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Abstract

Compositionality facilitates the comprehension of novel objects using acquired
concepts and the maintenance of a knowledge pool. This is particularly crucial for
continual learners to prevent catastrophic forgetting and enable compositionally
forward transfer of knowledge. However, the existing state-of-the-art benchmarks
inadequately evaluate the capability of compositional generalization, leaving an
intriguing question unanswered. To comprehensively assess this capability, we
introduce two vision benchmarks, namely Compositional GQA (CGQA) and Com-
positional OBJects365 (COBJ), along with a novel evaluation framework called
Compositional Few-Shot Testing (CFST). These benchmarks evaluate the system-
aticity, productivity, and substitutivity aspects of compositional generalization.
Experimental results on five baselines and two modularity-based methods demon-
strate that current continual learning techniques do exhibit somewhat favorable
compositionality in their learned feature extractors. Nonetheless, further efforts are
required in developing modularity-based approaches to enhance compositional gen-
eralization. We anticipate that our proposed benchmarks and evaluation protocol
will foster research on continual learning and compositionality.

1 Introduction

Human understanding of the world relies on abstraction of concrete objects, allowing for the disentan-
glement of high-level understandings into low-level concepts. This ability, known as compositionality,
is a crucial aspect of human intelligence as it addresses the stability-plasticity dilemma [11], and
introduces a computationally efficient learning paradigm [3, 27]. By leveraging previously acquired
concepts while acquiring new ones, individuals can effectively build and maintain knowledge when
faced with a new task. For instance, accurate comprehension of varied bird wing shapes enables
rapid identification of a new bird species by focusing on its wings. This compositional approach
allows continual learners to achieve efficient knowledge reuse, benefiting not only in preventing
catastrophic forgetting [37] of previous tasks (i.e., stability) but also in rapidly adapting to new tasks
(i.e., plasticity).

There have been various approaches to continual learning (CL) that can be roughly categorized
into three directions. Firstly, regularization-based methods [24, 33, 35] introduce regularization
techniques to control the gradient update process for the current task. Secondly, replay-based
methods [6, 4] store past tasks for later replay during training. Lastly, parameter-isolation-based
methods, specifically modularity-based methods [28, 36, 43, 41], employ static or dynamic model
architectures and allocate distinct parameters to each task. Nonetheless, it remains largely unclear
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Figure 1: Process for CFST to test compositional generalization capability and comparison with
CZSL. Taking CGQA as an example, after continually training T tasks in (a), the feature extractor
f is frozen and we assign a new classifier specifically for each few-shot task. We use five types
of few-shot tasks (b), which are introduced detailedly in section 4, to evaluate three aspects (i.e.,
systematicity, productivity, substitutivity) of compositionality, with the references of non and noc.
CFST aims to challenge the compositional generalization ability of SOTA continual learners. Note
that this protocol is suitable for class-IL and task-IL settings and we take the task-IL setting for
illustration. Different from the CZSL setting in (c), our setting does not provide any concept-level
supervision.

whether these methods truly satisfy compositionality. The current works have two main drawbacks.
Firstly, the evaluation mainly focuses on catastrophic forgetting and overlooks forward transfer [35, 5].
The most relevant work to study compositionality is [41], which evaluates compositionality on
a toy colored-MNIST dataset but only concentrates on color-shape composition. Secondly, the
majority of existing CL benchmarks, such as Split-CIFAR10/100 and Split-MNIST, are insufficient to
comprehensively evaluate compositionality. One potential alternative could be adapting benchmarks
from the Compositional Zero-Shot Learning (CZSL) community for the CL setting. However, many
of these benchmarks are either toy, synthetic, and lacking systematicity (e.g., CLEVR [21]), or
restricted to simple object-attribute composition (e.g., UT-Zappos [56] and MIT-States [19]).

To address the aforementioned drawbacks and stimulate research on compositionality, we have devel-
oped two benchmarks: one synthetic yet systematic benchmark called CGQA, and one real-world
benchmark called COBJ, both of which involve vision classification tasks. Additionally, we have
designed an evaluation protocol called Compositional Few-Shot Testing (CFST), as illustrated in
Figure 1), comprising a continual training phase where a learner accumulates knowledge from a se-
quence of tasks, followed by five few-shot testing phases. CFST aims to evaluate three compositional
capabilities: 1) Systematicity (sys) — the ability to correctly predict outcomes for few-shot tasks with
novel recombinations of familiar concepts; 2) Productivity (pro) — the ease of understanding combi-
nations involving an increasing number of concepts; 3) Substitutivity (sub) — the speed at which the
learner can acquire knowledge about slightly different concepts from those learned previously. Two
additional evaluation aspects are considered: 1) Non-novel (non) — assessing the prediction accuracy
for seen combinations of concepts; 2) Non-compositional (noc) — establishing a lower bound of
accuracy for few-shot tasks by evaluating the learner with unseen concepts. CFST challenges the
compositional generalization capability of state-of-the-art continual learners, with a primary focus
on the feature extractor’s ability to capture compositional concept features after continual training.
Drawing inspiration from the field of natural language [18], we summarize the basic principles of
compositional testing in vision. Firstly, the testing targets are novel recombinations of concepts found
in the training set, ensuring that the continual learner has the opportunity to learn the meanings of
these concepts (solvability). Secondly, while providing supervision for the testing task, it is crucial
not to overwhelm the learner with excessive information, as they are expected to “quickly” understand
the testing targets (few-shot). Finally, after acquiring sufficient knowledge during training, the feature
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extractor is frozen to prevent further learning and overfitting during the testing phase (frozen feature
extractor). Consequently, the continual learner must possess compositional generalization ability to
bridge the systematic gap between training combinations and testing recombinations.

We assess the performance of five baseline methods and two parameter-isolation-based (modularity-
based) methods on our benchmarks using CFST. The results indicate that the continual learning (CL)
paradigm does introduce a decline in compositional performance on the concept level compared to
the multi-task learning paradigm. Additionally, the efficiency of learning compositionality is highly
influenced by the number of classes in each continual task. Furthermore, the state-of-the-art CL
methods employing ResNet-18 backbone demonstrate some degree of compositional generalization
capability in terms of Systematicity and Productivity, but struggle with Substitutivity. Conversely,
methods utilizing the ViT backbone exhibit a preference for Substitutivity. Remarkably, we observe
that the reusable knowledge acquired by modularity-based methods does not precisely correspond to
the underlying concepts. It is clear that there is still a significant journey ahead for continual learners
to develop interpretable compositionality.

