
Does Continual Learning Meet Compositionality?
New Benchmarks and An Evaluation Framework

Weiduo Liao1,2, Ying Wei1*, Mingchen Jiang1, Qingfu Zhang1*, Hisao Ishibuchi2*

1Department of Computer Science, City University of Hong Kong
2Department of Computer Science and Engineering, Southern University of Science and Technology

weiduliao2-c@my.cityu.edu.hk, {yingwei, qingfu.zhang}@cityu.edu.hk,
jiangmingchen0129@gmail.com, hisao@sustech.edu.cn

Contents

A Discussion 2

B Additional Related Works 3

B.1 Compositional Zero-shot Learning . 3

B.2 Continual Learning . 3

C Benchmark Details 4

C.1 Compositional GQA (CGQA) . 4

C.1.1 Construction of CGQA . 4

C.1.2 Continual Training Phase . 5

C.1.3 Few-shot Testing Phase . 5

C.1.4 Training Order . 5

C.1.5 Concept Statistics . 6

C.1.6 Few-shot Testing Order . 6

C.1.7 Alternative: Compositional PartImageNet (CPIN) Benchmark 8

C.2 Compositional Objects365 (COBJ) Benchmark 8

C.2.1 Construction of COBJ . 9

C.2.2 Continual Training Phase . 9

C.2.3 Few-shot Testing Phase . 9

C.2.4 Training Order . 10

D Training Details 10

D.1 Hyper-parameters (CGQA) . 10

D.2 Hyper-parameters (COBJ) . 11

E Additional Results 11

E.1 CGQA Overall Results . 11

37th Conference on Neural Information Processing Systems (NeurIPS 2023) Track on Datasets and Benchmarks.

E.2 COBJ Overall Results . 12

E.3 CAM Visualization . 13

E.4 Old and Fresh Concepts . 14

E.5 Effect of Number of Classes in Continual Tasks 17

E.6 Sample Efficiency for Learning Compositionality 18

E.7 Effect of Frozen Feature Extractor . 18

E.8 Performance on ViT Backbone . 20

E.9 CPIN Results . 21

F Implemented Algorithms on Split-CIFAR100 Benchmark 21

A Discussion

How catastrophic forgetting happens The common assumption of an independent and identically
distributed (i.i.d.) training data distribution usually does not hold in continual learning. In the extreme
case, classes seen in the previous tasks may never appear afterward. Inevitably, a model trained
with a naive strategy (i.e., sequentially passing all tasks only once) will encounter catastrophic
forgetting [22]; that is, it drastically forgets the learned knowledge for old tasks upon learning the
new task. The reasons are roughly two-fold: (1) the feature extractor updates itself so that it can not
extract some important features for old tasks; (2) the single-head classifier for the class-incremental
setting will bias the prediction to the classes in the current task (a.k.a. prediction bias). We give
evidence empirically by using our evaluation of compositionality on the feature extractor and also
CAM visualization (in section E.3).

Another example of compositional learning Let’s consider a set of fine-grained dog species
recognition tasks. A learner can learn general dog concepts (e.g., body, head, and feet shapes) and
class-specific concepts (e.g., the small size of the Chihuahua) when recognizing the Chihuahua.
After that, it can reuse these general concepts for other species, while only needing to learn new
class-specific concepts (e.g., the fur color of the Alaskan) further, rather than building up a specific
understanding totally from scratch. The above example clearly states the importance of composi-
tionality when acquiring knowledge from the continually changing world. However, the question of
whether continual learning really meets compositionality is still under exploration.

Relationship between our protocol with compositional zero-shot learning Our setting is the most
general and difficult one that only the compositional label is provided. Thus learners need to learn the
hidden concepts in one image. Compositional zero-shot learning (CZSL) provides both concept and
compositional labels to help recognize novel combinations of concepts (i.e., zero-shot prediction).
Here we generalize CZSL to the case that objects and states are all as concepts (thus the combination
can be any number of concepts from any concept set), while the standard CZSL [32, 2, 28] targets
learning object and state labels separately (thus the combination of concepts only happens between
two different concept sets).

On the other hand, our few-shot testing tasks are somehow related to the evaluation in CZSL. From
the task-level perspective, the non-novel test (i.e., non) is to evaluate the seen (trained) classes, and
three novel tests (i.e., sys, pro, sub) are to evaluate the unseen (untrained) classes in a close-world
setting. If we jointly consider all few-shot tests, it is in an open-world setting.

Relationship between our few-shot testing with few-shot learning Although we adopt few-shot
tasks here, the whole process is not related to few-shot learning. In the few-shot testing phase, only
the classifier is learned with the support set, so that the testing accuracy can directly reflect how well
the feature extractor understands the hidden concepts in the task.

Relationship between compositionality with forward transfer In [21], forward transfer is defined
as the average test accuracy improvement on the next task between testing on the current model
and testing on a random initialization. However, random initialization is not an appropriate choice

2

for comparison. In this paper, we provide compositional few-shot tasks to explicitly evaluate the
performance of the feature extractor on recognizing previously learned concepts and eliminate the
effect of the classifier. The result directly reflects how well the current learner can adapt to the new
compositional tasks. Thus, we exactly test the compositional forward transfer.

Relationship between compositionality with forgetting An ideal compositional feature extractor
reuses concept-level knowledge to extract interpretable image representations. They can be directly
used for the current task, thus, suffer less gradient update. In this ideal case, the forgetting is
eliminated. From our experiments, we indeed observe the concept-level forgetting by case studies
and find that forgetting tends to decrease when the learner has a better compositional generalization
capability.

Relationship between substitutivity test with domain-IL setting In the substitutivity test, the
few-shot tasks contain novel re-combinations of seen concepts and the concepts have a domain shift.
However, it is not the domain-IL setting, since the labels (i.e., novel re-combinations of seen concepts)
are unseen before, and the feature extractor is frozen in the substitutivity test. We adopt this setting to
investigate whether the learner can transfer the attribute-level knowledge onto other concepts.

Difficulties for models to learn compositionality Firstly, we would like to highlight that increasing
the number of classes in one task tends to improve the compositionality in the CL setting, which is
empirically demonstrated in the experiments of varying numbers of classes. Here we further give
another intuitive example. let us consider one class A in which all training samples are on a white
background and one class B in which all training samples are on a black background instead. The
model can easily distinguish A and B according to the background (i.e., the so-called geometric
skews [26]), but not according to the features of the class instance itself. However, if there is another
class C, which is also in black background. In this tri-classification task (distinguishing A,B, and
C), an ideal model should focus on the feature of the instance itself but not the background. This is
one of the difficulties: distribution bias on samples, that some beneficial features (e.g., background)
may be good for the classification, but not good for understanding the class (in a compositional way).
Another difficulty is entanglement of the labels. We provide the labels in a relative way that the
label of A is ‘0’ and of B is ‘1’, but not their true textual meanings (e.g., white paper and green
leaves). The concept information is entangled and embedded into the label, thus, it is hard for the
model to tell which visual features capture the corresponding concepts (i.e., white refers to the color
feature and paper refers to the texture feature). We hope our understanding of this issue can inspire
researchers to focus more on compositionality and design excellent continual learners.

B Additional Related Works

B.1 Compositional Zero-shot Learning

In the field of compositional zero-shot learning, researchers fully explore the learning of object-
attribute composition with the provided object and attribute labels. [25] proposes a set of regularizers
for object-attribute composition and treats attributes as operations. [32] independently learns objects
and attributes with prototypes. [2] treats object and attribute labels as causes of an image, rather
than its effects. [13] learns object-state dependency by self-attentions. However, we aim to evaluate
whether continual learners understand tasks in a compositional way. Thus, these methods do not fit
our setting in that the continual learners have to learn hidden concepts with only combined labels
and should not be pre-trained. [42] unites EBM modules for concept learning and does not require
concept labels, but only focus on toy vision datasets.

B.2 Continual Learning

Typically, continual learning aims to handle catastrophic forgetting mainly in the three families.
Regularization-based methods include GEM [21], that projects the current gradient direction not to
hurt the past tasks, LwF [19], that uses knowledge distillation loss to prevent the learner from large
distribution shifts of old classifiers’ responses on the current task, and EWC [14], that constrains
important parameters related to the old tasks to alleviate forgetting. Replay-based methods include
ER [3], that rehearses some past tasks’ samples from a replay buffer when learning from the current

3

task. Further, [35, 43, 8] replays hidden features rather than raw samples for memory-efficient
learning.

Parameter-isolation-based (mainly hierarchical modularity-based) methods focus on modularizing
learners to learn tasks in a compositional way [24]. Since compositionality is a crucial capability to
address catastrophic forgetting, these studies have been active in recent years in a continual learning
manner. The state-of-the-art approaches differ according to how they compose modules for the specific
task. For single-layer composition, [23] and ELLA [33] propose to linearly combine modules and
Model Zoo [31] ensembles modules using AdaBoost. Since the expressive ability of the single-layer
composition is limited and concepts are intuitively to be hierarchical, the following methods consider
multi-layer (hierarchical) composition. First, the parallel ordering structure maintains a set of
candidate modules for each layer. RPSnet [30], [16], HOUDINI [37], and MNTDP [38] choose one
module in each layer to form a chaining structure. On the other hand, PathNet [7] selects a certain
number of modules from the candidates in each layer discretely and sum (or concatenate) the outputs
to pass to the next layer, while AdaComp [44] and LMC[27] learn soft-weights for candidate modules
in one layer as the overall output. Secondly, the permuted ordering structure assembles a set of
modules in a task-specific order (e.g., [25]). Another soft ordering structure allows all modules to
take parts in all layers in a soft-weighting way (e.g., [23]).

Interestingly, although the above methods are proposed to learn connections among tasks and
maximize the functional reuse of modules, only a small number of them (e.g., [27, 25, 38]) explicitly
test their compositional abilities with toy datasets, especially in the vision domain. In [18, 36, 1, 17,
10, 11, 15] including compositional works outside the continual learning community, the datasets
themselves are compositional but the evaluation is not strictly testing the novel combination.

Profiting from the development of Vision Transformer [6], several prompt-based methods [41, 40,
39] aim to extract task-specific knowledge from a pretrained backbone by prompting. However,
comparing with such pretrained methods are relatively unfair since they may have seen some concepts
or concept combinations before.

C Benchmark Details

In this section, we present all the details of our proposed benchmarks, including some image examples,
the construction process, and training/testing class/concept orders. Our benchmarks and code are
available at https://github.com/CityU-LANTERN/CFST.

C.1 Compositional GQA (CGQA)

(a) train (b) train (c) train (d) sys (e) pro (f) sub (g) non (h) noc

Figure 1: Image examples for CGQA. The labels for continual, i.e., train (a-c) are (Door, Shirt), (Hat,
Leaves), and (Grass, Table), respectively. For sys (d), the testing combination is (Grass, Shirt), in
which grass and shirt are all seen in continual. For pro (e), the testing combination is (Door, Leaves,
Shirt, Table). For sub (f), (Grass, Shirt) only contains brown grass and green shirt. For non (g), the
trained combination (Door, Shirt) is tested. For noc (h), (Bike, Mirror) contains unseen bike and
mirror concepts.

