 if u accepts p(u) then A← A ∪ {u} ;
4 return A

3.1 Performance Analysis of TripleEagleRan

It is evident that Algorithm 1 provides each seller only one price and incurs 2n value oracle queries
(n queries for finding u∗). So we only analyze its approximation ratio. Let us consider the set A at the
moment that Algorithm 1 finishes. For convenience, we use Au to denote the set of elements already
in A at the moment right before u (∀u ∈ N ) is processed. We first introduce Lemmas 1-2, which
can be proved based on submodularity and the observation that each seller who accepts the offered
price must have a sufficiently large density (and vice versa) due to the pricing rule of Algorithm 2.

Lemma 1 For any regular subset X = {us, · · · , ut} of A returned by Algorithm 2, we have

f(X) ≥
∑

v∈X
f(v | Av) ≥ p(X) · f(Aus

) + αf(u∗)

B

Lemma 2 After Line 3 of Algorithm 1 is executed, we have OPT ≤ 2f(A) + αf(u∗).

With Lemmas 1-2, we can bound the approximation ratio of Algorithm 1 if S is generated by Line 4,
as shown by Lemma 3. Intuitively, if p(A) ≤ B, then we have f(A) ≥ f(u∗) due to Line 3 and
hence we can use Lemma 2 to get OPT ≤ (2 + α)f(S) directly; if p(A) > B, then p(S) is also
sufficiently large, which implies f(S) is large, because S is a suffix of A and hence contains the
sellers in A with the largest ratios of marginal gains to prices due to the pricing rule of Algorithm 2.

Lemma 3 For any α ∈ (2,
√
3 + 1), the set S generated by Line 4 of Algorithm 1 satisfies

OPT ≤ max

(
3 +

2α+ 1

α2 − 1
, 2 + α

)
· f(S)

Proof: Due to Line 2, we must have f(u∗) ≤ f(A) when Line 4 of Algorithm 1 is executed.
Therefore, if p(A) ≤ B, then we have S = A and hence

OPT ≤ 2f(A) + αf(u∗) ≤ (2 + α)f(S) (2)
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due to Lemma 2. In the following, we consider the case of p(A) > B. Let H be the smallest suffix
of A satisfying p(H) > B, so H \ S contains exactly one element (denoted by w) which is added
into A before the elements in S. Using Lemma 2 and submodularity, we get

OPT ≤ 2f(A) + αf(u∗) ≤ 2f(S ∪ {w}) + 2f(A \H) + αf(u∗)

≤ 2f(S) + 2f(A \H) + (2 + α)f(u∗) (3)

Suppose that f(A \H) = σf(u∗), p(w) = ϱB (and hence p(S) > (1− ϱ)B) for certain σ > 0 and
ϱ ∈ [0, 1]. According to Lemma 1, we have

f(u∗) ≥ f(w | A \H) ≥ ϱB · f(A \H) + αf(u∗)

B
≥ ϱ(σ + α)f(u∗) (4)

f(S) ≥ (1− ϱ)B · f(A \H) + f(w | A \H) + αf(u∗)

B
≥ (1− ϱ2)(σ + α)f(u∗) (5)

Let x = σ + α. We have ϱ ≤ 1
x and f(S) ≥ x2−1

x f(u∗) due to Eqns. (4)-(5). Combining these with
Eqn. (3), we get

OPT ≤ 2f(S) + (2 + 2σ + α)f(u∗) ≤ 2f(S) +
2 + 2x− α

x− 1/x
f(S)

=

(
4 +

2− α+ 2/x

x− 1/x

)
f(S) (6)

Note that x = σ + α ≥ α > 2. The R.H.S. of Eqn (6) is no more than 4f(S) when x ≥ 2
α−2 or

α ≥ 2
α−2 . When α < 2

α−2 (i.e., α <
√
3+ 1) and x ∈ [α, 2

α−2 ), the R.H.S. of Eqn (6) is maximized
when x = α. Therefore, for any α ∈ (2,

√
3 + 1) we have

OPT ≤
(
4 +

2α− α2 + 2

α2 − 1

)
f(S) =

(
3 +

2α+ 1

α2 − 1

)
f(S) (7)

Combining Eqn. (2) and Eqn. (7) completes the proof. □

Next, we bound the approximation ratio of Algorithm 1 when S is generated by Lines 6-13 (using
randomization), as shown by Lemma 4:

Lemma 4 For any α > 2, if Algorithm 1 returns S that is generated by Lines 6-13, then we have

OPT ≤ (2 + α) · E[f(S)]

Proof: In this case, we must have f(A) < f(u∗) after Line 1 is executed. This implies p(A) < B
because otherwise we have f(A) ≥ αf(u∗) due to Lemma 1, contradicting f(A) < f(u∗) when
α > 1. We prove that the set T generated by Lines 10-13 of Algorithm 1 must satisfy OPT ≤
2f(T ) + αf(u∗) according to the following discussion:

1. u∗ /∈ O: In this case, we can use similar reasoning as Lemma 2 to get

OPT ≤ 2f(A) + αf(u∗) ≤ 2f(T ) + αf(u∗)

where the second inequality is due to A ⊆ T according to Lines 11-12.