2 Related Works

Compositional benchmarks Compositionality is widely considered to be one of the most crucial
elements in achieving a human-level understanding of the world. While compositionality has been
extensively studied in the field of natural language, particularly in the context of local and global
understanding [7], there is a need to evaluate the compositional capability of models. To address
this, researchers have focused on creating datasets with specific split methods for training and testing
purposes [7, 46, 18, 26, 23, 2, 22, 57, 10, 16]. However, the exploration of compositionality in the
field of computer vision is still in its early stages. While some proposed benchmarks prioritize the
use of toy or synthetic images [44, 41, 58], there is a lack of comprehensive evaluation on real-world
datasets since most of them only test a limited aspect of compositionality (i.e., systematicity) [1, 31,
15, 14, 60, 34, 7, 20, 47].

Continual learning Continual learning typically addresses the issue of catastrophic forgetting
through various approaches, which can be broadly categorized into four families. Regularization-
based methods [35, 33, 24] incorporate regularization techniques into the gradient updates to mitigate
forgetting of previous tasks. Replay-based methods [6, 48, 59, 12] involve retraining on past task data
or storing memory-efficient features to retain knowledge from previous tasks. Parameter-isolation-
based, particularly hierarchical modularity-based methods [43, 30, 50, 9], focus on modularizing
learners to enable compositional learning of tasks [38]. Building on the advancements of Vision
Transformers [8], several prompt-based methods [53, 52, 51] aim to extract task-specific knowledge
from a pre-trained backbone by using prompts. However, comparing these pre-trained methods
to others may be somewhat unfair as they might have prior exposure to certain concepts or their
combinations. Furthermore, only a limited number of studies (e.g., [41, 40, 50, 47]) explicitly
evaluate their compositional capabilities, especially in the field of computer vision. For instance,
[41] uses a toy dataset (color-MNIST) to evaluate simple color-shape compositions. [47] introduces
a vision-and-language benchmark for continual concept learning tasks. In other works [32, 49, 1,
31, 15, 16, 25], including studies on compositionality outside the continual learning community, the
datasets themselves possess compositional characteristics, but their evaluation may not rigorously
test novel combinations.

3 Preliminaries

Vision continual classification tasks Continual learning focuses on a sequence of T vision classi-
fication tasks, each involving an N -way classification. For each task t ∈ T = [1 . . . T ], there is a
corresponding training set Dt = {(xt, yt)}, where xt ∈ X represents the input image and yt ∈ Y
is the corresponding class label. Here, N denotes the number of classes within each individual
task. A continual learner is a neural network comprised of two main components. Firstly, there is a
feature extractor f(x) : X → L, which maps input images to an extracted feature space. Secondly, a
multi-task classifier m(f(x), t) : L × T → Y is present. This classifier takes the extracted features
from the feature extractor, f(x), as well as the task identifier, t, as inputs and produces a prediction
for the corresponding task. Here, Y ⊂ R represents the label space, which will be discussed further in

3



the subsequent paragraph. It is important to note that tasks are sequentially presented to the continual
learner, thereby deviating from the assumption of independent and identically distributed (i.i.d.) data.
Remark 3.1. This setting corresponds to the task-incremental (task-IL) scenario. Additionally, we
also investigate the class-incremental (class-IL) setting, where the task identifier t is not provided.
Consequently, the multi-task classifier m(f(x), t) simplifies to m(f(x)).

Concept-based categories From a human learning perspective, it is essential for representations
to be compositional, meaning that a global understanding of an object is formed by combining
all its semantic sub-parts [39]. For instance, people learn to recognize others by memorizing
characteristics such as their hair color and mouth size. To assess whether the model is capable of
learning compositional representations in images, we initially define the components, referred to
as concepts, that we want the model to learn explicitly. Specifically, we create a pool of candidate
concepts, denoted as C = {ci}Mi=1, where M represents the number of concepts. The vector
c1:M = (c1, . . . , cM ) ∈ {0, 1}M indicates the presence of these concepts, where {0, 1}M denotes
the M -fold Cartesian product {0, 1} × · · · × {0, 1}, and ci = 1 indicates the presence of the i-th
concept, while 0 denotes its absence. Further details regarding the continual training stage and
evaluation stages will be discussed in section 4.
Remark 3.2. Although we define a multi-hot concept space for data generation, it is important to note
that y remains a single image-level label, and no concept label is provided to the candidate learner.
This distinction is illustrated in Figure 1, where categories such as {Door, Shirt} and {Grass, Shirt}
are considered as two completely separate categories despite sharing the concept Shirt. As a result,
the learner must deduce the underlying compositional concepts within an image. This represents the
key difference between our label space definition and compositional zero-shot learning (CZSL), as
depicted in Figure 1c.

4 Compositional Few-Shot Testing Protocol: CFST

We will now elucidate the precise methodology for assessing the compositionality of a learner through
the utilization of the Compositional Few-Shot Testing (CFST) protocol, as illustrated in Figure 1.

Concept factorization We adopt attribute factorization [54, 29] to model the data generation
process by using a latent variable z since it accurately captures the different concept distributions be-
tween training and testing tasks. Denoting the joint distribution of the image x and the corresponding
hidden concepts as p(c1:M , x), we can write

z ∼ p(z), ci ∼ p(ci|z), x ∼ p(x|z), p(c1:M , x) = p(c1:M )

∫
p(x|z)p(z|c1:M )dz.

We split the label space Ytr,Ynv ⊂ Y,Ytr

⋂
Ynv = ∅ using different marginal distributions,

p(c1:M ) ̸= ptr(c
1:M
tr ) ̸= pnv(c

1:M
nv ), and keeping the same conditional generative model

p(x|c1:M ) =
∫
p(x|z)p(z|c1:M )dz for different phases, thus, artificially introducing compositional

distribution shifts. Note that, c1:Mtr , c1:Mnv are the corresponding concepts in Ytr,Ynv, respectively.
Without loss of generality, we bound the maximal number of activated concepts in Ytr, such that
p1-norm ∥c1:Mtr ∥1 ≤ Mtr. The principles guiding the evaluation are summarized as follows:

1. Few-shot tasks: After continually training with T N -way tasks with ptr(c
1:M
tr ), we expect this

learner should have acquired sufficient knowledge in the concept pool C and be able to recognize
novel concept combinations ynv ∈ Ynv with pnv(c

1:M
nv ) using only a small number of support

samples. Thus, we adopt few-shot tasks, in which each concept combination ynv has a small
support set Ds. Proper recognition of underlying compositional concepts is crucial to avoid severe
overfitting.