The source dataset is GQA [12] (License CC BY 4.0). GQA is a real-world visual question-answering
dataset, which provides a comprehensive object set with useful meta-information, e.g., attributes.

C.1.1 Construction of CGQA

Our constructed CGQA benchmark consists of a continual training phase and five few-shot testing
phases, i.e., sys, pro, sub, non, and noc. We first pick M = 21 objects with as many attributes as
possible and larger than 30 pixels in width and height utilizing the provided bounding boxes. These

4

https://github.com/CityU-LANTERN/CFST

objects form our concept pool C in the continual training phase. For each object, we select one
attribute specifically for sub. For example, color can be a good candidate since it is commonly present
on different objects which easily guarantees the solvability requirement. Then, we put those object
instances which have the corresponding selected attributes into a attr set. After that, we split the
remaining object instances into train, val, test, and fewshot sets and make sure the learner will not see
exactly the same object instances in different sets. Among these sets, train, val, and test are used in
the continual training phase, and fewshot is used in the few-shot testing phases.

C.1.2 Continual Training Phase

We construct 100 random and different object combinations as the Ytr and each yi ∈ Ytr consists
of Mtr = 2 objects in C with randomly assigned positions in the image (e.g., left-bottom and
right-bottom), as shown in Figure 1a-1c). In these combinations, all objects in C should be witnessed
as balanced as possible. We generate 1000 (train), 50 (val), 100 (test) image instances for each
combination from the corresponding train, val, test sets, respectively. Generally, we construct T = 10
tasks, each with N = 10 object combinations {yi}Ni=1.

C.1.3 Few-shot Testing Phase

In this phase, we have five different testing schemes, i.e., sys, pro, sub, non, and noc. We will
introduce all these schemes in detail as follows:

1. Systematicity Novel Testing (sys) We construct another set Ysys containing 100 novel object
combinations different from Ytr. The example image is shown in Figure 1d. Different from the
large train set, we only need to generate 100 image instances for each combination from the
fewshot set. For clarity, we also name this image set as sys.

2. Productivity Novel Testing (pro) In the pro test, more concepts are in one image than that in
the continual training phase. Specifically as shown in Figure 1e, 3 or 4 objects (concepts) are
sampled with randomly assigned positions in one image. We sample 100 image instances for each
combination from the fewshot set and name this image set as pro.

3. Substitutivity Novel Testing (sub) For the sub test, object instances are sampled from attr set,
which contains only the objects with selective attributes, as shown in Figure 1f. We sample 100
image instances for each combination and name this image set as sub.

4. Non-novel Testing (non) Different from the continual training phase in which training objects are
from the train set, in the non test, we sample object instances from the fewshot set to construct
100 image instances and name this image set as non. The example image is shown in Figure 1g.

5. Non-compositional Testing (noc) We construct another novel concept pool Cnoc, with other 200
objects in GQA rather than the seen objects in Ctr. Further, we design 100 object combinations
Ynoc and each with 100 image instances and name this image set as noc. The example images are
shown in Figure 1h.

From the obtained image sets (i.e., sys, pro, sub, non, and noc), we construct Tnv N -way K-shot
tasks for each set by randomly selecting images, and Tnv = 300, N = 10,K = 10. The reported
average test accuracy is used as the metric to analyze the compositional generalization capability of
the learner after continual training.

C.1.4 Training Order

Unless stated otherwise, the 21 training concepts for CGQA are: plate, shirt, building, sign, grass,
car, table, chair, jacket, shoe, flower, pants, helmet, bench, pole, leaves, wall, door, fence, hat, shorts.
We choose these 21 concepts because they have numerous instances in the original dataset. The
combinations of concepts need to be sufficiently explored among the 10 tasks. The continual training
order can be generated randomly. For the sake of analysis, we fix the continual training order in the
experiments. The following shows the order:

• Task 1: (fence, flower), (door, grass), (leaves, shirt), (grass, table), (shoe, shorts), (hat, table),
(leaves, wall), (chair, grass), (door, shoe), (fence, helmet);

• Task 2: (chair, sign), (grass, shorts), (hat, plate), (pole, shirt), (grass, pants), (pants, shoe), (pole,
wall), (bench, chair), (helmet, plate), (leaves, shoe);

• Task 3: (bench, shorts), (flower, pole), (chair, helmet), (pants, shorts), (helmet, shorts), (helmet,
shoe), (hat, jacket), (hat, shorts), (jacket, shoe), (fence, wall);

5

• Task 4: (bench, helmet), (hat, shirt), (bench, sign), (plate, wall), (grass, plate), (helmet, pole), (door,
leaves), (bench, pants), (grass, jacket), (jacket, pole);

• Task 5: (car, jacket), (building, plate), (helmet, leaves), (pants, shirt), (car, leaves), (bench, leaves),
(fence, pants), (bench, shirt), (fence, grass), (building, jacket);

• Task 6: (fence, plate), (car, helmet), (car, shorts), (grass, leaves), (jacket, shirt), (chair, shirt), (plate,
sign), (bench, jacket), (leaves, sign), (chair, shoe);

• Task 7: (flower, shirt), (building, chair), (plate, shorts), (building, leaves), (chair, hat), (fence, pole),
(grass, sign), (building, grass), (hat, shoe), (bench, wall);

• Task 8: (car, flower), (bench, door), (bench, hat), (bench, building), (bench, table), (hat, sign),
(shirt, wall), (door, fence), (door, plate), (pole, table);

• Task 9: (flower, pants), (shoe, sign), (helmet, shirt), (leaves, plate), (hat, wall), (grass, shoe), (plate,
shirt), (pants, wall), (fence, leaves), (chair, pole);

• Task 10: (car, sign), (car, pants), (flower, helmet), (building, hat), (car, shirt), (helmet, sign), (flower,
wall), (door, pole), (leaves, shorts), (fence, shorts).

C.1.5 Concept Statistics

Figure 2: Number of the same concepts for the continual training tasks in CGQA.

The concepts in the continual training tasks are shown as follows:

• Task 1: chair, door, fence, flower, grass, hat, helmet, leaves, shirt, shoe, shorts, table, wall;
• Task 2: bench, chair, grass, hat, helmet, leaves, pants, plate, pole, shirt, shoe, shorts, sign, wall;
• Task 3: bench, chair, fence, flower, hat, helmet, jacket, pants, pole, shoe, shorts, wall;
• Task 4: bench, door, grass, hat, helmet, jacket, leaves, pants, plate, pole, shirt, sign, wall;
• Task 5: bench, building, car, fence, grass, helmet, jacket, leaves, pants, plate, shirt;
• Task 6: bench, car, chair, fence, grass, helmet, jacket, leaves, plate, shirt, shoe, shorts, sign;
• Task 7: bench, building, chair, fence, flower, grass, hat, leaves, plate, pole, shirt, shoe, shorts, sign,

wall;
• Task 8: bench, building, car, door, fence, flower, hat, plate, pole, shirt, sign, table, wall;
• Task 9: chair, fence, flower, grass, hat, helmet, leaves, pants, plate, pole, shirt, shoe, sign, wall;
• Task 10: building, car, door, fence, flower, hat, helmet, leaves, pants, pole, shirt, shorts, sign, wall.

We visualize numbers of the same concepts pair-wisely in Figure 2. CGQA provides comprehen-
sive combinations of training concepts, which guarantees that the learner has the chance to learn
compositionality.

C.1.6 Few-shot Testing Order

Then, we list the concept combinations for few-shot tests:

6

• sys: The 100 systematicity test combinations are (bench, car), (bench, fence), (bench, grass), (bench,
plate), (bench, pole), (bench, shoe), (building, car), (building, door), (building, fence), (building,
helmet), (building, pants), (building, shirt), (building, shorts), (building, table), (building, wall),
(car, chair), (car, door), (car, fence), (car, grass), (car, hat), (car, plate), (car, pole), (car, shoe), (car,
table), (car, wall), (chair, door), (chair, fence), (chair, flower), (chair, jacket), (chair, leaves), (chair,
pants), (chair, plate), (chair, shorts), (chair, table), (chair, wall), (door, flower), (door, hat), (door,
helmet), (door, jacket), (door, pants), (door, shirt), (door, shorts), (door, sign), (door, table), (door,
wall), (fence, hat), (fence, jacket), (fence, shirt), (fence, shoe), (fence, sign), (fence, table), (flower,
grass), (flower, hat), (flower, jacket), (flower, leaves), (flower, shoe), (flower, shorts), (flower, sign),
(flower, table), (grass, hat), (grass, helmet), (grass, pole), (grass, shirt), (grass, wall), (hat, helmet),
(hat, leaves), (hat, pants), (helmet, jacket), (helmet, pants), (helmet, table), (jacket, leaves), (jacket,
pants), (jacket, plate), (jacket, shorts), (jacket, sign), (jacket, table), (jacket, wall), (leaves, pants),
(leaves, pole), (pants, plate), (pants, pole), (pants, sign), (pants, table), (plate, pole), (plate, shoe),
(plate, table), (pole, shoe), (pole, shorts), (pole, sign), (shirt, shoe), (shirt, shorts), (shirt, sign),
(shirt, table), (shoe, table), (shoe, wall), (shorts, table), (shorts, wall), (sign, table), (sign, wall),
(table, wall).

• pro: The 100 productivity test combinations are (bench, building, door, sign), (bench, car, fence),
(bench, car, flower), (bench, car, flower, leaves), (bench, car, helmet), (bench, car, jacket, pole),
(bench, chair, grass, shirt), (bench, chair, pole), (bench, door, fence, hat), (bench, door, hat), (bench,
door, leaves, pole), (bench, door, plate, pole), (bench, door, shoe, sign), (bench, fence, table, wall),
(bench, flower, hat, jacket), (bench, grass, pants), (bench, grass, pants, pole), (bench, hat, jacket,
shorts), (bench, helmet, pants, wall), (bench, helmet, table, wall), (bench, leaves, shirt), (bench,
leaves, sign), (bench, pants, shoe), (bench, pole, sign), (bench, shorts, sign, wall), (building, car,
fence, shorts), (building, car, hat, plate), (building, car, leaves), (building, chair, fence, shorts),
(building, chair, helmet), (building, door, pants, shorts), (building, flower, helmet, shoe), (building,
grass, hat, shorts), (building, grass, pants, sign), (building, helmet, pants, pole), (building, leaves,
table), (building, pants, shoe), (building, plate, sign), (building, shirt, shorts, table), (car, door,
fence, helmet), (car, door, hat, pole), (car, door, shorts, table), (car, fence, helmet), (car, fence,
pants), (car, flower, jacket, table), (car, flower, shirt), (car, grass, hat, shirt), (car, grass, helmet),
(car, helmet, shoe, shorts), (car, jacket, plate, pole), (car, jacket, shorts), (car, leaves, shorts), (car,
shoe, shorts), (chair, flower, shoe), (chair, hat, helmet, plate), (chair, hat, jacket), (chair, helmet,
shoe, sign), (chair, jacket, plate), (chair, jacket, shoe), (chair, leaves, pole, shorts), (chair, pole,
sign), (chair, shorts, table), (chair, sign, wall), (door, flower, leaves, shorts), (door, hat, helmet,
shoe), (door, hat, shirt, table), (door, helmet, jacket, shirt), (door, helmet, table, wall), (door, jacket,
shirt, shoe), (door, jacket, table), (door, jacket, wall), (door, plate, shirt), (fence, grass, helmet,
wall), (fence, helmet, leaves), (fence, helmet, pants, pole), (fence, helmet, shoe, sign), (fence, jacket,
pants), (flower, grass, pants, pole), (flower, grass, pole, table), (flower, hat, jacket, shoe), (flower,
hat, leaves, pole), (flower, helmet, pants, pole), (flower, helmet, plate), (flower, jacket, shorts),
(flower, pants, shorts), (flower, shoe, shorts), (hat, helmet, jacket), (hat, helmet, shoe), (hat, jacket,
pole), (hat, leaves, sign), (hat, leaves, table, wall), (helmet, jacket, pants), (jacket, shirt, shoe, wall),
(leaves, table, wall), (pants, pole, shirt), (pants, pole, shoe), (pants, sign, wall), (pants, table, wall),
(plate, shoe, sign), (pole, shorts, wall).

