Scale-teaching: Robust Multi-scale Training for Time Series Classification with Noisy Labels

Zhen Liu South China University of Technology Guangzhou, China cszhenliu@mail.scut.edu.cn

Dongliang Chen South China University of Technology Guangzhou, China ytucdl@foxmail.com Peitian Ma South China University of Technology Guangzhou, China ma_scuter@163.com

Wenbin Pei Dalian University of Technology Dalian, China peiwenbin@dlut.edu.cn

Qianli Ma* South China University of Technology Guangzhou, China qianlima@scut.edu.cn

Abstract

Deep Neural Networks (DNNs) have been criticized because they easily overfit noisy (incorrect) labels. To improve the robustness of DNNs, existing methods for image data regard samples with small training losses as correctly labeled data (small-loss criterion). Nevertheless, time series' discriminative patterns are easily distorted by external noises (i.e., frequency perturbations) during the recording process. This results in training losses of some time series samples that do not meet the small-loss criterion. Therefore, this paper proposes a deep learning paradigm called Scale-teaching to cope with time series noisy labels. Specifically, we design a fine-to-coarse cross-scale fusion mechanism for learning discriminative patterns by utilizing time series at different scales to train multiple DNNs simultaneously. Meanwhile, each network is trained in a cross-teaching manner by using complementary information from different scales to select small-loss samples as clean labels. For unselected large-loss samples, we introduce multi-scale embedding graph learning via label propagation to correct their labels by using selected clean samples. Experiments on multiple benchmark time series datasets demonstrate the superiority of the proposed Scale-teaching paradigm over state-of-the-art methods in terms of effectiveness and robustness.

1 Introduction

Time series classification has recently received much attention in deep learning [1, 2]. Essentially, the success of Deep Neural Networks (DNNs) is driven by a large amount of well-labeled data. However, human errors [3] and sensor failures [4] produce noisy (incorrect) labels in time series datasets. For example, in electrocardiogram diagnosis [5], physicians with different experiences tend to make inconsistent category judgments. In recent studies [6, 7], DNNs have shown their powerful learning ability, which, however, makes it relatively easier to overfit noisy labels and inevitably degenerate

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

^{*}Qianli Ma is the corresponding author.

Figure 1: Illustration of time series samples *from the same category* at different time scales. Among all samples in the same category, red indicates the one with the largest variance, and blue indicates a few samples with the smallest variance.

the robustness of models. Moreover, time series data has complex temporal dynamics that make it challenging to manually correct noisy labels [8].

To cope with noisy labels, existing studies on label-noise learning [9, 10] use the memory effect of DNNs to select samples with small losses for training. DNNs memorize the data with clean labels first, and then those with noisy labels in classification training (small-loss criterion) [11]. It is worth noting that the small-loss criterion is not affected by the choice of training optimizations and network structures [12], and is widely utilized for label-noise learning in computer vision [13, 14]. However, the small loss criterion cannot always be applied to time series because the discriminative patterns of time series data are easily distorted by external noises [15, 16]. For example, in a smart grid, distortions may occur due to sampling frequency perturbations, imprecise sensors, or random differences in energy consumption [17]. Such distortions can make it difficult for DNNs to learn the appropriate discriminant patterns of time series, resulting in large training losses for some clean labeled samples. In addition, the small-loss criterion only utilizes the data's label information and does not consider the inherent properties of time series features (i.e., multi-scale information).

Multi-scale properties are crucial in time series classification tasks. In recent years, multi-scale convolution [16], dynamic skip connections [18, 19] and adaptive convolution kernel size [20] have been utilized to learn discriminative patterns of time series. Furthermore, according to related studies [2, 20, 21], the selection of appropriate time scales for time series data can facilitate DNNs to learn class-characteristic patterns. With correct labels, the above studies indicate that the multi-scale properties of time series data can help DNNs learn appropriate discriminative patterns for mitigating the negative effects of time series recording noises. Nevertheless, it remains an open challenge as to how the multi-scale properties of time series of time series can be used for label-noise learning.

To this end, we propose a deep learning paradigm, named Scale-teaching, for time-series classification with noisy labels. In particular, we design a fine-to-coarse cross-scale fusion mechanism for obtaining robust time series embeddings in the presence of noisy labels. We select four time series datasets from the UCR archive [22] to explain our motivation. As shown in Figure 1, in the single scale case (top row), the red and blue samples from the same category have large differences in certain local regions (the green rectangle in Figure 1). By downsampling the time series from fine to coarse, some local regions between the red and blue samples did become similar. Meanwhile, existing studies [12, 23] show that multiple DNNs with random initialization have classification divergence for noisy labeled samples, but are consistent for clean labeled samples. The above findings inspire us to utilize multiple DNNs to combine robust embeddings at different scales to deal with noisy labels. Nonetheless, the coarse scale discards many local regions in the fine scale (as in Figure 1 (c)), which may degenerate the classification performance. Hence, we propose the Scale-teaching paradigm, which can better preserve the local discriminative patterns of fine scale while dealing with distortions.

More specifically, the proposed Scale-teaching paradigm performs the cross-scale embedding fusion in the finer-to-coarser direction by utilizing time series at different scales to train multiple DNNs simultaneously. The cross-scale embedding fusion exploits complementary information from different scales to learn discriminative patterns. This enables the learned embeddings to be more robust to distortions and noisy labels. During training, clean labels are selected through cross-teaching on those networks with the learned embeddings. The small-loss samples in training are used as (clean) labeled data, and the unselected large-loss samples are used as (noisy) unlabeled data. Moreover, multi-scale embedding graph learning is introduced to establish relationships between labeled and unlabeled samples for noisy label correction. Based on the multi-scale embedding graph, the label propagation theory [24] is employed to correct noisy labels. This drives the model to better fit time series category distribution. The contributions are summarized as follows:

- We propose a deep learning paradigm, called Scale-teaching, for time-series label-noise learning. In particular, a cross-scale fusion mechanism is designed to help the model select more reliable clean labels by exploiting complementary information from different scales.
- We further introduce multi-scale embedding graph learning for noisy label correction using the selected clean labels based on the label propagation theory. Unlike conventional image label-noise learning methods focused on sample loss levels, our approach uses well-learned multi-scale time series embeddings for noise label correction at sample feature levels.
- Extensive experiments on multiple benchmark time series datasets show that the proposed Scale-teaching paradigm achieves a state-of-the-art classification performance. In addition, multi-scale analyses and ablation studies indicate that the use of multi-scale information can effectively improve the robustness of Scale-teaching against noisy labels.

2 Related Work

Label-noise Learning. Existing label-noise learning studies focus mainly on image data [10]. These studies can be broadly classified into three categories: (1) designing noise-robust objective functions [25, 26] or regularization strategies [27, 28]; (2) detecting and correcting noisy labels [13, 29, 30]; (3) transition-matrix-based [31, 32] and semi-supervised-based [14, 33] methods. In contrast to the methodologies in the first and third categories, approaches categorized under the second category have received considerable attention in recent years [7, 34]. Methods of the second category can be further divided into sample selection and label correction. The common methods of sample selection are the Co-teaching family [12, 13, 23] and FINE [35]. Label correction [36, 37] attempts to correct noisy labels by either using prediction results of classifiers or pseudo-labeling techniques. Recently, SREA [4] utilizes pseudo-labels generated based on a clustering task to correct time-series noisy labels. Although the above methods can improve the robustness of DNNs, how the multi-scale properties of time series are exploited for label-noise learning has not been explored.

Multi-scale Time Series Modeling. In recent years, multi-scale properties have gradually gained attention in various time series downstream tasks [18, 38], such as time series classification, prediction, and anomaly detection [39]. For example, Cui et al. [16] employ multiple convolutional network channels of different scales to learn temporal patterns that facilitate time series classification. Chen et al. [19] design a time-aware multi-scale RNN model for human action prediction. Wang et al. [40] introduce a multi-scale one-class RNN for time series anomaly detection. Also, recent studies [41, 42, 43, 44] indicate that multi-scale properties can effectively improve the performance of long-term time series prediction. Unlike prior work, we utilize multiple DNNs with identical architectures to separately capture discriminative temporal patterns across various scales. This enables us to acquire robust embeddings for handling noisy labels via a cross-scale fusion strategy.

Label Propagation. Label propagation (LP) is a graph-based inductive inference method [24, 45] that can propagate pseudo-labels to unlabeled graph nodes using labeled graph nodes. Since LP can utilize the feature information of data to obtain pseudo-labels of unlabeled samples, related works employ LP in few-shot learning [46] and semi-supervised learning [47, 48]. Generally speaking, DNNs have the powerful capability for feature extraction, and the learned embeddings tend to be similar within classes and different between classes. Each sample contains feature and label information. Intuitively, the embeddings of samples with noisy labels obtained by DNNs closely align with the true class distribution when the DNNs do not fit noisy labels in the early training stages. Naturally, we create a nearest-neighbor graph based on well-learned multi-scale time series embeddings at the feature level. Subsequently, we employ LP theory to correct the labels of unselected noisy samples using the labels of clean samples chosen by the DNNs. This approach leverages robust multi-scale embeddings to address the issue of noisy labels.

Figure 2: The Scale-teaching paradigm's general architecture comprises two core processes: (i) clean label selection and (ii) noisy label correction. In the clean label selection phase, networks A, B, and C engage in cross-scale fusion, moving from fine to coarse $(A \rightarrow B, B \rightarrow C)$). They employ clean labels acquired through cross-teaching $(A \rightarrow B, B \rightarrow C, C \rightarrow A)$ to guide their respective classification training. In the noisy label correction phase, pseudo labels derived from multi-scale embeddings graph learning are employed as corrected labels for time series not selected as clean labeled samples.

3 Proposed Approach

3.1 **Problem Definition**

Given a noisy labeled time series dataset $\mathcal{D} = \{(\mathcal{X}_i, \hat{y}_i)\}_{i=1}^N$, it contains N time series, where $\mathcal{X}_i \in \mathbb{R}^{L \times T}$, L denotes the number of variables, and T is the length of variable. $\hat{y}_i \in \{1, \ldots, C\}$ is the observed label of \mathcal{X}_i with η probability of being a noisy label. Our goal is to enable the DNNs trained on the noisy labeled training dataset \mathcal{D}_{train} to correctly predict the ground-truth labels of the given time series in the test set. Specifically, the problem to be addressed in this paper consists of two steps. The first is to select clean labeled time series from \mathcal{D}_{train} , and the second is to perform noisy label correction for time series in \mathcal{D}_{train} that have not been selected as clean labels.

3.2 Model Architecture

The overall architecture of Scale-teaching is shown in Figure 2. While this figure illustrates Scale-teaching with input time series at three scales, it can be extended to models with more scales, exceeding three. We utilize a consistent structural encoder to learn embeddings for each input scale sequence. Each encoder undergoes training at two levels: embedding learning for clean sample selection at the feature level and label correction with the multi-scale embeddings. For embedding learning, we propose a cross-scale fusion (Section 3.3) mechanism from fine to coarse to obtain robust embeddings. This approach enables the selection of more dependable clean labels through the small-loss criterion. Specifically, embeddings (A \odot B \odot C) encompass multi-scale information from fine, medium, and coarse scale sequences derived from the same time series. Regarding noisy label correction, we introduce multi-scale embedding graph learning (Section 3.4) based on label propagation, utilizing the selected clean samples to correct the labels of unselected large-loss samples.

3.3 Cross-scale Fusion for Clean Label Selection

After downsampling the original time series at different scales, it eliminates some of the differences in local regions between samples of the same category (as in Figure 1). However, the downsampled sequences (i.e., coarse scale) discard many local regions of the original time series. This tends to degrade the model's classification performance if the downsampled sequences are used directly for classification (please refer to Table 2 in the Experiments section). Meanwhile, existing studies [12, 23] on label-noise learning show that DNNs with different random initializations have high consistency in classification results for clean labeled samples in the early training period, while there is disagreement in the classification of noisy labeled samples. Based on the above findings, we utilize multiple DNNs (or encoders) with different random initializations to learn embeddings of different downsampled scale sequences separately, and perform cross-scale fusion. On the one hand, we exploit complementary

information between adjacent scale embeddings to promote learned embeddings to be more robust for classification. On the other hand, we leverage the divergence in the classification of noisy labeled samples by different DNNs to mitigate the negative impact of noisy labels in training. In this way, we can utilize the cross-scale fusion embeddings for classification, thus better using the small loss criterion [11, 29] for clean label selection. Specifically, downsampling is employed to generate different scale sequences from the same time series. Given a time series $\mathcal{X}_i = \{x_1, x_2, \ldots, x_T\}$, supposing the downsampling ratio is k. Then, we only keep data points in \mathcal{X}_i as follows:

$$\mathcal{X}_{i}^{k} = \{x_{k*j}\}, j = 1, 2, \dots, \frac{T}{k},$$
(1)

where $k \in [1, T/2]$, and a larger k indicates that \mathcal{X}_i^k is coarser. As shown in Figure 2, time series with multiple downsampling intervals (i.e., k = 1, 2, 4) is treated as the input data for training. To better utilize the small-loss criterion for clean label selection, each time series sample performs cross-scale fusion from fine to coarse (i.e., $A \rightarrow B$, $B \rightarrow C$) in the embedding space, which is mathematically defined as:

$$v_{i}^{k} = f\left(r_{i}^{k} \left\|v_{i}^{k-t}\right\|\left(r_{i}^{k} - v_{i}^{k-t}\right) \left\|\left(r_{i}^{k} \cdot v_{i}^{k-t}\right)\right),$$
(2)

where r_i^k represents the single-scale embedding acquired by learning \mathcal{X}_i^k through an encoder. Meanwhile, v_i^k (or v_i^{k-t}) denotes the embedding of the time series X_i^k (or X_i^{k-t}) after performing cross-scale fusion. Here, t denotes the interval between adjacent downsampling ratios, and \parallel signifies the concatenation of two vectors to form a new vector. Notably, when k = 1, we employ the singlescale for classification training, resulting in $v_i^k = r_i^k$. By combining $(r_i^k - v_i^{k-t})$ and $(r_i^k \cdot v_i^{k-t})$ for vector concatenation, v_i^k can capture more nuanced discriminative information between r_i^k and v_i^{k-t} than that of simply concatenating r_i^k with v_i^{k-t} . The function $f(\cdot)$ represents a two-layer nonlinear network mapping function for fusing information of r_i^k and v_i^{k-t} . Additionally, v_i^k has the same dimension as r_i^k and serves as the input data for the multi-scale embedding graph learning process.

3.4 Multi-scale Embedding Graph Learning for Noisy Label Correction

We now present the multi-scale embedding graph learning module for correcting noisy labels. This module incorporates selected clean labels using label propagation theory. The process consists of two stages: graph construction and noisy label correction.

Graph Construction. It is assumed that the set of cross-fusion embeddings obtained from a batch of time series is defined as $V = \{v_1^k, v_2^k, \dots, v_M^k\}$, where M is the batch size. Intuitively, samples close to each other in the feature space have a high probability of belonging to the same class. However, in label-noise learning, v_i^k obtained from the current iterative training of the model may have unstable information, resulting in large deviations in the information of the nearest-neighbor samples of v_i^k . To address this issue, the proposed approach performs a momentum update [49] on v_i^k during training, which is defined as:

$$\bar{v}_{i}^{k}[e] = \alpha v_{i}^{k}[e] + (1-\alpha)\bar{v}_{i}^{k}[e-1],$$
(3)

where e is the current training epoch and α denotes the momentum update parameter.

The multi-scale embeddings nearest-neighbor graph can be created by using Euclidean distance among different \bar{v}_i^k . A common approach is the use of the Gaussian similarity function [45] to obtain the nearest-neighbor graph edge weight, which is defined as:

$$W_{ij} = \exp\left(-\frac{1}{2}d\left(\frac{\bar{v}_i^k}{\sigma}, \frac{\bar{v}_j^k}{\sigma}\right)\right),\tag{4}$$

where $d(\cdot)$ is the Euclidean distance function and σ is a fixed parameter. $W \in \mathbb{R}^{M \times M}$ is a symmetric adjacency matrix, and the element W_{ij} denotes the nearest-neighbor edge weight between the embedding v_i^k and v_j^k (note that larger values indicate closer proximity). Then, W is normalized based on the graph laplacians [50] to obtain $Q = D^{-1/2}WD^{-1/2}$, where $D = diag(W1_n)$ is a diagonal matrix. Specifically, the K neighbors with the largest values in each row of Q are employed to create the nearest-neighbor graph. It is noteworthy that the embeddings in each mini-batch are utilized to generate the nearest-neighbor graph, thus obtaining Q within short computational time. **Noisy Label Correction.** Specifically, small training loss samples acquired by DNNs in the early training period can be considered as clean samples, while samples with large training losses are considered as noisy ones [12, 14]. The above learning pattern of DNNs has been mathematically validated [11] (see Appendix A for details). Under this criterion, prior studies [12, 13, 23] have typically employed samples with small losses after a e_{warm} warm-up training as clean labels. Following [29], we extend the small-loss sample selection process to operate within each class, thereby enhancing the overall quality of the chosen clean labels. In our method, samples chosen with clean labels are considered labeled data, whereas unselected samples are treated as unlabeled data.

We utilize clean samples selected from time series at different scales in a cross-teaching manner (as in Figure 2). This could explore complementary information from different scale fusion embeddings to deal with noisy labels. It is supposed that there is a corresponding one-hot encoding matrix $Y \in \mathbb{R}^{M \times C}$ ($Y_{ij} \in \{0, 1\}$) for the cross-fusion embeddings V. If y_i is identified as a clean label, we employ y_i to set Y_i as a one-hot encoded label. Otherwise, all the elements in Y_i are identified as zero. Through Y, the pseudo-label of each node in the nearest-neighbor graph Q can be obtained in an iterative way based on the label propagation theory. The specific solution formula is defined as:

$$F_{t+1} = \beta Q F_t + (1 - \beta) Y,\tag{5}$$

where $F_t \in R^{M \times C}$ denotes the predicted pseudo-label of the *t*-th iteration and $\beta \in (0, 1)$ is a hyperparameter. Naturally, F_t has a closed-form solution [24] defined as follows:

$$\mathcal{F} = (I - \beta Q)^{-1} Y,\tag{6}$$

where $\mathcal{F} \in \mathbb{R}^{M \times C}$ is the final pseudo-labels and I denotes the identity matrix. Finally, the corrected label obtained for an unselected large-loss sample X_i is defined as:

$$y_i = \arg\max_{a} \mathcal{F}_i^c,\tag{7}$$

However, \mathcal{F} is the estimated pseudo-labels, which inevitably contain some incorrect labels. To address this issue, two strategies are used to improve the quality of pseudo-labels in \mathcal{F} . For the first strategy, the model continues training e_{update} epochs by using small-loss samples after e_{warm} epochs warm-up training to improve the robustness of the multi-scale embeddings. Then, the noisy label correction is performed after $(e_{warm} + e_{update})$ epoch. For the second strategy, a dynamic threshold $\varphi_e(c) = \frac{\delta_e(c)}{\max(\delta_e)}\gamma$ is utilized for each class [51] to select the pseudo-labels with a high confidence for noisy label correction, where $\delta_e(c)$ is the number of labeled samples contained in class c in the e-th epoch, and γ is a constant threshold.

Overall Training. Finally, each encoder utilizes the selected clean samples in combination with multi-scale embedding graph learning to perform noisy label correction for unselected large-loss samples. Combining the training data of the selected clean labels and those of corrected labels, the proposed Scale-teaching paradigm utilizes cross-entropy for time-series label-noise learning. Please refer to Algorithm 1 in the Appendix for the specific pseudo-code of Scale-teaching.

4 Experiments

4.1 Experiment Setup

Datasets. We use three time series benchmarks (four individual large datasets [3, 52, 53], UCR 128 archive [22], and UEA 30 archive [54]) for experiments. Among the four individual large datasets, HAR [52] and UniMiB-SHAR [3] are human activity recognition scenarios; FD-A [53] is the mechanical fault diagnosis scenario; Sleep-EDF [52] belongs to the sleep stage classification scenario. The UCR archive [22] contains 128 univariate time series datasets from different real-world scenarios. For details on the above datasets, please refer to Appendix B. Since all the datasets in three time series benchmarks are correctly labeled, we utilize a label transformation matrix T to add noises to the original correct labels [4], where T_{ij} is the probability of label *i* being flipped to *j*. We use three types of noisy labels for evaluations, namely Symmetric (Sym) noise, Asymmetric (Asym) noise, and Instance-dependent (Ins) noise. Symmetric (Asymmetric) noise randomly replaces a true label with other labels with an equal (unequal) probability. Instance noise [55] means that the noisy label is instance-dependent. Like [4, 12, 23], we use the test set with correct labels for evaluations.

Dataset	Noise Ratio	Metric	Standard	Mixup	Co-teaching	FINE	SREA	SELC	CULCU	Scale-teaching
	Sym 20%	Avg Rank	4.75	4.75	4.50	7.50	6.50	4.50	2.50	1.00
Four individual	Sym 50%	Avg Rank	4.75	4.50	4.75	7.25	5.75	4.50	3.25	1.25
large datasets	Asym 40%	Avg Rank	5.00	5.50	3.75	7.50	5.75	4.00	3.25	1.00
	Ins 40%	Avg Rank	4.75	4.25	4.25	7.25	6.00	4.75	3.50	1.00
	Sum 200	Avg Rank	4.15	4.33	3.61	7.50	6.16	3.48	3.54	3.02
	Sym 20%	P-value	1.90E-04	4.06E-05	1.90E-03	1.49E-34	1.70E-17	3.04E-03	8.57E-03	-
UCR 128 archive	Sum 500	Avg Rank	4.31	4.57	4.05	6.43	5.89	3.56	3.86	3.11
	Sym 50%	P-value	3.15E-05	1.70E-05	4.02E-04	7.48E-19	1.22E-15	1.40E-02	4.93E-03	-
	Asym 40%	Avg Rank	4.38	4.80	3.93	6.91	5.91	3.30	3.67	2.95
		P-value	1.62E-05	3.53E-07	6.10E-04	1.93E-23	9.82E-14	1.89E-02	2.24E-02	-
	Ins 40%	Avg Rank	4.05	4.52	4.02	7.04	6.18	3.30	3.77	2.95
		P-value	1.43E-05	1.81E-06	2.43E-04	9.81E-26	2.36E-17	3.27E-02	1.54E-02	-
	Sum 200	Avg Rank	5.03	5.20	3.83	6.37	4.77	3.73	4.00	2.73
	Sym 20%	P-value	6.61E-04	3.33E-04	2.69E-02	2.37E-05	1.14E-02	2.63E-02	3.93E-02	-
	Sum 500	Avg Rank	5.17	5.73	4.23	6.23	3.93	3.83	4.30	2.43
UEA 30 archive	Sylli 50%	P-value	2.98E-04	7.40E-05	1.59E-02	9.35E-05	1.67E-02	1.08E-02	3.75E-02	-
	A aum 400%	Avg Rank	5.60	4.77	4.40	6.13	4.20	4.00	3.97	2.73
- - 	Asym 40%	P-value	3.81E-03	6.17E-03	1.63E-02	9.33E-05	1.36E-02	2.62E-02	3.88E-02	-
	I 400	Avg Rank	5.20	4.77	4.33	6.60	4.27	4.20	3.77	2.60
	1115 40%	P-value	6.08E-04	2.92E-03	1.20E-02	2.55E-05	5.52E-03	1.08E-02	3.47E-02	-

Table 1: Test classification accuracy results compared with baselines on three time series benchmarks. The best results are **bold**, and the second best results are <u>underlined</u>. When P-value < 0.05, it indicates that the performance of Scale-teaching is statistically significant than the baseline.