2. Solvability: All M concepts in C should be encountered at least once in the continual training
tasks {Dt}Tt=1. Additionally, the learner should have sufficient exposure to learn the concepts
in various combinations. We take the label {Grass, Shirt} with concept Grass in Figure 1 as an
example, Grass should be seen in at least one training task, e.g., {Grass, Table}. This assumption
aligns with the general idea that standard gradient-based models cannot generalize to nonlinear
functions without observing enough diverse examples [55].

3. Novelty: Few-shot tasks should only contain novel recombination of concepts not seen in the
training set, i.e., Ynv

⋂
Ytr = ∅. The presence of any seen label would negatively impact the
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evaluation of the learner’s compositional ability. In the above example, {Dt}Tt=1 should not
contain any {Grass, Shirt} sample.

4. Frozen feature extractor: We recommend not further updating the feature extractor f using the
support samples Ds in the few-shot evaluation task. Only the classifier m is updated to assess
whether f extracts the expected features related to the underlying concepts in the few-shot task.
Empirically, a non-frozen feature extractor attempting to learn from a few-shot task leads to a
noticeable reduction in performance, as shown in Appendix.

Based on the mentioned principles, we present five different few-shot testing schemes for the continual
learner:

Systematicity Novel Testing (sys) To examine the comprehension of learners on novel combi-
nations of concepts in C, we design Tnv N -way K-shot tasks. Each task includes N concept
combinations ysys randomly selected from Ysys, with K samples for each ysys. Here, Ysys ⊂ Ynv

and the corresponding ∥c1:Msys ∥1 ≤ Mtr. It should be noted that Ynv does not include any previously
seen combinations in Ytr, ensuring the fulfillment of the novelty requirement.

Productivity Novel Testing (pro) The acquired knowledge should be able to generalize effectively
to complex images that contain a greater number of previously encountered concepts. After learning
about {Door, Shirt}, {Grass, Table}, and {Hat, Leaves}, the learner should have no trouble recog-
nizing {Door, Leaves, Shirt, Table}. To assess this ability, we construct few-shot tasks that involve
more concepts per task compared to the sys testing. Specifically, we consider another label space
Ypro ⊂ Ynv where the candidate label ypro ∈ Ypro satisfies the condition ∥c1:Mpro ∥1 > Mtr.

Substitutivity Novel Testing (sub) Concepts can possess specific attributes, such as the color of
a Shirt being either red or green. Given knowledge acquired from images of red shirts (or shirts
that are not green) and an understanding of Grass being green, learners are expected to quickly
recognize that a green shirt is still a Shirt, as it combines the attribute of green color with the object
of a shirt. In order to assess compositional understanding at the attribute level, we maintain the
same distribution of concepts psub(c1:Msub ) = psys(c

1:M
sys ), but utilize different conditional generative

models psub(x|c1:Msub ) ̸= p(x|c1:M ). It is important to note that this attribute-based testing should be
observed in relation to other concepts during continual training, allowing learners the opportunity to
recognize it (solvability). This distinction is the primary difference between our sub approach and the
domain-incremental setting.

The aforementioned three novel few-shot schemes provide a comprehensive evaluation of composi-
tionality. In addition, we will introduce two reference schemes for the purpose of comparison and
analysis.

Non-novel Testing (non) To assess the few-shot testing performance of learners on trained combi-
nations, we create few-shot tasks where the label is taken from Ytr rather than Ysys. This particular
setting intentionally violates the novelty assumption. The average test accuracy on these non tasks
serves as a complement to the average test accuracy on the tasks involving continually trained combi-
nations. Additionally, comparing the results with other few-shot novel methods (such as sys) allows
us to determine if the learner possesses the specific compositionality.

Non-compositional Testing (noc) We introduce noc tasks to evaluate learners’ few-shot testing
performance on combinations that involve unseen concepts. In this case, the label ynoc is selected
from Ynoc, and the condition ∥c1:Mnoc ∥1 ≤ Mtr applies, with Cnoc

⋂
C = ∅. These tasks follow the

normal continual learning scheme with T +1 tasks, but the last task is a few-shot task and the feature
extractor remains frozen. This particular setting intentionally violates the solvability assumption. The
average test accuracy on noc tasks serves as a useful metric to indicate the lower limit of few-shot
testing performance.

5 Proposed Benchmarks

The existing continual learning (CL) community lacks a comprehensive benchmark specifically
designed to evaluate compositionality. In order to address this, we can adapt existing benchmarks for
Compositional Zero-shot Learning (CZSL) for this purpose. However, directly transforming CZSL
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benchmarks into CL versions, as done with Split-CIFAR100, is not appropriate. This is because some
CZSL benchmarks are considered to be toy benchmarks, such as CLEVR [21]. Furthermore, most
CZSL benchmarks do not emphasize systematic compositionality, as they primarily focus on simple
object-attribute compositions, such as UT-Zappos [56] and MIT-States [19]. Simply combining
multiple benchmarks is also not suitable, as the concepts involved in different benchmarks might
vary, resulting in a lack of cross-benchmark concept combination.

Our objective in developing benchmarks is to incorporate a wide range of concept combinations
alongside a substantial number of instances for each concept. Thus, we first introduce a synthetic
benchmark known as Compositional GQA (CGQA), derived from GQA [17] (License CC BY 4.0).
CGQA offers comprehensive combinations of concepts and a substantial number of concept instances.
Then, to evaluate continual learners using real-world images, we also propose a real-world benchmark
called Compositional Objects365 (COBJ), sourced from Objects365 [45] (License CC BY 4.0). Due
to the limitations of space, please refer to the Appendix for image examples and additional benchmark
statistics.
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Figure 2: Example of CGQA construction.
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Figure 3: Example of COBJ construction.

