
Appendix

This is the appendix of our work: ‘GNNEvaluator: Evaluating GNN Performance On Unseen
Graphs Without Labels’. In this appendix, we present additional information regarding the GNN
model evaluation problem and corresponding solutions, including in-depth discussions that distinguish
our method from related works, dataset statistics used in our experiments, comprehensive details
about our compared baseline methods, training details with the performance of well-trained GNN
models on both the test set of the observed graph and the unseen test graphs (for ground-truth
reference), and more experimental results with detailed analysis.

A Related Work

Predicting Model Generalization Error. Our work is relevant to the line of research on predicting
model generalization error, which aims to develop a good estimator of a model’s classifier performance
on unlabeled data from the unknown distributions in the target domain, when the estimated models’
classifier has been trained well in the source domain with labeled data [6, 9, 34, 5, 10, 4]. Typically,
Guillory et al. [10] proposed to estimate a classifier’s performance of convolutional neural network
(CNN) models on image data based on a designed criterion, named difference of confidences (DoC),
that estimates and reflects model accuracy. And Garg et al. [9] proposed to learn a score-based
Average Thresholded Confidence (ATC) by leveraging the softmax probability of a CNN classifier,
whose accuracy is estimated as the fraction of unlabeled images that receive a score above that
threshold. In contrast, Deng et al. [6, 4] directly predicted CNN classifier accuracy by deriving
distribution distance features between training and test images with a linear regression model.

However, these existing methods mostly focus on evaluating CNN model classifiers on image data in
computer vision, and the formulation of evaluating GNNs for graph structural data still remains under-
explored in graph machine learning. Concretely, conducting the model evaluation on GNNs for graph
structural data has two critical challenges: (1) different from Euclidean image data, graph structural
data lies in non-Euclidean space with complex and non-independent node-edge interconnections, so
that its node contexts and structural characteristics significantly vary under wide-range graph data
distributions, posing severer challenges for GNN model evaluation when serving on unknown graph
data distributions. (2) GNNs have entirely different convolutional architectures from those of CNNs,
when GNN convolution aggregates neighbor node messages along graph structures. Such that GNNs
trained on the observed training graph might well fit its graph structure, and due to the complexity
and diversity of graph structures, serving well-trained GNNs on unlabeled test distributions that they
have not encountered before would incur more performance uncertainty.

Hence, in this work, we first investigate the GNN model evaluation problem for graph structural data
with a clear problem definition and a feasible solution, taking a significant step towards understanding
and evaluating GNN models for practical GNN deployment and serving. Our proposed two-stage
GNN model evaluation framework directly estimates the node classification accuracy results of
specific well-trained GNNs on practical unseen graphs without labels. Our method could not only
facilitate model designers to better evaluate well-trained GNNs’ performance in practical serving,
but also provide users with confidence scores or model selection guidance, when using well-trained
GNNs for inferring on their own test graphs.

Unsupervised Graph Domain Adaption. Our work is also relevant to the unsupervised graph
domain adaption (UGDA) problem, whose goal is to develop a GNN model with both labeled source
graphs and unlabeled target graphs for better generalization ability on target graphs. Typically,
existing UGDA methods focus on mitigating the domain gap by aligning the source graph distribution
with the target one. For instance, Yang et al. [33] and Shen et al. [27] optimized domain distance
loss based on the statistical information of datasets, e.g., maximum mean discrepancy (MMD)
metric. Moreover, DANE [39] and UDAGCN [29] introduced domain adversarial methods to learn
domain-invariant embeddings across the source domain and the target domain. Therefore, the critical
distinction between our work and UGDA is that our work is primarily concerned with evaluating the
GNNs’ performance on unseen graphs without labels, rather than improving the GNNs’ generalization
ability when adapting to unlabeled target graphs. Besides, different from UGDA which uses the
unlabeled target graphs in their model design and training stage, the GNN model evaluation problem

13

explored by our work is not allowed to access the unlabeled test graphs, i.e., unseen in the whole
GNN model evaluation process.

Graph Out-of-distribution (OOD) Generalization & Detection. Out-of-distribution (OOD)
generalization [18, 48] on graphs aims to develop a GNN model given several different but related
source domains, so that the developed model can generalize well to unseen target domains. Li
et al. [18] categorized existing graph OOD generalization methodologies into three conceptually
different branches, i.e., data, model, and learning strategy, based on their positions in the graph
machine learning pipeline. We would like to highlight that, even ODD generalization and our
proposed GNN model evaluation both pay attention to the general graph data distribution shift issue,
we have different purposes: our proposed GNN model evaluation aims to evaluate well-trained GNNs’
performance on unseen test graphs, while ODD generalization aims to develop a new GNN model
for improve its performance or generalization capability on unseen test graphs. Moreover, OOD
detection [32], aims to detect test samples drawn from a distribution that is different from the training
distribution, with the definition of distribution to be well-defined according to the application in
the target domain. Hence, the primary difference between OOD detection and our GNN model
evaluation is, OOD detection works on detecting OOD test samples at the data level and our GNN
model evaluation works on evaluating well-trained GNN’s performance on ODD data at the model
level.