2. u∗ ∈ O and u∗ accepts the price in Line 11: In this case, we have T = A ∪ {u∗} and hence
can also use similar reasoning as Lemma 2 to get

OPT− f(T ) ≤
∑

u∈O\T
f(u | A) ≤ f(A) + αf(u∗) ≤ f(T ) + αf(u∗),

which yields OPT ≤ 2f(T ) + αf(u∗).

3. u∗ ∈ O and and u∗ rejects the price in Line 11: In this case, we must have T = A,
c(u∗) > B − p(A) and hence

c(O \ {u∗}) ≤ p(A) ≤ B · f(A)

f(∅) + αf(u∗)
≤ Bf(A)

αf(u∗)
(8)
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where the second inequality is due to Lemma 1. Note that all the sellers in O \ {u∗} has
been processed by Line 1 and each seller u ∈ O \ {u∗} \ A must reject the offered price
and hence satisfy c(u) > p(u). So we can use this and Eqn. (8) to get

f(O \ {u∗})− f(A) ≤
∑

u∈O\{u∗}\A
f(u | Au)

=
∑

u∈O\{u∗}\A
p(u) · f(Au) + αf(u∗)

B
≤

∑
u∈O\{u∗}\A

c(u) · f(A) + αf(u∗)

B

≤ f(A)

αf(u∗)
(f(A) + αf(u∗)) ≤ 1

α
f(A) + f(u∗) (9)

Therefore, when α > 2, we have

OPT ≤ f(O \ {u∗}) + f(u∗) ≤ (1 +
1

α
)f(A) + 2f(u∗) ≤ 2f(T ) + αf(u∗) (10)

According to Lines 6-13, the algorithm returns T or {u∗}with probability of 2
2+α or α

2+α , respectively.
So we get

E[f(S)] = Pr[S = T ] · f(T ) + Pr[S = {u∗}] · f(u∗) (11)

=
2f(T )

2 + α
+

αf(u∗)

2 + α
≥ OPT

2 + α
(12)

which completes the proof. □

Combining Lemmas 3-4, we immediately get:

Theorem 1 With α =
√
13+1
2 ≈ 2.3, the TripleEagleRan mechanism can return a set S satisfying

OPT ≤
√
13+5
2 E[f(S)] by offering one price to each seller in N and incurring at most O(n) value

oracle queries.

Remark: As mentioned in Sec. 2, we have adopted the assumption made in [9, 13] that ∀v ∈ N :
c(v) ≤ B for the simplicity of description. This assumption can be easily removed according to
the following discussion. Note that each buyer is guaranteed to be offered a price no more than
B in TripleEagleRan. Therefore, before running TripleEagleRan, we only need to identify a valid
u∗ = argmaxv:v∈N∧c(v)≤B f(v). This can be done by first sorting all the sellers according to the
non-increasing order of their values, and then offer B to them one by one until seeing the first seller
accepting B and then that seller is clearly a valid u∗. After that, we can delete all the sellers rejecting
B and then run TripleEagleRan. Clearly, using such a method, the complexity of our mechanism on
the number of value oracle queries is still O(n), while only one additional price query (for u∗) is
incurred. This method can also be used for all our mechanisms described in the sequel.

4 Deterministic BFM for Monotone Submodular Valuations

If we directly use the LSDPricing algorithm to process all the sellers in N , it is possible that the
valuation of the sellers who accept the offered prices is no more than f(u∗), while u∗ rejects its
price and hence cannot be selected as a winner, resulting in a poor approximation ratio (especially
when f(u∗) is large). To address this issue, we have used randomization in TripleEagleRan. In this
section, we introduce TripleEagleDet (i.e., Algoirthm 3), a deterministic BFM that circumvents the
aforementioned issue using an idea of “two-phase pricing”, as elaborated in the following.

In the first pricing phase (Lines 2-6), Algorithm 3 constructs a set K by using the pricing rule in
Line 3 to processes the sellers in N \ {u∗}; this pricing rule is a relaxation of the pricing rule in the
LSDPricing algorithm, because the valuation of the already processed sellers is not used to lower the
price for the next seller to be processed.