Construction of CGQA Since the available number of annotations in GQA is inadequate to
construct the compositional benchmark using the original images, we have chosen to artificially
combine suitable objects and create new images for our purposes. The process is illustrated in
Figure 2. Initially, we crop the image using the bounding box of the selected object and then resize
the cropped region to a resolution of 98 × 98 pixels. Next, we randomly position the processed
object image within a 2× 2 grid. Any unoccupied grid spaces are filled with black pixels to ensure a
complete composition.

Construction of COBJ The images in Object365 are of high resolution and contain multiple
instances of classes, annotated with bounding boxes (as shown in Figure 3a). To conveniently utilize
these images, we need to resize them. However, resizing high-resolution images directly can lead to a
loss of object resolution, which may have a detrimental effect on the model’s performance. Therefore,
we employ a strategy where we select a specific bounding box within each object set to crop and
generate a new image. The process is explained in Figure 3. Subsequently, we perform the resizing
operation, allowing the object to occupy a larger proportion within the image and providing more
pixels for analysis. The selection of bounding boxes follows the principle of minimizing the total
distance between their respective center points. This process ensures that the closest bounding boxes
are chosen. By using the cropped region shown in yellow in Figure 3b, we reduce the proportion of
irrelevant parts and maximize the preservation of the original object’s information.
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Table 1: Results on CGQA. Accuracy (%)±95% confidence intervals (%) over 300 tasks are reported
for few-shot testing phases. Task-IL settings denote with a postfix “*”.

Methods Acon Asys Apro Asub Hn Anon Anoc Hr Ha

MultiTask 83.61 88.14 ± 0.62 85.94 ± 0.65 69.67 ± 0.75 80.35 91.55 ± 0.51 40.04 ± 0.99 55.71 68.28

Finetune 8.38 64.73 ± 0.78 65.43 ± 0.73 61.26 ± 0.67 63.75 68.54 ± 0.80 40.32 ± 0.72 50.77 57.84
ER 19.78 71.38 ± 0.75 70.11 ± 0.64 64.32 ± 0.69 68.46 77.27 ± 0.67 40.98 ± 0.72 53.56 61.60
GEM 8.56 66.56 ± 0.77 73.47 ± 0.61 62.80 ± 0.71 67.33 72.65 ± 0.73 41.64 ± 0.72 52.94 60.72
LwF 9.11 71.22 ± 0.74 73.28 ± 0.61 68.74 ± 0.66 71.03 76.56 ± 0.66 48.69 ± 0.77 59.52 65.93
EWC 8.22 64.99 ± 0.78 73.47 ± 0.64 63.25 ± 0.66 66.95 69.03 ± 0.74 41.38 ± 0.71 51.75 59.91
RPSnet 33.45 59.80 ± 0.83 60.26 ± 0.72 59.75 ± 0.74 59.94 64.22 ± 0.81 45.09 ± 0.64 52.98 56.95

MultiTask* 92.17 82.16 ± 0.68 84.22 ± 0.60 71.82 ± 0.75 79.01 86.44 ± 0.69 44.07 ± 0.95 58.38 69.23

Finetune* 72.46 70.32 ± 0.73 72.62 ± 0.63 66.33 ± 0.69 69.66 75.32 ± 0.70 43.26 ± 0.73 54.95 62.92
ER* 76.05 71.37 ± 0.70 72.67 ± 0.69 66.80 ± 0.63 70.19 76.28 ± 0.66 45.61 ± 0.77 57.09 64.29
GEM* 21.60 69.44 ± 0.75 73.14 ± 0.67 66.61 ± 0.66 69.63 73.31 ± 0.71 45.97 ± 0.74 56.51 63.71
LwF* 73.19 69.61 ± 0.77 74.22 ± 0.63 65.00 ± 0.65 69.40 75.25 ± 0.69 42.52 ± 0.72 54.34 62.48
EWC* 71.10 69.40 ± 0.79 72.37 ± 0.65 65.10 ± 0.67 68.83 74.99 ± 0.72 42.82 ± 0.77 54.51 62.29
MNTDP* 68.98 47.27 ± 0.91 47.41 ± 0.86 47.50 ± 0.85 47.39 52.28 ± 0.81 32.29 ± 0.83 39.93 44.09

6 Experimental Studies

In this section, we conducted experiments using SOTA continual learning algorithms on our proposed
compositional benchmarks, namely CGQA and COBJ. The purpose of these comprehensive computa-
tional experiments is to address the following research questions: (1) Can our proposed benchmarks
accurately evaluate the learners’ ability to extract compositional features from a sequence of tasks?
(2) Can five different few-shot testing schemes provide insightful perspectives on the learners’ com-
positionality? (3) Do modularity-based approaches demonstrate superior few-shot testing accuracy,
indicating their efficacy in extracting compositional features?

6.1 Experiment Settings

Compared Algorithms We evaluate five baseline algorithms, including: Finetune, which trains a
continual learner sequentially for all tasks; regularization-based methods: GEM [35], LwF [33], and
EWC [24]; a replay-based method: ER [6]. Additionally, we also evaluate two SOTA hierarchical
compositional modularity approaches: MNTDP [50] (MNTDP-D), which dynamically incorporates
new modules or reuses existing frozen modules to improve performance on the current task; RP-
Snet [43], which randomly selects modules in each layer and employs regularization and experience
replay for assistance. When evaluating these methods in the class-incremental learning (class-IL)
setting, where the task identifier is unknown, we use a single-head classifier. In the task-incremental
learning (task-IL) setting, where the task identifier is known, we employ a multi-head classifier
(denoted by a postfix “*”). All the algorithms mentioned above are evaluated using a ResNet-18
backbone [13]. For detailed hyper-parameter settings and additional results using a ViT backbone [8],
please refer to the Appendix.