Baselines. We select seven methods for comparative analyses, namely 1) Standard: direct training of the model using cross-entropy with all noisy labels; 2) Mixup [56]; 3) Co-teaching [12]; 4) FINE [35]; 5) SREA [4]; 6) SELC [37]; and 7) CULCU [23]. Among them, Standard, Mixup, and Co-teaching are the benchmark methods for label-noise learning. FINE, SELC, and CULCU are the state-of-the-art methods that do not need to focus on data types, and SREA is the state-of-the-art method in time series domain. In addition, for fair comparisons, all the baselines and the proposed Scale-teaching paradigm use the same encoder and classifier. We focus on the ability of different label-noise learning paradigms to cope with time series noise labels, rather than the classification performance achieved by using fully correct labels. Hence, considering the trade-off between the running time and classification performance, we choose FCN [57] as the encoder of Scale-teaching. For more details of baselines, please refer to Appendix C.

Implementation Details. Based on the experience [19, 44] in time series modeling, we utilize three different sampling intervals 1, 2, 4 as the input muti-scale series data for Scale-teaching. We use Adam as the optimizer. The learning rate is set to 1e-3, the maximum batch size is set to 256, and the maximum epoch is set to 200. e_{warm} is set to 30 and e_{update} is set to 90. α in Eq. 3 is set to 0.9, σ in Eq. 4 is set to 0.25, β in Eq. 5 is set to 0.99, the largest neighbor K is set to 10, and γ is set to 0.99. In addition, following the parameter settings suggested in [23], we linearly decay the learning rate to zero from the 80-th epoch to 200-th epoch. For a comprehensive understanding of the hyperparameter selection and the implementation of the small-loss criterion applied to Scale-teaching, please consult Appendix C. To reduce random errors, we utilize the mean test classification accuracy of the last five epochs of the model on the test set as experimental results. All the experiments are independently conducted five times with five different seeds, and the average classification accuracy and rank are reported. Finally, we build our model using PyTorch 1.10 platform with 2 NVIDIA GeForce RTX 3090 GPUs. Our implementation of Scale-teaching is available at https://github.com/qianlima-lab/Scale-teaching.

4.2 Main Results

We evaluate each time series benchmack using four noise ratios, Sym 20%, Sym 50%, Asym 40%, and Ins 40%. Due to space constraints, we only give the average ranking of all the methods on each benchmark in Table 1. Please refer to Appendix D for the specific test classification accuracies. Besides, for UCR 128 and UEA 30 archives, we use the Wilcoxon signed rank test (P-value) [58] to analyze the classification performance of baselines. As shown in Table 1, the proposed Scale-teaching paradigm achieves the best Avg Rank in all the cases. It is found that Mixup [56] and FINE [35] perform worse than the Standard method in most cases. For Mixup, the complex dynamic properties

Figure 3: Venn diagram of the average number of correctly classified samples for the different scale sequences of UCR 128 archive with Sym 20% noisy labels. The numbers in the figure indicate the complements and intersections of classification results at different scales.

Table 2: The test classification accuracy (%) results of different scale classifiers on UCR 128 archive. The best results are **bold**, and the second best results are <u>underlined</u>. When P-value < 0.05, it indicates that the performance of Scale-teaching's coarse scale classifier is significant than other classifiers.

Met	hod	w/o (Cross-scale f	usion	Scale-teaching			
Noise Ratio	Metric	Fine	Medium	Coarse	Fine	Medium	Coarse	
	Avg Acc	65.13	30.11	28.17	59.67	68.17	68.70	
Sym 20%	Avg Rank	2.38	5.09	5.37	3.20	2.17	2.11	
	P-value	1.89E-03	2.85E-37	2.07E-40	1.58E-09	3.74E-02	-	
	Avg Acc	49.61	29.01	28.87	47.75	51.93	52.87	
Asym 40%	Avg Rank	2.64	4.78	4.75	3.01	2.45	2.27	
	P-value	1.94E-03	6.78E-25	1.59E-27	1.80E-07	2.80E-02	-	

of the original time series are destroyed probably due to the mixture of two different time series mechanisms. FINE uses embeddings of the input data to select clean labels. Although FINE achieves advanced classification performance for image data, it is difficult to be used directly for time series data because its discriminative patterns are easily distorted by external noises. SREA [4] has a good performance on the UEA 30 archive, while it performs poorly on the other benchmarks. Meanwhile, Co-teaching [12], SELC [37], and CULCU [23] are more robust against time series noisy labels in different cases, further indicating that the small-loss criterion is also applicable to time series.

4.3 Multi-scale Analysis

To explain the multi-scale mechanism in the Scale-teaching paradigm, we add an ablation study based on Scale-teaching (w/o cross-scale fusion). We select the UCR 128 archive to analyze the classification results obtained by the fine, medium, and coarse scale classifiers. As shown in Figure 3, the classification results of different scale sequences have evident complementary information. Scale-teaching can effectively use complementary information between cross-scale to obtain more robust embeddings and clean labels. In response to the tendency of the coarse scale to ignore discriminative patterns in fine scale (please see Table 2), our proposed cross-scale fusion mechanism can effectively improve the classification performance of medium and coarse scales while retaining complementarity. Please refer to Appendix E for the specific classification results of Figure 3 and Table 2. In Appendix E, we also analyze the order and size of the downsampled input scale sequence for Scale-teaching.

Scale-teaching utilizes multi-scale embeddings to generate the nearest-neighbor graph, and uses clean labels selected for noisy label correction. To explore the distribution of different classes of embeddings, we employ t-SNE [59] for dimensionality reduction visualization. Specifically, we utilize the UniMiB-SHAR dataset containing Sym 20% noisy labels for visualization. As shown in Figure 4, we find that the embeddings learned by Scale-teaching are more discriminative across classes than the Standard and CULCU methods that use a single scale series for training. The above results suggest that Scale-teaching can effectively exploit the complementary information between different scales, prompting the learned embeddings to be more discriminative between classes. In addition, we choose the FD-A dataset for t-SNE visualization, and please refer to Appendix E.

Figure 4: t-SNE visualization of the learned embeddings on the UnimiB-SHAR dataset with Sym 20% noisy labels (values in parentheses are the test classification accuracies).

Figure 5: The change of loss values for clean and noisy time series samples under Aysm 40% noise labels. The solid line and shading indicate the mean and standard deviation loss values of all clean (or noisy) training samples within each epoch.

4.4 Small-loss Analysis

To analyze the application of the small-loss criterion to time series data, we visualize the change of loss values for ground-truth clean and noisy time series samples during training. Specifically, Figure 5 shows the change in loss values of the models trained by the Standard method and Scale-teaching on two UCR time series datasets. When the model is trained with the Standard method, differences can be found in the loss values of clean and noisy samples in the network early training, especially in Figure 5 (b). The Standard method makes the model gradually fit the noisy samples as the training proceeds, while Scale-teaching improves the ability of the model to handle noisy labels. To further prove its effectiveness, we selected two other UCR datasets for the loss value change analysis, which have the same pattern as Figure 5. Also, we report the HAR and UniMiB-SHAR dataset's loss value probability distributions of clean and noisy samples. For more details, please refer to Appendix F.

4.5 Ablation Study

To verify the robustness of each module in Scale-teaching, the ablation experiments have been conducted in the HAR and UniMiB-SHAR datasets, and the results are shown in Table 3. Specifically, (1) **w/o cross-scale fusion**: the cross-scale embedding fusion from fine to coarse mechanism is ablated; (2) **only single scale**: only the original time series is used for training; (3) **w/o graph learning**: the multi-scale embedding graph learning module for noisy label correction is ablated; (4) **w/o moment**: the embedding momentum update mechanism (Eq. 3) is ablated; (5) **w/o dynamic threshold**: using a dynamic threshold to select high-quality propagation pseudo-labels is ablated.

As shown in Table 3, the cross-scale fusion strategy (w/o cross-scale fusion) and the clean labels crossteaching mechanism (only single scale) can effectively improve the classification performance of Scale-teaching, especially on the UniMiB-SHAR dataset with a large number of classes. Meanwhile, in terms of label correction based on multi-scale embedding graph learning, the results of the corresponding ablation module show that improving the stability of embedding (w/o moment) and

Method	HA	AR	UniMiB-SHAR			
	Sym 50%	Asym 40%	Sym 50%	Asym 40%		
Scale-teaching	90.17	89.62	81.31	70.68		
w/o cross-scale fusion	88.47 (-1.70)	87.64 (-1.98)	73.32 (-7.99)	61.62 (-9.06)		
only single scale	89.01 (-1.06)	88.11 (-1.51)	69.89 (-11.42)	60.32 (-10.36)		
w/o graph learning	88.06 (-2.11)	87.65 (-1.97)	79.72 (-1.59)	68.87 (-1.81)		
w/o moment	89.76 (-0.41)	88.76 (-0.86)	80.57 (-0.74)	69.85 (-0.83)		
w/o dynamic threshold	89.12 (-1.05)	88.75 (-0.87)	77.42 (-3.89)	69.53 (-1.15)		

Table 3: The test classification accuracy (%) results of ablation study (values in parentheses denote drop accuracy).

Table 4: The test classification accuracy (%) results on four individual large datasets without noisy labels. The best results are **bold**, and the second best results are underlined.

Dataset	Standard	Mixup	Co-teaching	FINE	SREA	SELC	CULCU	Scale-teaching
HAR	93.29	95.42	93.77	93.13	93.02	93.76	94.75	94.72
UniMiB-SHAR	89.14	84.84	88.24	88.14	65.51	89.28	89.46	93.61
FD-A	99.93	99.91	99.96	68.22	90.25	99.82	99.95	99.96
Sleep-EDF	84.93	84.67	85.37	84.62	79.42	84.82	85.54	85.34

selecting high-quality pseudo-labels (w/o dynamic threshold) can effectively improve the performance of label correction based on graph learning.

Furthermore, we select the four individual large datasets without noisy labels for evaluation. As shown in Table 4, Scale-teaching's classification performance is still better than most baselines. It's worth mentioning that SREA [4] employs an unsupervised time series reconstruction loss as an auxiliary task, which reduces the model's classification performance without noisy labels. We also provide the corresponding test classification results for Tables 3 and 4 under the F1-score metric in Appendix G. Additionally, we find the running time of Scale-teaching, which is faster than FINE, SREA and CULCU for datasets with a larger number of samples or longer length of the sequence. We further analyze the classification performance of the proposed Scale-teaching paradigm and time series classification methods [15, 60] in Appendix G.

5 Conclusions

Limitations. The input scales of our proposed Scale-teaching paradigm can only select a fixed number of scales for training, and the running time will increase as the number of scales increases.

Conclusion. In this paper, we propose a deep learning paradigm for time-series classification with noisy labels called Scale-teaching. Experiments on the three time series benchmarks show that the Scale-teaching paradigm can utilize the multi-scale properties of time series to effectively handle noisy labels. Comprehensive analyses on multi-scale and ablation studies demonstrate the robustness of the Scale-teaching paradigm. In the future, we will explore the design of scale-adaptive time-series label-noise learning models.

Acknowledgments

We thank the anonymous reviewers for their helpful feedbacks. We thank Professor Eamonn Keogh and all the people who have contributed to the UCR 128 archive, UEA 30 archive, and the four large individual time series classification datasets. The work described in this paper was partially funded by the National Natural Science Foundation of China (Grant Nos. 62272173, 61872148, 62206041), the Natural Science Foundation of Guangdong Province (Grant Nos. 2022A1515010179, 2019A1515010768), the Science and Technology Planning Project of Guangdong Province (Grant No. 2023A0505050106), the Fundamental Research Funds for the Central Universities under grants DUT22RC(3)015. The authors would like to thank Siying Zhu, Huawen Feng, Yu Chen, and Junlong Liu from SCUT for their review and helpful suggestions.

References

- Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and Pierre-Alain Muller. Deep learning for time series classification: a review. *Data mining and knowledge discovery*, 33(4):917–963, 2019.
- [2] Mingyue Cheng, Qi Liu, Zhiding Liu, Zhi Li, Yucong Luo, and Enhong Chen. Formertime: Hierarchical multi-scale representations for multivariate time series classification. *arXiv preprint arXiv:2302.09818*, 2023.
- [3] Gentry Atkinson and Vangelis Metsis. Tsar: a time series assisted relabeling tool for reducing label noise. In *The 14th PErvasive Technologies Related to Assistive Environments Conference*, pages 203–209, 2021.
- [4] Andrea Castellani, Sebastian Schmitt, and Barbara Hammer. Estimating the electrical power output of industrial devices with end-to-end time-series classification in the presence of label noise. In *Joint European Conference on Machine Learning and Knowledge Discovery in Databases*, pages 469–484. Springer, 2021.
- [5] Benoît Frénay, Gaël de Lannoy, and Michel Verleysen. Label noise-tolerant hidden markov models for segmentation: application to ecgs. In *Joint European Conference on Machine Learning and Knowledge Discovery in Databases*, pages 455–470. Springer, 2011.
- [6] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep learning (still) requires rethinking generalization. *Communications of the ACM*, 64(3):107– 115, 2021.
- [7] Sheng Liu, Zhihui Zhu, Qing Qu, and Chong You. Robust training under label noise by over-parameterization. *arXiv preprint arXiv:2202.14026*, 2022.
- [8] Gentry Atkinson and Vangelis Metsis. A survey of methods for detection and correction of noisy labels in time series data. In *IFIP International Conference on Artificial Intelligence Applications and Innovations*, pages 479–493. Springer, 2021.
- [9] Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and Li Fei-Fei. Mentornet: Learning data-driven curriculum for very deep neural networks on corrupted labels. In *International conference on machine learning*, pages 2304–2313. PMLR, 2018.
- [10] Hwanjun Song, Minseok Kim, Dongmin Park, Yooju Shin, and Jae-Gil Lee. Learning from noisy labels with deep neural networks: A survey. *IEEE Transactions on Neural Networks and Learning Systems*, 2022.
- [11] Xian-Jin Gui, Wei Wang, and Zhang-Hao Tian. Towards understanding deep learning from noisy labels with small-loss criterion. *arXiv preprint arXiv:2106.09291*, 2021.
- [12] Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Tsang, and Masashi Sugiyama. Co-teaching: Robust training of deep neural networks with extremely noisy labels. *Advances in neural information processing systems*, 31, 2018.
- [13] Xingrui Yu, Bo Han, Jiangchao Yao, Gang Niu, Ivor Tsang, and Masashi Sugiyama. How does disagreement help generalization against label corruption? In *International Conference on Machine Learning*, pages 7164–7173. PMLR, 2019.
- [14] Junnan Li, Richard Socher, and Steven CH Hoi. Dividemix: Learning with noisy labels as semi-supervised learning. *arXiv preprint arXiv:2002.07394*, 2020.
- [15] Patrick Schäfer. The boss is concerned with time series classification in the presence of noise. *Data Mining and Knowledge Discovery*, 29:1505–1530, 2015.
- [16] Zhicheng Cui, Wenlin Chen, and Yixin Chen. Multi-scale convolutional neural networks for time series classification. arXiv preprint arXiv:1603.06995, 2016.
- [17] Patrick Schäfer and Ulf Leser. Fast and accurate time series classification with weasel. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pages 637–646, 2017.

- [18] Shiyu Chang, Yang Zhang, Wei Han, Mo Yu, Xiaoxiao Guo, Wei Tan, Xiaodong Cui, Michael Witbrock, Mark A Hasegawa-Johnson, and Thomas S Huang. Dilated recurrent neural networks. *Advances in neural information processing systems*, 30, 2017.
- [19] Zipeng Chen, Qianli Ma, and Zhenxi Lin. Time-aware multi-scale rnns for time series modeling. In *IJCAI*, pages 2285–2291, 2021.
- [20] Wensi Tang, Guodong Long, Lu Liu, Tianyi Zhou, Michael Blumenstein, and Jing Jiang. Omniscale cnns: a simple and effective kernel size configuration for time series classification. In *International Conference on Learning Representations*, 2022.
- [21] Víctor Campos, Brendan Jou, Xavier Giró-i Nieto, Jordi Torres, and Shih-Fu Chang. Skip rnn: Learning to skip state updates in recurrent neural networks. arXiv preprint arXiv:1708.06834, 2017.
- [22] Hoang Anh Dau, Anthony Bagnall, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh Gharghabi, Chotirat Ann Ratanamahatana, and Eamonn Keogh. The ucr time series archive. *IEEE/CAA Journal of Automatica Sinica*, 6(6):1293–1305, 2019.
- [23] Xiaobo Xia, Tongliang Liu, Bo Han, Mingming Gong, Jun Yu, Gang Niu, and Masashi Sugiyama. Sample selection with uncertainty of losses for learning with noisy labels. In *International Conference on Learning Representations*, 2022.
- [24] Dengyong Zhou, Olivier Bousquet, Thomas Lal, Jason Weston, and Bernhard Schölkopf. Learning with local and global consistency. *Advances in neural information processing systems*, 16, 2003.
- [25] Yisen Wang, Xingjun Ma, Zaiyi Chen, Yuan Luo, Jinfeng Yi, and James Bailey. Symmetric cross entropy for robust learning with noisy labels. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 322–330, 2019.
- [26] Xiong Zhou, Xianming Liu, Junjun Jiang, Xin Gao, and Xiangyang Ji. Asymmetric loss functions for learning with noisy labels. In *International conference on machine learning*, pages 12846–12856. PMLR, 2021.
- [27] De Cheng, Yixiong Ning, Nannan Wang, Xinbo Gao, Heng Yang, Yuxuan Du, Bo Han, and Tongliang Liu. Class-dependent label-noise learning with cycle-consistency regularization. *Advances in Neural Information Processing Systems*, 35:11104–11116, 2022.
- [28] Kilian Fatras, Bharath Bhushan Damodaran, Sylvain Lobry, Remi Flamary, Devis Tuia, and Nicolas Courty. Wasserstein adversarial regularization for learning with label noise. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2021.
- [29] Nazmul Karim, Mamshad Nayeem Rizve, Nazanin Rahnavard, Ajmal Mian, and Mubarak Shah. Unicon: Combating label noise through uniform selection and contrastive learning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 9676–9686, 2022.
- [30] Deep Patel and PS Sastry. Adaptive sample selection for robust learning under label noise. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pages 3932–3942, 2023.
- [31] Bo Han, Jiangchao Yao, Gang Niu, Mingyuan Zhou, Ivor Tsang, Ya Zhang, and Masashi Sugiyama. Masking: A new perspective of noisy supervision. *Advances in neural information processing systems*, 31, 2018.
- [32] Zhaowei Zhu, Jialu Wang, and Yang Liu. Beyond images: Label noise transition matrix estimation for tasks with lower-quality features. In *International Conference on Machine Learning*, pages 27633–27653. PMLR, 2022.
- [33] Sheng Liu, Jonathan Niles-Weed, Narges Razavian, and Carlos Fernandez-Granda. Earlylearning regularization prevents memorization of noisy labels. *Advances in neural information processing systems*, 33:20331–20342, 2020.

- [34] Mingchen Li, Mahdi Soltanolkotabi, and Samet Oymak. Gradient descent with early stopping is provably robust to label noise for overparameterized neural networks. In *International conference on artificial intelligence and statistics*, pages 4313–4324. PMLR, 2020.
- [35] Taehyeon Kim, Jongwoo Ko, JinHwan Choi, Se-Young Yun, et al. Fine samples for learning with noisy labels. Advances in Neural Information Processing Systems, 34:24137–24149, 2021.
- [36] Eric Arazo, Diego Ortego, Paul Albert, Noel O'Connor, and Kevin McGuinness. Unsupervised label noise modeling and loss correction. In *International conference on machine learning*, pages 312–321. PMLR, 2019.
- [37] Yangdi Lu and Wenbo He. Selc: Self-ensemble label correction improves learning with noisy labels. *arXiv preprint arXiv:2205.01156*, 2022.
- [38] Lifeng Shen, Zhuocong Li, and James Kwok. Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems, 33:13016– 13026, 2020.
- [39] Qianli Ma, Zhen Liu, Zhenjing Zheng, Ziyang Huang, Siying Zhu, Zhongzhong Yu, and James T Kwok. A survey on time-series pre-trained models. arXiv preprint arXiv:2305.10716, 2023.
- [40] Zhiwei Wang, Zhengzhang Chen, Jingchao Ni, Hui Liu, Haifeng Chen, and Jiliang Tang. Multiscale one-class recurrent neural networks for discrete event sequence anomaly detection. In *Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining*, pages 3726–3734, 2021.
- [41] Junchen Ye, Zihan Liu, Bowen Du, Leilei Sun, Weimiao Li, Yanjie Fu, and Hui Xiong. Learning the evolutionary and multi-scale graph structure for multivariate time series forecasting. In *Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pages 2296–2306, 2022.
- [42] Amin Shabani, Amir Abdi, Lili Meng, and Tristan Sylvain. Scaleformer: iterative multi-scale refining transformers for time series forecasting. arXiv preprint arXiv:2206.04038, 2022.
- [43] Huiqiang Wang, Jian Peng, Feihu Huang, Jince Wang, Junhui Chen, and Yifei Xiao. Micn: Multi-scale local and global context modeling for long-term series forecasting. In *The Eleventh International Conference on Learning Representations*, 2023.
- [44] Tian Zhou, Ziqing Ma, Qingsong Wen, Liang Sun, Tao Yao, Rong Jin, et al. Film: Frequency improved legendre memory model for long-term time series forecasting. arXiv preprint arXiv:2205.08897, 2022.
- [45] Fei Wang and Changshui Zhang. Label propagation through linear neighborhoods. In Proceedings of the 23rd international conference on Machine learning, pages 985–992, 2006.
- [46] Yanbin Liu, Juho Lee, Minseop Park, Saehoon Kim, Eunho Yang, Sung Ju Hwang, and Yi Yang. Learning to propagate labels: Transductive propagation network for few-shot learning. arXiv preprint arXiv:1805.10002, 2018.
- [47] Konstantinos Kamnitsas, Daniel Castro, Loic Le Folgoc, Ian Walker, Ryutaro Tanno, Daniel Rueckert, Ben Glocker, Antonio Criminisi, and Aditya Nori. Semi-supervised learning via compact latent space clustering. In *International conference on machine learning*, pages 2459–2468. PMLR, 2018.
- [48] Ahmet Iscen, Giorgos Tolias, Yannis Avrithis, and Ondrej Chum. Label propagation for deep semi-supervised learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 5070–5079, 2019.
- [49] Samuli Laine and Timo Aila. Temporal ensembling for semi-supervised learning. *arXiv preprint arXiv:1610.02242*, 2016.
- [50] Fan RK Chung. Spectral graph theory, volume 92. American Mathematical Soc., 1997.