The first pricing phase stops as soon as f(K) ≥ f(u∗) (Line 6). If f(K) is still less than f(u∗) when
all the sellers in N \ {u∗} have been processed in the first pricing phase, then Algoirthm 3 sets the
winner set S = {u∗} (Line 8). In the case that the first pricing phase generates a set K satisfying
f(K) ≥ f(u∗), Algorithm 3 enters the second pricing phase in Line 10, where we use LSDPricing to
process all the sellers not processed in the first phase (including u∗). Intuitively, since f(K) ≥ f(u∗)
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Algorithm 3: TripleEagleDet(α)
1 K ← ∅;C ← N ;
2 foreach u ∈ N \ {u∗} do
3 p(u)← Bf(u|K)

αf(u∗) ; Show u the price p(u);
4 if u accepts p(u) then K ← K ∪ {u} ;
5 C ← C \ {u};
6 if f(K) ≥ f(u∗) then break;
7 if f(K) < f(u∗) then
8 p(u∗)← B; S ← {u∗};
9 else

10 A← LSDPricing(K,C, αf(u∗));
11 S ← the largest suffix of A satisfying

∑
u∈S p(u) ≤ B;

12 return S

and K is a prefix of A in the second pricing phase (Line 10), we can regard K as a substitute of u∗

and hence no longer need to worry about the issue explained in the beginning of this section.

We analyze the approximation ratio of Algorithm 3 by considering two cases. In the first case, we
have f(K) < f(u∗) or p(A) ≤ B, which implies that S = {u∗} or S = A due to Line 8 and Line 11.
In this case, we can directly use the two-phase pricing rules to bound the total valuation of the sellers
in O who rejected the offered prices and hence get Lemma 5:

Lemma 5 When Algorithm 3 finishes, if f(K) < f(u∗) or p(A) ≤ B, then we have OPT ≤
(2 + α)f(S).

In the second case (i.e., f(K) ≥ f(u∗) and p(A) > B), we must have that S is generated by Line 11
and S ⊂ A. In this case, bounding the performance of Algorithm 3 is more complicated and is given
by Lemma 6:

Lemma 6 Suppose that α ∈ (2,
√
17+1
2 ). When Algorithm 3 finishes, if f(K) ≥ f(u∗) and p(A) >

B, then we have

OPT ≤ max

(
3 +

3α+ 4

α2 + 2α
, 2 +

α(2 + α)

α2 + α− 4
, 2 +

α(4 + α)

α2 + α− 2

)
· f(S) (13)

We roughly explain the idea for proving Lemma 6 as follows. Consider the set A generated by Line 10
(recall that K is prefix of A). If the smallest suffix H of A satisfying p(H) > B does not intersect
K, then we can use similar reasoning as Lemma 3 to prove OPT ≤

(
3 + 3α+4

α2+2α

)
f(S). Under the

other case (i.e., H ∩K ̸= ∅), H must have a prefix generated using the relaxed pricing rule of Line 3,
which possibly degrades the valuation of H and hence S (note that S is a suffix of H). Fortunately,
since f(K) is at most 2f(u∗) due to Line 6, we can prove that the approximation ratio of f(S) is only
slightly weaker than that in the case of H ∩K = ∅, i.e., OPT ≤ max

(
2 + α(2+α)

α2+α−4 , 2 +
α(4+α)
α2+α−2

)
·

f(S). Combining Lemmas 5-6, we can immediately get the performance bounds of TripleEagleDet,
as shown by Theorem 2, which reveals that TripleEagleDet has a better approximation ratio than the
deterministic BFM with a provable ratio of 4.75 in [9]. Note that Balkanski et al. [9] show that their
BFM cannot achieve a ratio better than 4.5 even if their analysis for the 4.75-ratio is not tight.

Theorem 2 With α =
√
6 ≈ 2.45, the TripleEagleDet mechanism can return a set S satisfying

OPT ≤ (2 +
√
6)f(S) by offering one price to each seller in N and incurring 2n value oracle

queries.

5 BFM for Non-Monotone Submodular Valuations

In this section, we extend our TripleEagleRan algorithm to handle a non-monotone submodular
valuation function f(·), as shown by the TripleEagleNm algorithm (i.e., Algorithm 4).
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Algorithm 4: TripleEagleNm(α)

1 A1 ← ∅;A2 ← ∅;
2 foreach u ∈ N \ {u∗} do
3 j ← argmaxi∈{1,2} f(u | Ai);
4 p(u)← B·f(u|Aj)

f(Aj)+αf(u∗) ; Show u the price p(u);
5 if u accepts p(u) then
6 Aj ← Aj ∪ {u};