Evaluation Metric During the continual training phase, we report the Average test accuracy
Acon on all seen tasks after completing T = 10 tasks. For the five different few-shot testing
phases, namely sys, pro, sub, non, and noc, we report the Average test accuracy for each test (i.e.,
Asys, Apro, Asub, Anon, and Anoc) on Tnv = 300 tasks. It is worth noting that the Asub metric
is not applicable for COBJ due to the absence of attribute information in the source benchmark
Objects365. We denote the prediction accuracy of the multi-task classifier m as ∆(m(f(x), t), y).
The corresponding testing dataset for task t is denoted as Dte

t . The Average test accuracy is
calculated as 1

Tnv

∑Tnv

t=1 E(x,y)∼Dte
t
[∆(m(f(x), t), y)]. Additionally, we employ the Harmonic

mean Hn = 3/(1/Asys +1/Apro +1/Asub) among sys, pro, and sub, Hr = 2/(1/Anon +1/Anoc)
between non and noc, and Ha = 5/(1/Asys + 1/Apro + 1/Asub + 1/Anon + 1/Anoc) to show
the compositionality, reference capability, and overall few-shot testing capability, respectively. The
Harmonic mean places emphasis on achieving balanced performance across all few-shot cases
simultaneously, measuring the model’s ability to perform well across different scenarios.
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Table 2: Results on COBJ. Accuracy (%)±95% confidence intervals (%) over 300 tasks are reported
for few-shot testing phases. Task-IL settings denote with a postfix “*”.

Methods Acon Asys Apro Hn Anon Anoc Hr Ha

MultiTask 39.73 72.70 ± 1.55 67.11 ± 1.86 69.79 83.38 ± 1.36 57.52 ± 1.81 68.08 68.93

Finetune 6.37 43.06 ± 1.28 41.89 ± 1.29 42.46 46.96 ± 1.51 46.12 ± 1.36 46.54 44.41
ER 7.67 46.51 ± 1.48 45.22 ± 1.38 45.86 57.58 ± 1.85 42.81 ± 1.32 49.11 47.43
GEM 5.57 46.11 ± 1.41 43.99 ± 1.33 45.03 49.51 ± 1.57 46.07 ± 1.47 47.73 46.34
LwF 6.73 55.10 ± 1.54 50.12 ± 1.54 52.49 59.37 ± 1.61 51.40 ± 1.55 55.10 53.76
EWC 6.53 42.73 ± 1.19 41.00 ± 1.32 41.85 46.69 ± 1.48 41.21 ± 1.34 43.78 42.79
RPSnet 21.93 73.26 ± 1.24 67.89 ± 1.44 70.47 78.82 ± 1.27 68.22 ± 1.24 73.14 71.78
MultiTask* 75.73 55.72 ± 1.75 49.84 ± 1.81 52.62 59.21 ± 1.89 53.43 ± 1.74 56.17 54.34

Finetune* 44.37 45.67 ± 1.39 44.18 ± 1.38 44.91 47.92 ± 1.54 47.80 ± 1.57 47.86 46.34
ER* 64.80 54.40 ± 1.73 51.33 ± 1.69 52.82 58.91 ± 1.73 48.83 ± 1.54 53.40 53.11
GEM* 36.53 45.57 ± 1.39 45.50 ± 1.39 45.53 51.93 ± 1.64 46.40 ± 1.36 49.01 47.21
LwF* 61.03 53.77 ± 1.63 50.06 ± 1.76 51.84 60.54 ± 1.58 54.53 ± 1.61 57.38 54.47
EWC* 53.87 45.63 ± 1.46 46.12 ± 1.47 45.88 51.16 ± 1.59 48.86 ± 1.48 49.98 47.84
MNTDP* 71.80 51.89 ± 1.41 49.16 ± 1.56 50.49 57.20 ± 1.59 48.52 ± 1.36 52.50 51.48

6.2 Results

We report the performance results of our CGQA benchmark in Table 1 and the results of the COBJ
benchmark in Table 2. For a detailed analysis of the COBJ benchmark results under different settings
of T , please refer to the Appendix.

Multi-task baselines outperform CL methods in both continual tasks and compositional gener-
alization performance In both class-IL and task-IL settings, MultiTask(*) demonstrates the highest
performance on Acon and Hn, which is as expected since this method benefits from i.i.d. training
task sequences. To visualize the learned concept region, we employ the CAM [61]. The results in the
Appendix for both CGQA and COBJ demonstrate that the proposed Hn accurately evaluates learners’
performance in extracting compositional features. Notably, CL methods generally do not outperform
MultiTask(*) on Hn, revealing that forgetting also contributes to the degradation of compositionality.
This observation highlights the urgent question of how to equip learners with compositionality for the
continual learning community.

Continual tasks prefer modularity-based methods Among the baselines, RPSnet achieves a
significantly larger margin on Acon, particularly on COBJ, indicating that the reused knowledge
in the modules can effectively mitigate forgetting. While MNTDP performs poorly on CGQA, it
outperforms the other methods on the real-world benchmark COBJ. This difference can be attributed
to the fact that forgetting is not as significant on CGQA as it is on COBJ, especially in the task-IL
setting. Therefore, simply freezing modules does not provide efficient reusable (compositional)
knowledge for the novel recombination of seen concepts. The second-best method on Acon is ER(*),
particularly in the class-IL setting, demonstrating the effectiveness of the memory buffer.

Modularity-based methods show no superiority on compositionality In terms of Hn, another
winning method alongside ER* is LwF, although its performance on Acon is not outstanding. This
suggests that the feature extractor learned by LwF is excellent at extracting compositional features, but
the classifier fails to make correct predictions. The phenomenon of prediction bias is further discussed
in the Appendix, with CAM visualization. Regularization-based mechanisms like GEM, LwF, and
EWC struggle to solve this classifier issue. As a result, only replay-based methods (such as ER and
RPSnet) show improved performance. Unfortunately, RPSnet and MNTDP* do not demonstrate
superiority on CGQA, indicating that the reused knowledge is not sufficiently compositional for
handling novel combinations of seen concepts. Freezing the modules for old tasks may not be
appropriate for new tasks unless the modules have enough compositionality. Further efforts are
required to enhance modularity-based methods to bring benefits to compositionality. Interestingly,
on COBJ, these two methods show competitive performance compared to others, with RPSnet
performing the best. This indicates their superiority in dealing with real-world tasks.
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Five few-shot tests exhibit a consistent order: Anon > Apro > Asys > Asub > Anoc Generally,
the performance on non is the best, which is expected because models tend to favor the seen
combinations and may struggle with compositional gaps to some extent. The performance gap
between sys and pro is acceptable, but it is larger for sub. This is because sub requires the composition
of attributes of concepts to form unseen recombination, demanding a higher-level compositional
ability compared to sys and pro. Interestingly, when models have a ViT backbone (in the Appendix),
we observe contrary results: Asub > Apro > Asys. It can be attributed to the fact that the selected
attributes for concepts in sub primarily pertain to texture attributes (e.g., color). This observation
aligns with the analysis in [42] that the multi-head attention layer in ViT has a bias towards shape
attributes, while the convolution layer has a bias towards texture attributes. Therefore, models
with a ResNet-18 backbone are more sensitive to the texture difference between continual and sub.
Regarding accuracy on pro, it is generally slightly better than on sys, except for MultiTask and
ER, indicating that having more concepts can somewhat aid in understanding the images. The
overall lower accuracy on the single-head baselines (class-IL setting) compared to their multi-head
counterparts (task-IL setting), except for LwF, demonstrates that the single-head classifier makes it
difficult for the feature extractor to retain compositional knowledge.