• sub: The substitutivity tests consider the selective attributes for concepts: grass: brown, shirt:
green, plate: blue, pants: white, leaves: brown, fence: black, helmet: white, shoe: black, jacket:
blue, car: red, table: white, chair: black, flower: yellow, pole: wood, building: brown, hat: blue,
bench: metal, wall: brick, door: glass, sign: round, shorts: white.

• non: The test combinations for the non-novel test are the same as those in the continual train phase.
• noc: The unseen concepts are jeans, eyes, lady, orange, snow, cow, keyboard, wire, motorcycle,

couch, frisbee, beak, tower, kite, bridge, window, hands, beach, guy, horse, wing, banana, word,
player, spoon, rock, bed, sauce, screen, woman, street, airplane, bowl, sock, eye, cloud, tree,
numbers, label, train, floor, animal, dirt, ball, uniform, bike, cat, gravel, logo, paper, laptop, desk,
suit, zebra, bag, van, glasses, letter, food, platform, pot, sweater, child, pavement, sticker, man,
hand, foot, shelf, face, counter, ear, road, cabinet, mane, wheel, fork, can, onion, fur, leg, elephant,
goggles, roof, bush, blanket, curtain, sky, boy, umbrella, boot, mouth, broccoli, tail, bus, hill,
trash, post, cup, collar, trunk, truck, frame, book, dog, ground, ceiling, windshield, cheese, cake,
arrow, head, bear, ocean, vehicle, carrot, ring, tie, finger, fruit, refrigerator, sun, sidewalk, napkin,
street light, paw, lid, girl, coat, seat, water, plant, sheep, glove, sneakers, cone, toilet, tire, tag,
spots, faucet, stick, lamp, racket, phone, mirror, donut, number, wrist, nose, sand, knife, neck, box,
branch, dress, meat, bird, hair, field, basket, vase, picture, people, boat, cap, house, pizza, sink,

7

clock, room, arm, watch, bottle, vest, pillow, container, camera, paint, mountain, giraffe, bread,
apple, horn, drawer, cord, bicycle, computer, feet, towel, backpack, stone, flag, wetsuit, balcony,
carpet, candle, snowboard, scarf, necklace. From these unseen concepts, we randomly generate
100 non-compositional test combinations: (floor, vehicle), (pizza, book), (girl, ball), (pizza, coat),
(apple, floor), (meat, player), (boy, sand), (hand, hair), (ring, faucet), (zebra, carrot), (kite, mane),
(vest, bottle), (bowl, cake), (sheep, tree), (fur, frisbee), (nose, carpet), (onion, fork), (pot, sink),
(neck, watch), (roof, towel), (bridge, dog), (bicycle, foot), (sink, curtain), (label, racket), (frame,
windshield), (knife, ear), (broccoli, van), (bear, racket), (toilet, lady), (ground, collar), (zebra, flag),
(bed, sheep), (wing, food), (pavement, ground), (hand, wetsuit), (stone, beak), (wrist, guy), (phone,
frame), (room, phone), (ring, ground), (sock, number), (sheep, motorcycle), (face, cheese), (hill,
vase), (elephant, laptop), (wrist, can), (shelf, scarf), (broccoli, boot), (eyes, clock), (mouth, vase),
(kite, eye), (wheel, stick), (wheel, wrist), (ocean, watch), (ball, mane), (box, broccoli), (airplane,
word), (wire, room), (label, refrigerator), (window, wetsuit), (fork, banana), (camera, hand), (cord,
lady), (letter, zebra), (ocean, tire), (street light, necklace), (branch, plant), (tie, truck), (horse, girl),
(pillow, motorcycle), (street light, foot), (train, backpack), (napkin, collar), (candle, bowl), (bush,
pillow), (glasses, cow), (sneakers, collar), (dirt, clock), (desk, bowl), (airplane, pavement), (towel,
food), (boat, wire), (hill, dress), (apple, guy), (sweater, banana), (logo, laptop), (scarf, camera),
(elephant, onion), (post, phone), (trash, wheel), (motorcycle, mountain), (phone, lady), (cup, arrow),
(ocean, broccoli), (bridge, cheese), (snow, ring), (elephant, bike), (child, sky), (bush, napkin), (room,
dog).

C.1.7 Alternative: Compositional PartImageNet (CPIN) Benchmark

(a) train (b) train (c) train (d) train (e) sys (f) pro (g) non (h) noc

Figure 3: Image examples for CPIN. The labels for continual, i.e., train (a - d) are (Bird Head, Snake
Head, Car Tier, Bird Foot, Ursidae Head), (Bovidae Body, Primates Hand, Lacertilia Body, Canidae
Head, Bovidae Foot), (Mustelidae Foot, Canidae Foot, Lacertilia Foot, Snake Head, Bovidae Head),
and (Ursidae Body, Lacertilia Head, Felidae Head, Testudines Body, Testudines Head), respectively.
For sys (e), the testing combination is (Snake Head, Car Tier, Felidae Head, Bird Head, Bovidae
Body), in which these concepts are all seen in continual. For pro (f), the testing combination is
(Bovidae Foot, Ursidae Body, Bird Foot, Ursidae Head, Lacertilia Head, Bird Head, Testudines Head).
For non (g), the trained combination (Ursidae Body, Lacertilia Head, Felidae Head, Testudines Body,
Testudines Head) is tested. For noc (h), (Bicycle Body, Aeroplane Head, Bicycle Seat, Aeroplane
Tail, Boat Sail) contains unseen concepts.

Since the concepts (e.g., Bird) in CGQA are somewhat coarse-grained and the maximally allowed
number of concepts in one combination is 4 (i.e., 2× 2), one may be interested in the performance of
a continual learner on finer-grained datasets (e.g., Bird Wings) and more concepts in one combination
(e.g., 3× 3). One alternative benchmark is Compositional PartImageNet (CPIN) constructed from the
PartImageNet [9] dataset with a similar process as CGQA. PartImageNet is a subset of ImageNet [5]
and provides segmentation for parts of objects (e.g., wings of birds), which can be used to construct
fine-grained datasets. However, PartImageNet only provides bounding boxes but no other meta-
information for concepts. Thus, we do not construct the sub testing scheme, since it needs the attribute
information of concepts. Further, instead of constructing an image with 2× 2 possible positions for
concepts, we allow a combination of maximally 3× 3 concepts. The tasks constructed from the CPIN
benchmark are generally more difficult than those constructed from the CGQA benchmark. We give
examples of images in Figure 3.

C.2 Compositional Objects365 (COBJ) Benchmark

The source dataset is Objects365 [34] (License CC BY 4.0). Objects365 is a high-resolution dataset
designed for object detection with enough combinations of objects in the wild.

8

(a) train (b) train (c) train (d) train (e) sys (f) pro (g) non (h) noc

Figure 4: Image examples for COBJ. The labels for continual, i.e., train (a-d) are (Glasses, Hat,
Person), (Handbag/Satchel, Person), (Bracelet, Person, Sneakers), and (Bracelet, Hat), respectively.
For sys (e), the testing combination is (Bracelet, Hat, Person), in which grass and shirt are all seen in
continual. For pro (f), the testing combination is (Glasses, Handbag/Satchel, Hat, Person, Sneakers).
For non (g), the trained combination (Handbag/Satchel, Person) is tested. For noc (h), (Cup, Plate)
contains unseen cup and plate concepts.

C.2.1 Construction of COBJ

Our constructed COBJ benchmark consists of a continual training phase and four few-shot testing
phases, i.e., sys, pro, non, and noc. Note that the original Objects365 benchmark does not provide
attribute information. As a result, we do not construct sub testing phase. Figure 4. We first pick
M = 20 objects that have as many combinations with others and as many instances as possible and
larger than 30 pixels on width and height utilizing the provided bounding boxes. These objects form
our concept pool C in the continual training phase. After that, we collect images in the Objects365
benchmark that contains the selected objects. Next, we assign the combination of objects (concepts)
in one pre-processed image as its label. Note that, although Objects365 provides 365 objects with
bounding boxes, most of them are long-tailed. Thus, it is not guaranteed for the learners to learn the
compositionality according to the sample efficiency experiment and the analysis in section E.6. It
is worth noting that, we still utilize these objects to construct our noc set to test the concept-level
generalization capability. Then, we split the image instances into train, val, test, and fewshot sets
and make sure the learner will not see exactly the same instance in different sets. Among these sets,
train, val, and test are used in the continual training phase, and fewshot is used in the few-shot testing
phases.

C.2.2 Continual Training Phase

The continual training set Ytr contains 30 different object combinations and each yi ∈ Ytr consists of
Mtr = 3 (or 2) objects in C, as shown in Figure 4a-4d). We select around 1000 (train), 50 (val), 100
(test) image instances for each combination from the corresponding train, val, test sets, respectively.
Generally, we construct T = 3 tasks, each with N = 10 object combinations {yi}Ni=1. We also
explore different T in section E.5 to examine the effect of the number of classes in one task.

C.2.3 Few-shot Testing Phase

In this phase, we have four different testing schemes, i.e., sys, pro, non, and noc. Note that we do not
construct sub since their is no attribute label for the image. We will introduce all these schemes in
detail as follows:

1. Systematicity Novel Testing (sys) We select another set Ysys with 30 novel combinations different
from Ytr. The example images are shown in Figure 4e. Different from the large train set, we only
need to generate 100 image instances for each combination from the fewshot set. For clarity, we
also name this image set as sys.

2. Productivity Novel Testing (pro) In the pro test, more concepts are in one image than that in
the continual training phase. Specifically as shown in Figure 4f, 4 or more objects (concepts) are
contained in one image. We sample 100 image instances for each combination from the fewshot
set and name this image set as pro.