7 if max{f(A1), f(A2)} ≥ f(u∗) then
8 Let u = u∗ and process u using Lines 3-6;
9 A∗ ← argmaxX∈{A1,A2} f(X);

10 S ← the largest suffix of A∗ satisfying
∑

u∈S p(u) ≤ B;
11 else
12 Sample a random number Z from the uniform distribution U [0, 1];
13 if Z ≤ α

3+α then
14 p(u∗)← B; S ← {u∗};
15 else
16 q ← argmaxi∈{1,2} f(u

∗ | Ai);
17 Set p(u∗) = B − p(Aq) and show u∗ the price p(u∗);
18 if f(u∗ | Aq) ≥ 0 and u∗ accepts p(u∗) then Aq ← Aq ∪ {u∗} ;
19 T ← argmaxX∈{A1,A2} f(X);S ← T ;

20 return S

The TripleEagleNm algorithm is similar in spirit to the TripleEagleRan algorithm execept that it
maintains two sets of candidate winners: A1 and A2. In Lines 1-6 of Algorithm 4, each seller
u ∈ N \ {u∗} is greedily routed to Aj(j ∈ {1, 2}) such that f(u | Aj) is maximized, and then
u is offered a price generated using the same rule as Line 2 of Algorithm 2. After all the sellers
in N \ {u∗} are processed, Lines 12-19 of Algorithm 4 adopt the operations similar to those in
Lines 6-13 of Algorithm 1, except that u∗ is offered a “best-effort” price of B − p(Aq) after it is
greedily routed to Aq by Line 16. We show the performance bounds of Algorithm 4 in Theorem 3:

Theorem 3 With α = 3, the TripleEagleNm mechanism can return a set S satisfying OPT ≤
12E[f(S)] by offering one price to each seller in N and incurring at most 3n value oracle queries.

6 Performance Evaluation
We use the influence maximization application mentioned in Sec. 1 to compare the following BFMs:
(1) Our TripleEagleRan (TER) and TripleEagleDet (TED) algorithms, (2) The Iterative-Pruning (IP)
algorithm in [9] with a ratio of 4.75, and (3) The Random-TM (RTM) algorithm in [24] with a ratio
of 5. All the algorithms are implemented using C++ and are run on a Linux server with Intel Xeon
Gold 6126 @ 2.60GHz CPU and 128GB memory. Each implemented randomized algorithm is
independently executed 50 times, and the average result is reported. We use three real social network
datasets: (1) Flixster [5] with 28,843 nodes and 272,786 edges; (2) Epinions [29] with 75,879 nodes
and 508,837 edges; and (3) Slashdot [29] with 82,168 nodes 948,464 edges. We adopt the well-known
Independence Cascade (IC) model [27] for the influence spread function f(·), and follow [14] to
set the activation probability pu,v of each edge (u, v) to 1/Nin(v), where Nin(v) denotes the set of
in-neighbors of v. The cost c(u) of each node is generated uniformly at random from the interval
[0, 1]. Since evaluating f(·) is known to be #P-hard [14], we adopt the approach in [11] to generate
one million random reverse-reachable sets for approximately evaluating f(·). It is known that the
influence spread function through such an approximation is still monotone and submodular [11].

The experimental results in Fig. 1 reveal that, for all three datasets, our BFMs outperform the baselines
on utility (i.e., the valuation of returned solution). Specifically, TER and TED have similar utilities
that outperform RTM (resp. IP) with the performance gain ranging from 55%-122% (resp. 4%-14%).
Moreover, TER and TED incur much fewer value oracle queries than RTM (resp. IP) in more than
one (resp. three to four) orders of magnitude. It can also be seen that, although TER and RTM are
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Figure 1: Comparing the BFMs for the influence maximization application

both randomized mechanisms, RTM incurs large variations while TER is almost deterministic in
Fig. 1. This can be explained by the fact that RTM always returns a random solution by its design,
while the randomization of TER is only triggered in some special cases (see Sec. 3). Finally, we have
also compared our BFMs with the existing ones using a crowdsourcing application similar to that
in [8, 16, 20, 22], where non-monotone submodular valuations are also considered. The experimental
results are qualitatively similar to Fig. 1 and can be found in the Appendix due to the page limits.