Concept-level forgetting We conducted a case study to investigate the phenomenon of forget-
ting with regard to concepts. Following a continual training phase, we evaluated the learned
models on four few-shot task sets: non(f), which consists of seen combinations of freshly
learned concepts in the last task; non(o), which consists of seen combinations of old con-
cepts from previous tasks; sys(f), which consists of novel combinations of freshly learned con-
cepts in the last task; and sys(o), which consists of novel combinations of old concepts from
previous tasks. If the model experiences forgetting on the concept level, we would expect a
small gap between non(f) and sys(f) and a large gap between non(o) and sys(o). The con-
struction of these two task sets is detailed in the Appendix. We also report the related scores
S(o) = (Asys(o) − Anon(o))/Anon(o) and S(f) = (Asys(f) − Anon(f))/Anon(f) to clearly show
the performance gaps. The average test accuracy and the related score are shown in Figure 4.

Test Accuracy Score

S(f) S(o)

Figure 4: Fresh tasks vs old tasks on CGQA. MT stands
for MultiTask and FT stands for Finetune. Take away:
fresh concepts suffer little performance drop when test-
ing on novel combinations (sys(f)) while old concepts
(sys(o)) on the contrary.

Our observations reveal that Anon(f) >
Anon(o) and Asys(f) > Asys(o), which is
as expected since fresh concepts are newly
updated in the last continual task. Addi-
tionally, S(f) > S(o), indicating that the
learner has better systematicity composi-
tional generalization capacity for fresh con-
cepts than for old concepts. These obser-
vations demonstrate that the learner indeed
learns concepts in a composition-wise man-
ner and forgetting occurs primarily with
old concepts. On the other hand, Multi-
Task, which is regarded as the upper bound,
experiences the smallest performance drop
on both fresh and old tasks, confirming our
expectation that the learner jointly learns
all continual tasks. This observation also
suggests that the continual learner experiences forgetting not only on old tasks but also on old
concepts. To visualize the learned concepts, we used CAM; please refer to the Appendix for more
details.

Sample efficiency for learning compositionality To investigate the number of training samples
required for a continual learner to acquire the ability of compositional generalization, we vary the
number of training samples for each class in the CGQA continual training tasks. It is intuitive that a
small number of training samples not only hinders novel combinations (i.e., sys, pro, sub), but also
affects the seen combinations (i.e., non). Examples of sys and non are depicted in the left and middle
figures of Figure 5, respectively. The complete results can be found in the Appendix. Moveover,
we utilize the related score, denoted as S(sys). It is calculated as (Asys − Anon)/Anon, where a
larger positive S(sys) indicates better compositional generalization ability on Systematicity, while a
smaller negative value indicates poor handling of novel combinations of seen concepts by the learner.
The results are presented in the right figure of Figure 1. For almost all methods, S(sys) reaches
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𝑠𝑠

Number of Sample Number of Sample Number of Sample

Figure 5: Varying number of training samples on CGQA. Take away: Accuracy is improved with
more training samples for both sys and non. Related scores become smooth and stable if more
than 300 training samples for each class. This fact shows that 300 samples are needed for learning
compositionality.

convergence when trained with more than 300 samples for each class. Beyond this threshold, the
ratio of improvement for sys to non remains unchanged. Consequently, we can conclude that learners
need 300 samples for each class to learn compositionality in CGQA.

Class-IL Task-IL

MultiTask Finetune ER GEM RPSnet/MNTDP*LwF EWC

Figure 6: Number of continual tasks vs Hn on 10-way COBJ testing tasks. Take away: A larger
number of continual tasks (smaller ways for each task) hinders compositionality.

Varying number of continual training tasks As the number of training tasks increases, the number
of classes in each task decreases while the total number of classes remains constant. Consequently,
compared to a single task that includes all the classes, the learner requires a smaller number of
compositional features to distinguish classes in each individual task. However, these features may be
insufficient for future compositional tasks. To evaluate the learners, we train them on three (10-way),
five (6-way), and ten (3-way) COBJ tasks respectively, and then assess their performance on 300
10-way few-shot sys and pro tasks. We visualize the results using Hn, as shown in Figure 6. The
observation aligns with the aforementioned understanding. For more detailed information, please
refer to the Appendix.

7 Conclusion

In this paper, we present two benchmarks, CGQA and COBJ, which offer ample samples for
CL. Additionally, we introduce CFST, a novel evaluation protocol that enables comprehensive
assessment of compositionality in three key aspects: systematicity, productivity, and substitutivity.
The construction of our benchmarks is based on publicly available sources, ensuring the absence
of sensitive data and ethical suitability for research purposes. Experimental results demonstrate
that our protocol provides valuable insights for SOTA CL methods. However, modularity-based
approaches do not exhibit superiority when subjected to compositional testing, highlighting the need
for significant advancements in this area. We believe that our benchmarks and evaluation protocol
will inspire researchers to prioritize compositionality during the development of continual learners.

Limitation and future work While our work specifically focuses on local compositionality, future
studies will explore the global scopes of compositionality, extensively examined in other fields such
as natural language processing. Although our candidate compositions of concepts are limited, they
sufficiently serve the purpose of testing compositionality in continual learners. Moving forward, the
combination of multiple benchmarks will be considered to form a more comprehensive evaluation
framework.

10



Acknowledgments and Disclosure of Funding

This work was supported by National Natural Science Foundation of China (Grant No. 62250710163,
62250710682), Guangdong Provincial Key Laboratory (Grant No. 2020B121201001), the Program
for Guangdong Introducing Innovative and Enterpreneurial Teams (Grant No. 2017ZT07X386), The
Stable Support Plan Program of Shenzhen Natural Science Fund (Grant No. 20200925174447003),
Shenzhen Science and Technology Program (Grant No. KQTD2016112514355531).