- [51] Bowen Zhang, Yidong Wang, Wenxin Hou, Hao Wu, Jindong Wang, Manabu Okumura, and Takahiro Shinozaki. Flexmatch: Boosting semi-supervised learning with curriculum pseudo labeling. Advances in Neural Information Processing Systems, 34:18408–18419, 2021.
- [52] Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, Chee Keong Kwoh, Xiaoli Li, and Cuntai Guan. Time-series representation learning via temporal and contextual contrasting. *arXiv preprint arXiv:2106.14112*, 2021.
- [53] Xiang Zhang, Ziyuan Zhao, Theodoros Tsiligkaridis, and Marinka Zitnik. Self-supervised contrastive pre-training for time series via time-frequency consistency. *arXiv preprint arXiv:2206.08496*, 2022.
- [54] Anthony Bagnall, Hoang Anh Dau, Jason Lines, Michael Flynn, James Large, Aaron Bostrom, Paul Southam, and Eamonn Keogh. The uea multivariate time series classification archive, 2018. arXiv preprint arXiv:1811.00075, 2018.
- [55] Jiacheng Cheng, Tongliang Liu, Kotagiri Ramamohanarao, and Dacheng Tao. Learning with bounded instance and label-dependent label noise. In *International Conference on Machine Learning*, pages 1789–1799. PMLR, 2020.
- [56] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk minimization. *arXiv preprint arXiv:1710.09412*, 2017.
- [57] Zhiguang Wang, Weizhong Yan, and Tim Oates. Time series classification from scratch with deep neural networks: A strong baseline. In 2017 International joint conference on neural networks (IJCNN), pages 1578–1585. IEEE, 2017.
- [58] Janez Demšar. Statistical comparisons of classifiers over multiple data sets. The Journal of Machine learning research, 7:1–30, 2006.
- [59] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of machine learning research*, 9(11), 2008.
- [60] Angus Dempster, François Petitjean, and Geoffrey I Webb. Rocket: exceptionally fast and accurate time series classification using random convolutional kernels. *Data Mining and Knowledge Discovery*, 34(5):1454–1495, 2020.
- [61] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra Perez, and Jorge Luis Reyes Ortiz. A public domain dataset for human activity recognition using smartphones. In *Proceedings* of the 21th international European symposium on artificial neural networks, computational intelligence and machine learning, pages 437–442, 2013.
- [62] Daniela Micucci, Marco Mobilio, and Paolo Napoletano. Unimib shar: A dataset for human activity recognition using acceleration data from smartphones. *Applied Sciences*, 7(10):1101, 2017.
- [63] Christian Lessmeier, James Kuria Kimotho, Detmar Zimmer, and Walter Sextro. Condition monitoring of bearing damage in electromechanical drive systems by using motor current signals of electric motors: A benchmark data set for data-driven classification. In *PHM Society European Conference*, volume 3, 2016.
- [64] Ralph G Andrzejak, Klaus Lehnertz, Florian Mormann, Christoph Rieke, Peter David, and Christian E Elger. Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. *Physical Review E*, 64(6):061907, 2001.
- [65] Hassan Ismail Fawaz, Benjamin Lucas, Germain Forestier, Charlotte Pelletier, Daniel F Schmidt, Jonathan Weber, Geoffrey I Webb, Lhassane Idoumghar, Pierre-Alain Muller, and François Petitjean. Inceptiontime: Finding alexnet for time series classification. *Data Mining and Knowledge Discovery*, 34(6):1936–1962, 2020.

Supplementary Material: Scale-teaching: Robust Multi-scale Training for Time Series Classification with Noisy Labels

A Small-loss Criterion

DNNs have been widely known to first learn simple and generalized patterns, which is achieved by learning clean data. After that, the networks gradually overfit noisy ones. In other words, when we train a model with a dataset containing incorrectly labeled samples, we can consider the samples with small training losses as clean ones and use them to update the model. Formally, let f^* be the target concept which determines the true label of x and model $g^* = g(x; \Theta^*)$ minimizing the expected loss, i.e.,

$$\Theta^* = \arg\min\mathbb{E}_{(\boldsymbol{x},\tilde{y})} \left[\ell_{CE}(g(\boldsymbol{x};\Theta),\tilde{y}) \right].$$
(8)

Then, the small-loss criterion can be stated as follows[1]:

Theorem 1. Suppose g is ϵ -close to g^* , i.e., $||g - g^*||_{\infty} = \epsilon$, for two examples $(\mathbf{x}_1, \tilde{y})$ and $(\mathbf{x}_2, \tilde{y})$, assume $f^*(\mathbf{x}_1) = \tilde{y}$ and $f^*(\mathbf{x}_2) \neq \tilde{y}$, if T satisfies the diagonally-dominant condition $T_{ii} > \max \{\max_{j \neq i} T_{ij}, \max_{j \neq i} T_{ji}\}, \forall i$, and $\epsilon < \frac{1}{2} \cdot (T_{\tilde{y}\tilde{y}} - T_{f^*(\mathbf{x}_2)\tilde{y}})$, then $\ell_{CE}(g(\mathbf{x}_1), \tilde{y}) < \ell_{CE}(g(\mathbf{x}_2), \tilde{y})$.

The work [11] provides the proof of this theorem. It shows that during training, the model can select clean samples according to the loss values. The reason is that the loss values of clean samples among the samples with the same observed labels are smaller. It is worth noting that the theorem is under the assumption of the class-dependent noise type and requires the transition matrix to satisfy the diagonally-dominant condition. Additionally, the finite data may also make the conditions of the theorem difficult to hold because the model g may be far away from g^* .

B Dataset Information

To evaluate the robustness of our proposed Scale-teaching and baselines on the time-series label-noise learning task, we selected three benchmark time-series datasets for experimental analysis.

B.1 Four individual large datasets

The statistical information of the four individual time series datasets is shown in Table 5. And the specific dataset information is as follows:

Human Activity Recognition (HAR)

The HAR dataset [52, 61] is collected from 30 students performing six human actions (i.e., walking, walking upstairs, downstairs, standing, sitting, and lying down) by wearing sensors.

University of Milano Bicocca Smartphone-based Human Activity Recognition (UniMiB SHAR)

The UniMiB SHAR dataset [3, 62] is human activity information collected at a sampling rate of 50 Hz from volunteers with a smartphone with an accelerometer sensor in the front pocket of their pants. Specifically, each accelerometer entry is labeled by specifying the type of ADL (e.g., walking, sitting, or standing) or the type of fall (e.g., forward, fainting, or backward).

Faulty Detection Condition A (FD-A)

The FD-A dataset [52, 63] is generated by an electromechanical drive system that monitors the condition of rolling bearings and detects their failure. Each rolling bearing can be classified into three categories: undamaged, inner damaged, and externally damaged.

Sleep Stage EEG Signal Classification (Sleep-EDF)

The Sleep-EDF dataset [52, 64] includes the whole night PSG sleep recordings, which contain five EEG sleep signal recordings: Wake (W), Non-rapid eye movement (N1, N2, N3), and Rapid Eye Movement (REM).

Dataset	# Train	# Test	Length	# Variables	# Classes
HAR	7352	2947	128	9	6
Sleep-EDF	25612	8910	3000	1	5
FD-A	8184	2728	5120	1	3
UniMiB-SHAR	9416	2354	453	1	17

Table 5: A summary of four individual large time series datasets used in the experiments.

B.2 UCR 128 Archive

The UCR time series archive [22] contains 128 univariate datasets and is widely used for classification in the time series mining community. Each UCR dataset includes a single training set and a single test set, and each time series sample has been z-normalized. In addition, we uniformly use the mean-imputation method to preprocess the datasets that contain missing values. For detailed information about UCR datasets, please refer to https://www.cs.ucr.edu/~eamonn/time_series_data_2018/.

B.3 UEA 30 Archive

The UEA time series archive [54] contains 30 multivariate datasets, mainly derived from Human Activity Recognition, Motion classification, ECG classification, EEG/MEG classification, Audio Spectra Classification, and other realistic scenarios. Each dataset contains a partitioned training set and a test set. In addition, we use the mean-imputation method to deal with datasets with missing values. For detailed information about UEA datasets, please refer to https://www.timeseriesclassification.com/dataset.php.

C Baselines

To analyze the performance and effectiveness of Scale-teaching on time-series label-noise learning, we selected seven baselines for comparative analysis. The specific information is as follows.

- Standard directly employs all samples in the training set containing noisy labels and performs supervised classification training using cross-entropy loss. Then, the trained model is used to make predictions on the test set.
- Mixup [56] trains a neural network on convex combinations of pairs of time series samples and their labels (whatever is clean or noisy). For the specific open source code, please refer to https://github.com/facebookresearch/mixup-cifar10.
- Co-teaching [12] trains two deep neural networks simultaneously, and lets them teach each other given every mini-batch with selected clean labels based on a small-loss criterion. For the specific open source code, please refer to https://github.com/bhanML/Co-teaching.
- FINE [35] utilizes a novel detector for clean label selection. Especially, FINE focus on each data point's latent representation dynamics and measures the alignment between the latent distribution and each representation using the eigen decomposition of the data gram matrix. For the specific open source code, please refer to https://github.com/Kthyeon/FINE_official.
- SREA [4] employs a novel multi-task deep learning approach for time series noisy label correction that jointly trains a classifier and an autoencoder with a shared embedding representation. For the specific open source code, please refer to https://github.com/Castel44/SREA.
- SELC [37] utilizes a simple and effective method self-ensemble label correction (SELC) to progressively correct noisy labels and refine the model. For the specific open source code, please refer to https://github.com/MacLLL/SELC.
- CULCU [23] incorporates the uncertainty of losses by adopting interval estimation instead of point estimation of losses to select clean labels based on Co-teaching. CULCU has two

versions: CNLCU-S and CNLCU-H, where CNLCU-S uses soft labels for training and CNLCU-H uses hard labels for training. According to the original paper's [23] experimental results, CNLCU-S has a better performance. Hence, we use CNLCU-S as a baseline. For the specific open source code, please refer to https://github.com/xiaoboxia/CNLCU.

Finally, based on the source code of the above baselines, we provide the reproduction source code of all baselines, as well as the source code of our proposed Scale-teaching (refer to Algorithm 1). For the specific open-source code, please refer to our GitHub repository https://github.com/ qianlima-lab/Scale-teaching.

Our experiment contains 162 datasets. It would be time-consuming to perform hyperparameter selection for each dataset. Therefore, the hyperparameters of Scale-teaching are not carefully tuned for each dataset, and most of the hyperparameters are set based on the default hyperparameters of related works. The learning rate and maximum epoch are set based on the parameters of existing noise-label learning methods, such as FINE and CULCU. α in Eq. 3, σ in Eq. 4 and β in Eq. 5 are set based on the default hyperparameters of related label propagation works. e_{warm} is based on FINE settings. e_{update} , γ and batch size are based on manual empirical settings without specific hyperparameter analysis. The largest neighbor K is set based on human experience, and we had a simple test on several datasets, and found that a larger value of does not improve the classification performance, but instead increases the running time of the model.

For the implementation of small-loss criterion in Scale-teaching, we select small-loss samples within each class from the mini-batch data as clean labeled data. For stduies [12, 13], they use warm-up training to decrease $\lambda(e)$ from 1 to $1 - \eta$. $\lambda(e)$ denotes the selection ratio of small-loss samples within the mini-batch data without considering the difference of class, and η is the ratio of noise labels in the training set. Based on the above criterion, the current work [29] uses the Jensen-Shannon divergence to calculate difference d between the classification result p_i of sample χ_i^c and the observation label \hat{y}_i . Following [29], for each class c, we consider the observed label of χ_i^c as a clean label when the d of the training sample χ_i^c is less than d_{avg}^e after a e_{warm} warm-up training. d_{avg}^e denotes the average of ds of all the training samples when the epoch is e. We observed that using the Jensen-Shannon divergence method [29] and directly employing stduies [12, 13] for clean sample selection within each class have distinct strengths and weaknesses when applied to various time series datasets. In our study, we implemented the strategy of stduies [12, 13] for clean sample selection within each class on four individual large datasets and the UCR 128 archive. Meanwhile, the Jensen-Shannon divergence method [29] was applied to the UEA 30 archive for clean sample selection within each class.

D Details of Main Results

For the four individual large time series datasets, the specific classification results of our proposed Scale-teaching paradigm and baselines are shown in Table 6. For the UCR 128 archive, the specific classification results for all methods with different noise ratios are shown in Table 11 (Sym 20%), 12 (Sym 50%), 13 (Asym 40%), and 14 (Ins 40%). For the UEA 30 archive, the specific classification results for all methods at different noise ratios are shown in Tables 15 (Sym 20%), 16 (Sym 50%), 17 (Asym 40%), and 18 (Ins 40%). For layout and reading convenience, we only give the average classification accuracy for multiple runs of all methods without standard deviation on the UCR 128 archive and UEA 30 archive.

E Details of Multi-scale Results

To analyze the multi-scale mechanism in the Scale-teaching paradigm, we provide the classification performance of classifiers corresponding to fine, medium and coarse scales, as shown in Tables 19 and 21. And the classification results by ablation cross-scale fusion mechanism based on the Scale-teaching are shown in Tables 20 and 22. For the abbreviations in Tables 19, 20, 21 and 22, such as $a_t_b_f$, b_fc_t , and $c_t_a_f$, where *a* denotes fine classifier, *b* denotes medium classifier, and *c* denotes coarse classifier, and *t* and *f* represent correct and incorrect classification results, respectively. For example, $a_t_b_f$ indicates the number of samples correctly predicted by the fine classifier and incorrectly predicted by the medium classifier. In addition, we provide t-SNE [59] visualization on the FD-A dataset with Sym 50% noisy labels (as in Figure 6) to explore the distribution of different classes of embeddings. Figure 6 shows that the cross-scale fusion mechanism in Scale-teaching for

Algorithm 1 The proposed Scale-teaching paradigm.

Input: encoders $[w_A, w_B, w_C]$, classifiers $[c_A, c_B, c_C]$, fine-scale series x_A , medium-scale series x_B , and coarse-scale series x_C

Output: [w_A, w_B, w_C] and [c_A, c_B, c_C]
Note: For clarity, our analysis utilizes three distinct scales for training, but this approach can be extended to incorporate multiple scales.
1: Step one: Obtain single-scale embeddings r_A, r_B, r_C; r_A = w_A(x_A);

 $r_B = w_B(x_B);$

 $r_C = w_C(x_C);$

2: **Step two:** Obtain cross-scale embeddings v_A , v_B , v_C ; $v_A = r_A$;

 $v_B = \text{Eq. } 2(r_B, v_A);$

 $v_C = \text{Eq. } 2(r_C, v_B);$

3: Step three: Obtain clean labels y_A , y_B , y_C for cross-teaching training; $y_A = c_C(v_C)$ via small loss criterion;

 $y_B = c_A(v_A)$ via small loss criterion;

 $y_C = c_B(v_B)$ via small loss criterion;

4: Step four: Obtain corrected labels yc_A , yc_B , yc_C for classification training;

 $yc_A = \text{Eq. } 6(v_A, y_A)$ via label propagation;

 $yc_B = \text{Eq. } 6(v_B, y_B)$ via label propagation;

 $yc_C = \text{Eq. } 6(v_C, y_C)$ via label propagation;

5: Step five: Overall training; Update encoder w_A and classifier c_A via cross-entropy loss $(v_A, y_A \& yc_A)$; Update encoder w_B and classifier c_B via cross-entropy loss $(v_B, y_B \& yc_B)$; Update encoder w_C and classifier c_C via cross-entropy loss $(v_C, y_C \& yc_C)$.

Table 6: The detailed test classification accuracy (%) compared with baselines on four individual large datasets (values in parentheses are standard deviations). The best results are in **bold**.

	, and	5 puren	meses are	5 cm. auf a	actintons	,			
Dataset	Noise	Standard	Mixup	Co-teaching	FINE	SREA	SELC	CULCU	Scale-teaching
	Sym 20%	92.13 (0.64)	92.52 (1.05)	92.28 (0.67)	92.15 (0.55)	92.53 (1.41)	92.88 (0.82)	92.66 (0.37)	93.93 (0.66)
IIAD	Sym 50%	83.99 (2.89)	76.75 (1.88)	89.90 (1.63)	88.42 (3.83)	91.38 (0.59)	90.37 (0.73)	89.91 (2.19)	90.17 (0.67)
HAK	Asym 40%	75.59 (5.39)	66.91 (2.61)	87.67 (2.52)	83.87 (5.98)	88.98 (0.57)	87.67 (2.39)	87.22 (1.22)	89.62 (0.73)
	Ins 40%	83.56 (2.82)	73.86 (0.89)	90.98 (0.96)	90.77 (0.33)	91.25 (1.11)	91.02 (1.53)	91.15 (1.43)	91.58 (1.47)
	Sym 20%	87.07 (0.95)	82.13 (1.08)	80.54 (2.16)	26.63 (3.07)	51.48 (3.65)	68.52 (2.86)	82.80 (1.87)	90.69 (1.02)
U-MD CHAD	Sym 50%	79.37 (0.41)	77.77 (1.59)	66.33 (2.85)	18.92 (4.61)	47.62 (3.33)	67.65 (3.31)	66.36 (3.91)	81.31 (0.67)
UIIMIB-SHAK	Asym 40%	63.59 (4.13)	66.32 (1.93)	60.25 (1.45)	19.18 (4.37)	51.16 (3.01)	55.65 (1.59)	60.45 (1.65)	70.68 (2.15)
	Ins 40%	55.83 (8.14)	56.97 (6.48)	54.09 (3.79)	11.18 (4.75)	51.5 (1.98)	54.62 (6.63)	53.90 (4.75)	71.14 (3.99)
	Sym 20%	98.89 (0.05)	99.78 (0.06)	99.83 (0.08)	78.13 (21.47)	89.92 (0.68)	99.67 (0.09)	99.85 (0.08)	99.93 (0.04)
	Sym 50%	96.63 (1.16)	98.73 (0.62)	99.04 (0.32)	70.65 (17.53)	82.18 (0.01)	98.59 (0.25)	99.06 (0.29)	99.38 (0.53)
FD-A	Asym 40%	96.12 (1.65)	93.50 (1.85)	97.06 (4.05)	61.04 (14.24)	90.23 (0.02)	98.24 (0.58)	98.91 (0.42)	99.55 (0.36)
	Ins 40%	99.36 (0.47)	99.55 (0.10)	99.51 (0.19)	67.81 (12.95)	88.63 (0.02)	99.36 (0.23)	99.53 (0.22)	99.82 (0.06)
Sleep-EDF	Sym 20%	85.01 (0.09)	84.31 (0.36)	84.81 (0.14)	81.21 (0.28)	72.79 (0.99)	84.32 (0.33)	85.23 (0.14)	85.56 (0.35)
	Sym 50%	83.58 (0.74)	83.61 (0.39)	83.39 (0.25)	78.17 (4.42)	72.78 (1.30)	83.06 (0.29)	84.02 (0.53)	84.59 (0.97)
	Asym 40%	79.62 (2.39)	77.40 (1.92)	82.87 (0.40)	64.77 (2.10)	72.23 (0.89)	82.50 (1.07)	83.05 (0.64)	83.87 (0.38)
	Ins 40%	84.35 (0.38)	84.25 (0.31)	84.62 (0.28)	79.68 (2.55)	71.99 (1.24)	83.78 (0.28)	84.86 (0.22)	85.03 (0.61)

Figure 6: t-SNE visualization of the learned embeddings on the FD-A dataset with Sym 50% noisy labels (values in parentheses are the test classification accuracies).

Figure 7: Multi-scale sampling strategies analysis under Sym 50% noisy labels.

time-series label-noise learning can make the embeddings of different classes more discriminative, thus facilitating clean sample selection and noisy label correction.

Impact of downsampling scale sequence list. Scale-teaching can be performed using a variety of different downsampling scales for label-noise learning. Based on the experience of [19, 44] on time series classification and prediction tasks, we utilize the downsampling scales of [1,2,4] for the experimental analyses of Scale-teaching. However, for real-world scenarios that actually contain noisy labels, it is generally not possible to perform hyperparametric analyses using a clean-labeled validation set. To facilitate the analysis, in this paper, we use the classification performance of the test set for multi-scale hyperparameter analyses. However, to avoid test set information leakage, we do not use the hyperparameter analysis result for Scale-teaching in our experiments. We use two multi-scale sampling strategies for analyses, which are (1) {[1,2], [1,2,3], [1,2,3,4], [1,2,3,4,5]}; (2) {[1,3], [1,2,4], [1,2,4,8], [1,2,4,8,16]}. From Figure 7, we find that Scale-teaching using four different scales for training has the highest classification accuracy, which indicates that more input scales do not necessarily make the classification performance better. In addition, using three or four scales of sequences can effectively improve the classification performance of Scale-teaching compared with using two different scales.

Impact of input scales of sequences order. Scale-teaching employs a finer-to-coarser strategy for cross-scale embedding fusion. Intuitively, when a single scale is used for classification, the original single scale (finer) time series is better overall because it does not discard the original sequence information compared to coarser scale time series. Therefore, Scale-teaching is trained using the finer-to-coarser cross-scale fusion strategy. To analyze the difference in classification performance between different fusion directions, we subtract the classification accuracy using the finer-to-coarser and coarser-to-finer training approaches, and the specific results are shown in Figure 8. We can find that the classification performance of finer-to-coarser is better overall, which is due to its ability to use a single fine-scale sequence with an excellent classification performance from the beginning to gradually promote the classification performance of multiscale fusion embeddings.

Figure 9: The change of loss values for clean and noisy time series samples under Aysm 40% noise labels. The solid line and shading indicate the mean and standard deviation loss values of all clean (or noisy) training samples within each epoch.