7 Conclusion

We have proposed TripleEagle, a novel algorithmic framework for designing budget feasible mecha-
nisms with submodular valuations, based on which we have presented several simple, fast, effective
and practical BFMs that achieve obvious strategyproofness, low complexity, and better approximation
ratios than the-state-of-the-art studies. The efficiency and effectiveness of our approach has been
strongly corroborated by our experiments on influence maximization and crowdsourcing.
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Appendix

A Proof of Lemma 1

Proof: It is evident that f(X) ≥
∑

v∈X f(v | Av) = f(Aus
∪X)−f(Aus

) due to submodularity.
Besides, for each v ∈ X , we have f(Av) ≥ f(Aus

) and c(v) ≤ p(v) (because v accepts the offered
price), so we get

c(v) ≤ p(v) =
Bf(v | Av)

f(Av) + αf(u∗)
≤ Bf(v | Av)

f(Aus) + αf(u∗)

and hence∑
v∈X

f(v | Av) ≥
∑

u∈X
p(v) · f(Aus) + αf(u∗)

B
= p(X) · f(Aus

) + αf(u∗)

B
which completes the proof. □

B Proof of Lemma 2

Proof: After Line 3 is executed, all the elements inN must have been processed by the LSDPricing
algorithm. As each element in O \A rejects the offered price, we have

∀u ∈ O \A : c(u) > p(u) =
Bf(u | Au)

f(Au) + αf(u∗)
≥ Bf(u | Au)

f(A) + αf(u∗)
(14)

Using this and submodularity, we get

OPT− f(A) ≤
∑

u∈O\A

f(u | A) ≤
∑

u∈O\A

f(u | Au)

≤
∑

u∈O\A

c(u) · f(A) + αf(u∗)

B
≤ f(A) + αf(u∗) (15)

The lemma then follows by re-arranging the above inequality. □

C Proof of Lemma 5

Proof: Let O1, O2 be the set of sellers in O who reject the offered prices in Line 4 of Algorithm 3
and in the LSDPricing procedure (Line 10 of Algorithm 3), respectively. Let Ku denotes the set of
elements already in K when u is offered a price in Line 3. Under the case of f(K) < f(u∗), we
must have S = {u∗} (due to Line 8), O1 = O \ {u∗} \K and

f(O \ {u∗})− f(K) ≤
∑
u∈O1

f(u | Ku) =
∑
u∈O1

p(u) · αf(u
∗)

B
≤

∑
u∈O1

c(u)
αf(u∗)

B
≤ αf(u∗)

and hence
OPT ≤ f(K) + αf(u∗) + f(u∗) ≤ (2 + α)f(u∗) = (2 + α)f(S) (16)

On the other hand, if f(K) ≥ f(u∗) and p(A) ≤ B, then we have O \A = O1 ∪O2. Note that K is
prefix of A under this case. So we can use submodularity to get

OPT− f(A) ≤
∑
u∈O1

f(u | Ku) +
∑
u∈O2

f(u | Au)

≤
∑
u∈O1

c(u)
αf(u∗)

B
+

∑
u∈O2

c(u)
f(Au) + αf(u∗)

B

≤ c(O1) ·
αf(u∗)

B
+ c(O2) ·

f(A) + αf(u∗)

B

≤ c(O) · f(A) + αf(u∗)

B
≤ f(A) + αf(u∗), (17)

which yields f(A) ≤ 2f(A) + αf(u∗) ≤ (2 + α)f(A) by using f(A) ≥ f(K) ≥ f(u∗). Note that
S = A under this case (due to Line 11), so the lemma follows. □
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D Proof of Lemma 6

Proof: By similar reasoning with Lemma 5, we have

OPT ≤ 2f(A) + αf(u∗) (18)

Let H be the smallest suffix of A satisfying p(H) > B, so H \ S contains exactly one element
(denoted by w) which is added into A right before the elements in S. For convenience, we define
δ(X) =

∑
u∈X f(u | Au) for any regular subset X of A. Suppose that f(A \ H) = µf(u∗),

f(K) = λf(u∗), δ(K∩H) = τf(u∗) and p(K∩H) = ρB. Clearly, we have p(H \K) ≥ (1−ρ)B,
λ ≥ 1 and τ ≤ λ ≤ 2. We consider the following cases:

1. K∩H = ∅: In this case, all the sellers in H are selected using the pricing rule of Algorithm 2.
So we can use similar reasoning as Lemma 3 to get

OPT ≤
(
4 +

2− α+ 2/x

x− 1/x

)
f(S) (19)

where x = µ + α. Note that f(K) ≥ f(u∗) and K ⊆ A \H , so µ ≥ 1 and x ≥ α + 1.
The R.H.S. of Eqn (19) is no more than 4f(S) when x ≥ 2

α−2 or α + 1 ≥ 2
α−2 . When

α+1 < 2
α−2 (i.e., α <

√
17+1
2 ) and x ∈ [α+1, 2

α−2 ), the R.H.S. of Eqn (19) is maximized

when x = α+ 1. Therefore, for any α ∈ (2,
√
17+1
2 ) we have

OPT ≤
(
4 +

α− α2 + 4

α2 + 2α

)
f(S) =

(
3 +

3α+ 4

α2 + 2α

)
f(S) (20)