B Dataset Statistics

We provide the details of dataset statistics used in our experiments in Table. A1, where these datasets
meet the covariate shift assumption between any pair of test cases.

Table A1: Statistical details of the experimental real-world datasets.

Dataset # of Nodes # of Edges # of Features # of Labels

ACMv9 7410 11135 7537 6
Citationv2 4715 6717 7537 6
DBLPv8 5578 7341 7537 6

C Baseline Methods Details

Average Thresholded Confidence (ATC) & Its Variants. This metric [9] learns a threshold on
CNN’s confidence to estimate the accuracy as the fraction of unlabeled images whose confidence
scores exceed the threshold as:

ATC =
1

M

M∑
j=1

1
{
s
(
Softmax

(
fθ∗

(
x′
j

)))
< t

}
, (9)

where fθ∗(·) denotes the well-trained CNN’s classifier with the optimal parameter θ∗, and s(·)
denotes the score function working on the softmax prediction of fθ∗(·). When the context is clear,
we will use f(·) for simplification. We adopted two different score functions, deriving two variants
as: (1) Maximum confidence variant ATC-MC with s(f(x′

j)) = maxk∈Y fk(x
′
j); and (2) Negative

Entropy variant ATC-NE with s(f(x′
j)) =

∑
k fk(x

′
j) log

(
fk(x

′
j)
)
, where Y = {1, 2, . . . , C} is the

label space. And for t in Eq. (9), it is calculated based on the validation set of the observed training
set (xval

u ,yval
u) ∈ Sval:

1

Nval

Nval∑
u=1

1
{
s
(
Softmax

(
fθ∗

(
xval
u

)))
< t

}
=

1

Nval

Nval∑
u=1

1
{
p
(
xval
u ;θ∗) ̸= yval

u

}
, (10)

where p(·) denotes the predicted labels of samples. For all the calibration variants with ‘-c’ in our
experiments, they conduct standard Temperature Scaling [11] with following equations:

pu = max
k

Softmax (zu/T)
(k)

, (11)

14

Table A2: Hyperparameters of learning rate (lr) and weight decay (wd) in training different GNNs
and MLP.

Datasets ACMv9 Citationv2 DBLPv8

Models lr wd lr wd lr wd

GCN 0.01 1.00E-05 0.01 1.00E-05 0.01 1.00E-05
SAGE 0.005 1.00E-06 0.005 1.00E-06 0.005 1.00E-06
GAT 0.005 1.00E-06 0.005 1.00E-06 0.005 1.00E-06
GIN 0.01 1.00E-06 0.01 1.00E-06 0.01 1.00E-06
MLP 0.001 1.00E-05 0.001 1.00E-05 0.001 1.00E-05

where zu denotes the network output logits before softmax and T is the temperature scaling factor.

Threshold-based Method. This is an intuitive solution introduced by [6], which is not a learning-
based method. It follows the basic assumption that a class prediction will likely be correct when it
has a high softmax output score. Then, the threshold-based method would provide the estimated
accuracy of a model as:

ACC =

∑M
i=1 1

{
max

(
fθ∗(x′

j)
)
> τ

}
M

, (12)

where τ is the pre-defined thresholds as τ = {0.7, 0.8, 0.9} on the output softmax logits of CNNs.
This metric calculates the percentage of images in the entire dataset whose maximum entry of logits
are greater than the threshold τ , which indicates these images are correctly classified.

AutoEval & Our Adaption AutoEval-G. This is a learning-based method of estimating classifier
accuracy by utilizing dataset-level feature statistics [6]. AutoEval synthesizes a meta image dataset
D (a dataset comprised of many datasets) from the observed training dataset Dori, and conducts the
linear regression to learn the CNN classifier’s accuracy based on the dataset-level feature statistics
between the observed training image data and unseen real-world unlabeled image data. The accuracy
linear regression with the dataset statistic feature flinear is written as:

flinear = FD(Dori,D) = ∥µori − µ∥22 +Tr
(
Σori +Σ− 2 (Σori Σ)

1
2

)
,

ACC = w1flinear + w0

(13)

where FD is the Fréchet distance [7] to measure the domain gap with the mean feature vectors µori
and µ, the covariance matrices Σori and Σ of Dori and D, respectively. And Tr(·) denotes the trace
of the matrix, w1 and w0 denote the parameters of linear regression.