F Small-loss Visualization

The small-loss criterion has been extensively validated for clean label selection in label-noise learning for computer vision. To further analyze the application of the small-loss criterion in time series data, we provide the change of loss values of the models trained by the Standard method and Scale-teaching on Adiac and CricketZ UCR datasets (as in Figure 9). Also, we visualize the probability distributions of the ground-truth clean and noisy (corrupted) sample loss values on the test set with different training strategies. Specifically, Figures 10 and 11 show the loss probability distributions of the models trained by different strategies on the HAR dataset and UniMiB-SHAR with Aysm 40% noisy labels. Both red (clean) and blue (corrupted) in Figure 10 and Figure 11 contain two peaks, which indicate that some correctly labeled samples are still difficult to learn (large loss) and some incorrectly labeled samples are also easy to learn (small loss). Compared with the Standard method (Figure 10 (a) and Figure 11 (a)), Scale-teaching (Figure 10 (b) and Figure 11 (b)) can clearly distinguish clean and noisy samples by the loss value distribution, further validating the robustness of the multi-scale embeddings to cope with time-series noisy labels.

G Other Analysis

The test F1-score results of ablation study. Following [4], we select the averaged F1-score on the test set as a new metric for ablation analysis in Section 4.5. Hence, we give the corresponding test classification F1-score (%) in Tables 7 and 8.

Running time analysis. We select two datasets for running the time-consuming analysis, the FD-A dataset with the largest sequence length and the Sleep-EDF dataset with the largest samples. We performed the running time statistics on the NVIDIA GeForce RTX 3090 GPU using all baselines, and the results are shown in Table 9. On the FD-A dataset with the longest sequence length, Coteaching and CULCU take essentially twice as long to run as the Stanard method because they use

Figure 10: The loss value probability distributions visualization on HAR dataset with Asym 40% noisy labels.

Figure 11: The loss value probability distributions visualization on UniMiB-SHAR dataset with Asym 40% noisy labels.

Table 7: The test classification F1-score (%) results of ablation study (values in parentheses denote drop F1-score).

Method	HA	AR	UniMiB-SHAR			
	Sym 50%	Asym 40%	Sym 50%	Asym 40%		
Scale-teaching	90.05	89.14	77.56	65.89		
w/o cross-scale fusion	88.16 (-1.89)	87.05 (-2.09)	68.23 (-9.33)	57.76 (-8.13)		
only single scale	87.56 (-2.49)	86.75 (-2.39)	66.87 (-10.69)	54.12 (-11.77)		
w/o graph learning	87.79 (-2.26)	87.41 (-1.73)	74.62 (-2.94)	63.15 (-2.74)		
w/o moment	89.34 (-0.71)	88.27 (-0.87)	76.67 (-0.89)	64.92 (-0.97)		
w/o dynamic threshold	88.93 (-1.12)	88.29 (-0.85)	73.11 (-4.45)	64.76 (-1.17)		

Table 8: The test classification F1-score (%) results on four individual large datasets without noisy labels. The best results are **bold**, and the second best results are <u>underlined</u>.

Dataset	Standard	Mixup	Co-teaching	FINE	SREA	SELC	CULCU	Scale-teaching
HAR	93.27	95.39	93.75	93.19	92.91	93.71	94.72	94.18
UniMiB-SHAR	86.37	80.17	84.43	84.03	66.54	89.19	86.45	93.62
FD-A	99.93	99.91	99.96	64.05	90.14	99.82	99.95	99.96
Sleep-EDF	81.99	82.11	82.52	83.07	77.67	82.17	83.26	84.76

Table 9: Training time (hours) analysis using the FD-A and Sleep-EDF datasets with Asym 40% noisy labels.

Dataset	Standard	lard Mixup	Co-teaching	FINE	SREA	SELC	CULCU	S	Scale-teaching			
	Standard							[1,2,4]	[1,4,16]	[1,8,32]		
FD-A Sleep-EDF	0.37 0.54	0.42 0.83	0.79 1.09	0.63 2.04	0.90 1.64	0.42 0.73	0.87 1.47	1.06 2.02	0.86 1.76	0.82 1.60		

Table 10: Comparison with classification methods without label noise learning strategy. The best test classification accuracy (%) results are **bold**, and the second best results are underlined.

Dataset		HAR						FD-A		
Method	0	Sym 20%	Sym 50%	Asym 40%	Ins 40%	0	Sym 20%	Sym 50%	Asym 40%	Ins 40%
Boss [15]	72.34	62.55	56.11	53.29	52.34	69.75	64.75	57.95	61.99	62.25
Rocket [60]	95.29	92.93	90.04	82.53	90.43	99.99	99.71	97.01	89.75	97.98
FCN [57]	93.74	92.13	83.99	75.59	83.56	99.56	98.89	96.63	96.12	99.36
Scale-teaching	94.72	93.93	90.17	89.62	91.58	<u>99.98</u>	99.93	99.38	99.55	99.82

two encoders. Furthermore, although SREA uses a single network training, it utilizes a decoder for the unsupervised reconstruction task of the original time series, which significantly increases training time on the FD-A dataset with longer sequences. running time is higher than Co-teaching. The Scale-teaching paradigm uses multiple encoders for training and has an additional noisy label correction module, which is expected to increase the training time. Nevertheless, the larger the sampling scale (coarse scale) of the training data used by the Scale-teaching paradigm, the lower the training elapsed time of its model. For example, with input scales of [1, 8, 32], the training time of Scale-teaching is lower than that of CULCU and SREA. On the SleepEEG dataset with the largest number of samples, we find that FINE with an encoder has a higher running time because FINE using all training samples to select clean labels is time-consuming when the sample size is large. In contrast, the runtime of Scale-teaching is lower than SREA.

It is worth noting that when Scale-teaching is trained using two scales, such as [1,2] or [1,16], its training run time decreases further. From the analysis in Appendix E, it is clear that Scale-teaching using three different scales generally performs better than two scales for classification with noisy labels. In addition, the classification performance of [1,2,4], [1,4,16], and [1,8,32] when Scale-teaching is trained using three different scales has less difference in classification performance on datasets with longer sequences (e.g., FD-A and Sleep-EDF). The above results indicate that the Scale-teaching paradigm has a greater advantage in runtime on time-series datasets with longer sequences.

Robustness analysis. Three time-series supervised classification methods (Boss [15], Rocket [60] and FCN [57]) and the Scale-teaching paradigm are chosen for robustness analysis against time-series noise labels. Boss [15] is a time series classification method based on similarity search, which can effectively mitigate the negative impact of noise (e.g., adding Gaussian noise) in time series values on classification. Rocket [60] uses a large number of randomly initialized convolution kernels to extract time series features, and employs the extracted features to classify time series using a machine learning classifier (e.g., Ridge classifier). FCN [57] is the encoder used by Scale-teaching, which is a time series classification method based on DNNs. As shown in Table 10, the classification performance of the Scale-teaching paradigm using FCN as encoders is better than that of Boss, Rocket and FCN in the presence of noisy labels. It is worth noting that both Boss and Rocket training processes are independent of the optimization of DNNs. However, their classification performance is still reduced due to the influence of noisy labels. In addition, the encoder of the Scale-teaching paradigm can be designed flexibly, such as using ResNet [1], InceptionTime [65] and OS-CNN [20] in the field of time series classification. In other words, using better robustness encoders, the classification performance of Scale-teaching can be further improved with time-series noise labels.

ID	Dataset	Standard	MixUp	Co-teaching	FINE	SREA	SELC	CULCU	Scale-teaching
1	ACSF1 Adiac	71.44	73.28	67.00	10.00	54.00 3.07	70.40 19.18	73.68 33.06	66.20 52.43
3	AllGestureWiimoteX	49.68	45.01	50.67	36.09	10.00	46.43	44.25	56.66
5	AllGestureWiimoteZ	55.09	55.29	52.34	14.03	20.09	51.00	47.42	64.31
6	ArrowHead	65.53	67.77 51.73	60.72	32.11	61.14 50.67	66.74 49.87	62.31	61.71 79 33
8	Beef	46.67	47.33	49.33	20.00	33.33	46.67	44.47	38.00
9 10	BeetleFly BirdChicken	75.00	72.20 86.80	78.00 89.50	50.00 50.00	81.00 75.00	75.00 86.00	68.00 83.50	85.00 95.00
11	CBF	82.47	83.82	88.81	33.38	84.18	83.53	76.75	87.24
12	Car Chinatown	70.13	66.40 81.55	83.28	25.00 36.52	23.33 72.46	65.00 82.43	53.90 83.54	67.33 73.91
14	ChlorineConcentration	60.87	61.19	59.64	47.34	55.08	58.51	57.82	61.17
16	Coffee	83.43	87.43	87.43	49.29	69.29	91.43	88.57	100.00
17	CricketX	72.06	73.49	71.44	57.04	70.00	74.40 53.50	71.24	72.00
19	CricketY	56.80	44.05	31.64	8.62	13.08	49.74	59.88	59.23
20 21	CricketZ	51.53	37.46 73.24	37.82 73.29	8.46 69.97	26.41 65.65	45.13	53.71 72.25	69.95 74.44
22	DiatomSizeReduction	63.05	71.27	61.54	69.72	67.32	70.13	59.29	82.68
23 24	DistalPhalanxOutlineAgeGroup DistalPhalanxOutlineCorrect	72.10	69.20	75.91	50.50 48.33	42.75	72.09	72.83	79.13
25	DistalPhalanxTW	66.78	66.16	64.72	29.78	58.27	67.34	65.74	62.59
20	DodgerLoopGame	57.14	62.03	65.71	50.43	52.17	68.84	66.16	50.00
28	DodgerLoopWeekend ECG200	85.07	80.29	85.61	45.22	33.33	85.80 79.80	86.16	86.96 77.00
30	ECG5000	92.37	91.23	92.93	44.55	90.92	92.76	93.13	94.11
31 32	ECGFiveDays EOGHorizontalSignal	49.08	77.19 42.81	74.38 47.42	49.71 41.22	71.17 10.36	76.54 40.61	64.21 41.91	60.49 52.49
33	EOGVerticalSignal	34.34	30.57	33.12	30.39	11.48	30.66	30.06	37.18
34 35	ElectricDevices	72.17	68.78 72.97	74.53	45.04 63.62	74.82 64.35	72.81	72.48	74.82
36	EthanolLevel	47.78	37.52	46.61	29.00	25.20	33.20	46.66	57.12
38	FaceFour	71.23	78.68	65.39	24.09	54.55	75.68	65.00	51.59
39 40	FacesUCR FiftyWords	77.40	60.71 28.03	65.10 38.80	10.35	34.73	69.41 32.09	75.38	80.37
41	Fish	68.94	69.71	69.77	13.60	16.00	61.71	60.65	72.11
42 43	FordA FordB	89.74	90.00 75.89	90.02 76.21	64.18 62.91	86.20 59.63	90.76 77.90	90.34 75.57	92.35
44	FreezerRegularTrain	91.76	95.56	92.97	61.60	76.21	88.20	93.81	84.07
45 46	FreezerSmallTrain Fungi	39.87	22.11	24.62	64.18 24.52	23.66	69.52 31.18	75.23 44.09	26.34
47	GestureMidAirD1	31.31	28.62	25.31	24.00	19.23	33.85	32.20	43.23
49	GestureMidAirD2	16.31	14.49	14.52	14.00	8.46	15.38	20.08	23.85
50	GesturePebbleZ1 GesturePebbleZ2	54.88	52.07 73.11	44.12 74.44	29.30 32.78	57.21 57.72	59.88 75.95	78.35 75.09	72.56
52	GunPoint	71.79	76.53	69.47	49.87	57.33	81.47	70.24	76.00
53 54	GunPointAgeSpan GunPointMaleVersusFemale	74.33	85.72 92.68	75.57 93.82	53.54 68.48	50.63 47.47	83.61 94.24	89.11 96.65	58.23
55	GunPointOldVersusYoung	95.96	99.62	98.90	100.00	47.62	99.56	100.00	100.00
50 57	HandOutlines	76.53	70.30	75.97	58.66	64.05	68.92	70.29	82.05
58 59	Haptics Herring	38.61 54.94	39.27 62.69	38.06 59.69	19.87	26.62 59.38	37.27	36.81	38.70
60	HouseTwenty	79.52	83.13	83.12	48.40	57.98	84.03	84.81	67.39
61 62	InlineSkate InsectFPGRegularTrain	27.12	23.24	25.24	13.85	18.36 100.00	25.64	28.19 100.00	29.49
63	InsectEPGSmallTrain	72.17	73.25	93.88	93.25	95.46	77.03	95.46	100.00
64 65	InsectWingbeatSound ItalyPowerDemand	31.69	28.82 78.53	30.47 84.47	9.09 49.91	11.10 83.45	32.07 90.38	29.18 90.79	42.66 89.08
66	LargeKitchenAppliances	85.79	85.91	87.07	43.71	67.24	87.20	83.18	86.67
68	Lightning7	50.28	55.01	56.16	21.10	50.96	56.44	51.97	53.97
69 70	Mallat	49.13	43.14	47.91	12.48	13.76	59.28 71.67	50.63	73.17
71	MedicalImages	66.11	61.14	67.42	34.47	51.45	65.66	61.89	70.45
72 73	MelbournePedestrian MiddlePhalanxOutlineAgeGroup	90.99 50.49	91.95 49.77	91.82 57.95	56.87 49.48	29.00 61.69	90.29 58.31	90.16 56.52	95.18 49.61
74	MiddlePhalanxOutlineCorrect	73.79	75.01	77.56	48.59	57.04	77.87	74.31	67.01
75	MiddlePhalanxTW MixedShapesRegularTrain	53.17 93.09	52.44 93.43	54.48 93.10	28.05	55.84 54.62	55.97 92.54	54.22 92.11	50.91 94.25
77	MixedShapesSmallTrain	80.06	72.49	69.00	20.59	35.86	75.47	77.16	70.95
78 79	NonInvasiveFetalECGThorax1	36.94	24.37	11.79	2.44	4.99	38.12	40.73	87.54
80 81	NonInvasiveFetalECGThorax2 OSUL eaf	39.71	24.79	13.56	2.24	10.52	31.65	42.42	81.01 \$2.80
82	OliveOil	44.67	42.00	42.00	40.00	40.00	40.00	43.67	66.67
83 84	PLAID PhalangesOutlinesCorrect	36.09	38.13 77.60	38.73 76.36	25.88 47.74	25.88 65.29	37.09 77.62	39.61 77.69	22.72
85	Phoneme	27.10	24.62	27.13	19.76	11.18	25.63	27.60	25.45
86 87	PickupGestureWilmoteZ PigAirwayPressure	12.56	42.00 9.37	38.00 12.02	11.23	3.85	44.00	20.82	14.52
88	PigArtPressure	18.98	11.63	11.54	23.54	3.85	15.38	28.96	29.23
90	Plane	95.55	91.62	93.48	12.19	82.29	91.43	94.38	100.00
91 92	PowerCons ProximalPhalanxOutlineAgeGroup	78.02 82.22	76.49 81.78	84.94 84.24	50.00 37.17	85.22 85.37	82.22 84.88	82.86 83.74	83.22 78.63
93 04	ProximalPhalanxOutlineCorrect	84.37	83.92	85.45	53.68	67.29	84.88	85.79	80.48
94 95	RefrigerationDevices	51.19	50.23	53.86	33.33	54.36	54.13	47.35	52.48
96 97	Rock	41.64	40.08	41.84	25.60	28.00 42.13	41.60	43.28	34.00
98	SemgHandGenderCh2	73.73	74.07	71.61	67.82	65.00	73.07	72.84	74.10
99 100	SemgHandMovementCh2 SemgHandSubjectCh2	47.93	47.00 58.77	52.93 60.73	38.18 32.18	23.47 28.00	48.00 60.44	50.03 58.02	57.47
101	ShakeGestureWiimoteZ	63.32	60.24	51.60	20.40	44.00	68.00	73.72	63.20
102 103	ShapeletSim ShapesAll	45.85	32.73	45.33	50.00 1.67	85.20 1.67	67.33 36.67	60.01 37.96	80.00 74.77
104	SmallKitchenAppliances	73.53	78.66	78.86	54.77	75.81	80.75	77.91	80.00
105	SonyAIBORobotSurface1	77.13	83.54	87.07	45.76	84.65	83.66	83.48	78.74
107 108	SonyAIBORobotSurface2 StarLightCurves	76.63	82.92 97.08	87.18 97.14	47.66	81.94 85.39	83.88 97.19	87.56 96.95	92.24 95.82
109	Strawberry	91.37	92.52	91.19	52.86	70.65	93.03	92.37	93.41
110	SwedishLeaf Symbols	89.89 76.37	83.71 63.00	90.64 67.16	6.27 22.44	33.88 70.37	88.83 60.16	85.42 69.00	95.36 60.80
112	SyntheticControl	91.47	93.19	97.80	20.00	98.48	96.20	97.90	96.33
113 114	ToeSegmentation1 ToeSegmentation2	64.12 77.23	79.30 74.43	84.51 83.23	50.53 43.69	83.26 84.74	84.91 77.69	65.48 82.92	73.68 83.85
115	Trace	95.16	92.24	91.20	26.00	84.20	90.00	98.60 84.11	92.00
117	TwoPatterns	80.00	67.35	86.35	24.95	86.07	85.31	85.68	90.63
118	UMD UWaveGestureLibrary All	83.08 74.12	83.19 68.99	81.60 72.08	53.47 12.38	50.00 12.62	84.17 61.99	77.58	78.06 80.18
120	UWaveGestureLibraryX	70.30	70.79	74.35	12.65	30.35	71.26	70.92	72.26
121 122	UWaveGestureLibraryY UWaveGestureLibraryZ	62.03 68.63	61.03 67.50	61.43 68.23	12.53 12.42	42.08 48.92	60.30 65.36	60.20 65.78	63.98 71.31
123	Wafer	96.96	97.69	96.68	73.53	89.21	97.45	96.57	88.07
124 125	WordSynonyms	34.04	54.89 29.93	34.48	50.00 14.42	23.04	30.74	39.42	34.07
126	Worms WormsTwoClass	62.42	67.58 73.25	66.83 76.84	22.08 42.86	59.74 57.14	67.27 76.10	62.73 77.27	75.32
128	Yoga	73.48	73.56	71.73	47.86	53.57	71.04	69.52	65.40
	Avg Acc Avg Rank	4.15	63.80 4.33	65.06 3.61	36.01 7.50	50.39 6.16	65.67 3.48	66.23 3.54	68.70 3.02
	P-volue	1 90F-04	4.06E-05	1 90E-03	1 49E-34	1 70E-17	3.04E-03	8 57E-03	

Table 11: The test classification accuracy (%) on UCR archive with Sym 20% noisy labels.