2. |K ∩H| > 1: In this case, we must have |K ∩ S| ≥ 1 because |H \ S| = 1 by definition.
According to the construction of K, this implies f(K \ S) < f(u∗) and hence

f(A) ≤ f(K \ S) + f(S) ≤ f(u∗) + f(S) (21)

Note that each seller u ∈ K satisfies c(u) ≤ p(u) = Bf(u|Au)
αf(u∗) , so we have

τf(u∗) = δ(K ∩H) ≥ p(K ∩H)
αf(u∗)

B
≥ ραf(u∗) (22)

This implies ρ ≤ τ/α and hence p(H \ K) ≥ (1 − τ/α)B. By similar reasoning as
Lemma 1, we have

δ(H \K) ≥ (1− ρ) (f(K) + α · f(u∗)) ≥ (1− τ/α) (λ+ α) · f(u∗) (23)

and hence

δ(H) = δ(K ∩H) + δ(H \K)

≥ [τ + (1− τ/α) (λ+ α)] · f(u∗) = (α+ λ− τλ/α)f(u∗)

≥ (α+ λ− λ2/α)f(u∗), (24)

where the last inequality is due to τ ≤ λ. Recall that 1 ≤ λ ≤ 2 and α ∈ (2,
√
17+1
2 ). So

the R.H.S. of Eqn. (24) is minimized when λ = 2. Therefore, we get

f(S) ≥ f(H)− f(u∗) ≥ (α+ 1− 4/α)f(u∗) (25)

Combining Eqn. (18), Eqn. (21) and Eqn. (25), we get

OPT ≤ 2f(S) + (2 + α)f(u∗) ≤
(
2 +

2 + α

α+ 1− 4/α

)
f(S) (26)

3. |K ∩H| = 1: In this case, we must have A = K ∪S, K ∩S = ∅ and H \K = S according
to the definition of H . Moreover, due to Eqn. (22) we have f(u∗) ≥ δ(K ∩H) ≥ ραf(u∗)
and hence ρ ≤ 1/α. Note that all the elements in S is selected using the pricing rule of
Algorithm 2. Therefore, using similar reasoning as Lemma 1, we get

f(S) ≥ (1− ρ) (f(K) + α · f(u∗)) ≥ (1− 1/α)(λ+ α)f(u∗) (27)
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Recall that λ ≤ 2 and A = K ∪ S. Combining this with Eqn. (18) and Eqn. (27), we get

OPT ≤ 2f(A) + αf(u∗) ≤ 2f(K) + 2f(S) + αf(u∗)

= 2f(S) + (2λ+ α)f(u∗)

≤
(
2 +

2λ+ α

(1− 1/α)(λ+ α)

)
f(S)

=

(
2 +

2

1− 1/α
− α

(1− 1/α)(λ+ α)

)
f(S)

≤
(
2 +

4 + α

α+ 1− 2/α

)
f(S) (28)

The lemma then follows according to the above discussion. □

E Proof of Theorem 3

It can be easily seen that Algorithm 4 offers one price to each seller and incurs at most 3n value
oracle queries (n queries for finding u∗ and 2n queries for building A1 and A2). The approximation
ratio of Algorithm 4 can be proved by directly combining Lemma 7 and Lemma 8:

Lemma 7 If Line 10 of Algorithm 4 is executed, then we have OPT ≤ 12f(S) when α = 3.

Proof: In this case, all the elements in O must have been processed by Lines 3-6. Let O1 (resp.
O2) denote the sellers in O who reject the offered prices that are calculated using A1 (resp. A2) in
Line 4. For convenience, we define δi(u) = f(u | Ai,u) for any u ∈ N , where Ai,u denotes the set of
elements already in Ai at the moment that u is processed by Algorithm 4. It can be seen that, for each
u ∈ Ai(i ∈ {1, 2}), we have δi(u) ≥ 0, because otherwise we have p(u) = Bδi(u)

f(Ai,u)+αf(u∗) < 0 and
hence p(u) should be rejected by u due to c(u) ≥ 0, which implies that u is not in Ai; a contradiction.
So we have f(X) ≤ f(Ai) for any prefix X of Ai.