3. Non-novel Testing (non) Different from the continual training phase in which training objects are
from the train set, in the non test, we sample object instances from the fewshot set to construct
100 image instances and name this image set as non. The example images are shown in Figure 4g.

4. Non-compositional Testing (noc) We construct another novel concept pool Cnoc, with other 19
object combinations in Objects365 that contain the unseen objects rather than the seen objects

9

in Ctr. Further, we design 100 object combinations Ynoc and each with 100 image instances and
name this image set as noc. The example images are shown in Figure 4h.

From the obtained image sets (i.e., sys, pro, non, and noc), we construct Tnv N -way K-shot tasks
for each set by randomly selecting images, and Tnv = 300, N = 10,K = 10. The reported average
test accuracy is used as the metric to analyze the compositional ability of the learner after continual
training. We also explore different N in section E.5 to examine the effect of the number of classes in
one task.

C.2.4 Training Order

Unless stated otherwise, the 20 training concepts for COBJ are: Basketball, Bench, Boat, Bracelet,
Car, Chair, Desk, Glasses, Guitar, Handbag/Satchel, Hat, Lamp, Microphone, Necklace, Other Shoes,
Person, SUV, Sailboat, Sneakers, Street Lights. We choose these 20 concepts because they have
numerous combinations and instances in the original dataset. The combinations of concepts need to
be sufficiently explored among the 3 tasks. The continual training order can be generated randomly.
For the sake of analysis, we fix the continual training order in the experiments. The following shows
the order:

• Task 1: (Bracelet, Person, Sneakers), (Car, SUV, Street Lights), (Bracelet, Glasses, Person), (Bench,
Person), (Person, Sneakers), (Car, Person), (Boat, Sailboat), (Lamp, Person), (Glasses, Hat, Person),
(Chair, Person);

• Task 2: (Hat, Person, Sneakers), (Microphone, Person), (Basketball, Person, Sneakers), (Boat,
Person), (Other Shoes, Person, Sneakers), (Other Shoes, Person), (Guitar, Microphone, Person),
(Bracelet, Necklace, Person), (Glasses, Person), (Necklace, Person);

• Task 3: (Car, Street Lights), (Car, Person, Street Lights), (Glasses, Person, Sneakers), (Person,
Street Lights), (Hat, Other Shoes, Person), (Chair, Desk), (Hat, Person), (Bracelet, Person),
(Handbag/Satchel, Person), (Glasses, Necklace, Person).

D Training Details

By default, we resize the input samples to 128× 128 pixels in RGB color channels and perform the
random horizontal flipping and normalization with ImageNet statistics when training a ResNet-18
model. For inference, we remove the random horizontal flipping part for consistency. Additionally
for the training of ViT backbones, we use an image size of 224× 224 and add Rand-Augment [4]
and random erasing [45] for training to further improve the results. We also use a cosine learning rate
schedule with 200 training epochs and an early stop strategy with a patient of 5 epochs using val sets.
The ViT structure we use is as follows: patch size 16*16, hidden dimension 384, number of layers 9,
multi-head attention with 16 heads and feed-forward with dimension 1536. We adopt Avalanche [20]
library based on Pytorch for our experiments. All experiments are executed on a single NVIDIA
TESLA V100 GPU.

D.1 Hyper-parameters (CGQA)

In this section, we report the hyper-parameters tuning grids in the continual training phase. For the
few-shot testing phases, the learning rate is fixed at 1e-3. Unshown hyper-parameters use their default
values. Unless stated otherwise, the bold value is chosen in our experiments for specific methods.
Note that, methods using multi-head classifiers are denoted with a postfix “*” (e.g., Finetune*).

• ResNet-18 backbone
learning rate: [1e-4, 2e-4, 3e-4, 4e-4 (MNTDP*), 5e-4, 8e-4 (ER*), 1e-3 (GEM*, RPSnet, MT*),
3e-3 (Finetune, ER), 5e-3 (LwF, EWC, EWC*, MT), 8e-3 (Finetune*), 1e-2 (GEM, LwF*), 3e-2,
5e-2, 8e-2, 0.1]
memory size: [1000 (ER, ER*, RPSnet)]
patterns per exp: [32 (GEM, GEM*), 64, 128, 256]
mem strength: [0.1, 0.2, 0.3 (GEM, GEM*), 0.4, 0.5]
alpha: [0.1, 0.5, 1 (LwF, LwF*), 5, 10]
temperature: [0.1, 0.5, 1 (LwF, LwF*), 2]
lambda: [0.1 (EWC), 0.5, 1, 1.5, 2 (EWC*)]

• ViT backbone

10

Table 1: Results on CGQA with ResNet-18 backbone. Accuracy (%)± 95% confidence intervals (%)
over 300 tasks are reported for few-shot testing phases. Task-IL settings denote with a postfix “*”.

Methods Acon Asys Apro Asub Hn Anon Anoc Hr Ha

MultiTask 83.61 88.14 ± 0.62 85.94 ± 0.65 69.67 ± 0.75 80.35 91.55 ± 0.51 40.04 ± 0.99 55.71 68.28

Finetune 8.38 64.73 ± 0.78 65.43 ± 0.73 61.26 ± 0.67 63.75 68.54 ± 0.80 40.32 ± 0.72 50.77 57.84
ER 19.78 71.38 ± 0.75 70.11 ± 0.64 64.32 ± 0.69 68.46 77.27 ± 0.67 40.98 ± 0.72 53.56 61.60
GEM 8.56 66.56 ± 0.77 73.47 ± 0.61 62.80 ± 0.71 67.33 72.65 ± 0.73 41.64 ± 0.72 52.94 60.72
LwF 9.11 71.22 ± 0.74 73.28 ± 0.61 68.74 ± 0.66 71.03 76.56 ± 0.66 48.69 ± 0.77 59.52 65.93
EWC 8.22 64.99 ± 0.78 73.47 ± 0.64 63.25 ± 0.66 66.95 69.03 ± 0.74 41.38 ± 0.71 51.75 59.91
RPSnet 33.45 59.80 ± 0.83 60.26 ± 0.72 59.75 ± 0.74 59.94 64.22 ± 0.81 45.09 ± 0.64 52.98 56.95

MultiTask* 92.17 82.16 ± 0.68 84.22 ± 0.60 71.82 ± 0.75 79.01 86.44 ± 0.69 44.07 ± 0.95 58.38 69.23

Finetune* 72.46 70.32 ± 0.73 72.62 ± 0.63 66.33 ± 0.69 69.66 75.32 ± 0.70 43.26 ± 0.73 54.95 62.92
ER* 76.05 71.37 ± 0.70 72.67 ± 0.69 66.80 ± 0.63 70.19 76.28 ± 0.66 45.61 ± 0.77 57.09 64.29
GEM* 21.60 69.44 ± 0.75 73.14 ± 0.67 66.61 ± 0.66 69.63 73.31 ± 0.71 45.97 ± 0.74 56.51 63.71
LwF* 73.19 69.61 ± 0.77 74.22 ± 0.63 65.00 ± 0.65 69.40 75.25 ± 0.69 42.52 ± 0.72 54.34 62.48
EWC* 71.10 69.40 ± 0.79 72.37 ± 0.65 65.10 ± 0.67 68.83 74.99 ± 0.72 42.82 ± 0.77 54.51 62.29
MNTDP* 68.98 47.27 ± 0.91 47.41 ± 0.86 47.50 ± 0.85 47.39 52.28 ± 0.81 32.29 ± 0.83 39.93 44.09

learning rate: [1e-5 (GEM*), 5e-5 (GEM, RPSnet), 1e-4 (MT, MT*, Finetune, Finetune*, ER, ER*,
LwF, LwF*, EWC, EWC*, MNTDP), 5e-4, 1e-3]
memory size: [2000 (ER, ER*, RPSnet)]
patterns per exp: [32 (GEM, GEM*), 64, 128, 256]
mem strength: [0.1, 0.2, 0.3 (GEM, GEM*), 0.4, 0.5]
alpha: [0.1, 0.5, 1 (LwF, LwF*), 5, 10]
temperature: [0.1, 0.5, 1 (LwF, LwF*), 2]
lambda: [0.1 (EWC), 0.5, 1, 1.5, 2 (EWC*)]

D.2 Hyper-parameters (COBJ)

• ResNet-18 backbone
learning rate: [1e-4, 4e-4 (MNTDP) 5.3e-4 (EWC), 1e-3 (MT, MT*, Finetune, Finetune*, GEM,
GEM*, LwF, LwF*, RPSnet), 1e-2 (ER, ER*, EWC*), 1e-1]
memory size: [1000 (ER, ER*, RPSnet)]
patterns per exp: [16 (GEM*), 32, 64, 128, 256 (GEM)]
mem strength: [0.00139 (GEM), 0.1, 0.2, 0.3 (GEM*), 0.4, 0.5]
alpha: [0.01, 0.1, 1 (LwF, LwF*), 10, 100]
temperature: [0.01, 0.1, 0.5, 1, 1.52 (LwF), 2 (LwF*), 10]
lambda: [1e-4, 1e-3, 1e-2, 0.1, 1, 10 (EWC), 100 (EWC*)]

• ViT backbone
learning rate: [1e-5 (RPSnet), 5e-5 (MT, MT*, Finetune, Finetune*, ER, ER*, GEM*, LwF*), 1e-4
(GEM, LwF, EWC, EWC*), 5e-4 (MNTDP*), 1e-3]
memory size: [2000 (ER, ER*, RPSnet)]
patterns per exp: [32 (GEM, GEM*), 64, 128, 256]
mem strength: [0.1, 0.2, 0.3 (GEM, GEM*), 0.4, 0.5]
alpha: [0.1, 0.5, 1 (LwF, LwF*), 5, 10]
temperature: [0.1, 0.5, 1 (LwF, LwF*), 2]
lambda: [0.1, 0.5, 1, 1.5, 2 (EWC, EWC*)]

E Additional Results

In this section, we present a comprehensive analysis as the supplementation of the results in the main
text.

E.1 CGQA Overall Results

The reported results on CGQA are shown in Figure 1, which are the same as in the main text. On
the class-IL setting, methods equipped with the memory buffer (i.e., ER, RPSnet) outperform the
others in the continual training phase. RPSnet wins all baselines in the continual training phase
since it trains one specific path of modules for one task to overcome forgetting. However, in the

11

few-shot novel-testing phases (i.e., sys, pro, sub), RPSnet shows no superiority compared with other
approaches. This indicates the reused knowledge is not compositional enough to handle the novel
recombination of seen concepts. LwF beats others instead (according to the Hn result), although
its continual performance is not outstanding. This indicates that the learned feature extractor by
LwF is excellent in terms of extracting compositional features but the classifier fails to give a correct
prediction. We further discuss this prediction bias phenomenon with CAM visualization in section E.3.
Regularization-based mechanisms, such as GEM, LwF, and EWC can hardly solve this issue in the
classifier. As a result, only replay-based methods (e.g., ER, RPSnet) have improved performance. To
provide more insights beyond average testing accuracy for continual, we resort to the few-shot testing
to test feature extractors’ performance instead. The good performance of MultiTask on few-shot
testing and CAM visualization shows its superior compositionality.