ID	Dataset	Standard	MixUp	Co-teaching	FINE	SREA	SELC	CULCU	Scale-teaching
1	ACSF1	41.00	45.00	36.96	10.00	29.60	47.00	47.20	42.00
3	Adiac AllGestureWiimoteX	33.14	22.89	29.32	31.29	4.09	32.17	23.55 26.40	31.65 37.91
4 5	AllGestureWiimoteY AllGestureWiimoteZ	36.51 38.14	31.00 28.69	32.46 32.02	19.05 11.29	16.97 14.57	35.00 37.49	31.64 33.63	39.57 42.95
6 7	ArrowHead BME	34.29 33.23	31.31 13.73	31.43 34.00	33.94 35.73	30.29 35.87	38.40 33.33	37.83 33.33	39.25 36.80
8	Beef	23.33	21.33	29.67 49.00	20.00	20.00	30.33	31.00 52.00	30.00
10	BirdChicken	59.00	45.00	60.50	50.00	55.00	61.00	52.50	71.00
12	Car	49.33	38.33	42.50	23.33	23.33	50.00	38.17	30.67
13	Chinatown ChlorineConcentration	60.79 43.88	58.71 41.59	62.15 46.69	65.51 29.47	36.52 50.27	59.54 41.63	55.30 44.85	57.22 49.17
15 16	CinCECGTorso Coffee	42.43 60.00	44.10 54.29	34.84 55.36	24.91 47.86	31.44 46.43	45.55 55.71	31.86 52.50	40.47 65.71
17	Computers	49.74	51.47 25.20	54.24 24.77	47.76	50.48 13.08	51.76 28.05	47.60 43 39	54.16 39.73
19	CricketY CricketZ	33.67	29.13	23.85	8.46	8.46	31.69	36.77	41.73
20	Crop	67.58	68.22	68.04	44.52	64.11	67.81	68.23	70.12
22	DiatomSizeReduction DistalPhalanxOutlineAgeGroup	54.34	63.23 53.96	47.78 64.26	33.53 38.71	50.65 62.30	61.50	47.68 66.62	63.57
24 25	DistalPhalanxOutlineCorrect DistalPhalanxTW	51.52 55.65	52.32 55.57	51.59 56.97	48.33 29.78	48.33 51.65	48.04 59.14	50.93 58.27	50.87 59.17
26 27	DodgerLoopDay DodgerLoopGame	19.15 49.71	21.40 48.70	26.37 50.88	14.50 49.57	15.00 50.72	23.00 50.29	21.90 53.33	28.25 50.06
28 29	DodgerLoopWeekend ECG200	62.46 49.80	64.46 49.48	71.59	64.35 52.80	37.83 40.80	62.17 50.20	54.71 53.60	77.45
30	ECG5000 ECCFinaDana	69.14	76.27	90.83	39.94	90.15	88.90	90.50	91.58
32	EOGHorizontalSignal	38.43	34.56	37.76	35.30	13.65	31.82	30.34	41.30
33 34	EOG Vertical Signal Earthquakes	26.25 53.32	22.59 54.10	23.72 66.98	20.32 74.82	11.49 64.75	23.31 51.94	19.25 61.37	29.73 60.78
35 36	ElectricDevices EthanolLevel	67.65 32.62	66.58 28.57	68.36 31.75	64.03 25.38	57.10 25.20	67.89 27.76	68.50 32.60	64.91 35.02
37 38	FaceAll FaceFour	56.62 40.68	46.70 50.45	50.99 42.16	10.62 23.18	10.12 32.00	56.96 50.68	52.02 38.98	53.53 35.05
39 40	FacesUCR	44.98	42.32	42.96	11.29	18.86	44.81	43.64	41.57
41	Fish	48.69	51.20	35.93	13.71	16.00	47.77	35.41	32.55
42	FordB	50.39	49.53	30.38 47.09	46.53	50.10	50.52	45.95	48.54
44 45	FreezerRegularTrain FreezerSmallTrain	38.15 32.25	53.98 47.09	48.56 50.30	54.20 51.39	55.21 50.47	54.46 43.63	45.08 50.17	47.16 51.81
46 47	Fungi GestureMidAirD1	15.59 19.48	17.20 17.32	16.32 13.32	18.34 6.92	10.75 15.38	15.59 18.46	17.92 22.69	19.18 24.18
48 49	GestureMidAirD2 GestureMidAirD3	17.08 10.92	12.31 10.80	9.29 7.65	5.08 9.02	10.46 6.92	13.08 9.38	17.57 13.42	25.29 12.12
50	GesturePebbleZ1	41.67	37.16	49.58	23.02	35.37	41.30	57.20	47.81
52	GunPoint	37.68	35.44	46.00	49.87	47.87	36.27	47.60	52.80
54	GunPointMaleVersusFemale	46.68	44.89	48.34	49.05	49.49	48.61	51.14	56.75
55 56	GunPointOldVersusYoung Ham	53.69 46.29	56.10 47.20	61.82 54.19	50.79 50.29	50.48 49.33	61.46 49.14	54.79 53.05	70.54 50.10
57 58	HandOutlines Haptics	38.01 24.61	35.18 29.77	47.62 25.95	46.97 20.39	47.19 21.75	35.51 28.83	35.25 24.35	47.14 28.16
59 60	Herring HouseTwenty	51.06 35.29	56.00 55.16	59.38 48.07	51.88 51.60	55.63 48.40	52.81 55.46	59.38 55.50	59.69 53.78
61	InlineSkate	20.43	19.03	19.79	15.64	18.36	19.24	21.40	18.78
63	InsectEPGSmallTrain	58.68	55.71	75.78	51.97	93.25 75.78	75.50	69.52 64.90	75.78
64 65	InsectWingbeatSound ItalyPowerDemand	20.01 48.54	19.37 47.88	18.73 50.46	9.09 50.03	9.09 51.74	20.53 48.92	18.96 49.49	23.04 49.18
66 67	LargeKitchenAppliances Lightning2	57.01 55.08	62.35 52.00	64.25 52.62	36.75 50.82	40.27 47.61	70.88 52.46	57.23 51.15	60.23 58.03
68 69	Lightning7 Mallat	38.41 29.34	38.41 39.77	40.19 29.91	13.70 12.43	32.33 12.54	41.37 38.02	43.67 26.15	41.81 35.48
70 71	Meat MedicalImages	65.80 53.02	66.07 52.82	45.33	36.00	33.33	56.00 56.39	42.87	45.67
72	MelbournePedestrian	84.49	84.78	87.37	48.33	29.05	86.96	86.85	87.17
74	MiddlePhalanxOutlineCorrect	46.21	40.70	46.63	42.96	45.77	47.63	45.99	40.42 48.59
75	MiddlePhalanx IW MixedShapesRegularTrain	48.73 80.82	48.60 84.57	51.36 84.04	23.38 20.86	55.84 46.24	52.34 86.16	54.25 78.97	53.38 69.96
77 78	MixedShapesSmallTrain MoteStrain	58.86 43.45	57.25 41.48	41.97 50.14	21.19 47.65	23.96 44.47	57.84 43.59	59.24 43.57	46.12 47.77
79 80	NonInvasiveFetalECGThorax1 NonInvasiveFetalECGThorax2	20.65 21.97	13.78 14.82	8.20 8.65	2.50 2.40	2.95 2.90	15.37 15.93	27.85 32.00	60.91 61.47
81 82	OSULeaf OliveOil	66.60 36.53	57.31 35.60	47.21 34.67	19.09 38.00	40.17 34.67	56.12 35.33	68.47 32.67	48.46 40.40
83	PLAID BhalangasQutlingsCorrect	33.62	33.77	30.50	24.45	20.48	32.40	34.63	32.62
85	Phoneme Dislow Content Willingto 7	20.13	18.93	19.15	17.54	9.44	20.22	21.72	19.73
80 87	PigAirwayPressure	9.52	23.28	7.69	3.42	3.85	29.00 7.69	11.90	9.90
88 89	PigArtPressure PigCVP	7.21	6.00	9.38 7.93	4.52 2.67	2.88	8.17 5.96	8.94	18.42
90 91	Plane PowerCons	78.13 50.56	81.75 51.73	67.57 50.06	14.10 48.11	73.14 50.31	82.86 50.56	81.52 49.17	68.76 37.33
92 93	ProximalPhalanxOutlineAgeGroup ProximalPhalanxOutlineCorrect	65.13 53.92	67.98 49.73	69.06 59.49	29.07 61.03	71.71 46.32	73.56 48.73	83.86 45.60	72.70 61.03
94 95	ProximalPhalanxTW RefrigerationDevices	73.01	73.89 41.14	69.22 44.64	22.34 37.33	67.80 45.55	75.51 43.36	77.76 45.62	72.49 43.77
96 97	Rock	29.60	27.20 47 84	25.40 43.20	19.20	28.40	26.80 46.45	31.00 43.76	26.40 41.29
98 00	SemgHandGenderCh2	47.51	49.70	46.14	51.72	41.00	49.93	48.03	46.95
100	SemgHandSubjectCh2	44.76	49.64	43.21	24.37	26.00	48.36	44.08	46.44
101	ShapeletSim	51.78	52.16	29.84 49.94	50.00	57.02	54.00 52.00	47.80	28.48 59.98
103 104	ShapesAll SmallKitchenAppliances	26.78 55.62	19.34 57.22	28.77 63.45	6.43 53.89	1.67 50.14	20.83 63.47	22.48 57.20	43.24 57.65
105 106	SmoothSubspace SonyAIBORobotSurface1	51.60 56.49	51.01 54.22	68.33 71.80	33.33 51.41	50.64 52.45	51.47 56.84	71.88 54.74	56.40 48.42
107 108	SonyAIBORobotSurface2 StarLightCurves	48.29 86.01	48.87 89.49	46.92 87.59	47.66 63.60	47.94 85.41	47.97 91.02	48.67 89.15	61.36 86.81
109	Strawberry SwedishLaaf	48.92	47.99	45.65	49.86	41.41	47.46	43.03	45.33
111	Symbols	44.22	50.24	43.06	28.52	50.98	47.20	44.68	50.98
112	ToeSegmentation I	41.23	42.93	92.60 46.04	50.53	47.58	43.07	41.32	49.47
114 115	ToeSegmentation2 Trace	51.54 73.64	56.89 77.32	52.38 53.42	43.69 43.80	55.91 46.60	54.92 76.20	60.92 62.96	41.78 63.60
116 117	TwoLeadECG TwoPatterns	42.84 46.82	54.34 41.01	47.87 79.68	49.99 24.85	50.48 63.84	52.61 61.87	50.59 78.81	44.02 85.17
118 119	UMD UWaveGestureLibraryAll	43.64 49.63	45.47 53.72	40.89 48.36	35.28 12.35	45.28 12.62	47.08 54.17	41.04 47.41	44.03 48.81
120	UWaveGestureLibraryX UWaveGestureLibraryV	55.67 49.49	59.71 50.82	55.62 50.42	12.65	20.70	62.67 51 35	55.72 49.24	53.63 48.21
122	UWaveGestureLibraryZ Wefer	54.49	56.63	55.03	12.47	12.62	57.65	55.47	51.20
125	Wine	46.30	48.15	+3.45 50.00	50.00	50.00	40.39	50.25 50.00	40.52 50.00
125 126	WordSynonyms Worms	30.15 58.70	13.82 56.36	18.33 57.01	9.31 26.23	14.80 48.57	20.91 61.38	31.62 60.91	30.57 57.71
127 128	WormsTwoClass Yoga	53.51 52.81	49.09 49.67	61.56 49.59	45.71 54.12	47.27 49.29	57.14 53.21	57.40 50.22	59.48 49.13
	Avg Acc Avg Rank	45.27 4.31	44.59 4.57	46.03 4.05	32.83 6.43	37.80 5.89	46.91 3.56	46.86 3.86	48.78 3.11
	P-value	3.15E-05	1.70E-05	4.02E-04	7.48E-19	1.22E-15	1.40E-02	4.93E-03	-
				24					

Table 12: The test classification accuracy (%) on UCR archive with Sym 50% noisy labels.

Table 13: The test classification accuracy (%) results on UCR archive with Asym 40% noisy labels.

ID	Dataset	Standard	MixUp	Co-teaching	FINE	SREA	SELC	CULCU	Scale-teaching
1	ACSF1	39.00	40.56	41.12	10.00	26.08	40.22	41.60	42.00
2	Adiac	4.35	8.85	7.80	2.76	2.30	9.46	24.37	25.17
4	AllGestureWiimoteY	35.14	39.87	36.20	17.48	12.32	37.17	36.79	43.03
5	AllGestureWiimoteZ	38.86	38.35	38.76	11.49	16.75	36.74	37.92	42.29
7	BME	39.00	48.03	48.01	40.53	43.42	45.60	49.95	49.33
8	Beef	26.67	35.47	31.93	25.43	20.67	31.33	25.67	23.33
9	BirdChicken	43.00	51.40 57.00	56.50 51.00	50.00 50.00	55.00 50.00	53.00 60.02	55.50 50.00	40.00 75.00
11	CBF	56.20	70.29	73.80	33.38	68.84	71.91	66.21	74.22
12	Car	57.12	60.47	54.83	24.67	23.00	54.33	53.47	44.00
13	ChlorineConcentration	55.85	49.69	49.52	45.51 41.18	47.22	49.48	48.58	51.10
15	CinCECGTorso	50.72	46.88	43.29	24.87	31.17	52.93	45.78	32.90
16	Coffee	47.84	52.00 59.36	54.36 60.72	52.14 55.84	52.14 63.81	51.43	52.50 59.38	53.57
18	CricketX	58.64	36.59	30.97	7.79	10.77	36.21	40.05	35.85
19	CricketY	41.39	28.52	25.95	11.03	9.20	29.44	37.49	34.72
20	CricketZ	37.46	30.15	20.82	9.69	11.38	30.62	37.82 50.04	35.49
22	DiatomSizeReduction	50.16	36.08	42.32	38.45	34.58	36.54	40.65	54.50
23	DistalPhalanxOutlineAgeGroup	37.44	63.65	62.79	36.98	64.03	65.04	65.14	46.76
24 25	DistalPhalanxOutlineCorrect	59.68	56.83	65.69 57.84	45.00 25.18	48.99	63.04 58.71	58.56	64.39 64.03
26	DodgerLoopDay	21.75	21.25	28.07	14.50	14.75	33.75	31.87	33.85
27	DodgerLoopGame DodgerLoopWaakand	50.22	41.30	52.97	49.57	51.30	54.20	49.13	64.78
29	ECG200	46.80	40.80	65.80	41.60	68.80	46.20	60.60	61.00
30	ECG5000	60.72	65.88	87.36	33.26	84.25	68.84	87.44	89.18
31	ECGFiveDays FOGHorizontalSignal	63.06	54.75 35.14	61.29	50.06 34.48	57.21 8.57	65.85 33.87	53.39 30.62	66.52 42.32
33	EOGVerticalSignal	31.88	23.48	30.46	23.65	10.72	26.24	26.51	34.81
34	Earthquakes	57.37	54.82	74.32	35.11	74.82	59.86	72.59	74.82
36	EthanolLevel	40.46	25.08	31.04	27.26	25.04	27.88	27.26	40.76
37	FaceAll	47.52	40.04	46.85	4.76	15.21	49.74	50.91	45.74
38	FaceFour	48.09	50.50	41.14	49.32	41.36	50.23	43.86	57.73
40	FiftyWords	22.20	13.71	24.20	27.43	9.32	23.38	20.59	30.90
41	Fish	46.40	53.49	49.04	13.49	13.14	51.66	48.67	44.57
42 43	FordA FordB	53.11	/3.05	/3.37 62.88	/2.43 55.45	68.46 57.99	82.33 63.47	82.69 62.81	86.59 60.20
44	FreezerRegularTrain	65.85	72.20	60.40	62.23	62.31	71.78	61.32	75.44
45	FreezerSmallTrain	53.80	41.11	46.34	46.24	44.85	49.98	53.62	54.60
40 47	rungi GestureMidAirD1	22.31	20.43	25.60	21.54 9.85	7.69	24.50 20.15	22.53	29.03 43.23
48	GestureMidAirD2	20.46	14.31	21.15	4.00	6.92	17.85	24.26	28.46
49 50	GesturePabble71	11.54	7.69	12.69	6.92 28.60	5.54	12.92	12.51	15.38
51	GesturePebbleZ2	41.04	36.46	40.19	30.00	25.82	44.56	44.16	48.99
52	GunPoint	52.43	50.13	52.13	50.93	46.53	62.33	60.67	56.67
53 54	GunPointAgeSpan GunPointMaleVersusFemale	50.81	47.15	54.03 70.43	51.65 58.42	49.87	58.13 70.06	55.22 71.65	59.71 81.65
55	GunPointOldVersusYoung	68.90	66.81	77.03	85.46	47.62	72.44	82.76	82.79
56	Ham	47.39	44.19	48.46	50.29	47.81	50.29	50.53	51.43
58	Haptics	32.53	32.95	30.08	20.65	21.36	30.84	29.51	31.62
59	Herring	51.38	52.94	49.22	51.88	48.13	55.00	49.69	43.75
60 61	HouseTwenty	55.21	58.79 23.04	65.80	57.98	51.60	61.34	62.99 28.08	90.76 25.09
62	InsectEPGRegularTrain	92.37	95.31	99.80	96.63	96.63	98.80	95.86	100.00
63	InsectEPGSmallTrain	67.72	60.59	75.74	65.86	76.35	73.01	79.00	35.74
64 65	InsectWingbeatSound ItalyPowerDemand	18.96	18.37 46.03	23.88	9.09 51.74	9.09 68.64	22.58 63.97	22.57	26.31 86.98
66	LargeKitchenAppliances	48.89	51.36	61.29	42.45	49.75	63.68	55.92	55.52
67	Lightning2	60.66	55.41	61.31	50.82	60.66	61.64	52.46	62.66
68 69	Mallat	36.98	38.93 41.82	36.69	12.40	12.45	39.82	33.52	41.64
70	Meat	61.47	62.47	56.43	40.33	33.33	59.67	49.77	58.33
71	MedicalImages MelbournePedestrian	50.07	47.26	53.24 69.20	34.37 34.30	51.45 23.03	53.03 71.67	47.31	59.66 67.41
73	MiddlePhalanxOutlineAgeGroup	37.40	36.36	50.73	28.57	60.78	47.92	51.71	17.92
74	MiddlePhalanxOutlineCorrect	60.78	53.54	58.49	54.23	57.04	63.44	57.56	60.14
75 76	MiddlePhalanx I W MixedShapesRegularTrain	46.29	38.83 69.94	44.17	22.86	50.39 34.27	50.13 78.54	51.36 70.65	47.40
77	MixedShapesSmallTrain	57.22	58.54	43.23	19.14	38.38	54.99	56.72	40.49
78	MoteStrain NonInvasiveEstalECGThoray I	54.76	54.80 17.30	51.66	50.78	52.50	54.06	48.68	46.09
80	NonInvasiveFetalECGThorax1	29.06	18.38	8.22	2.33	3.84	22.69	32.04	55.02
81	OSULeaf	59.69	64.18	51.38	16.86	27.02	62.31	53.23	72.89
82 83	PLAID	29.13	28.23	23.36	21.38	35.33	35.33 29.24	35.33 33.02	40.00
84	PhalangesOutlinesCorrect	61.56	59.63	59.69	62.43	56.78	65.22	64.63	66.43
85	Phoneme Diskup Casture Wiimoto Z	21.21	17.78	18.80	19.76	6.12	19.51	22.14	19.63
87	PigAirwayPressure	12.71	5.87	7.86	6.51	4.23	9.71	18.04	12.98
88	PigArtPressure	15.31	9.62	8.64	7.87	1.92	10.96	22.12	30.38
89 90	PigCVP Plane	70.29	4.33	8.17	6.57	6.15	9.52	13.01	14.33
91	PowerCons	60.04	58.60	77.33	50.00	80.42	63.33	74.67	63.56
92	ProximalPhalanxOutlineAgeGroup	58.65	59.43	45.77	38.34	67.22	65.17	73.59	71.71
94	ProximalPhalanxTW	60.04	61.83	56.26	28.59	50.73	66.34	70.82	68.39
95	RefrigerationDevices	36.92	38.93	42.13	33.33	44.58	39.73	41.52	39.47
96 97	Rock ScreenTyne	45.80	40.00 49 29	47.40	40.80 34.67	37.60	48.00 47.25	46.40 38.57	38.00 34.24
98	SemgHandGenderCh2	57.31	57.87	53.92	49.59	53.00	58.30	53.72	62.27
99 100	SemgHandMovementCh2	40.74	38.34	40.29	29.73	23.94	37.91	39.29	40.89
100	ShakeGestureWiimoteZ	39.92	42.72	31.08	15.84	24.80	40.00	40.40	52.00
102	ShapeletSim	53.22	50.98	50.89	50.00	53.36	52.78	51.80	50.00
103	ShapesAll SmallKitchenAppliances	30.23	19.95	25.54	2.13	1.67	20.60	24.84 68.20	49.00
105	SmoothSubspace	61.87	60.29	72.67	33.33	59.17	61.07	71.89	73.87
106	SonyAIBORobotSurface1	69.88	70.49	70.67	51.41	75.13	70.18	69.55	78.37
107	StarLightCurves	75.55	76.10	85.10	45.38	56.47	59.62 80.35	82.89	95.26
109	Strawberry	71.12	74.83	74.65	41.41	64.32	76.03	69.16	66.92
110	SwedishLeaf	67.77	64.08 48.60	68.43	6.82 52.31	21.98	69.94 50.05	63.31 50.50	70.29
112	SyntheticControl	67.81	68.20	78.87	16.67	72.91	70.73	78.95	75.13
113	ToeSegmentation1	51.96	52.39	62.72	49.47	59.42	53.07	47.96	41.67
114 115	Trace	51.52	53.69 53.36	04.69 46.32	36.31 29.20	00.89 50.00	54.62 59.60	60.34	78.46 42.40
116	TwoLeadECG	72.26	70.47	71.84	49.97	74.96	72.96	71.98	86.11
117	TwoPatterns	63.84	46.01	78.65	24.54	67.94	68.04	77.95	78.33
118	UMD	50.56	63.39 52.06	47.51	40.56	49.44	64.28 53.14	54.24 47.51	52.60
120	UWaveGestureLibraryX	50.72	52.96	52.39	12.48	16.35	52.88	52.41	56.58
121	UWaveGestureLibraryY UWaveGestureLibraryZ	47.23	49.15 52.82	47.58	12.59	30.97 28.83	50.76 52.70	47.93	48.40
123	Wafer	79.93	84.06	88.69	70.43	89.21	90.19	88.26	90.37
124	Wine	51.41	45.19	52.19	50.00	50.00	51.48	50.44	50.00
123	Wordsynonyms Worms	52.31	20.33 55.01	53.32	25.19	40.52	23.30 56.48	49.64	27.39 58.96
127	WormsTwoClass	56.83	50.91	58.05	54.29	49.09	58.70	59.04	51.17
128	Yoga Avg Acc	55.17 48.60	55.77	55.66 49.36	47.86	50.71 40.37	57.82	50.58 50.98	51.89 52.87
	Avg Rank	4.38	4.80	3.93	6.91	5.91	3.30	3.67	2.95
	P-value	1.62E-05	3.53E-07	6.10E-04	1.93E-23	9.82E-14	1.89E-02	2.24E-02	-
				25					

Table 1	14:	The test	classification	accuracy	(%) results on	UCR	archive	with	Ins 40%	noisy	labels.
						/						