We make the following necessary adaptions to expand the AutoEval method to graph structural data
on GNN model evaluation, deriving AutoEval-G by: (1) we synthesize a meta-graph set Gmeta as
demonstrated in Sec. 3.2 of the main manuscript; (2) we calculate the Maximum Mean Discrepancy
(MMD) distance as AutoEval-G’s graph dataset discrepancy representation f

′

linear, which measures
the graph distribution gap between the observed training graph S and each meta-graph gmeta ∈ Gmeta
with their node embeddings from the well-trained GNNS as:

f
′

linear = MMD(S, gmeta) = MMD(Z∗
S ,Z

(i,∗)
meta). (14)

where Z∗
S = GNN∗

S(X,A), and Z
(i,∗)
meta = GNN∗

S(X
i
meta,A

i
meta).

D Well-trained GNN Model Details

In this section, we provide the details of well-trained GNN models in terms of their architecture
parameters and training details.

For all GNN and MLP models, the default settings are : (a) the number of layers is 2; (b) the
hidden feature dimension is 128; (c) the output feature dimension before the softmax operation is
16. The hyperparameters of training these GNNs and MLP are shown in Table A2. The five seeds
for training each type of models (GCN, GraphSAGE, GAT, GIN, MLP) are {0, 1, 2, 3, 4}, and the
node classification performance (accuracy) on the test set of each observed training graph and the
ground-truth accuracy on the unseen test graphs without labels are shown in Table A3, Table A4,
Table A5, Table A6, and Table A7, respectively.

15

Table A3: Node classification results in accuracy(%) of GCN with different seeds in terms of the test
set of the observed graph and unseen test graphs.

GCN Observed ACMv9 Observed Citationv2 Observed DBLPv8

Seeds Atest GT A→C GT A→D Ctest GT C→A GT C→D Dtest GT D→A GT D→C

0 83.13 45.51 63.88 88.98 46.86 60.18 97.58 70.81 57.65
1 83.74 49.01 68.09 88.45 40.76 61.60 98.30 68.43 57.90
2 82.73 55.08 69.29 88.45 45.51 60.95 98.57 70.04 53.36
3 83.40 48.89 69.85 89.09 46.09 60.58 98.57 68.11 52.85
4 83.87 55.63 68.75 88.24 37.25 58.62 98.66 70.61 58.37

Table A4: Node classification results in accuracy (%) of GraphSAGE with different seeds in terms of
the test set of the observed graph and unseen test graphs.

SAGE Observed ACMv9 Observed Citationv2 Observed DBLPv8

Seeds Atest GT A→C GT A→D Ctest GT C→A GT C→D Dtest GT D→A GT D→C

0 82.32 45.49 63.54 88.98 50.59 59.90 98.66 42.24 42.27
1 83.54 48.97 69.67 88.14 48.87 58.03 98.84 39.41 35.21
2 83.67 52.56 71.15 88.45 41.17 54.61 98.39 45.82 55.99
3 82.79 48.19 66.22 88.03 42.20 53.96 98.48 31.30 27.25
4 82.05 47.04 66.67 88.35 37.46 55.70 98.84 36.99 35.14

Table A5: Node classification results in accuracy (%) of GAT with different seeds in terms of the test
set of the observed graph and unseen test graphs.

GAT Observed ACMv9 Observed Citationv2 Observed DBLPv8

Seeds Atest GT A→C GT A→D Ctest GT C→A GT C→D Dtest GT D→A GT D→C

0 83.00 44.84 72.53 87.82 41.55 57.94 97.85 64.10 51.77
1 82.73 44.18 57.08 88.67 48.80 60.40 98.84 57.03 42.18
2 81.65 45.07 69.59 88.77 45.74 59.04 98.48 39.65 63.99
3 82.79 43.82 60.18 88.98 41.48 61.03 98.93 62.33 58.43
4 81.71 42.04 57.62 87.50 37.04 60.06 98.30 63.64 52.64

Table A6: Node classification results in accuracy (%) of GIN with different seeds in terms of the test
set of the observed graph and unseen test graphs.

GIN Observed ACMv9 Observed Citationv2 Observed DBLPv8

Seeds Atest GT A→C GT A→D Ctest GT C→A GT C→D Dtest GT D→A GT D→C

0 82.19 50.37 74.94 88.24 33.35 59.47 98.48 35.13 40.78
1 82.52 43.12 51.58 86.97 35.40 64.83 66.70 35.37 28.14
2 82.86 42.93 58.21 81.57 39.28 65.04 98.93 53.91 30.56
3 82.46 47.93 69.79 87.92 44.59 69.72 63.47 30.61 21.53
4 82.39 47.04 78.13 88.56 40.23 65.72 98.93 59.39 45.56

Table A7: Node classification results in accuracy (%) of MLP with different seeds in terms of the test
set of the observed graph and unseen test graphs.