On the task-IL setting, MNTDP* does not perform well in both the continual training and the few-
shot testing phases. This is because forgetting is not as suffered as in the class-IL setting. Thus,
simply freezing modules does not provide efficient reusable (compositional) knowledge for the novel
recombination of seen concepts. The above results on class-IL and task-IL show that the modularity-
based approaches are not necessarily better at extracting compositional features from the input images.
Compared with MultiTask, the forgetting also reflects on the degradation of compositionality, since
no method can outperform MultiTask in the few-shot testing phase.

Detailed analysis on few-shot tests For each method, Anon > Apro > Asys > Asub > Anoc

in general. The performances on non are the best, which is as expected since models prefer the
seen combinations and suffer compositional gaps in novel combinations to some extent. This
performance gap is acceptable for sys and pro but large for sub on the contrary. This is because sub
needs to compose attributes of concepts to form unseen recombination which needs the higher-level
compositional ability than sys and pro. Interestingly, we observe contrary results when models are
with ViT backbone (i.e., Asub > Apro > Asys), which is detailed in section E.8. This is because the
selected attributes for concepts in sub are mainly texture attributes (e.g., color). This observation
meets the analysis in [29] that the multi-head attention layer has a bias on shape attributes while
the convolution layer has a bias on texture attributes. Thus, models with ResNet-18 backbone are
more sensitive to the texture difference between continual and sub. The accuracy on pro is generally
slightly better than that on sys, except on MultiTask and ER, showing that having more concepts
can, to some extent, help to understand the images. The generally lower accuracy on the single-head
baselines (class-IL continual training setting) compared with their multi-head counterpart (task-IL
continual training setting), except LwF, shows that the single-head classifier makes it difficult for the
feature extractor to remember the compositional knowledge.

Modularity-based methods Further, RPSnet has the worst performance on Hn and Anon. This
counter-intuitive observation hints that the learned feature extractor is not wise enough. Its best
performance on continual relates to the memory buffer (which reduces the prediction bias in the
classifier) and the large model capacity for inference. Although RPSnet does not have outstanding
compositional generalization capability, it still has the second best noc result (LwF is the best),
showing that it has an advantage in handling generalization on unseen concepts. Not surprisingly for
MNTDP*, the few-shot testing cases are the worst in the task-IL setting. This is because the learned
reusable knowledge is not compositional, such that it can not be sufficiently used for the cases of
novel recombination.

E.2 COBJ Overall Results

In this subsection, we study methods on COBJ under different numbers of classes in each task. Since
the total number of classes in COBJ is 30, we investigate three settings: ten 3-way tasks, five 6-way
tasks, and three 10-way tasks. The experimental results are shown in Table 2, Table 3, and Table 4.
The main observations are similar to that on CGQA as we discuss before. It is surprising that RPSnet
works the best in the class-IL setting, which indicates its superiority when dealing with real-world
tasks. However, MNTDP* still shows no outstanding compositional generalization capability in the
task-IL setting, although its continual testing accuracy is the best when the number of training tasks
is large (i.e., ten 3-way tasks and five 6-way tasks). Modularity-based methods freeze the modules
for old tasks that may not be suitable for new tasks unless the modules are compositional enough.

12

Table 2: Results on COBJ (3-way) with ResNet-18 backbone. Accuracy (%) ± 95% confidence
intervals (%) over 300 tasks are reported for few-shot testing phases. Task-IL settings denote with a
postfix “*”.

Methods Acon Asys Apro Hn Anon Anoc Hr Ha

MultiTask 39.73 72.70 ± 1.55 67.11 ± 1.86 69.79 83.38 ± 1.36 57.52 ± 1.81 68.08 68.93

Finetune 6.37 43.06 ± 1.28 41.89 ± 1.29 42.46 46.96 ± 1.51 46.12 ± 1.36 46.54 44.41
ER 7.67 46.51 ± 1.48 45.22 ± 1.38 45.86 57.58 ± 1.85 42.81 ± 1.32 49.11 47.43
GEM 5.57 46.11 ± 1.41 43.99 ± 1.33 45.03 49.51 ± 1.57 46.07 ± 1.47 47.73 46.34
LwF 6.73 55.10 ± 1.54 50.12 ± 1.54 52.49 59.37 ± 1.61 51.40 ± 1.55 55.10 53.76
EWC 6.53 42.73 ± 1.19 41.00 ± 1.32 41.85 46.69 ± 1.48 41.21 ± 1.34 43.78 42.79
RPSnet 21.93 73.26 ± 1.24 67.89 ± 1.44 70.47 78.82 ± 1.27 68.22 ± 1.24 73.14 71.78
MultiTask* 75.73 55.72 ± 1.75 49.84 ± 1.81 52.62 59.21 ± 1.89 53.43 ± 1.74 56.17 54.34

Finetune* 44.37 45.67 ± 1.39 44.18 ± 1.38 44.91 47.92 ± 1.54 47.80 ± 1.57 47.86 46.34
ER* 64.80 54.40 ± 1.73 51.33 ± 1.69 52.82 58.91 ± 1.73 48.83 ± 1.54 53.40 53.11
GEM* 36.53 45.57 ± 1.39 45.50 ± 1.39 45.53 51.93 ± 1.64 46.40 ± 1.36 49.01 47.21
LwF* 61.03 53.77 ± 1.63 50.06 ± 1.76 51.84 60.54 ± 1.58 54.53 ± 1.61 57.38 54.47
EWC* 53.87 45.63 ± 1.46 46.12 ± 1.47 45.88 51.16 ± 1.59 48.86 ± 1.48 49.98 47.84
MNTDP* 71.80 51.89 ± 1.41 49.16 ± 1.56 50.49 57.20 ± 1.59 48.52 ± 1.36 52.50 51.48

Table 3: Results on COBJ (6-way) with ResNet-18 backbone. Accuracy (%) ± 95% confidence
intervals (%) over 300 tasks are reported for few-shot testing phases. Task-IL settings denote with a
postfix “*”.

Methods Acon Asys Apro Hn Anon Anoc Hr Ha

MultiTask 38.93 61.33 ± 1.08 53.81 ± 1.43 57.32 69.88 ± 1.12 46.56 ± 1.30 55.88 56.59

Finetune 12.00 37.47 ± 0.99 34.62 ± 1.10 35.99 46.66 ± 1.32 32.34 ± 0.97 38.20 37.06
ER 12.67 35.51 ± 1.18 35.04 ± 1.25 35.27 51.45 ± 1.39 31.12 ± 1.03 38.78 36.95
GEM 11.33 35.21 ± 1.19 33.25 ± 1.14 34.20 39.72 ± 1.27 29.89 ± 1.05 34.11 34.16
LwF 11.17 43.56 ± 1.12 39.52 ± 1.27 41.44 52.58 ± 1.33 37.29 ± 1.11 43.63 42.51
EWC 11.43 38.04 ± 1.11 35.38 ± 1.12 36.66 44.49 ± 1.15 35.89 ± 1.15 39.73 38.14
RPSnet 31.00 54.44 ± 0.88 51.34 ± 1.10 52.84 67.57 ± 0.97 45.58 ± 0.76 54.44 53.63
MultiTask* 58.30 50.41 ± 1.20 43.10 ± 1.44 46.47 61.56 ± 1.22 42.28 ± 1.17 50.13 48.23

Finetune* 40.37 32.96 ± 0.98 29.88 ± 1.10 31.34 40.90 ± 1.47 30.22 ± 1.08 34.76 32.96
ER* 51.80 45.12 ± 1.20 40.93 ± 1.29 42.93 53.84 ± 1.26 36.53 ± 1.04 43.53 43.23
GEM* 24.83 34.22 ± 1.02 31.38 ± 1.10 32.74 37.94 ± 1.13 32.16 ± 1.00 34.81 33.74
LwF* 54.53 47.96 ± 1.18 45.26 ± 1.35 46.57 55.98 ± 1.30 40.53 ± 1.20 47.02 46.79
EWC* 47.50 43.90 ± 1.15 39.81 ± 1.29 41.76 47.26 ± 1.12 38.55 ± 1.09 42.46 42.11
MNTDP* 55.93 40.06 ± 0.98 37.48 ± 1.20 38.73 46.52 ± 1.06 34.28 ± 1.01 39.47 39.10

E.3 CAM Visualization

In this subsection, we show the learned compositionality from the perspective of CAM visualiza-
tion [46]. We take Finetune and MultiTask methods as examples and randomly select one image for
each class for each 10-way few-shot testing, respectively. The visualization is shown in Figure 5
for CGQA and Figure 6 for COBJ. Following we discuss CGQA for example since the concepts in
CGQA are visually separated and easy to analyze. In sys, pro, non, Finetune does not recognize some
concepts while MultiTask can. However, in sub, noc, the gap between Finetune and MultiTask is
smaller, which meets the statistical results presented in the main text that the differences between
Finetune and MultiTask on sys, pro, non (i.e., 23.41, 20.51, 23.01, respectively) are larger than that
on sub, noc (i.e., 8.41,−0.28, respectively). The CAM results of MultiTask show that the prediction
is highly related to the exact concepts in the correct category. This observation indicates its good
compositional generalization capability. Although the continual learner suffers degradation of com-
positional generalization capability compared with MultiTask, its feature extractor is still good and
compositional, to some extent. However, the continual testing accuracy of Finetune in class-IL setting
as shown in Table 1 shows a severe forgetting of old tasks. Thus, the prediction bias on the classifier

13

Table 4: Results on COBJ (10-way) with ResNet-18 backbone. Accuracy (%) ± 95% confidence
intervals (%) over 300 tasks are reported for few-shot testing phases. Task-IL settings denote with a
postfix “*”.