ID	Dataset	Standard	MixUp	Co-teaching	FINE	SREA	SELC	CULCU	Scale-teaching
1	ACSF1	35.40	39.08	43.00	14.80	29.20	41.40	42.70	45.00
2	Adiac AllGestureWiimoteX	8.33	9.73 38.15	7.29	4.57 24.82	2.35	9.77 36.92	19.93 32.78	27.16 43.78
4	AllGestureWiimoteY	39.82	39.10	37.02	23.39	10.03	38.80	37.83	46.49
5	AllGestureWiimoteZ ArrowHead	31.95	31.15 45.97	33.87 48.32	15.43	11.51 38.51	33.91 41.26	32.04 34.06	38.78 42.03
7	BME	36.93	40.81	41.49	40.27	36.13	41.73	38.13	42.21
8	Beef BeetleFly	31.33	33.00 55.00	35.67 60.50	20.00	22.67 50.00	36.33 59.00	33.93 68.00	29.33 70.00
10	BirdChicken	64.00	70.80	55.00	50.00	50.00	71.00	67.00	68.00
11	CBF Car	61.00 49.80	59.97 49.80	58.34 50.50	33.20 24.67	64.45 26.33	65.31 50.67	58.66 40.03	51.31
13	Chinatown	62.96	62.11	58.87	54.49	45.51	62.94	59.10	64.53
14	ChlorineConcentration CinCECGTorso	41.58	43.47 49.42	43.05	35.27	35.96 30.52	44.63 50 39	43.55	45.55 46.80
16	Coffee	61.43	66.57	62.86	49.29	53.57	66.43	65.71	75.00
17	Computers	41.92	54.16	51.12	47.28	51.60	54.00	54.28	54.48
19	CricketY	44.24	36.55	31.28	8.77	9.33	35.38	42.40	40.35
20	CricketZ	41.57	32.33	28.08	8.92	11.33	33.38	44.99	45.27
22	DiatomSizeReduction	63.35	71.07	55.82	30.00	30.20	72.12	45.77	67.36
23	DistalPhalanxOutlineAgeGroup	47.25	49.29	59.12	45.04	62.30	49.35	57.99	51.83
24 25	DistalPhalanxOutlineCorrect	53.12	56.22	56.63	25.47	55.87 49.35	64.42 52.23	59.57 57.77	59.42
26	DodgerLoopDay	26.20	29.05	30.07	13.75	15.00	30.25	26.00	31.25
27	DodgerLoopWeekend	55.22	56.87	53.64 68.84	49.57 45.22	52.17	56.23 58.99	52.01 69.90	57.19
29	ECG200	61.40	63.20	61.40	52.80	64.52	61.40	67.30	67.40
30 31	ECG5000 ECGFiveDays	54.18	71.83 52.99	89.10 56.27	49.16 50.06	90.76 51.91	82.03 55.08	90.46 50.88	91.12 59.77
32	EOGHorizontalSignal	37.19	29.45	35.52	31.96	10.70	28.73	28.86	39.51
33 34	EOGVerticalSignal	26.15	26.60 58.76	25.62	23.43 74.82	9.83 74 82	23.59	21.59 72.50	27.16
35	ElectricDevices	68.39	69.51	68.90	67.86	60.71	68.57	68.82	64.59
36 37	EthanolLevel Face All	25.15	31.18 57.38	32.74 52.60	24.88	25.12	27.76 59 91	32.14 53.41	32.40
38	FaceFour	57.36	60.00	38.07	21.36	31.50	58.41	38.75	47.68
39	FacesUCR FiftyWords	48.81	42.41	48.23	7.53	14.25	50.26	46.51	48.29
40	Fish	37.99	40.66	37.71	19.43	13.94	37.49	37.70	40.94
42	FordA	68.92	71.77	80.55	59.04	69.17	82.76	83.39	81.52
44	FreezerRegularTrain	71.31	74.21	54.41	59.09	52.78	71.61	61.98	62.43
45	FreezerSmallTrain	55.52	55.64	57.34	44.18	44.88	52.60	58.16	52.53
40 47	GestureMidAirD1	23.28 28.15	16.92	19.23	19.14	12.12	23.54	25.17	39.17
48	GestureMidAirD2	13.51	6.46	13.46	4.92	7.78	11.85	15.82	22.58
50	GesturePebbleZ1	50.65	9.08 44.05	47.09	26.77	38.63	44.77	51.41	52.12
51	GesturePebbleZ2	56.73	50.56	53.35	36.20	33.80	56.48	54.16	59.27
52 53	GunPoint GunPointAgeSnan	60.05 59.49	66.69 60.59	55.13 57.06	48.40	47.73	60.00 60.57	56.40 57.51	52.40
54	GunPointMaleVersusFemale	66.18	63.11	67.59	49.87	47.47	65.63	71.22	76.27
55 56	GunPointOldVersusYoung Ham	87.24 59.81	90.18 57.45	93.52 56.23	78.29 48.57	48.57 49.71	90.79 59.90	96.10 56.57	99.56 51.24
57	HandOutlines	65.57	66.36	65.38	64.32	64.05	66.16	66.35	64.28
58 59	Haptics	27.40	28.70 55.88	26.19 54.06	19.81 51.88	20.06	28.53 56.56	26.92 52.53	27.97
60	HouseTwenty	70.39	57.14	63.24	48.40	54.79	71.26	48.35	69.41
61	InlineSkate	19.67	15.75	19.49	16.00	14.18	18.62	20.16	21.11
63	InsectEPGSmallTrain	67.34	71.52	89.88	56.63	72.57	74.70	93.10	86.84
64	InsectWingbeatSound	20.47	14.26	22.87	9.09	9.32	18.90	19.40	25.99
65 66	LargeKitchenAppliances	72.12	69.65	77.86	49.91	46.59	78.36	72.84	73.00
67	Lightning2	56.72	54.10	56.89	54.43	55.74	60.98	58.69	55.08
68 69	Mallat	36.15	35.62 26.42	33.15	19.18	26.03	35.62	38.77	39.12 40.87
70	Meat	46.60	49.73	45.63	33.33	33.33	47.67	43.17	46.20
72	Medicalimages MelbournePedestrian	68.53	44.42 62.94	53.83 69.50	39.53	49.08 22.90	52.29 71.26	50.81 70.95	55.41
73	MiddlePhalanxOutlineAgeGroup	46.52	36.88	51.09	27.53	61.69	49.09	44.71	47.53
74	MiddlePhalanxOutlineCorrect MiddlePhalanxTW	59.27	52.51 39.64	55.14 40.52	48.59	51.41 34.16	60.10 45.97	53.33 50.82	51.07
76	MixedShapesRegularTrain	79.62	78.52	71.27	22.80	38.91	83.27	71.35	67.12
77	MixedShapesSmallTrain MoteStrain	59.86 73.52	51.69 73.10	49.41 70.78	21.01 49.22	21.18	62.99 72.83	63.29 76.43	51.54
79	NonInvasiveFetalECGThorax1	16.24	8.66	9.92	2.39	2.92	12.31	18.02	44.45
80 81	NonInvasiveFetalECGThorax2 OSULeaf	20.81	8.60 62.63	11.22 59.86	2.15	3.21	13.57	18.03 65.83	41.88 61.97
82	OliveOil	44.13	40.00	40.00	40.00	40.00	38.00	38.00	48.67
83 84	PLAID PhalangesOutlinesCorrect	29.83	25.33	27.60	15.12	13.61	29.24	34.59 59.61	28.27
85	Phoneme	21.55	16.32	19.59	17.21	7.01	19.76	22.79	20.79
86 87	PickupGestureWiimoteZ PicAirwayPressure	31.68	19.20 7.46	27.16	10.53	11.20	31.20	30.08	33.92
88	PigArtPressure	15.13	6.15	11.54	6.98	2.31	9.13	17.62	21.46
89 90	PigCVP	9.79	4.33	10.14	9.14	5.62	7.69	10.26	13.73
91	PowerCons	63.16	59.78	82.72	57.78	83.13	66.44	78.78	83.36
92 93	ProximalPhalanxOutlineAgeGroup ProximalPhalanxOutlineCorrect	56.55	56.20 57.94	65.85 70.27	40.68	71.61 67.29	63.41 71.75	70.54	52.37 72.01
94	ProximalPhalanxTW	65.05	65.37	65.71	28.39	59.90	71.41	78.99	67.61
95 96	RefrigerationDevices Rock	45.06	44.21 22.00	48.03 30.20	33.33 30.45	48.37 28.40	46.61 25.60	45.90 31.40	48.17 24.00
97	ScreenType	52.44	52.54	46.09	33.33	36.76	51.57	41.09	44.11
98 99	SemgHandGenderCh2 SemgHandMovementCh2	56.55 37.20	57.53 38.23	56.38 39.48	51.73	53.00 19.76	58.67 39.29	53.10 38.61	53.46 41 26
100	SemgHandSubjectCh2	45.22	46.83	42.37	32.09	21.56	44.58	39.74	45.29
101	ShakeGestureWiimoteZ ShanalatSim	40.72	36.32	34.76	29.87	26.40	46.80	47.20	35.20
102	ShapesAll	21.13	8.83	23.58	5.17	1.67	17.93	21.32	46.39
104	SmallKitchenAppliances	64.45	63.04	75.88	42.99	68.84	71.41	71.08	71.25
105	SonyAIBORobotSurface1	52.88	41.55	47.93	48.59	58.26	51.81	61.59	51.20
107	SonyAIBORobotSurface2	55.56	50.47	56.68	57.02	58.35	55.91	60.81	61.90
108	Strawberry	66.81	74.49	73.24	58.71	52.86	76.27	60.43	56.30
110	SwedishLeaf	63.31	52.42	62.11	6.50	19.81	65.02	56.70	65.67
112	SyntheticControl	+3.34 70.73	73.53	+1.84 86.83	+1.51 16.67	+2.72 82.20	+0.03 78.73	39.23 88.07	82.87
113	ToeSegmentation1	66.02	64.84	71.32	52.63	71.75	64.82	67.96	65.09
115	Trace	63.48	73.64	/1.54 51.00	+3.09	46.80	69.80	65.16	52.16
116	TwoLeadECG	61.86	57.53	50.69	49.99	62.05	59.74	53.03	51.71
117/	1woPatterns UMD	58.48 45.67	49.17 57.58	84.69 42.14	24.87 50.69	85.27 40.00	73.59 58.06	83.81 53.75	87.37 47.50
119	UWaveGestureLibraryAll	52.41	49.83	50.04	12.42	12.38	49.94	45.61	53.34
120 121	UWaveGestureLibraryX UWaveGestureLibraryY	57.60	55.68 45.77	57.21 43.90	12.49	14.75 32.02	58.80 45.31	57.05 43.71	56.88 46.92
122	UWaveGestureLibraryZ	49.46	49.37	48.47	12.56	21.39	50.09	47.72	50.23
123 124	Wafer Wine	81.09 51.63	85.23 50.89	90.20 50.00	38.77 50.00	89.21 50.00	90.08 51.85	88.03 48.89	91.01 50.22
125	WordSynonyms	34.70	30.36	31.46	18.56	22.19	30.66	35.56	36.46
126	Worms WormsTwoClass	61.36 53.38	63.58 55.16	62.26 54 94	27.27 48.57	48.83 50.91	64.68 59.48	58.21 53.90	59.01 50.39
128	Yoga	54.77	55.85	54.87	53.57	50.71	56.03	53.09	54.14
	Avg Acc Avg Rank	49.57 4.05	48.39 4.52	50.11 4.02	34.24 7.04	39.80 6.18	51.21 3.30	51.12 3.77	52.57 2.95
_	P-value	1.43E-05	1.81E-06	2.43E-04	9.81E-26	2.36E-17	3.27E-02	1.54E-02	-
				26					

ID	Dataset	Standard	MixUp	Co-teaching	FINE	SREA	SELC	CULCU	Scale-teaching
1	ArticularyWordRecognition	89.33	81.04	81.77	41.07	90.13	87.87	84.33	92.73
2	AtrialFibrillation	26.67	25.67	26.67	33.33	26.67	26.67	22.67	28.00
3	BasicMotions	97.10	97.40	99.25	91.00	97.50	98.00	97.50	95.50
4	CharacterTrajectories	98.16	98.49	92.59	7.45	96.54	98.93	98.66	98.93
5	Cricket	94.72	94.17	91.53	41.11	97.50	96.67	93.89	97.28
6	DuckDuckGeese	48.40	52.48	48.60	24.40	46.80	50.00	49.60	45.60
7	EigenWorms	53.56	55.42	62.88	34.66	61.80	64.58	64.10	61.25
8	Epilepsy	84.96	80.28	93.33	82.46	88.70	86.38	93.33	87.59
9	EthanolConcentration	24.15	25.48	26.43	24.71	25.11	24.87	24.39	27.42
10	ERing	73.11	73.70	70.04	16.67	64.59	72.59	61.70	72.77
11	FaceDetection	52.90	51.93	52.36	51.96	50.93	52.30	52.69	53.09
12	FingerMovements	50.80	50.44	52.76	52.20	50.20	52.80	52.30	54.68
13	HandMovementDirection	28.92	32.22	35.14	24.05	19.46	28.11	29.16	35.35
14	Handwriting	35.71	28.55	30.71	25.31	16.63	28.19	34.12	41.35
15	Heartbeat	52.00	52.93	57.46	72.10	62.75	50.17	66.39	51.76
16	InsectWingbeat	62.31	53.90	64.74	63.92	51.56	64.63	64.75	63.85
17	JapaneseVowels	88.99	87.61	94.70	49.73	97.41	93.51	97.19	95.62
18	Libras	74.60	70.07	77.00	10.78	73.22	76.78	70.83	79.67
19	LSST	49.68	48.91	50.23	51.61	35.53	50.48	51.91	55.16
20	MotorImagery	51.00	50.88	51.60	50.80	55.92	52.80	50.10	50.84
21	NATOPS	80.78	80.40	90.56	25.78	89.33	82.67	87.17	91.11
22	PenDigits	96.04	97.58	97.33	98.30	97.90	98.27	98.16	98.12
23	PEMS-SF	62.08	62.87	60.06	14.91	64.97	62.08	61.10	63.05
24	PhonemeSpectra	21.89	23.46	22.25	18.00	6.23	22.82	23.74	26.50
25	RacketSports	76.84	73.50	78.64	25.00	75.74	77.24	79.41	76.87
26	SelfRegulationSCP1	76.81	77.49	78.91	56.86	49.83	78.43	77.55	81.28
27	SelfRegulationSCP2	47.47	49.24	48.32	50.89	50.00	47.44	50.66	51.78
28	SpokenArabicDigits	96.17	96.21	98.83	27.79	98.52	98.67	98.71	99.18
29	StandWalkJump	44.00	40.00	36.00	33.33	45.33	42.67	33.40	34.13
30	UWaveGestureLibrary	76.90	76.97	74.61	12.50	74.29	77.75	66.97	78.12
	Avg Acc	63.87	62.98	64.84	40.42	62.04	64.81	64.55	66.29
	Avg Rank	5.03	5.20	3.83	6.37	4.77	3.73	4.00	2.73
	P-value	6.61E-04	3.33E-04	2.69E-02	2.37E-05	1.14E-02	2.63E-02	3.93E-02	-

Table 15: The detailed test classification accuracy (%) results on UEA 30 archive with Sym 20% noisy labels.

Table 16: The detailed test classification accuracy (%) results on UEA 30 archive with Sym 50% noisy labels.

ID	Dataset	Standard	MixUp	Co-teaching	FINE	SREA	SELC	CULCU	Scale-teaching
1	ArticularyWordRecognition	66.64	55.57	52.12	7.53	67.33	57.40	49.63	68.68
2	AtrialFibrillation	28.00	26.67	29.33	33.33	29.33	30.67	32.00	36.00
3	BasicMotions	56.00	58.20	70.75	54.50	81.00	59.00	71.25	60.20
4	CharacterTrajectories	90.62	87.56	67.75	6.73	95.28	93.82	97.03	97.23
5	Cricket	67.44	60.00	68.89	8.33	84.28	66.67	68.06	87.27
6	DuckDuckGeese	32.00	36.64	29.60	26.00	34.00	33.20	33.20	33.84
7	EigenWorms	49.62	45.37	55.65	32.98	38.78	56.79	56.09	49.28
8	Epilepsy	57.39	57.25	64.16	36.38	62.62	60.00	63.55	64.36
9	EthanolConcentration	25.20	25.32	26.05	25.02	27.56	25.62	24.58	26.27
10	ERing	44.30	44.39	40.63	16.67	39.35	44.52	38.54	45.10
11	FaceDetection	48.54	49.81	49.30	49.51	48.94	49.11	48.58	50.72
12	FingerMovements	50.40	50.20	51.80	51.40	50.60	50.80	51.30	54.40
13	HandMovementDirection	26.22	25.51	25.41	26.11	23.51	26.57	24.35	27.08
14	Handwriting	19.54	19.53	19.99	13.41	7.53	19.18	18.28	21.06
15	Heartbeat	55.32	53.52	52.20	54.44	55.40	54.63	53.27	48.62
16	InsectWingbeat	49.30	32.34	58.02	52.25	31.07	53.97	58.13	52.01
17	JapaneseVowels	60.14	59.28	73.97	15.03	70.65	66.43	78.11	79.23
18	Libras	47.09	43.98	51.39	6.67	44.78	50.11	40.06	49.78
19	LSST	47.29	44.58	46.21	47.89	34.35	46.33	47.92	48.75
20	MotorImagery	50.84	51.48	50.10	51.40	52.00	50.60	49.70	49.80
21	NATOPS	54.33	52.53	60.17	16.67	59.80	53.44	58.06	59.56
22	PenDigits	93.38	85.29	95.92	92.85	92.74	96.80	96.53	93.89
23	PEMS-SF	41.20	40.55	32.96	14.45	42.43	43.24	37.57	41.27
24	PhonemeSpectra	19.08	19.11	19.94	11.48	3.92	19.69	19.23	20.09
25	RacketSports	52.50	51.03	52.80	24.08	53.29	52.89	56.58	54.21
26	SelfRegulationSCP1	47.41	42.68	48.86	48.60	49.97	48.33	57.93	58.08
27	SelfRegulationSCP2	48.13	48.22	47.61	48.78	50.00	49.22	50.00	48.73
28	SpokenArabicDigits	85.64	69.95	96.55	96.16	99.23	95.66	97.59	97.69
29	StandWalkJump	38.67	37.87	40.67	33.33	42.67	42.67	37.33	44.00
30	UWaveGestureLibrary	50.41	48.60	45.45	12.50	53.91	49.00	37.94	52.61
	Avg Acc	50.09	47.43	50.81	33.82	50.88	51.55	51.75	53.99
	Avg Rank	5.17	5.73	4.23	6.23	3.93	3.83	4.30	2.43
	P -value	2.98E-04	7.40E-05	1.59E-02	9.35E-05	1.67E-02	1.08E-02	3.75E-02	-

ID	Dataset	Standard	MixUp	Co-teaching	FINE	SREA	SELC	CULCU	Scale-teaching
1	ArticularyWordRecognition	66.33	62.40	55.87	17.27	69.40	63.67	53.73	70.44
2	AtrialFibrillation	21.67	33.33	33.33	33.33	11.33	33.67	32.67	34.67
3	BasicMotions	66.00	62.30	67.25	49.50	69.00	64.00	61.75	65.10
4	CharacterTrajectories	61.08	60.01	57.42	19.05	87.78	64.29	61.35	88.34
5	Cricket	72.22	71.56	70.97	50.00	73.44	72.78	68.61	80.56
6	DuckDuckGeese	43.20	42.96	44.80	24.00	43.68	45.20	44.60	38.24
7	EigenWorms	41.75	34.75	51.34	37.86	43.56	41.68	50.38	42.47
8	Epilepsy	62.32	63.01	63.48	47.25	61.01	61.45	64.71	58.70
9	EthanolConcentration	23.04	23.85	23.61	25.02	24.78	24.33	25.57	27.70
10	ERing	60.30	60.37	42.74	39.47	45.56	59.11	43.96	61.74
11	FaceDetection	49.88	50.64	51.12	51.06	50.32	51.07	50.12	51.61
12	FingerMovements	47.76	49.92	48.50	49.80	49.00	48.20	50.19	50.96
13	HandMovementDirection	28.97	31.24	30.41	28.38	31.46	29.19	29.73	29.03
14	Handwriting	21.61	23.92	24.74	21.03	10.67	22.99	25.69	26.98
15	Heartbeat	55.22	57.46	55.61	72.20	61.52	55.12	55.51	56.68
16	InsectWingbeat	43.40	38.07	45.34	46.32	48.78	47.81	50.34	51.87
17	JapaneseVowels	61.62	58.63	62.46	36.81	65.97	64.27	73.76	70.02
18	Libras	57.47	57.00	53.39	8.67	54.33	59.44	45.72	63.22
19	LSST	42.11	42.77	41.70	43.67	32.79	43.67	43.74	29.10
20	MotorImagery	48.80	50.24	51.32	53.00	52.60	49.60	49.70	53.20
21	NATOPS	57.00	55.29	58.65	16.67	64.89	55.89	63.22	65.13
22	PenDigits	78.76	67.36	92.78	84.05	91.07	89.18	92.23	93.57
23	PEMS-SF	50.20	51.38	42.60	14.45	50.87	50.76	47.86	51.45
24	PhonemeSpectra	17.71	19.05	18.70	14.41	5.11	18.02	18.65	19.52
25	RacketSports	57.50	59.13	54.30	27.50	55.26	58.16	56.32	54.21
26	SelfRegulationSCP1	63.47	66.21	64.94	60.96	49.83	66.42	68.10	66.30
27	SelfRegulationSCP2	49.04	51.24	51.20	52.16	50.00	52.11	51.26	51.22
28	SpokenArabicDigits	64.19	60.64	79.13	72.11	99.04	79.42	88.10	93.85
29	StandWalkJump	38.67	34.67	39.33	33.33	33.33	40.00	39.33	36.27
30	UWaveGestureLibrary	53.56	53.36	55.38	12.50	57.81	53.69	45.53	55.84
	Avg Acc	50.16	49.76	51.08	38.06	51.47	52.17	51.75	54.60
	Avg Rank	5.60	4.77	4.40	6.13	4.20	4.00	3.97	2.73
	P-value	3.81E-03	6.17E-03	1.63E-02	9.33E-05	1.36E-02	2.62E-02	3.88E-02	-

Table 17: The detailed test classification accuracy (%) results on UEA 30 archive with Asym 40% noisy labels.

Table 18: The detailed test classification accuracy (%) results on UEA 30 archive with Ins 40% noisy labels.

ID	Dataset	Standard	MixUp	Co-teaching	FINE	SREA	SELC	CULCU	Scale-teaching
1	ArticularyWordRecognition	67.27	57.39	60.93	9.20	68.67	61.73	57.10	75.40
2	AtrialFibrillation	28.00	29.33	30.00	33.33	32.00	28.00	34.67	32.00
3	BasicMotions	77.00	73.00	81.75	39.00	80.90	77.50	74.75	78.50
4	CharacterTrajectories	82.52	69.46	66.33	5.22	85.38	81.92	83.48	87.47
5	Cricket	80.28	78.28	79.31	26.11	92.50	81.11	76.81	92.78
6	DuckDuckGeese	38.80	41.60	36.40	20.00	39.20	39.60	42.00	37.20
7	EigenWorms	33.44	54.63	60.38	32.67	43.66	43.21	60.31	54.81
8	Epilepsy	65.80	64.55	72.03	67.10	73.04	71.74	78.64	79.36
9	EthanolConcentration	24.82	26.40	27.75	24.71	25.17	26.69	26.81	28.37
10	ERing	53.69	52.48	48.48	36.79	49.82	56.44	44.59	54.15
11	FaceDetection	50.05	50.04	50.80	50.57	49.81	50.22	50.93	51.00
12	FingerMovements	51.40	51.60	51.10	51.20	49.60	51.40	48.60	49.60
13	HandMovementDirection	25.31	30.11	26.49	19.73	19.73	28.92	25.95	31.62
14	Handwriting	21.35	22.54	22.92	17.93	6.17	21.51	23.19	23.01
15	Heartbeat	56.39	58.01	66.63	57.69	58.50	56.20	59.02	51.00
16	InsectWingbeat	47.94	39.18	57.07	55.93	36.95	57.12	59.40	58.32
17	JapaneseVowels	68.05	66.46	65.36	27.89	77.03	73.35	78.97	81.54
18	Libras	46.04	51.56	47.00	9.33	48.67	49.44	41.11	50.18
19	LSST	48.16	47.72	46.43	49.04	33.58	48.78	49.11	50.47
20	MotorImagery	49.20	51.00	49.90	50.00	51.00	52.00	51.90	47.80
21	NATOPS	57.78	56.80	58.78	26.67	67.24	57.67	58.34	59.98
22	PenDigits	81.99	70.68	93.43	91.81	92.59	91.18	93.29	96.69
23	PEMS-SF	42.89	43.86	35.14	16.42	47.86	43.82	41.49	44.35
24	PhonemeSpectra	16.50	15.82	17.37	8.40	3.22	17.15	17.48	17.42
25	RacketSports	59.08	59.55	64.68	27.50	60.11	58.55	58.62	59.89
26	SelfRegulationSCP1	60.63	60.38	56.02	48.12	49.90	65.80	66.00	54.54
27	SelfRegulationSCP2	51.69	50.87	50.63	51.11	50.00	51.89	50.22	52.11
28	SpokenArabicDigits	74.85	67.24	89.70	83.37	98.76	86.68	87.87	97.53
29	StandWalkJump	40.00	42.67	39.33	32.00	42.67	38.67	42.00	40.00
30	UWaveGestureLibrary	67.19	67.90	60.56	12.50	67.74	67.69	55.69	69.96
	Avg Acc	52.27	51.70	53.76	36.04	53.38	54.53	54.61	56.90
	Avg Rank	5.20	4.77	4.33	6.60	4.27	4.20	3.77	2.60
	P-value	6.08E-04	2.92E-03	1.20E-02	2.55E-05	5.52E-03	1.08E-02	3.47E-02	-