MLP Observed ACMv9 Observed Citationv2 Observed DBLPv8

Seeds Atest GT A→C GT A→D Ctest GT C→A GT C→D Dtest GT D→A GT D→C

0 71.59 33.28 38.17 74.89 34.48 37.25 62.67 59.18 51.41
1 70.18 33.47 39.05 74.58 35.30 38.62 63.12 54.44 43.92
2 70.11 42.65 43.67 74.36 34.74 39.12 63.12 53.74 42.59
3 68.62 35.12 39.71 72.56 33.91 37.41 62.94 54.28 44.31
4 69.23 35.95 42.33 74.58 34.41 39.82 64.37 54.08 43.88

16

E More Experimental Analysis and Results.

E.1 DiscGraph Statistics

As a vital component of our proposed two-stage GNN model evaluation framework, DiscGraph
set captures wide-range and diverse graph data distribution discrepancies. By fully exploiting the
latent node embeddings and node class predictions from well-trained GNNs, the DiscGraph set
involves representative node attributes incorporating diverse discrepancies through a discrepancy
measurement function, leading to effective instructions for the training of GNNEvaluator. Hence, in
the following, we show the statistical information of our derived DiscGraph set in Table A8. Note
that, each generated DiscGraph set is related to a specific dataset and a specific well-trained GNN,
as it considers the outputs of node embeddings and predictions on a well-trained GNN trained by a
specific graph dataset.

Table A8: Statistics of the proposed DiscGraph in terms of GNNs on ACMv9, Citationv2, DBLPv8,
where the accuracy label distributions calculate average minimum and maximum node classification
accuracy on GNNs with five random seeds with standard deviations (std).

Statistics DiscGraph-ACMv9 DiscGraph-Citationv2 DiscGraph-DBLPv8

#Num of Graphs (K) 400 400 400
#Avg. Num of Nodes 2105 1340 1585
#Avg. Num of Edges 1595 927 1205

Accuracy Label Distributions
(Min. | Max.±std)

GCN 39.95±0.00 | 80.45±1.40 13.89±7.82 | 85.36±1.00 17.53±0.57 | 91.95±0.56

SAGE 39.95±0.00 | 77.76±2.22 21.29±7.28 | 82.43±0.54 19.07±3.52 | 77.27±2.03

GAT 39.50±1.01 | 79.67±0.63 19.53±12.27 | 86.13±0.47 19.58±1.34 | 87.26±3.99

GIN 28.50±10.15 | 76.06±2.27 13.48±8.24 | 81.50±2.91 19.06±5.18 | 63.63±16.83

MLP 39.92±0.04 | 71.91±1.19 33.65±7.08 | 77.41±0.75 17.71±0.39 | 64.68±0.41

Figure A1: Visualizations on discrepancy node attributes in the proposed DiscGraph set for (a) GAT,
(b) GraphSAGE, and (c) GIN model evaluation. Darker color denotes a larger discrepancy.

Figure A2: Effects of different numbers of DiscGraphs (K) for GNNEvaluator training with Absolute
Error (AE) for each GCN model under C→A and C→D cases.

17

E.2 More Visualization Results of Discrepancy Node Attributes

In Fig. A1, we present more visualization results on discrepancy node attributes in the proposed
DiscGraph set for different GNN models, i.e., (a) GAT, (b) GraphSAGE, and (c) GIN, under
ACMv9→DBLPv8 case.

As can be observed, for different GNNs, the node attributes in the proposed DiscGraph set show
significant differences, denoting the effectiveness of the proposed discrepancy measurement function,
which could capture model-specific discrepancy representations effectively. And such discrepancy
representations could instruct our proposed GNNEvaluator to learn graph data distribution discrep-
ancies with different well-trained GNNs for accuracy regression.

E.3 More Results on The Number of DiscGraphs

We provide more results for illustrating the effects of different numbers of discGraphs for training
the proposed GNNEvaluator in Fig. A2. Along with the MAE results reported in Fig. 5 in the main
manuscript, we report the Absolute Error (AE) results for each GCN model under C→A and C→D
cases. Lower AE denotes better performance. It can be observed that different GCN models have
different appropriate K values for GNNEvaluator training, but they show similar trends for each
unseen test graph in the left and the middle figures. For instance, the proposed GNNEvaluator has
highest AE when it is trained with K = 100 DiscGraphs, and comparable AEs with K = 300 and
K = 400 for evaluating all five GCNs under the C→D case. Nevertheless, in general, as shown in
the red ‘Avg.’ line of the right figure, the performance of the proposed GNNEvaluator would not
significantly vary along the number of DiscGraphs when evaluating all GCNs that are well-trained on
Citationv2 dataset and served on unseen DBLPv8 dataset.

18

	Related Work
	Dataset Statistics
	Baseline Methods Details
	Well-trained GNN Model Details
	More Experimental Analysis and Results.
	DiscGraph Statistics
	More Visualization Results of Discrepancy Node Attributes
	More Results on The Number of DiscGraphs