References
[1] Amit Alfassy, Leonid Karlinsky, Amit Aides, Joseph Shtok, Sivan Harary, Rogerio Feris,

Raja Giryes, and Alex M Bronstein. Laso: Label-set operations networks for multi-label
few-shot learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 6548–6557, 2019.

[2] Jasmijn Bastings, Marco Baroni, Jason Weston, Kyunghyun Cho, and Douwe Kiela. Jump to
better conclusions: Scan both left and right. arXiv preprint arXiv:1809.04640, 2018.

[3] Magdalena Biesialska, Katarzyna Biesialska, and Marta R Costa-Jussa. Continual lifelong
learning in natural language processing: A survey. arXiv preprint arXiv:2012.09823, 2020.

[4] Gail A. Carpenter and Stephen Grossberg. A massively parallel architecture for a self-organizing
neural pattern recognition machine. Computer Vision, Graphics, and Image Processing,
37(1):54–115, 1987.

[5] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
lifelong learning with a-GEM. In International Conference on Learning Representations, 2019.

[6] Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K
Dokania, Philip HS Torr, and Marc’Aurelio Ranzato. On tiny episodic memories in continual
learning. arXiv preprint arXiv:1902.10486, 2019.

[7] Verna Dankers, Elia Bruni, and Dieuwke Hupkes. The paradox of the compositionality of
natural language: a neural machine translation case study. arXiv preprint arXiv:2108.05885,
2021.

[8] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. In International Conference on Learning Representations, 2021.

[9] Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, Andrei A Rusu,
Alexander Pritzel, and Daan Wierstra. Pathnet: Evolution channels gradient descent in super
neural networks. arXiv preprint arXiv:1701.08734, 2017.

[10] Catherine Finegan-Dollak, Jonathan K. Kummerfeld, Li Zhang, Karthik Ramanathan, Sesh
Sadasivam, Rui Zhang, and Dragomir Radev. Improving text-to-SQL evaluation methodology.
In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 351–360, Melbourne, Australia, July 2018. Association for
Computational Linguistics.

[11] Stephen T Grossberg. Studies of mind and brain: Neural principles of learning, perception,
development, cognition, and motor control, volume 70. Springer Science & Business Media,
2012.

[12] Tyler L Hayes, Kushal Kafle, Robik Shrestha, Manoj Acharya, and Christopher Kanan. Re-
mind your neural network to prevent catastrophic forgetting. In Proceedings of the European
Conference on Computer Vision (ECCV), 2020.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

11



[14] Yue He, Zheyan Shen, and Peng Cui. Towards non-iid image classification: A dataset and
baselines. Pattern Recognition, 110:107383, 2021.

[15] Zhi Hou, Xiaojiang Peng, Yu Qiao, and Dacheng Tao. Visual compositional learning for human-
object interaction detection. In European Conference on Computer Vision, pages 584–600.
Springer, 2020.

[16] Ronghang Hu, Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Kate Saenko. Learning
to reason: End-to-end module networks for visual question answering. In Proceedings of the
IEEE International Conference on Computer Vision (ICCV), Oct 2017.

[17] Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual
reasoning and compositional question answering. Conference on Computer Vision and Pattern
Recognition (CVPR), 2019.

[18] Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni. Compositionality decomposed:
How do neural networks generalise? Journal of Artificial Intelligence Research, 67:757–795,
2020.

[19] Phillip Isola, Joseph J Lim, and Edward H Adelson. Discovering states and transformations
in image collections. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1383–1391, 2015.

[20] Lu Jiang, Di Huang, Mason Liu, and Weilong Yang. Beyond synthetic noise: Deep learning on
controlled noisy labels. In International Conference on Machine Learning, pages 4804–4815.
PMLR, 2020.

[21] Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Li Fei-Fei, C Lawrence Zitnick,
and Ross Girshick. CLEVR: A diagnostic dataset for compositional language and elementary
visual reasoning. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 2901–2910, 2017.

[22] Daniel Keysers, Nathanael Schärli, Nathan Scales, Hylke Buisman, Daniel Furrer, Sergii Kashu-
bin, Nikola Momchev, Danila Sinopalnikov, Lukasz Stafiniak, Tibor Tihon, Dmitry Tsarkov,
Xiao Wang, Marc van Zee, and Olivier Bousquet. Measuring compositional generalization: A
comprehensive method on realistic data. In International Conference on Learning Representa-
tions, 2020.

[23] Najoung Kim and Tal Linzen. COGS: A compositional generalization challenge based on
semantic interpretation. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 9087–9105. Association for Computational
Linguistics, November 2020.

[24] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al.
Overcoming catastrophic forgetting in neural networks. Proceedings of the national academy of
sciences, 114(13):3521–3526, 2017.

[25] Louis Kirsch, Julius Kunze, and David Barber. Modular networks: Learning to decompose
neural computation. Advances in neural information processing systems, 31, 2018.

[26] Brenden Lake and Marco Baroni. Generalization without systematicity: On the compositional
skills of sequence-to-sequence recurrent networks. In International conference on machine
learning, pages 2873–2882. PMLR, 2018.

[27] Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept
learning through probabilistic program induction. Science, 350(6266):1332–1338, 2015.

[28] Soochan Lee, Junsoo Ha, Dongsu Zhang, and Gunhee Kim. A neural dirichlet process mixture
model for task-free continual learning. In International Conference on Learning Representations,
2020.

12



[29] Bo Li, Yifei Shen, Jingkang Yang, Yezhen Wang, Jiawei Ren, Tong Che, Jun Zhang, and Ziwei
Liu. Sparse mixture-of-experts are domain generalizable learners. In The Eleventh International
Conference on Learning Representations, 2023.

[30] Xilai Li, Yingbo Zhou, Tianfu Wu, Richard Socher, and Caiming Xiong. Learn to grow: A
continual structure learning framework for overcoming catastrophic forgetting. In International
Conference on Machine Learning, pages 3925–3934. PMLR, 2019.

[31] Zeqian Li, Michael Mozer, and Jacob Whitehill. Compositional embeddings for multi-label
one-shot learning. In Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV), pages 296–304, January 2021.