Table 19: Multi-scale analysis of Sc	ale-teaching using UCR 128	8 archive with Sym 20% noisy labels.
--------------------------------------	----------------------------	--------------------------------------

ID	Dataset	fine	medium	coarse	atbf	afbt	atbt	btcf	bfct	btct	ctaf	cfat	ctat
1	ACSE1	0.6080	0.6640	0.6620	8	14	52	4	4	63	16	11	50
2	Adiac	0.0281	0.4890	0.5243	11	191	0	18	32	173	205	11	0
3	AllGestureWiimoteX	0.4089	0.5526	0.5666	34	135	252	22	31	365	149	39	247
4	AllGestureWiimoteY	0.4526	0.6643	0.6494	47	196	269	27	17	438	188	50	266
5	ArrowHead	0.4803	0.6449	0.6431	39	41	62	2	30 7	420	46	33	280 62
7	BME	0.5347	0.7333	0.7933	6	36	74	õ	9	110	45	6	74
8	Beef	0.2667	0.4000	0.3800	0	4	8	1	0	11	3	0	8
9	BeetleFly	0.6000	0.8500	0.8500	0	5	12	0	0	17	5	0	12
10	CBE	0.9600	0.8300	0.9500	23	86	662	2	40	746	109	8	677
12	Car	0.4033	0.6633	0.6733	3	18	22	ĩ	2	39	19	3	22
13	Chinatown	0.7304	0.7391	0.7391	5	8	247	8	8	247	3	0	252
14	ChlorineConcentration	0.5724	0.6120	0.6117	265	417	1933	92	91	2258	484	333	1865
15	Coffee	0.5097	0.5007	0.5506	148	136	222	54	102	28	145	89	614 28
17	Computers	0.6824	0.7280	0.7200	2	14	168	4	2	178	12	3	168
18	CricketX	0.3923	0.6733	0.6867	16	126	137	9	14	254	132	18	135
19	CricketY	0.4549	0.5990	0.5923	25	81	152	16	13	218	85	31	146
20	Crop	0.4764	0.6949	0.6993	23 545	1231	11273	215	217	12289	1292	604	11214
22	DiatomSizeReduction	0.8105	0.8333	0.8268	0	7	248	2	0	253	5	0	248
23	DistalPhalanxOutlineAgeGroup	0.6619	0.6647	0.6662	13	14	79	5	5	88	18	17	75
24	DistalPhalanxOutlineCorrect	0.7949	0.7986	0.7913	12	13	208	3	1	217	14	15	205
26	DodgerLoopDay	0.3500	0.3750	0.3625	12	14	16	3	2	27	14	13	15
27	DodgerLoopGame	0.5942	0.5087	0.5000	20	8	62	19	18	51	22	35	47
28	DodgerLoopWeekend	0.8826	0.8957	0.8696	1	3	120	5	1	119	0	2	120
29	ECG200 ECG5000	0.7500	0.7600	0.7700	1	2	74	0	1	76	103	0	/132
31	ECGFiveDays	0.6039	0.6139	0.6049	14	23	506	15	7	513	105	10	510
32	EOGHorizontalSignal	0.3994	0.4608	0.5249	28	50	117	8	32	158	76	30	114
33	EOGVerticalSignal	0.2790	0.3315	0.3718	13	32	88	5	20	115	44	10	91
34	Earthquakes	0.7482	0.7468	0.7482	289	3 470	4754	4	337	5087	718	336	4707
36	EthanolLevel	0.2520	0.5628	0.5712	46	202	80	15	19	267	208	48	78
37	FaceAll	0.6820	0.7729	0.7557	92	246	1060	40	11	1266	225	101	1052
38	FaceFour	0.3182	0.5023	0.5159	5 36	21	23	2	3	42	19	2	26
40	FiftyWords	0.2725	0.4295	0.5095	2	73	122	21	58	174	112	4	120
41	Fish	0.4114	0.7074	0.7211	2	53	70	7	9	117	58	4	68
42	FordA	0.9124	0.9189	0.9235	25	34	1179	4	10	1209	42	27	1177
43 44	FordB FreezerRegularTrain	0.7719	0.7968	0.8000	37	57	588 2363	8	11	637 2384	65 72	42	583 2324
45	FreezerSmallTrain	0.6724	0.7077	0.5981	87	188	1829	434	122	1583	72	283	1633
46	Fungi	0.0591	0.3430	0.2634	0	53	11	24	9	40	38	0	11
47	GestureMidAirD1	0.2492	0.4108	0.4323	5	26	27	6	9	47	31	7	25
48	GestureMidAirD2 GestureMidAirD3	0.1308	0.3213	0.3462	í	5	16	2	12	19	16	2	15
50	GesturePebbleZ1	0.8233	0.7116	0.7256	25	6	117	3	6	119	8	24	117
51	GesturePebbleZ2	0.8025	0.8228	0.8127	8	11	119	4	2	126	13	11	116
52	GunPoint GunPaint AgeSpon	0.8293	0.7840	0.7600	25	19	99	5	1	113	20	30	94
54	GunPointMaleVersusFemale	0.9968	0.9671	0.9620	9	ó	306	2	0	304	0	11	304
55	GunPointOldVersusYoung	1.0000	1.0000	1.0000	0	0	315	0	0	315	0	0	315
56	Ham	0.5905	0.6286	0.6381	3	7	59	3	4	63	9	4	58
58	Haptics	0.2851	0.3890	0.3203	35	67	53	ú	10	109	72	41	47
59	Herring	0.5938	0.6719	0.6656	7	12	31	2	2	41	13	8	30
60	HouseTwenty	0.6202	0.6773	0.6739	1	8	73	2	2	78	7	0	73
61	InlineSkate InsactEPGPagularTrain	0.1585	0.2691	0.2949	30	91	2/0	20	.54	249	0	44	43
63	InsectEPGSmallTrain	1.0000	1.0000	1.0000	ő	ő	249	Ő	ŏ	249	ŏ	ŏ	249
64	InsectWingbeatSound	0.2799	0.4133	0.4266	131	395	423	109	135	710	467	176	378
65	ItalyPowerDemand	0.8871	0.8892	0.8908	4	6	909	2	4	913	8	4	909
67	Lightning2	0.6393	0.6066	0.6230	3	1	36	1	2	36	0	13	38
68	Lightning7	0.3562	0.5068	0.5397	6	17	20	2	4	35	20	7	19
69 70	Mallat	0.2473	0.7108	0.7317	3	1090	577	109	158	1558	1204	69	511
71	MedicalImages	0.5797	0.7153	0.7045	56	159	384	33	25	511	172	77	364
72	MelbournePedestrian	0.8996	0.9343	0.9518	11	96	2193	11	53	2278	146	18	2186
73	MiddlePhalanxOutlineAgeGroup	0.6104	0.5260	0.4961	26	13	68	10	5	71	16	34	60
74	MiddlePhalanxTW	0.5704	0.5351	0.6701	12	14	68	8	4	75	17	19	61
76	MixedShapesRegularTrain	0.9326	0.9485	0.9425	47	85	2215	17	3	2283	81	57	2205
77	MixedShapesSmallTrain	0.4317	0.7070	0.7095	151	819	896	106	112	1609	874	200	847
78	MoteStrain NonInvasiveEatalECGThoray1	0.5391	0.6193	0.5391	102	202	573	202	102	573	0	0	675
80	NonInvasiveFetalECGThorax2	0.0249	0.7719	0.8101	i	1469	48	140	215	1377	1544	í	48
81	OSULeaf	0.8372	0.8132	0.8289	12	6	190	2	6	195	8	10	192
82 83	PLAID	0.3289	0.0000	0.0067	61	3	11	1	3 9	1/	7	62	11
84	PhalangesOutlinesCorrect	0.6720	0.6911	0.7193	27	43	550	14	38	579	80	39	537
85	Phoneme	0.2346	0.2684	0.2545	114	178	330	86	60	423	179	141	304
86 87	PickupGestureWiimoteZ	0.3480	0.6600	0.6600	3	19	14	7	7	26	23	7	10
88	PigArtPressure	0.0673	0.2663	0.2923	5	47	9	12	17	44	50	3	ú
89	PigCVP	0.0721	0.1885	0.1538	8	32	7	15	8	24	22	5	10
90 91	Plane PowerCore	0.8422	1.0000	1.0000	5	0	105	03	2	105	0	0	105
92	ProximalPhalanxOutlineAgeGroup	0.8537	0.8224	0.7863	10	4	165	7	õ	161	3	17	158
93	ProximalPhalanxOutlineCorrect	0.7216	0.8082	0.8048	8	33	202	5	4	230	37	13	197
94	ProximalPhalanxTW	0.8098	0.7951	0.7951	5	2	161	0	0	163	2	5	161
90 96	Rock	0.3001	0.3429	0.3400	4	1	18	3	0	16	20	5	17
97	ScreenType	0.6325	0.5888	0.5744	41	24	197	17	11	204	25	47	190
98	SemgHandGenderCh2	0.6970	0.7277	0.7410	25	43	394	7	15	429	52	26	392
99 100	SemgHandSubjectCh2	0.4622	0.5933	0.5/4/	28 29	87 91	221	24 18	25	243 294	8/ 112	37 42	208
101	ShakeGestureWiimoteZ	0.3400	0.6400	0.6320	ĩ	16	16	2	2	30	17	2	15
102	ShapeletSim	0.9367	0.8833	0.8000	12	2	157	25	10	134	7	32	137
103	ShapesAll SmallKitchenAppliances	0.1863	0.7257	0.7477	22	331	105	26	39	409 208	343 21	6 24	106
105	SmoothSubspace	0.9067	0.8933	0.9000	5	3	131	ó	1	134	3	4	132
106	SonyAIBORobotSurface1	0.9621	0.8133	0.7874	97	8	481	20	4	469	8	113	465
107	SonyAIBORobotSurface2	0.9318	0.9328	0.9224	16	17	872	19	9	870	15	24	864
108 109	StarLightCurves	0.8559	0.9372	0.9582	90	/65 8	338	68 2	241	7651 344	998 8	155	0894 338
110	SwedishLeaf	0.8416	0.9600	0.9536	6	80	520	7	3	593	78	8	518
111	Symbols	0.5809	0.6036	0.6080	1	24	577	1	5	600	28	1	577
112	SyntheticControl ToeSegmentation1	0.9667	0.9667	0.9633	2	2	288	1	0	289	2	3	287
114	ToeSegmentation2	0.8692	0.8215	0.8385	8	2	105	0	2	107	3	7	105
115	Trace	0.9600	0.8900	0.9200	9	2	87	0	3	89	2	6	90
116	TwoLeadECG	0.6673	0.6939	0.6939	18	48	742	11	11	780	54	24	736
117	UMD	0.8599	0.6959	0.9063	3	210	5574 78	0	13	3572 99	239 33	2	3387 79
119	UWaveGestureLibraryAll	0.5499	0.7699	0.8018	112	900	1858	87	201	2671	1058	156	1814
120	UWaveGestureLibraryX	0.7054	0.7208	0.7226	229	284	2297	109	115	2473	363	302	2225
121	UWaveGestureLibraryY UWaveGestureLibraryZ	0.5842	0.6321	0.6398	212	384 427	1880	111	138	2154	468	269 287	1823
123	Wafer	0.8921	0.8834	0.8807	95	41	5404	68	51	5377	81	151	5348
124	Wine	0.5000	0.5556	0.5407	6	9	21	3	2	27	11	9	18
125	WordSynonyms Worms	0.2429 0.6623	0.3210	0.3495	51 4	80 12	124 47	10	28	195	98 12	30 5	125 46
127	WormsTwoClass	0.8052	0.7792	0.7792	3	ĩ	59	4	4	56	5	7	55
128	Yoga	0.6559	0.6507	0.6540	163	147	1805	18	28	1934	150	156	1812
	Avg value	0.5967	0.6817	0.6870	58	120	029	26	52	129	141	47	020

ID	Dataset	fine	medium	coarse	a_t_b_f	a_f_b_t	a_t_b_t	b_t_c_f	b_f_c_t	b_t_c_t	c_t_a_f	c_f_a_t	c_t_a_t
1	ACSF1	0.5500	0.0100	0.2500	54	0	1	1	25	0	7	37	18
2	Adiac	0.1074	0.0327	0.0077	34	5	8	13	3	0	1	40	2
4	AllGestureWiimoteX	0.4697	0.1557	0.0980	360	45	25	43 38	70	0	5	321	50 65
5	AllGestureWiimoteZ	0.5723	0.1109	0.0977	348	25	53	77	68	1	68	400	0
6	ArrowHead	0.6366	0.3029	0.4114	93 21	34	19 50	34	53 41	19 44	8	48	64 44
8	Beef	0.3667	0.2000	0.2000	10	5	1	6	6	0	3	8	3
9	BirdChicken	0.8000	0.5000	0.5000	10	4	6	0	0	10	4	10	6
11	CBF	0.8978	0.3311	0.4153	510	õ	298	0	76	298	21	455	353
12	Car	0.6667	0.0833	0.2167	35	0	5	5	13	0	1	28	12
13	ChlorineConcentration	0.7438	0.2367	0.7246	2091	707	249	909	2045	230	377	625	1668
15	CinCECGTorso	0.4768	0.0845	0.1759	588	46	70	115	241	2	38	453	205
16	Confree	1.0000	0.4643	0.4643	15	0	13	0	0	13	0	15	13
18	CricketX	0.4769	0.1723	0.0949	125	6	61	67	37	0	33	182	4
19	CricketY	0.4785	0.0846	0.1149	155	1	32	33	45	0	22	163	23
20	Crop	0.4769	0.1564	0.0225	142	256	1522	1767	48 368	10	193	11551	186
22	DiatomSizeReduction	0.7320	0.2915	0.2039	194	59	30	81	54	8	17	179	45
23 24	DistalPhalanxOutlineAgeGroup DistalPhalanxOutlineCorrect	0.7626	0.5122	0.4604	46 68	11	60 148	58	51	13	18	60 76	46 140
25	DistalPhalanxTW	0.7065	0.2806	0.2806	63	4	35	ő	0	39	4	63	35
26	DodgerLoopDay	0.2450	0.1125	0.2000	19	8	1	8	15	1	16	20	0
28	DodgerLoopWeekend	0.9029	0.4783	0.4783	99	10	26	0	0	36	10	99	26
29	ECG200	0.6940	0.6440	0.6400	6	1	63	0	0	64	1	6	63
30	ECG5000 ECGEiveDays	0.9396	0.2929	0.0191	2940	30	1288	1314	82	4	63 278	4205	23
32	EOGHorizontalSignal	0.4779	0.1492	0.0304	134	15	39	53	10	1	8	170	3
33	EOGVerticalSignal	0.3265	0.0657	0.0801	100	6	18	11	16	13	15	104	14
35	ElectricDevices	0.7311	0.2318	0.2318	5458	463	254	642	641	35 75	187	5182	530
36	EthanolLevel	0.4480	0.2392	0.2408	121	17	103	118	118	2	120	223	1
37	FaceAll FaceFour	0.9155	0.0643	0.0095	1447	8	100	109	16	0	5	1536	9
39	FacesUCR	0.8332	0.1257	0.0474	1456	6	252	258	97	0	10	1621	87
40	FiftyWords	0.3143	0.0088	0.0400	142	3	1	4	18	0	4	128	15
41 42	Fish FordA	0.0629	0.0457	0.2571 0.4841	425	3 48	5 776	200	44 15	624	2 60	622	43 579
43	FordB	0.7788	0.5521	0.5049	275	91	356	47	9	400	100	322	309
44 45	FreezerRegularTrain FreezerSmallTrain	0.9882	0.5004	0.5000	1409 1167	19 598	1407 605	1 164	0 387	1425 1038	19 705	1410 1052	1406 720
46	Fungi	0.1882	0.0710	0.0806	35	13	0	13	15	0	15	35	0
47	GestureMidAirD1	0.2631	0.0308	0.0385	31	1	3	4	5	0	3	32	2
48 49	GestureMidAirD2 GestureMidAirD3	0.2385	0.0231	0.0185	28 19	3	3	3	23	1	2	29	2
50	GesturePebbleZ1	0.7395	0.1919	0.3198	114	20	13	1	23	32	21	93	34
51	GesturePebbleZ2	0.8139	0.1329	0.2595	109	1	20	18	38	3	19	106	22
52	GunPointAgeSpan	0.7506	0.9553	0.4933	67	5	143	84	65	74 91	70	151	86
54	GunPointMaleVersusFemale	0.9968	0.4399	0.4747	176	0	139	4	15	135	0	165	150
55	GunPointOldVersusYoung	1.0000	0.9873	0.5238	4	0	311	146	0	165	0	150	165
57	HandOutlines	0.0381	0.6405	0.6405	81	31	206	0	0	237	31	81	206
58	Haptics	0.3662	0.1883	0.2370	77	22	36	58	73	0	27	67	46
59 60	HouseTwenty	0.7188	0.4062	0.4062	51 62	1	49	0	0	26 50	1	51 62	49
61	InlineSkate	0.1880	0.1509	0.1793	99	79	4	23	39	60	85	90	14
62	InsectEPGRegularTrain	0.8313	0.6426	0.0008	89	42	118	160	0	0	0	207	0
63 64	InsectWingbeatSound	0.3357	0.4739	0.0161	519	109	118	240	173	4	70	245 548	4 116
65	ItalyPowerDemand	0.9499	0.5015	0.5015	481	20	496	0	0	516	20	481	496
66 67	LargeKitchenAppliances	0.8240	0.3333	0.2880	205	21	104	125	108	0	22	223	86
68	Lightning7	0.0000	0.3178	0.0849	11	4	19	23	6	0	6	30	0
69	Mallat	0.5092	0.2370	0.1454	674	36	520	509	294	47	0	853	341
70	Meat MedicalImages	0.6633	0.3333	0.1500	22	2 43	18	261	4	5	0 51	31 401	9 85
72	MelbournePedestrian	0.9030	0.0079	0.1012	2198	5	14	17	246	2	7	1972	241
73	MiddlePhalanxOutlineAgeGroup	0.5870	0.5714	0.1883	21	19	69	88	29	0	20	81	9
74	MiddlePhalanxOutlineCorrect	0.7993	0.6852	0.5704	51 69	22	182	40 19	9	20	23	90 75	143
76	MixedShapesRegularTrain	0.9509	0.0134	0.1340	2277	3	29	32	325	0	7	1988	318
77	MixedShapesSmallTrain MoteStrain	0.6786	0.3753	0.1295	914 632	178	732	910	314	0	18	1350	296
79	NonInvasiveFetalECGThorax1	0.2532	0.0193	0.0165	462	2	36	38	32	0	4	469	28
80	NonInvasiveFetalECGThorax2	0.1859	0.0220	0.0025	324	2	41	43	5	0	5	365	0
81	OliveOil	0.9628	0.1800	0.1322	0	0	43	45	0	12	0	0	12
83	PLAID	0.3158	0.1713	0.1456	83	5	87	14	0	78	0	91	78
84 85	PhalangesOutlinesCorrect Phoneme	0.7683	0.7536	0.6131	38 448	25 29	622	150 40	29 36	497	32	165 447	494 14
86	PickupGestureWiimoteZ	0.3760	0.1000	0.1000	14	0	5	2	2	3	0	14	5
87 88	PigAirwayPressure PigArtDracement	0.1058	0.0000	0.0385	22	0	0	0	8	0	4	18	4
89	PigCVP	0.0577	0.0202	0.0192	12	4	0	4	4	0	4	12	0
90	Plane	1.0000	0.1238	0.2000	92	0	13	13	21	0	0	84	21
91 92	PowerCons ProximalPhalanxOutlineAgeGroup	0.8389	0.5167	0.5000	67 105	9 24	84 64	5 49	0	90 39	9	/0 137	81 33
93	ProximalPhalanxOutlineCorrect	0.8165	0.7113	0.6838	32	i	206	9	í	198	2	41	197
94 05	ProximalPhalanxTW RefrigerationDovision	0.8049	0.1951	0.1951	136	11	29 57	0	0	40	11	136	29
90 96	Rock	0.3296	0.3413	0.3120	142	4	6	8	13	2	9	12	32 6
97	ScreenType	0.6240	0.3333	0.3237	144	35	90	90	86	35	47	159	75
98 99	SemgHandGenderCh2 SemgHandMovementCh2	0.7017	0.3777	0.3500	267	-73 49	154	17	0 88	210	72	283	138
100	SemgHandSubjectCh2	0.5711	0.2116	0.2000	184	23	73	88	83	7	42	209	48
101	ShakeGestureWiimoteZ ShapelatSim	0.4800	0.0840	0.1000	21	1	3	4	5	0	0	19 74	5 87
102	ShapesAll	0.3500	0.0263	0.0000	205	ii .	5	16	0	0	0	210	0
104	SmallKitchenAppliances	0.7787	0.3621	0.2629	195	39	97	63	26	72	39	233	59
105 106	SmoothSubspace SonyAIBORobotSurface1	0.9400	0.3333	0.3800	93 259	2	48 281	23 26	30 0	27	2	86 285	55 255
107	SonyAIBORobotSurface2	0.9003	0.6252	0.6170	294	32	564	8	ŏ	588	32	302	556
108	StarLightCurves	0.9740	0.2799	0.5517	5739	22	2283	2305	4544	0	45	3524	4499
109	Strawberry SwedishLeaf	0.9405	0.06432	0.0432	121 527	0	40	38	0 49	238	0	121 516	227 51
111	Symbols	0.5648	0.0000	0.1749	562	ő	0	0	174	õ	ő	388	174
112	SyntheticControl ToeSegmentation	0.9733	0.1867	0.1827	236	0	56	49	48	7	1	238	54
114	ToeSegmentation2	0.8123	0.1846	0.1846	88	6	18	0	0	24	6	88	18
115	Trace	0.9500	0.0800	0.3000	87	0	8	8	30	0	5	70	25
116	TwoLeadECG	0.7489	0.5004	0.5004	568 3382	285	285	0	0	570	285	568 2656	285
118	UMD	0.5861	0.3333	0.3681	36	0	48	0	5	48	4	35	49
119	UWaveGestureLibraryAll	0.6949	0.1428	0.0367	2037	59	452	491	111	20	37	2395	94
120	U waveGestureLibraryX UWaveGestureLibraryY	0.7059	0.1940 0.1704	0.1095	1944 1660	110	584 437	683 609	380 342	12	144 88	2280 1841	248 256
122	UWaveGestureLibraryZ	0.6559	0.1788	0.1128	1835	126	514	640	404	ò	66	2012	338
123	Wafer Wine	0.9639	0.8921	0.8921	559 25	117 20	5382 7	0	0	5499 27	117 20	559 25	5382 7
125	WordSynonyms	0.3323	0.2223	0.1589	77	7	135	120	79	22	42	153	59
126	Worms	0.6701	0.1688	0.1818	43	4	9	13	14	0	8	46	6
12/	Yoga	0.6902	0.5714	0.5714	867	403	1204	0	0	1607	403	867	40 1204
_	Avg Value	0.6513	0.3011	0.2817	512	44	217	119	113	142	41	516	213

Table 20: Multi-scale analysis of w/o cross-scale fusion based on Scale-teaching using UCR 128 archive with Sym 20% noisy labels.