Methods Acon Asys Apro Hn Anon Anoc Hr Ha

MultiTask 37.47 47.42 ± 0.93 41.64 ± 0.96 44.34 84.99 ± 0.69 30.56 ± 0.90 44.96 44.65

Finetune 17.60 37.56 ± 0.86 29.98 ± 0.88 33.34 47.00 ± 1.03 28.41 ± 0.84 35.41 34.34
ER 19.40 32.71 ± 0.88 30.56 ± 0.99 31.60 47.57 ± 1.04 26.15 ± 0.87 33.75 32.64
GEM 17.63 36.86 ± 0.77 30.40 ± 0.85 33.32 50.27 ± 1.03 27.53 ± 0.82 35.58 34.41
LwF 18.40 45.50 ± 0.87 38.16 ± 0.98 41.50 51.84 ± 0.95 34.08 ± 0.87 41.12 41.31
EWC 18.37 38.25 ± 0.83 31.31 ± 0.90 34.44 43.04 ± 0.94 29.02 ± 0.84 34.67 34.55
RPSnet 31.37 50.08 ± 0.70 45.32 ± 0.79 47.58 70.07 ± 0.90 38.20 ± 0.60 49.44 48.49
MultiTask* 53.10 44.47 ± 0.88 39.84 ± 0.95 42.03 69.06 ± 0.88 29.45 ± 0.88 41.29 41.66

Finetune* 39.43 39.08 ± 0.87 33.97 ± 0.93 36.35 47.54 ± 0.94 29.91 ± 0.96 36.72 36.53
ER* 47.97 35.28 ± 0.87 31.87 ± 0.80 33.49 42.47 ± 0.85 26.37 ± 0.87 32.54 33.01
GEM* 25.87 39.02 ± 0.83 34.50 ± 0.88 36.62 48.63 ± 0.85 27.19 ± 0.84 34.88 35.73
LwF* 54.53 43.77 ± 0.84 37.71 ± 0.94 40.52 53.45 ± 0.96 34.51 ± 0.99 41.94 41.21
EWC* 46.00 32.83 ± 0.96 29.49 ± 0.92 31.07 38.07 ± 0.95 24.94 ± 0.86 30.14 30.60
MNTDP* 49.43 30.98 ± 0.70 28.27 ± 0.74 29.56 42.28 ± 0.89 24.34 ± 0.68 30.90 30.22

introduced by the continual training process and non-i.i.d task distribution are the main cause of the
poor continual testing performance.

E.4 Old and Fresh Concepts

This subsection is the supplementation of the Concept-level forgetting in the main text. We are going
to investigate the forgetting performance w.r.t. concepts. That is to answer the following question:
how is the few-shot testing performance on two task sets consisting of freshly learned concepts and
old concepts, respectively?

We first divide the concepts in CGQA into two groups (i.e., old and fresh) according to whether
they are seen in Task 10 (the last continual training task). According to the training order shown in
section C.1.4, the fresh group contains 14 concepts: (building, car, door, fence, flower, hat, helmet,
leaves, pants, pole, shirt, shorts, sign, wall), in which the knowledge of these concepts is updated
in Task 10. The remaining seven concepts (bench, chair, grass, jacket, plate, shoe, table) are in
the old group, since they may suffer forgetting. Interestingly, we also find a low-frequent concept
table which is only seen fourth among all 10 tasks. After that, we collect specific combinations for
few-shot testing in the following:

• non(f) (the subset of non with only fresh concepts): (building, hat), (building, leaves), (car, flower),
(car, helmet), (car, leaves), (car, pants), (car, shirt), (car, shorts), (car, sign), (door, fence), (door,
leaves), (door, pole), (fence, flower), (fence, helmet), (fence, leaves), (fence, pants), (fence, pole),
(fence, shorts), (fence, wall), (flower, helmet), (flower, pants), (flower, pole), (flower, shirt), (flower,
wall), (hat, shirt), (hat, shorts), (hat, sign), (hat, wall), (helmet, leaves), (helmet, pole), (helmet,
shirt), (helmet, shorts), (helmet, sign), (leaves, shirt), (leaves, shorts), (leaves, sign), (leaves, wall),
(pants, shirt), (pants, shorts), (pants, wall), (pole, shirt), (pole, wall), (shirt, wall).

• non(o) (the subset of non with only old concepts): (bench, chair), (bench, jacket), (bench, table),
(chair, grass), (chair, shoe), (grass, jacket), (grass, plate), (grass, shoe), (grass, table), (jacket,
shoe).

• sys(f) (the subset of sys with only fresh concepts): (building, car), (building, door), (building,
fence), (building, helmet), (building, pants), (building, shirt), (building, shorts), (building, wall),
(car, door), (car, fence), (car, hat), (car, pole), (car, wall), (door, flower), (door, hat), (door, helmet),
(door, pants), (door, shirt), (door, shorts), (door, sign), (door, wall), (fence, hat), (fence, shirt),
(fence, sign), (flower, hat), (flower, leaves), (flower, shorts), (flower, sign), (hat, helmet), (hat,
leaves), (hat, pants), (helmet, pants), (leaves, pants), (leaves, pole), (pants, pole), (pants, sign),
(pole, shorts), (pole, sign), (shirt, shorts), (shirt, sign), (shorts, wall), (sign, wall).

14

FT MT

sys

FT MT

pro sub

FT MT

non

FT MT FT MT

noc

Figure 5: CAM visualization for MultiTask (MT) and Finetune (FT) on one sampled CGQA task for
each fewshot testing. Take away: In general, FT works well on recognizing concepts, while it is still
inferior to MT.

• sys(o) (the subset of sys with only old concepts): (bench, grass), (bench, plate), (bench, shoe),
(chair, jacket), (chair, plate), (chair, table), (jacket, plate), (jacket, table), (plate, shoe), (plate,
table), (shoe, table).

We generate 300 2-way 10-shot tasks for each subset to evaluate the models after the continual
training.

The average test accuracy and the related score are shown in Figure 7. Note that we calculate the
related score (S(f), S(o)) for fresh and old tasks, separately. For example, S(f) = (Asys(f) −
Anon(f))/Anon(f), which is the performance gap between sys(f) and non(f). A large value of
the related score indicates a small forgetting of the specific concepts. We can observe that the
Anon(f) > Anon(o), Asys(f) > Asys(o), which are as expected since fresh concepts are newly
updated on the last continual task. And S(f) > S(o), which indicates that the learner has better
systematicity compositionality on fresh concepts than on old concepts. The above observation shows
that the learner indeed learns the composition concept-wisely and the forgetting indeed shows in
the old concepts. On the other hand, MultiTask, which is regarded as the upper bound, suffers the
smallest performance drop on both fresh and old tasks. It is as expected since the learner jointly

15

FT MT

sys

FT MT

pro non

FT MT FT MT

noc

Figure 6: CAM visualization for MultiTask (MT) and Finetune (FT) on one sampled COBJ task for
each fewshot testing. Take away: In general, FT works well on recognizing concepts, while it is still
inferior to MT.

learns all continual tasks. This observation also indicates that the continual learner suffers forgetting
not only on old tasks but also on old concepts.

We also use CAM [46] to visualize the class activation region on the image, taking Finetune and
MultiTask as examples in Figure 8. We randomly select five samples for each class. It is obscure to
discriminate each case (e.g., non(f)) with CAM visualization. However, our few-shot testing method
can clearly and statistically show the different compositional generalization capacities via testing
accuracy which indicates the superiority.

16

Test Accuracy Score

S(f) S(o)

Figure 7: Fresh tasks vs old tasks on CGQA. We also report the related score for sys(f) and sys(o)
w.r.t. non(f) and non(o), respectively. MT stands for MultiTask and FT stands for Finetune. Take
away: fresh concepts suffer little performance drop when testing on novel combinations (sys(f))
while old concepts on the contrary.

non(f)

FT

MT

FT*

MT*

non(o) sys(f) sys(o)

Figure 8: CAM visualization for MultiTask (MT) and Finetune (FT) on four task sets. Take away:
Results are consistent with the test accuracy results in Figure 7. We can roughly observe that Finetune
can locate well on both concepts in non(f) but tend to only find one concept in others.

E.5 Effect of Number of Classes in Continual Tasks

In this subsection, we further investigate the effect of the number of training tasks on the compositional
generalization. When the number of training tasks increases, the number of classes in each task
decreases since the total number of classes is constant. Thus, the learner needs a smaller number
of compositional features necessary for distinguishing classes in each task, comparing with one
task containing all classes. For example, one can distinguish horse with person by their different
shapes. But this is not enough for the case of horse and zebra (i.e., limited compositionality).
However, for the tri-classification task of distinguishing among horse, zebra, and person, one can
learn both shape and texture features (i.e., relatively better compositionality). After training the
learners on three (10-way), five (6-way), and ten (3-way) COBJ tasks, respectively, we evaluate
them on few-shot sys and pro tasks and visualize Hn. The number of classes in these few-shot
tasks is ten (denoted as 10way-Hn), six (denoted as 6way-Hn), and three (denoted as 3way-Hn),
respectively. The observation in Figure 9 meets the above intuitive understanding. The more training
tasks (thus the number of classes in each task is shorter), the smaller Hn nearly for all methods. We
can also observe that this performance drop is consistent with different numbers of classes in the
few-shot tasks (left/right column in Figure 9). Although on CGQA, RPSnet shows poor compositional
generalization capability, it is the best continual learning algorithm on COBJ. While as for MNTDP*,

17

Class-IL Task-IL

MultiTask Finetune ER GEM RPSnet/MNTDP*LwF EWC

Class-IL Task-IL

Class-IL Task-IL

Figure 9: Number of continual tasks vs Hn on COBJ testing tasks. The top row is methods tested
with 10-way tasks, while the middle row is methods tested with 6-way tasks, and the bottom row is
methods tested with 3-way tasks. Take away: A larger number of continual tasks (smaller ways for
each task) hinders the compositional generalization capability. The conclusion holds for different
numbers of classes in the few-shot tasks.

it still does not show superior compositional generalization capability, indicating that large efforts are
still needed on modularity-based methods for not bringing benefits to compositional generalization.
The performance gaps on Hn between MultiTask and other continual learning methods show that
compositional generalization capability is still a big question for the continual learning community to
answer.

E.6 Sample Efficiency for Learning Compositionality

To examine how many training samples are needed for a continual learner to learn the compositional
generalization ability, we vary the number of training samples for each class in the CGQA continual
training tasks. Intuitively, a small number of training samples hinders not only the cases of novel
combinations (i.e., sys, pro, sub) but also the case of the seen combination (i.e., non), as shown in the
left column of Figure 10. Instead, we resort to the related score (i.e., S(sys), S(pro), S(sub), and
S(noc)) between each few-shot testing result with the non testing result. For example, S(sys) =
(Asys −Anon)/Anon, where a larger positive S(sys) indicates a better compositional generalization
ability on Systematicity and a smaller negative S(sys) shows that the learner does not well-handle
the novel combinations of seen concepts. The related score results are visualized in the right column
of Figure 10. For all the testing cases (i.e., sys, pro, sub, noc), the related scores converge if trained
with more than 300 samples for each class. After this threshold, the ratio of the improvement for each
few-shot test to non is unchanged. We can conclude that 300 samples for each class are needed for
learners to learn compositionality on CGQA.

E.7 Effect of Frozen Feature Extractor

Without freezing the feature extractor, the learner needs to update more parameters (i.e., the feature
extractor and the classifier) from only a small amount of support samples in the few-shot tasks. As

18

sys

pro

sub

non

noc

Figure 10: Varying training size on CGQA. Scores denote related scores for sys, pro, sub, noc w.r.t.
non. Take away: Accuracy is improved with more training samples for all fewshot testing cases.
Related scores become smooth and unchanged if more than 300 training samples for each class. This
fact shows that 300 samples are needed for learning compositionality.

a result, it will suffer from severe overfitting. We evaluate the learners obtained by five baselines
after the continual training phase with and without (marked with a postfix “†”) freezing the feature
extractor in Figure 11. We observe that methods that freeze the feature extractor generally have
better testing accuracy on few-shot testing schemes than without. This observation supports the
above claim. Interestingly, we find that ER† nearly fails in all cases (i.e., with an accuracy smaller
than 20% on 10-way tasks), although it has the best average test accuracy in the continual training
phase. Remind that the goal of few-shot testing schemes is to evaluate whether the continually trained
feature extractor is able to extract features corresponding to our expected concepts. Thus, we do not
allow the feature extractor to learn from the support samples in the few-shot tasks. Unless otherwise
stated, we freeze the feature extractor of a continual learner in the few-shot testing phases.