In the following, we consider the sets A1, A2, A
∗ after Line 10 of Algorithm 4 is executed. For each

i ∈ {1, 2} and each u ∈ Oi, we can use similar reasoning as Lemma 1 to get

f(u | Ai)

c(u)
≤ δi(u)

c(u)
<

f(Ai,u) + αf(u∗)

B
≤ f(Ai) + αf(u∗)

B
≤ f(A∗) + αf(u∗)

B
(29)

Moreover, according to submodularity and the greedy rule of Line 3, for all i, j ∈ {1, 2} and i ̸= j
we have∑

u∈Ai∩O

f(u | Aj) ≤
∑

u∈Ai∩O

δj(u) ≤
∑

u∈Ai∩O

δi(u) ≤
∑
u∈Ai

δi(u) ≤ f(Ai) ≤ f(A∗), (30)

where the third inequality is due to δi(u) ≥ 0 for all u ∈ Ai. Using the above inequalities and
submodularity, we get

f(O ∪A1)− f(A1) ≤
∑

u∈O∩A2

f(u | A1) +
∑

u∈O1∪O2

f(u | A1)

≤ f(A∗) +
∑
u∈O1

δ1(u) +
∑
u∈O2

δ1(u) ≤ f(A∗) +
∑
u∈O1

δ1(u) +
∑
u∈O2

δ2(u)

≤ f(A∗) + [c(O1) + c(O2)] ·
f(A∗) + αf(u∗)

B
≤ 2f(A∗) + αf(u∗) (31)

where the third inequality is due to the greedy rule in Line 3. Similarly, we get

f(O ∪A2)− f(A2) ≤ 2f(A∗) + αf(u∗) (32)

Combining Eqns. (31)-(32) gives us

OPT ≤
∑

i∈{1,2}

f(O ∪Ai) ≤ 6f(A∗) + 2αf(u∗), (33)
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where the first inequality is due to submodularity and A1 ∩A2 = ∅. Therefore, if p(A∗) ≤ B, then
we have S = A∗, f(S) ≥ f(u∗) and hence

OPT ≤ 6f(S) + 2αf(u∗) ≤ (6 + 2α)f(S) (34)
If p(A∗) > B, then let H be the smallest suffix of A∗ satisfying p(H) > B, and we can use similar
reasoning as Lemma 1 to get

f(S) + f(u∗) ≥ f(H) ≥ f(A∗ \H) + αf(u∗) (35)
Combining Eqn. (33) and Eqn. (35), we get

OPT ≤ 6f(H) + 6f(A∗ \H) + 2αf(u∗)

≤ 6[f(S) + f(u∗)] + 6[f(S) + f(u∗)− αf(u∗)] + 2αf(u∗)

≤ 12f(S) + (12− 4α)f(u∗) (36)
The lemma then follows by combining Eqn. (34) and Eqn. (36). □

Lemma 8 If Lines 12-19 of Algorithm 4 are executed, then we have OPT ≤ 12E[f(S)] when α = 3.

Proof: For clarity, we use J1 (resp. J2) to denote the set A1 (resp. A2) at the moment that
Algorithm 4 executes Line 12, and define J∗ = argmaxX∈{J1,J2} f(X). So we have f(J∗) < f(u∗)
due to Line 7. It can be seen from Line 18 that u∗ is added into Aq only if (1) maxi∈{1,2} f(u

∗ |
Ji) ≥ 0 and (2) u∗ accepts the price of B − p(Jq). Note that the set T generated by Line 19 must
satisfy f(T ) ≥ f(J∗). In the sequel, we prove that OPT ≤ 6f(T ) + 2αf(u∗) by a discussion:

1. u∗ /∈ O: In this case, we can use similar reasoning as Lemma 7 to get
OPT = f(O \ {u∗}) ≤ 6f(J∗) + 2αf(u∗) ≤ 6f(T ) + 2αf(u∗) (37)

2. u∗ ∈ O and u∗ is added into Aq in Line 18; or u∗ ∈ O and maxi∈{1,2} f(u
∗ | Ji) < 0: In

these situations, after Line 19 is executed, we can use similar reasoning as Lemma 7 to get
∀i ∈ {1, 2} : f(O ∪Ai)− f(Ai) ≤ 2f(T ) + αf(u∗) (38)

Note that f(Ai) ≤ f(T ) due to Line 19. So we get

OPT ≤
∑

i∈{1,2}

f(O ∪Ai) ≤ 6f(T ) + 2αf(u∗) (39)

3. u∗ ∈ O and maxi∈{1,2} f(u
∗ | Ji) ≥ 0 and {u∗} rejects the price in Line 18: In this case,

we must have c(u∗) > B − p(Jq) and hence

c(O \ {u∗}) ≤ p(Jq) ≤
B · f(Jq)

f(∅) + αf(u∗)
≤ Bf(Jq)

αf(u∗)
≤ Bf(J∗)

αf(u∗)
≤ B

α
(40)

where the second inequality is got by Lemma 1. Note that all the elements in O \ {u∗}
has been processed by Lines 3-6. Let O1 (resp. O2) denote the set of sellers in O \ {u∗}
who reject the offered prices that are calculated using A1 (resp. A2) in Line 4. By similar
reasoning with Lemma 7, we get