Table 21: Multi-scale analysis of Scale-teaching using UCR 128 archive with Asym 50% noisy labels.

ID	Dataset	fine	medium	coarse	athf	afbt	atht	htcf	h f c t	btct	ctaf	cfat	ctat
1	ACSF1	0.4380	0.5400	0.5000	0	10	44	6	2	48	7	1	43
2	Adiac	0.0179	0.1857	0.2517	2	68	5	1	26	72	93	2	5
3	AllGestureWiimoteX AllGestureWiimoteY	0.3714 0.3514	0.4643	0.4683	31 32	96 101	229	16	21	309 302	99 115	31	229 207
5	AllGestureWiimoteZ	0.3429	0.4494	0.4829	20	94	220	17	41	297	127	29	211
6	ArrowHead	0.3531	0.3760	0.3920	13	17	48	2	4	65 73	20	13	48
8	Beef	0.2000	0.2000	0.2333	1	ĩ	5	õ	i	6	2	i	5
9 10	BirdChicken	0.4000	0.4500	0.4000	2	3	6	3	2	6	0	0	8
11	CBF	0.7727	0.9398	0.9422	42	192	653	2	4	844	194	41	654
12	Car Chinatown	0.4000	0.4433	0.4400	4	7 50	20	5	4	22	9 58	7	17
14	ChlorineConcentration	0.5141	0.5090	0.5110	198	178	1776	15	23	1940	195	207	1767
15	Confee	0.3372	0.3342	0.3290	114	109	352	28	21	433	119	131	335
17	Computers	0.5120	0.4976	0.4880	7	3	121	3	1	121	3	9	119
18	CricketX	0.2744	0.3431	0.3585	10	37	97 67	12	18	122	52 78	19	88 57
20	CricketZ	0.2355	0.3554	0.3549	9	64	75	11	10	128	71	17	67
21	Crop	0.4823	0.5471	0.5557	578	1666	7525	358	503	8833	1956	724	7380
23	DistalPhalanxOutlineAgeGroup	0.4676	0.4676	0.4676	0	0	65	0	0	65	0	0	65
24	DistalPhalanxOutlineCorrect	0.6043	0.5942	0.5964	7	4	160	1	2	163	6	8	159
26	DodgerLoopDay	0.2325	0.3500	0.3350	1	10	18	2	1	26	8	0	18
27 28	DodgerLoopGame DodgerLoopWeekend	0.5623	0.7362	0.7478	7	31	70 107	2	3	100 94	34	8	69 92
29	ECG200	0.6280	0.6360	0.6100	ò	1	63	4	1	60	2	4	59
30	ECG5000	0.8978	0.8909	0.8918	51	20	3989	5	9	4004	23	50	3990
32	EOGHorizontalSignal	0.3354	0.4006	0.4232	13	37	108	9	17	136	40	8	113
33	EOGVerticalSignal	0.3033	0.3271	0.3481	11	20	99	6	14	112	31	15	95
35	ElectricDevices	0.6258	0.5982	0.5976	334	121	4492	126	122	4486	210	428	4398
36	EthanolLevel	0.2480	0.3632	0.4076	107	164	17	16	38	166	190	110	14
38	FaceFour	0.4545	0.4614	0.5773	2	3	38	3	42 14	37	14	3	37
39 40	FacesUCR FiftyWords	0.3937	0.4758	0.4802	73	241 49	734	68 14	77	908	272	94 10	713
41	Fish	0.1371	0.3406	0.4457	5	41	19	1	19	59	60	6	18
42 43	FordA	0.8623	0.8608	0.8659	14	12	1124	5	12	1131 477	24	19	1119
44	FreezerRegularTrain	0.7446	0.7595	0.7544	21	64	2101	46	31	2119	69	41	2081
45 46	FreezerSmallTrain Fungi	0.5000	0.4947	0.4996	17 9	2 50	1408	3 26	17 20	1407 34	0 42	1 7	1424
47	GestureMidAirD1	0.1692	0.3385	0.4323	2	24	20	6	18	38	39	5	17
48	GestureMidAirD2 GestureMidAirD3	0.1462	0.2785	0.2846	1	18	18	8	9	28	22	4	15
50	GesturePebbleZ1	0.3605	0.2942	0.2988	19	8	43	3	3	48	10	21	41
51 52	GesturePebbleZ2	0.5190	0.5013	0.4899	13	10	69 76	5	4	74	8	13	69 76
53	GunPointAgeSpan	0.5057	0.3933	0.5671	33	29	127	2	25	154	30	11	149
54	GunPointMaleVersusFemale	0.8544	0.8165	0.8165	12	0	258	0	0	258	0	12	258
56	Ham	0.5143	0.5524	0.5143	2	6	52	6	2	52	0	0	54
57	HandOutlines	0.6589	0.6097	0.5865	37	19	206	26	17	200	36	63	181
59	Herring	0.2292	0.3323	0.4375	1	4	25	2	1	27	3	1	25
60	HouseTwenty	0.8756	0.9076	0.9076	4	8	100	1	1	107	8	4	100
62	InsectEPGRegularTrain	1.0000	1.0000	1.0000	0	0	249	0	42 0	249	0	04	249
63	InsectEPGSmallTrain	0.5606	0.5261	0.3574	14	5	126	42	0	89	5	56	84
65	ItalyPowerDemand	0.1376	0.2655	0.2651	16	525 14	880	5	6	889	18	103	877
66	LargeKitchenAppliances	0.5973	0.5600	0.5552	19	5	205	4	2	206	6	22	202
68	Lightning7	0.0337	0.4110	0.4164	6	5	25	õ	0	30	5	6	25
69 70	Mallat	0.2473	0.4583	0.4443	199	693	381	56	23	1018	678	216	364
71	MedicalImages	0.3700	0.5987	0.5855	23	98	357	20	19	435	105	32	348
72	MelbournePedestrian	0.6867	0.6840	0.6741	24	18	1658	31	7	1645	20	50	1632
74	MiddlePhalanxOutlineCorrect	0.1885	0.5883	0.6014	0	5	166	1	5	170	10	1	165
75	MiddlePhalanxTW MixedShanacReculorTrain	0.5675	0.4727	0.4740	22	8	65	1	1	72	8	22	65
77	MixedShapesSmallTrain	0.0712	0.3651	0.6609	15	209	676	28	125	857	332	42	649
78	MoteStrain	0.4609	0.4609	0.4609	0	0	577	0	0	577	0	0	577
80	NonInvasiveFetalECGThorax1	0.0244	0.4595	0.5502	1	813	47 90	20	198	883	992	1	90
81	OSULeaf	0.7545	0.7248	0.7289	9	1	174	4	5	171	4	10	172
83	PLAID	0.2127	0.1534	0.1844	48	16	66	23	40	59	49	64	50
84 85	PhalangesOutlinesCorrect Phoneme	0.6410	0.6522	0.6643	13 91	23 84	537 290	5 55	15 53	555 319	35	15	535 277
86	PickupGestureWiimoteZ	0.2600	0.5000	0.4920	1	13	12	2	2	23	14	2	11
87 88	PigAirwayPressure PigArtPressure	0.1058	0.0894	0.1298	11 7	7	11	6	15 25	12	15 52	10	12
89	PigCVP	0.0337	0.0692	0.1433	4	11	3	4	20	10	26	3	4
90 91	Plane PowerCons	0.4952 0.6578	0.4952 0.6278	0.4952 0.6356	0 8	0	52 110	0	0	52 111	0	0 5	52 113
92	ProximalPhalanxOutlineAgeGroup	0.7463	0.7395	0.7171	7	5	146	5	0	147	5	Í.	142
93 94	ProximalPhalanxOutlineCorrect ProximalPhalanxTW	0.6838	0.7223 0.6537	0.7203 0.6839	6 0	17 22	193 112	10 5	9 11	201 129	26 33	16 5	183 107
95	RefrigerationDevices	0.3995	0.4107	0.3947	11	15	139	8	2	146	15	17	133
96 97	Rock ScreenType	0.3000	0.3000 0.3483	0.3800 0.3424	1 17	1 8	14 123	1 8	5	14 122	6 11	2 22	13 118
98	SemgHandGenderCh2	0.6227	0.6137	0.6227	13	8	361	8	14	360	12	12	361
99 100	SemgHandMovementCh2 SemgHandSubjectCh2	0.3733 0.3542	0.4120 0.3791	0.4089 0.4107	14 14	32 25	154 145	16 4	14 18	170 167	44 39	28 14	140 145
101	ShakeGestureWiimoteZ	0.3400	0.5800	0.5200	1	13	16	3	0	26	10	1	16
102	ShapeletSim ShapesAll	0.5000	0.5000	0.5000	2	225	90 36	23	0 56	90 238	0 259	0	90 35
104	SmallKitchenAppliances	0.6971	0.6939	0.6901	15	14	246	5	3	256	15	17	244
105 106	SmoothSubspace SonyAIBORobotSurface1	0.7067	0.7544 0.7544	0.7387	3 36	9 73	103 380	2 10	1 28	110 443	10 81	5 26	101 390
107	SonyAIBORobotSurface2	0.6031	0.4716	0.4690	171	46	404	25	23	424	49	177	398
108	StarLightCurves	0.9613	0.9538	0.9526	96 13	35	7821	19	9	7836	36 25	107	7810
110	SwedishLeaf	0.4800	0.6861	0.6829	28	157	272	30	28	398	182	55	245
111	Symbols SyntheticControl	0.3176 0.8233	0.4253	0.4529 0.7513	1 36	108 16	315 211	46 8	73 6	377 220	137 21	2 43	314 204
113	ToeSegmentation1	0.4175	0.4219	0.4167	3	4	92	2	1	94	3	3	92
114	ToeSegmentation2 Trace	0.7692	0.7385	0.7846	5	1	95 36	1	7 4	95 38	2	0	100 37
116	TwoLeadECG	0.8520	0.8820	0.8611	5	39	965	31	8	973	32	21	949
117	TwoPatterns UMD	0.7693	0.7747	0.7833	122	144	2955 48	12	46 40	3087 47	165 41	109	2968 46
119	UWaveGestureLibraryAll	0.4893	0.5109	0.5260	148	226	1604	103	157	1727	344	213	1540
120	UWaveGestureLibraryX UWaveGestureLibraryY	0.5281	0.5540	0.5658	72	165 205	1820	71 90	113	1914 1628	251	117 272	1775
122	UWaveGestureLibraryZ	0.5240	0.5247	0.5229	93	96	1784	94	88	1786	167	171	1706
123 124	Wafer Wine	0.8921 0.5000	0.8933	0.9037	0	8	5499 27	0	64 0	5507 27	72 0	0	5499 27
125	WordSynonyms	0.2313	0.2906	0.2759	10	47	138	27	18	158	50	22	126
126 127	Worms WormsTwoClass	0.5325 0.5091	0.4987 0.4935	0.5896 0.5117	4	1	37 35	0 1	2	38 37	7 5	3 5	38 34
128	Yoga	0.5177	0.5190	0.5189	33	37	1520	24	24	1533	27	23	1530
	Avg value	0.4775	0.0204	0.3281	31	/1	332	10	20	265	88	39	324

ID	Dataset	fine	medium	coarse	a_t_b_f	a_f_b_t	a_t_b_t	b_t_c_f	b_f_c_t	b_t_c_t	c_t_a_f	c_f_a_t	c_t_a_t
1	ACSF1	0.6000	0.0100	0.3000	59	0	1	1	30	0	1	31	29
2	Adiac	0.0665	0.0588	0.0205	22	19	4	23	8	0	8	26	0
4	AllGestureWiimoteX	0.3803	0.1354	0.0923	247	28	67	83	15	12	21	288	6
5	AllGestureWiimoteZ	0.3811	0.1000	0.0894	208	11	59	50	42	20	38	242	25
6	ArrowHead	0.5097	0.3029	0.3029	89	53	0	53	53 20	0	1 20	37	52
8	Beef	0.2333	0.2000	0.1367	7	6	0	6	6	0	1	2	5
9	BeetleFly	0.4000	0.5000	0.5000	7	9	1	0	0	10	9	7	1
10	CBF	0.6000	0.5000	0.3311	8 205	0	4 298	0	0	298	0	8 205	4 298
12	Car	0.4000	0.2533	0.1200	23	14	1	15	7	0	3	20	4
13	Chinatown	0.5275	0.7275	0.7246	4	73	178	2	1	249	74	6	176
14	CinCECGTorso	0.4660	0.3694	0.3380	455	233	6	233	366	6	43	495	329
16	Coffee	0.5357	0.4643	0.4643	15	13	0	0	0	13	13	15	0
17	Computers	0.5024	0.4840	0.5000	8	3	118	1	5	120	2	3	123
18	CricketY	0.2790	0.1077	0.1308	83	18	24	42	45	0	35	97	4
20	CricketZ	0.2144	0.1364	0.1590	61	30	23	53	62	0	31	52	31
21	Crop DistomSizeReduction	0.4882	0.0619	0.0342	92	170	870	1040	574	0	386	8014 92	188
23	DistalPhalanxOutlineAgeGroup	0.6619	0.3655	0.5324	58	17	34	42	65	9	20	38	54
24	DistalPhalanxOutlineCorrect	0.5333	0.5978	0.5833	38	56	109	9	5	156	61	47	100
25 26	DistaiPhalanx I W DodgerLoopDay	0.6763	0.2806	0.3525	55 13	0	39	0	4	39	1	45 10	49
27	DodgerLoopGame	0.5290	0.4783	0.4783	72	65	ĩ	õ	0	66	65	72	1
28	DodgerLoopWeekend	0.7739	0.2609	0.2609	72	1	35	0	0	36	1	72	35
30	ECG200 ECG5000	0.8888	0.0400	0.0400	3115	12	885	897	84	2	86	4000	0
31	ECGFiveDays	0.5970	0.5029	0.5029	283	202	231	0	0	433	202	283	231
32	EOGHorizontalSignal EOGVerticalSignal	0.3138	0.0961	0.1320	96 84	17	18	35	48	0	13	78	35
34	Earthquakes	0.7482	0.2518	0.2518	104	35	0	0	0	35	35	104	0
35	ElectricDevices	0.6009	0.0691	0.1126	4578	477	56	533	868	0	487	4253	381
36 37	FaceAll	0.2528	0.2520	0.2544 0.0182	.56 795	50	70 64	125	31	1	5	834	26
38	FaceFour	0.4705	0.0000	0.2045	41	0	0	0	18	Ó	4	27	14
39 40	FacesUCR FiftyWords	0.4839	0.1740	0.0062	661 77	26 26	331	357 57	13	0	3	982 100	10 8
41	Fish	0.4583	0.0834	0.1314	66	0	15	15	23	Ő	19	76	4
42	FordA FordP	0.8917	0.7006	0.4932	365	113	812	289	15	636	111	637	540
43 44	FreezerRegularTrain	0.6407	0.5568	0.5049	59	44 5	407 1744	482	157	1268	53 160	538	356 1265
45	FreezerSmallTrain	0.5004	0.7038	0.5000	192	772	1234	773	192	1233	4	5	1421
46 47	Fungi GestureMidAirD1	0.0968	0.0591	0.1290	7	0	11	0	13	11	13	7	11
48	GestureMidAirD2	0.1709	0.0385	0.0365	17	õ	5	5	6	0	5	20	1
49	GestureMidAirD3	0.1385	0.0615	0.0431	15	5	3	5	3	3	4	16	2
50	GesturePebbleZ1 GesturePebbleZ2	0.4814	0.1802	0.1453	53 73	1	30	31	25	0	10	65	18
52	GunPoint	0.6133	0.5973	0.4933	22	20	70	53	37	37	57	75	17
53	GunPointAgeSpan	0.3829	0.4342	0.4937	72	88	49	2	21	135	90	55	66
55	GunPointOldVersusYoung	1.0000	0.6540	0.5238	109	0	206	41	0	165	0	123	148
56	Ham	0.4381	0.5143	0.5143	20	28	26	0	0	54	28	20	26
57	HandOutlines	0.6200	0.6546	0.6405	67	58	126	5 70	71	237	20	28	52
59	Herring	0.4688	0.4062	0.4062	5	1	25	0	0	26	1	5	25
60	HouseTwenty	0.6353	0.4034	0.4202	28	1	47	0	2	48	1	26	49
62	InsectEPGRegularTrain	1.0000	0.4739	0.1875	131	0	118	0	42	118	0	89	160
63	InsectEPGSmallTrain	0.5719	0.4739	0.1687	131	107	11	118	42	0	0	100	42
64 65	Insect WingbeatSound ItalyPowerDemand	0.1622	0.0962	0.1188 0.5015	283 463	26	39 490	0	0	14 516	26	463	490
66	LargeKitchenAppliances	0.6016	0.3557	0.2224	105	12	121	118	68	15	25	167	58
67 68	Lightning2 Lightning7	0.6393	0.5410	0.5410	15	9	24	0	0	33	9	15 25	24
69	Mallat	0.2479	0.1243	0.0198	581	291	1	276	30	16	46	581	ő
70	Meat MedicalImages	0.6000	0.3333	0.3167	20	4	16	1	0	19	3	20	16
72	MelbournePedestrian	0.7768	0.0600	0.0199	1772	16	131	133	35	14	15	1869	34
73	MiddlePhalanxOutlineAgeGroup	0.6169	0.5714	0.2143	7	0	88	84	29	4	22	84	11
75	MiddlePhalanxTW	0.5065	0.1494	0.1455	63	8	15	7	6	16	12	68	10
76	MixedShapesRegularTrain	0.7980	0.0851	0.1298	1735	6	200	206	315	0	7	1627	308
78	MoteStrain	0.4144	0.4612	0.2501	2	282	575	280	2	575	0	422	577
79	NonInvasiveFetalECGThorax1	0.1186	0.0214	0.0422	192	1	41	42	83	0	40	190	43
80 81	NonInvasiveFetalECGThorax2 OSUL eaf	0.1445	0.0261	0.0453	233	0	38	36	89	0	1	196	88
82	OliveOil	0.4000	0.4000	0.4000	0	ō	12	0	0	12	Ó	0	12
83	PLAID Distance Outline Comment	0.2134	0.1088	0.1233	74	18	41	13	21	46	27	76	39
85 85	Phoneme	0.0452	0.0142	0.0131	336	33	2	35	33	1	30	335	407
86	PickupGestureWiimoteZ	0.1320	0.0360	0.2680	7	2	0	2	13	0	9	2	4
87 88	PigAirwayPressure PigArtPressure	0.0788	0.0096	0.0192	16 15	2	0 4	4	2 4	2	4	16	0 4
89	PigCVP	0.0577	0.0192	0.0337	9	i	3	4	7	Ó	4	9	3
90 91	Plane PowerCons	0.4952	0.2152	0.1733 0.5056	40 61	11 46	12 44	11	7	12 90	6 46	40 60	12 45
92	ProximalPhalanxOutlineAgeGroup	0.7844	0.4098	0.5122	98	21	63	81	102	3	9	65	96
93	ProximalPhalanxOutlineCorrect	0.7491	0.6838	0.6838	23	4	195	0	0	199	4	23	195
94 95	ProximalPhalanx TW RefrigerationDevices	0.7873	0.1951	0.1863	130	9 76	31 49	33 125	31 125	0	9 89	132	29 36
96	Rock	0.4800	0.3000	0.1800	15	6	9	14	8	í	7	22	2
97	ScreenType SemeHandGenderCh2	0.3899	0.3333	0.3280	65 230	44	81	92	90 17	33	97 78	121	26
99	SemgHandMovementCh2	0.3409	0.1702	0.1236	109	33	44	77	56	0	25	122	31
100	SemgHandSubjectCh2	0.2933	0.1418	0.2298	125	57	7	64	103	0	42	71	61
101	ShapeletSim	0.2200	0.1400	0.1400	90	- 90	0	ó	ó	90	90	90	0
103	ShapesAll	0.2513	0.0280	0.0133	139	5	12	17	8	0	1	144	7
104	SmallKitchenAppliances SmoothSubspace	0.6816	0.3333	0.2912	213	82	43	94 46	78	31	47	194	62
106	SonyAIBORobotSurface1	0.5990	0.4293	0.4293	132	30	228	0	0	258	30	132	228
107	SonyAIBORobotSurface2	0.2661	0.6233	0.6170	171	511	83	9	3	585	514	180	74
108	Strawberry	0.7957	0.6432	0.6432	110	54	184	2305	4/34	238	24 54	110	+/30
110	SwedishLeaf	0.5763	0.0672	0.0304	318	0	42	42	19	0	1	342	18
111	Symbols SyntheticControl	0.4750	0.1648 0.0713	0.2553 0.1307	316 260	3	157	13	163 31	91 8	2	220 241	253 37
113	ToeSegmentation1	0.4000	0.4605	0.4737	58	72	33	0	3	105	75	58	33
114	ToeSegmentation2	0.8923	0.1846	0.1846	99 62	7	17	0	0	24	7	99 46	17
116	TwoLeadECG	0.8386	0.5004	0.5004	408	23	547	0	0	570	23	408	547
117	TwoPatterns	0.7727	0.0150	0.2976	3084	53	7	58	1189	2	328	2228	863
118 119	UMD UWayeGestureLibraryAll	0.3347	0.3333	0.3333	48 1213	48 56	0 545	48 600	48 313	0	19 83	19 1527	29 231
120	UWaveGestureLibraryX	0.5207	0.1304	0.1235	1445	47	420	464	439	3	186	1609	256
121	UWaveGestureLibraryY UWaveGestureLibraryZ	0.4638	0.1439	0.0749	1279 1468	134	382 436	482 482	235	34 5	92 126	1485	176 290
123	Wafer	0.8734	0.8569	0.8921	158	57	5225	73	290	5209	132	16	5367
124	Wine WordSynonyme	0.5000	0.5000	0.5000	27	27	0	0	0	27	27	27	0
126	Worms	0.6442	0.0909	0.2078	44	1	6	7	16	0	9	43	7
127	WormsTwoClass	0.6234	0.5714	0.5714	15	11	33	0	0	44	11	15	33
128	Avg Volue	0.3339	0.3337	0.3337	376	552	1073	106	116	147	56	265	207

Table 22: Multi-scale analysis of w/o cross-scale fusion based on Scale-teaching using UCR 128 archive with Asym 40% noisy labels.