19

Figure 11: Histogram of test accuracy on CGQA. Methods without freezing the feature extractors
when training on few-shot tasks are denoted with a postfix “†”. Take away: methods without freezing
the feature extractor will generally obtain poorer few-shot testing performance and may encounter
severe overfitting, especially in ER.

Table 5: Results on CGQA (10-way) with ViT backbone. Accuracy (%)± 95% confidence intervals
(%) over 300 tasks are reported for few-shot testing phases. Task-IL settings denote with a postfix
“*”.

Methods Acon Asys Apro Asub Hn Anon Anoc Hr Ha

MultiTask 66.00 83.68 ± 0.60 87.77 ± 0.48 80.53 ± 0.56 83.89 89.99 ± 0.49 56.28 ± 0.75 69.25 77.35

Finetune 8.59 50.49 ± 0.73 55.14 ± 0.82 60.91 ± 0.77 55.19 54.26 ± 0.73 48.44 ± 0.83 51.18 53.51
ER 10.58 47.63 ± 0.72 52.92 ± 0.84 59.47 ± 0.76 52.90 51.12 ± 0.79 47.23 ± 0.82 49.10 51.31
GEM 8.62 31.59 ± 0.75 34.21 ± 0.90 43.19 ± 0.90 35.69 34.41 ± 0.83 31.94 ± 0.77 33.13 34.62
LwF 10.58 54.26 ± 0.79 58.43 ± 0.77 64.23 ± 0.70 58.69 58.79 ± 0.75 51.26 ± 0.77 54.77 57.06
EWC 8.77 50.13 ± 0.79 53.56 ± 0.79 60.18 ± 0.75 54.31 53.63 ± 0.77 47.05 ± 0.79 50.13 52.56
RPSnet 12.47 56.82 ± 1.25 58.91 ± 1.11 60.44 ± 1.14 58.69 62.75 ± 1.11 44.53 ± 1.22 52.09 55.86

MultiTask* 79.34 69.19 ± 0.68 69.12 ± 0.62 70.05 ± 0.63 69.45 74.67 ± 0.64 52.88 ± 0.78 61.91 66.23

Finetune* 44.84 50.61 ± 0.78 54.66 ± 0.78 60.45 ± 0.78 54.95 54.17 ± 0.77 47.69 ± 0.82 50.72 53.18
ER* 65.43 50.58 ± 0.74 55.90 ± 0.82 61.65 ± 0.75 55.68 54.54 ± 0.77 48.98 ± 0.82 51.61 53.98
GEM* 29.85 14.09 ± 0.47 16.67 ± 0.48 15.32 ± 0.53 15.29 15.31 ± 0.49 16.42 ± 0.52 15.85 15.51
LwF* 45.65 50.77 ± 0.80 54.90 ± 0.79 60.91 ± 0.73 55.22 54.83 ± 0.76 47.63 ± 0.80 50.98 53.44
EWC* 44.10 45.57 ± 0.78 47.70 ± 0.78 55.70 ± 0.80 49.29 48.25 ± 0.80 42.81 ± 0.79 45.37 47.64
MNTDP* 56.25 23.69 ± 1.00 21.97 ± 0.87 24.27 ± 0.93 23.27 26.31 ± 0.94 18.31 ± 0.71 21.59 22.57

E.8 Performance on ViT Backbone

In this subsection, we investigate the compositional generalization capability for methods with ViT
backbone. For MNTDP*, each module consists of one Multi-Head Attention (MHA) and one Feed-
Forward Network (FFN) instead of one ResBlock. For RPSnet, each module consists of one FFN,
and modules in the same layer share the same MHA. We find this structure has an advantage w.r.t.
continual performance in our experiments. The results on CGQA are shown in Table 5 and the results
on COBJ are shown in Table 6. Similar to that in the ResNet-18 backbone, LwF(*) and ER(*) perform
well on both Hn and Hr. RPSnet has good compositionality on COBJ, showing its superiority on
real-world tasks. Moreover, we observe that in CGQA, Asub > Apro > Asys, that, models generally
have better accuracy on sub rather than sys and pro. This observation is opposite compared with
ResNet-18 results shown in the main text (i.e., Apro > Asys > Asub). This is because the selected
attributes for concepts in sub are mainly texture attributes (e.g., color). The multi-head attention layer
has a bias on shape attributes while the convolution layer has a bias on texture attributes [29], thus,
models with ResNet-18 backbone are more sensitive to the texture difference, which is introduced in
sub.

20

Table 6: Results on COBJ (10-way) with ViT backbone. Accuracy (%)± 95% confidence intervals
(%) over 300 tasks are reported for few-shot testing phases. Task-IL settings denote with a postfix
“*”.

Methods Acon Asys Apro Hn Anon Anoc Hr Ha

MultiTask 28.23 41.90 ± 0.63 36.58 ± 0.72 39.06 49.88 ± 0.82 35.69 ± 0.69 41.61 40.29

Finetune 13.93 37.26 ± 0.59 33.08 ± 0.71 35.05 41.76 ± 0.74 33.63 ± 0.67 37.25 36.12
ER 18.10 35.03 ± 0.63 30.76 ± 0.66 32.75 43.62 ± 0.78 33.25 ± 0.68 37.73 35.07
GEM 13.43 34.29 ± 0.59 31.56 ± 0.67 32.87 38.96 ± 0.68 31.50 ± 0.66 34.84 33.82
LwF 15.07 39.52 ± 0.61 35.18 ± 0.73 37.22 44.81 ± 0.80 35.23 ± 0.65 39.45 38.30
EWC 14.67 36.36 ± 0.62 32.12 ± 0.66 34.11 40.30 ± 0.70 33.17 ± 0.68 36.39 35.21
RPSnet 23.83 44.72 ± 1.05 41.37 ± 1.26 42.98 59.33 ± 1.42 33.49 ± 1.12 42.81 42.90
MultiTask* 46.40 41.78 ± 0.67 35.95 ± 0.72 38.64 53.19 ± 0.84 35.23 ± 0.68 42.39 40.43

Finetune* 41.97 37.53 ± 0.66 33.49 ± 0.71 35.39 41.45 ± 0.77 34.94 ± 0.67 37.92 36.61
ER* 41.10 38.23 ± 0.64 33.48 ± 0.69 35.70 44.95 ± 0.78 34.46 ± 0.63 39.01 37.28
GEM* 26.70 36.36 ± 0.62 33.00 ± 0.71 34.60 39.34 ± 0.69 32.18 ± 0.61 35.40 35.00
LwF* 43.90 40.30 ± 0.64 34.70 ± 0.75 37.29 44.83 ± 0.79 35.50 ± 0.71 39.62 38.42
EWC* 40.07 37.65 ± 0.62 33.22 ± 0.69 35.30 41.95 ± 0.72 33.72 ± 0.66 37.39 36.31
MNTDP* 45.50 22.74 ± 0.70 21.68 ± 0.75 22.20 31.52 ± 0.82 20.37 ± 0.63 24.75 23.41

Table 7: Results on CPIN (10-way) with ResNet-18 backbone. Accuracy (%) ± 95% confidence
intervals (%) over 300 tasks are reported for few-shot testing phases. Task-IL settings denote with a
postfix “*”.

Methods Acon Asys Apro Hn Anon Anoc Hr Ha

Finetune 9.22 48.97 ± 0.88 42.06 ± 0.91 45.25 52.33 ± 0.96 15.56 ± 0.43 23.99 31.35
ER 28.82 59.16 ± 0.89 45.94 ± 1.05 51.72 60.11 ± 1.01 14.55 ± 0.42 23.43 32.25
GEM 9.19 51.13 ± 1.08 46.14 ± 1.04 48.51 55.16 ± 1.05 13.23 ± 0.38 21.34 29.64
LwF 9.21 64.45 ± 0.65 57.87 ± 0.67 60.98 65.73 ± 0.74 17.97 ± 0.51 28.22 38.59
EWC 9.37 53.92 ± 0.75 50.36 ± 0.73 52.08 56.64 ± 0.83 17.11 ± 0.46 26.28 34.93
RPSnet 45.88 55.33 ± 0.81 48.21 ± 0.63 51.53 58.21 ± 0.95 26.32 ± 0.33 36.25 42.56
Finetune* 75.37 61.57 ± 0.68 58.47 ± 0.66 59.98 64.30 ± 0.77 18.32 ± 0.45 28.52 38.65
ER* 86.46 62.22 ± 0.85 50.20 ± 0.94 55.57 63.23 ± 0.96 15.74 ± 0.42 25.21 34.68
GEM* 19.68 57.26 ± 0.71 49.65 ± 0.71 53.18 58.33 ± 0.75 16.30 ± 0.43 25.48 34.45
LwF* 73.24 59.99 ± 0.72 51.05 ± 0.75 55.16 60.44 ± 0.84 16.21 ± 0.42 25.56 34.94
EWC* 76.15 57.83 ± 0.65 53.11 ± 0.69 55.37 59.00 ± 0.77 18.01 ± 0.53 27.60 36.83

E.9 CPIN Results

We also report the performance of CL algorithms on the CPIN benchmark in Table 7. Results
are similar to those on the CGQA benchmark. The better performance on non comparing with
sys and pro shows that the compositional generalization capability is hurt when the concepts are
more fine-grained. The opposite relationship between sys and pro (in CGQA, Apro > Asys) shows
that generalization becomes more difficult when increasing the number of combined concepts. All
methods nearly fail on noc (less than 20% on 10-way, except RPSnet with 26.32%). This is because
CPIN is more difficult than CGQA and reusable knowledge is rare from the continual learning phase
and can hardly be reused for unseen concepts.

F Implemented Algorithms on Split-CIFAR100 Benchmark

In this section, we run our implemented algorithms (i.e., MultiTask(*), Finetune(*), ER(*), GEM(*),
LwF(*), EWC(*), RPSnet, and MNTDP*) on Split-CIFAR100 benchmark and the results are reported
in Table 8.

21

Table 8: Results on Split-CIFAR100 with the ResNet-18 backbone. Accuracy (%)± 95% confidence
intervals (%) over 8 independent runs are reported. Task-IL settings are denoted with a postfix “*”.