∀i ∈ {1, 2},∀u ∈ Oi :
f(u | Ji)
c(u)

≤ δi(u)

c(u)
≤ f(J∗) + αf(u∗)

B
; (41)

∀i, j ∈ {1, 2} ∧ i ̸= j :
∑

u∈O\{u∗}∩Ji

f(u | Jj) ≤ f(J∗); (42)

where δi(u) is defined in the same way as that in the proof of Lemma 7. Therefore, we can
use Eqns. (40)-(42) to get

f(O \ {u∗} ∪ J1)− f(J1) ≤
∑

u∈O\{u∗}∩J2

f(u | J1) +
∑

u∈O1∪O2

f(u | J1)

≤ f(J∗) +
∑
u∈O1

δ1(u) +
∑
u∈O2

δ2(u) (43)

≤ f(J∗) + c(O \ {u∗}) · f(J
∗) + αf(u∗)

B

≤
(
1 +

1

α

)
f(J∗) + f(u∗), (44)
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where Eqn. (43) is due to submodularity and the greedy rule in Line 4. Similarly, we get

f(O \ {u∗} ∪ J2)− f(J2) ≤
(
1 +

1

α

)
f(J∗) + f(u∗) (45)

Combining the above equations, we get

f(O \ {u∗}) ≤
2∑

i=1

f(O \ {u∗} ∪ Ji) ≤ 2

(
2 +

1

α

)
f(J∗) + 2f(u∗) (46)

and hence

OPT ≤ f(O \ {u∗}) + f(u∗) ≤ 2

(
2 +

1

α

)
f(J∗) + 3f(u∗), (47)

Therefore, when α ≥ 1.5, we have OPT ≤ 6f(J∗) + 2αf(u∗) ≤ 6f(T ) + 2αf(u∗).

According to Lines 12-19 of Algorithm 4, the algorithm returns T or {u∗} with probability of 3
3+α

or α
3+α , respectively. So we get

E[f(S)] = Pr[S = T ] · f(T ) + Pr[S = {u∗}] · f(u∗)

=
3f(T )

3 + α
+

αf(u∗)

3 + α
≥ OPT

12
(48)

when α = 3. This completes the proof. □

F Additional Experiments

In this section, we conduct experiments using a crowdsourcing application similar to that in [8, 16,
20, 22], where each worker (seller) in N owns an image, and a buyer with a budget B needs to
crowdsource a set S of representative images from the workers. Following [8, 16, 20, 22], we use the
CIFAR-10 dataset [8, 16, 20, 22] containing ten thousands 32× 32 color images, where each image
is associated with a label denoting its category such as “Airplane”, and the valuation (utility) of S is
calculated as

f(S) =
∑

u∈N
max
v∈S

su,v −
1

|N |
∑

u∈S

∑
v∈S

su,v, (49)

where su,v denotes the similarity between any two images u and v and is measured by the cosine
similarity of the 3,072-dimensional pixel vectors of image u and image v. Intuitively, the first and
second additive factors in Eqn. (49) represent the “coverage” and “diversity” of S, respectively, and
it is known that such a valuation function f(·) is non-monotone and submodular [16]. We assume
that each worker u has a private cost c(u) for providing its image, and set c(u) to be in proportional
to the standard deviation of its pixel intensities. Following the same setting as that in [22], the costs
of all images are normalized with the average value of 0.1, and the images with labels in {Airplane,
Automobile, Bird} are considered. The other experimental settings are the same with those in Fig. 1.
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Figure 2: Comparing the BFMs for the crowdsourcing application

In Fig. 2, we compare our TripleEagleNm (TENM) algorithm with two state-of-the-art BFMs for
non-monotone submodular valuations: (1) the Simultaneous-Iterative-Pruning (SIP) algorithm in
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[9] with an approximation ratio of 64; and (2) the RandomClockAuction (RCA) algorithm in [22]
with an approximation ratio of (3 +

√
5)2. The experimental results in Fig. 2 show that, our TENM

algorithm consistently outperforms the other two baselines on utility, while incurring about three
orders of magnitude fewer value oracle queries than the SIP algorithm. It is also noted that TENM
and RCA perform similarly on the number of value oracle queries; this can be explained by the
fact that RCA has a nearly-linear query complexity of O(n log n) and hence is also efficient for this
problem instance (but with poorer performance on utility than TENM). These experimental results
demonstrate the superiorities of our approach once again for non-monotone submodular valuations.

The code of our paper can be found at:

https://anonymous.4open.science/r/TripleEagle-4D1B/README.md
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