[32] Zeqian Li and Jacob Whitehill. Compositional embedding models for speaker identification
and diarization with simultaneous speech from 2+ speakers. In ICASSP 2021-2021 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 7163–
7167. IEEE, 2021.

[33] Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern
analysis and machine intelligence, 40(12):2935–2947, 2017.

[34] Weixin Liang and James Zou. MetaShift: A dataset of datasets for evaluating contextual distri-
bution shifts and training conflicts. In International Conference on Learning Representations,
2022.

[35] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.
Advances in neural information processing systems, 30, 2017.

[36] Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by
iterative pruning. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 7765–7773, 2018.

[37] Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks:
The sequential learning problem. In Psychology of learning and motivation, volume 24, pages
109–165. Elsevier, 1989.

[38] Jorge A Mendez and Eric Eaton. How to reuse and compose knowledge for a lifetime of tasks:
A survey on continual learning and functional composition. arXiv preprint arXiv:2207.07730,
2022.

[39] Richard Montague and Richmond H Thomason. Formal philosophy. selected papers of richard
montague. Erkenntnis, 9(2), 1975.

[40] Tushar Nagarajan and Kristen Grauman. Attributes as operators: Factorizing unseen attribute-
object compositions. In Proceedings of the European Conference on Computer Vision (ECCV),
September 2018.

[41] Oleksiy Ostapenko, Pau Rodriguez, Massimo Caccia, and Laurent Charlin. Continual learning
via local module composition. Advances in Neural Information Processing Systems, 34:30298–
30312, 2021.

[42] Namuk Park and Songkuk Kim. How do vision transformers work? In International Conference
on Learning Representations, 2022.

[43] Jathushan Rajasegaran, Munawar Hayat, Salman H Khan, Fahad Shahbaz Khan, and Ling Shao.
Random path selection for continual learning. Advances in Neural Information Processing
Systems, 32, 2019.

[44] Lukas Schott, Julius Von Kügelgen, Frederik Träuble, Peter Gehler, Chris Russell, Matthias
Bethge, Bernhard Schölkopf, Francesco Locatello, and Wieland Brendel. Visual representation
learning does not generalize strongly within the same domain. In International Conference on
Learning Representations, 2022.

[45] Shuai Shao, Zeming Li, Tianyuan Zhang, Chao Peng, Gang Yu, Xiangyu Zhang, Jing Li, and
Jian Sun. Objects365: A large-scale, high-quality dataset for object detection. In Proceedings
of the IEEE/CVF international conference on computer vision, pages 8430–8439, 2019.

13



[46] Peter Shaw, Ming-Wei Chang, Panupong Pasupat, and Kristina Toutanova. Compositional
generalization and natural language variation: Can a semantic parsing approach handle both?
arXiv preprint arXiv:2010.12725, 2020.

[47] James Seale Smith, Paola Cascante-Bonilla, Assaf Arbelle, Donghyun Kim, Rameswar Panda,
David Cox, Diyi Yang, Zsolt Kira, Rogerio Feris, and Leonid Karlinsky. Construct-vl: Data-free
continual structured vl concepts learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 14994–15004, 2023.

[48] Morgan B Talbot, Rushikesh Zawar, Rohil Badkundri, Mengmi Zhang, and Gabriel Kreiman.
Lifelong compositional feature replays beat image replays in stream learning. arXiv preprint
arXiv:2104.02206, 2021.

[49] Dhruva Tirumala, Hyeonwoo Noh, Alexandre Galashov, Leonard Hasenclever, Arun Ahuja,
Greg Wayne, Razvan Pascanu, Yee Whye Teh, and Nicolas Heess. Exploiting hierarchy for
learning and transfer in kl-regularized rl. arXiv preprint arXiv:1903.07438, 2019.

[50] Tom Veniat, Ludovic Denoyer, and Marc’Aurelio Ranzato. Efficient continual learning with
modular networks and task-driven priors. arXiv preprint arXiv:2012.12631, 2020.

[51] Yabin Wang, Zhiwu Huang, and Xiaopeng Hong. S-prompts learning with pre-trained trans-
formers: An occam’s razor for domain incremental learning. Advances in Neural Information
Processing Systems, 35:5682–5695, 2022.

[52] Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi
Ren, Guolong Su, Vincent Perot, Jennifer Dy, et al. Dualprompt: Complementary prompting for
rehearsal-free continual learning. In European Conference on Computer Vision, pages 631–648.
Springer, 2022.

[53] Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su,
Vincent Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
139–149, 2022.

[54] Olivia Wiles, Sven Gowal, Florian Stimberg, Sylvestre-Alvise Rebuffi, Ira Ktena, Krishna-
murthy Dj Dvijotham, and Ali Taylan Cemgil. A fine-grained analysis on distribution shift. In
International Conference on Learning Representations, 2022.

[55] Keyulu Xu, Mozhi Zhang, Jingling Li, Simon Shaolei Du, Ken-Ichi Kawarabayashi, and Stefanie
Jegelka. How neural networks extrapolate: From feedforward to graph neural networks. In
International Conference on Learning Representations, 2021.

[56] Aron Yu and Kristen Grauman. Fine-grained visual comparisons with local learning. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 192–
199, 2014.

[57] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene
Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev. Spider: A large-scale
human-labeled dataset for complex and cross-domain semantic parsing and text-to-SQL task.
In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,
pages 3911–3921, Brussels, Belgium, October-November 2018. Association for Computational
Linguistics.

[58] Aimen Zerroug, Mohit Vaishnav, Julien Colin, Sebastian Musslick, and Thomas Serre. A
benchmark for compositional visual reasoning. Advances in Neural Information Processing
Systems, 35:29776–29788, 2022.

[59] Mengmi Zhang, Tao Wang, Joo Hwee Lim, Gabriel Kreiman, and Jiashi Feng. Variational
prototype replays for continual learning. arXiv preprint arXiv:1905.09447, 2019.

[60] Xingxuan Zhang, Linjun Zhou, Renzhe Xu, Peng Cui, Zheyan Shen, and Haoxin Liu. Nico++:
Towards better benchmarking for domain generalization. arXiv preprint arXiv:2204.08040,
2022.

14



[61] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep
features for discriminative localization. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2016.

15


	Introduction
	Related Works
	Preliminaries
	Compositional Few-Shot Testing Protocol: CFST
	Proposed Benchmarks
	Experimental Studies
	Experiment Settings
	Results

	Conclusion