Method Accuracy

MultiTask 53.42 ± 0.30
Finetune 7.37 ± 0.27
ER 12.86 ± 0.13
GEM 13.43 ± 0.21
LwF 8.07 ± 0.26
EWC 7.41 ± 0.35
RPSnet 37.07 ± 1.07
MultiTask* 79.87 ± 0.25
Finetune* 46.77 ± 1.29
ER* 61.23 ± 0.54
GEM* 60.14 ± 0.41
LwF* 70.41 ± 0.74
EWC* 46.12 ± 1.23
MNTDP* 66.94 ± 0.79

References
[1] Amit Alfassy, Leonid Karlinsky, Amit Aides, Joseph Shtok, Sivan Harary, Rogerio Feris,

Raja Giryes, and Alex M Bronstein. Laso: Label-set operations networks for multi-label
few-shot learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 6548–6557, 2019.

[2] Yuval Atzmon, Felix Kreuk, Uri Shalit, and Gal Chechik. A causal view of compositional
zero-shot recognition. Advances in Neural Information Processing Systems, 33:1462–1473,
2020.

[3] Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K
Dokania, Philip HS Torr, and Marc’Aurelio Ranzato. On tiny episodic memories in continual
learning. arXiv preprint arXiv:1902.10486, 2019.

[4] Ekin D. Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V. Le. Randaugment: Practical
automated data augmentation with a reduced search space. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2020.

[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pages 248–255, 2009.

[6] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. In International Conference on Learning Representations, 2021.

[7] Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, Andrei A Rusu,
Alexander Pritzel, and Daan Wierstra. Pathnet: Evolution channels gradient descent in super
neural networks. arXiv preprint arXiv:1701.08734, 2017.

[8] Tyler L Hayes, Kushal Kafle, Robik Shrestha, Manoj Acharya, and Christopher Kanan. Re-
mind your neural network to prevent catastrophic forgetting. In Proceedings of the European
Conference on Computer Vision (ECCV), 2020.

[9] Ju He, Shuo Yang, Shaokang Yang, Adam Kortylewski, Xiaoding Yuan, Jie-Neng Chen, Shuai
Liu, Cheng Yang, Qihang Yu, and Alan Yuille. PartImageNet: A large, high-quality dataset of
parts. In Shai Avidan, Gabriel Brostow, Moustapha Cissé, Giovanni Maria Farinella, and Tal
Hassner, editors, Computer Vision – ECCV 2022, pages 128–145, Cham, 2022. Springer Nature
Switzerland.

22

[10] Zhi Hou, Xiaojiang Peng, Yu Qiao, and Dacheng Tao. Visual compositional learning for human-
object interaction detection. In European Conference on Computer Vision, pages 584–600.
Springer, 2020.

[11] Ronghang Hu, Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Kate Saenko. Learning
to reason: End-to-end module networks for visual question answering. In Proceedings of the
IEEE International Conference on Computer Vision (ICCV), Oct 2017.

[12] Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual
reasoning and compositional question answering. Conference on Computer Vision and Pattern
Recognition (CVPR), 2019.

[13] Muhammad Gul Zain Ali Khan, Muhammad Ferjad Naeem, Luc Van Gool, Alain Pagani, Didier
Stricker, and Muhammad Zeshan Afzal. Learning attention propagation for compositional
zero-shot learning. In Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, pages 3828–3837, 2023.

[14] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al.
Overcoming catastrophic forgetting in neural networks. Proceedings of the national academy of
sciences, 114(13):3521–3526, 2017.

[15] Louis Kirsch, Julius Kunze, and David Barber. Modular networks: Learning to decompose
neural computation. Advances in neural information processing systems, 31, 2018.

[16] Xilai Li, Yingbo Zhou, Tianfu Wu, Richard Socher, and Caiming Xiong. Learn to grow: A
continual structure learning framework for overcoming catastrophic forgetting. In International
Conference on Machine Learning, pages 3925–3934. PMLR, 2019.

[17] Zeqian Li, Michael Mozer, and Jacob Whitehill. Compositional embeddings for multi-label
one-shot learning. In Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV), pages 296–304, January 2021.

[18] Zeqian Li and Jacob Whitehill. Compositional embedding models for speaker identification
and diarization with simultaneous speech from 2+ speakers. In ICASSP 2021-2021 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 7163–
7167. IEEE, 2021.

[19] Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern
analysis and machine intelligence, 40(12):2935–2947, 2017.

[20] Vincenzo Lomonaco, Lorenzo Pellegrini, Andrea Cossu, Antonio Carta, Gabriele Graffieti,
Tyler L. Hayes, Matthias De Lange, Marc Masana, Jary Pomponi, Gido van de Ven, Martin
Mundt, Qi She, Keiland Cooper, Jeremy Forest, Eden Belouadah, Simone Calderara, German I.
Parisi, Fabio Cuzzolin, Andreas Tolias, Simone Scardapane, Luca Antiga, Subutai Amhad,
Adrian Popescu, Christopher Kanan, Joost van de Weijer, Tinne Tuytelaars, Davide Bacciu,
and Davide Maltoni. Avalanche: an end-to-end library for continual learning. In Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition, 2nd Continual Learning in
Computer Vision Workshop, 2021.

[21] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.
Advances in neural information processing systems, 30, 2017.

[22] Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks:
The sequential learning problem. In Psychology of learning and motivation, volume 24, pages
109–165. Elsevier, 1989.

[23] Jorge A Mendez and ERIC EATON. Lifelong learning of compositional structures. In Interna-
tional Conference on Learning Representations, 2021.

[24] Jorge A Mendez and Eric Eaton. How to reuse and compose knowledge for a lifetime of tasks:
A survey on continual learning and functional composition. arXiv preprint arXiv:2207.07730,
2022.

23

[25] Tushar Nagarajan and Kristen Grauman. Attributes as operators: Factorizing unseen attribute-
object compositions. In Proceedings of the European Conference on Computer Vision (ECCV),
September 2018.

[26] Vaishnavh Nagarajan, Anders Andreassen, and Behnam Neyshabur. Understanding the fail-
ure modes of out-of-distribution generalization. In International Conference on Learning
Representations, 2021.

[27] Oleksiy Ostapenko, Pau Rodriguez, Massimo Caccia, and Laurent Charlin. Continual learning
via local module composition. Advances in Neural Information Processing Systems, 34:30298–
30312, 2021.

[28] Aditya Panda, Bikash Santra, and Dipti Prasad Mukherjee. Isolating features of object and
its state for compositional zero-shot learning. IEEE Transactions on Emerging Topics in
Computational Intelligence, 2023.

[29] Namuk Park and Songkuk Kim. How do vision transformers work? In International Conference
on Learning Representations, 2022.

[30] Jathushan Rajasegaran, Munawar Hayat, Salman H Khan, Fahad Shahbaz Khan, and Ling Shao.
Random path selection for continual learning. Advances in Neural Information Processing
Systems, 32, 2019.

[31] Rahul Ramesh and Pratik Chaudhari. Model zoo: A growing brain that learns continually. In
International Conference on Learning Representations, 2022.

[32] Frank Ruis, Gertjan Burghouts, and Doina Bucur. Independent prototype propagation for
zero-shot compositionality. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and
J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems, volume 34,
pages 10641–10653. Curran Associates, Inc., 2021.

[33] Paul Ruvolo and Eric Eaton. ELLA: An efficient lifelong learning algorithm. In International
conference on machine learning, pages 507–515. PMLR, 2013.

[34] Shuai Shao, Zeming Li, Tianyuan Zhang, Chao Peng, Gang Yu, Xiangyu Zhang, Jing Li, and
Jian Sun. Objects365: A large-scale, high-quality dataset for object detection. In Proceedings
of the IEEE/CVF international conference on computer vision, pages 8430–8439, 2019.

[35] Morgan B Talbot, Rushikesh Zawar, Rohil Badkundri, Mengmi Zhang, and Gabriel Kreiman.
Lifelong compositional feature replays beat image replays in stream learning. arXiv preprint
arXiv:2104.02206, 2021.

[36] Dhruva Tirumala, Hyeonwoo Noh, Alexandre Galashov, Leonard Hasenclever, Arun Ahuja,
Greg Wayne, Razvan Pascanu, Yee Whye Teh, and Nicolas Heess. Exploiting hierarchy for
learning and transfer in kl-regularized rl. arXiv preprint arXiv:1903.07438, 2019.

[37] Lazar Valkov, Dipak Chaudhari, Akash Srivastava, Charles Sutton, and Swarat Chaudhuri.
Houdini: Lifelong learning as program synthesis. Advances in Neural Information Processing
Systems, 31, 2018.

[38] Tom Veniat, Ludovic Denoyer, and Marc’Aurelio Ranzato. Efficient continual learning with
modular networks and task-driven priors. arXiv preprint arXiv:2012.12631, 2020.

[39] Yabin Wang, Zhiwu Huang, and Xiaopeng Hong. S-prompts learning with pre-trained trans-
formers: An occam’s razor for domain incremental learning. Advances in Neural Information
Processing Systems, 35:5682–5695, 2022.

[40] Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi
Ren, Guolong Su, Vincent Perot, Jennifer Dy, et al. Dualprompt: Complementary prompting for
rehearsal-free continual learning. In European Conference on Computer Vision, pages 631–648.
Springer, 2022.

24

[41] Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su,
Vincent Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
139–149, 2022.

[42] Tailin Wu, Megan Tjandrasuwita, Zhengxuan Wu, Xuelin Yang, Kevin Liu, Rok Sosič, and Jure
Leskovec. ZeroC: A neuro-symbolic model for zero-shot concept recognition and acquisition at
inference time. arXiv preprint arXiv:2206.15049, 2022.

[43] Mengmi Zhang, Tao Wang, Joo Hwee Lim, Gabriel Kreiman, and Jiashi Feng. Variational
prototype replays for continual learning. arXiv preprint arXiv:1905.09447, 2019.

[44] Yanzhe Zhang, Xuezhi Wang, and Diyi Yang. Continual sequence generation with adaptive
compositional modules. arXiv preprint arXiv:2203.10652, 2022.

[45] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing data
augmentation. In Proceedings of the AAAI conference on artificial intelligence, volume 34,
pages 13001–13008, 2020.

[46] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep
features for discriminative localization. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2016.

25

	Discussion
	Additional Related Works
	Compositional Zero-shot Learning
	Continual Learning

	Benchmark Details
	Compositional GQA (CGQA)
	Construction of CGQA
	Continual Training Phase
	Few-shot Testing Phase
	Training Order
	Concept Statistics
	Few-shot Testing Order
	Alternative: Compositional PartImageNet (CPIN) Benchmark

	Compositional Objects365 (COBJ) Benchmark
	Construction of COBJ
	Continual Training Phase
	Few-shot Testing Phase
	Training Order

	Training Details
	Hyper-parameters (CGQA)
	Hyper-parameters (COBJ)

	Additional Results
	CGQA Overall Results
	COBJ Overall Results
	CAM Visualization
	Old and Fresh Concepts
	Effect of Number of Classes in Continual Tasks
	Sample Efficiency for Learning Compositionality
	Effect of Frozen Feature Extractor
	Performance on ViT Backbone
	CPIN Results

	Implemented Algorithms on Split-CIFAR100 Benchmark

