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The supplementary materials of this work consist of:

A. Supplementary video.

B. Dataset details.

C. Implementation details.

D. AdditionalOther analysis of our model.

A Supplementary Video

We include our supplementary video on our project page https://vision.cs.utexas.edu/
projects/egodistill/. In our supplementary video, we have a brief introduction of our work.
More importantly, we show animated videos of Best and Worse reconstructed clips (Figure A2), and
Anticipating scene motion with EgoDistill (Figure 6 in our main paper).

Animated version of these figures better show head motion and video dynamics. We recommend
viewing the supplementary video for better understanding of our method and results.

B Dataset Details.

We use two datasets in our experiments: Ego4D (4) and EPIC-Kitchens-100 (2). In this section we
describe more details about how we create our training and evaluation data.

1. Ego4D (4) contains 3,670 hours of egocentric videos of people performing diverse tasks
(from cooking to farming) across the globe. As action recognition is not part of the
original Ego4D benchmark, we construct this task with annotations from the Hands+Objects
temporal localization benchmark (4). Specifically, for each hand-objects interaction temporal
annotation, we take the video clip between the pre-frame and post-frame of the annotation
as input, and use the annotated verb for this interaction as label.
We include clips with paired IMU and audio, and consider classes with at least 2 labeled
instances, resulting in 94 action categories with 12.1k videos in total. In average, each clip
has 2.2 second duration. Then, we randomly split data from each category into training and
evaluation sets with 70%:30% ratio. Finally, we obtain a 94-class action recognition dataset
with 8.5k training videos and 3.6k evaluation videos.

2. EPIC-Kitchens (2) contains 100 hours of egocentric videos capturing daily activities in
kitchen environments. We use annotations from the action recognition benchmark in our
experiment.
We select videos that have paired IMU and audio data, and split the resulting data by
camera-wearer, ensuring non-overlapping splits following the original benchmark setting.
Specifically, we take videos captured by camera-wearer id starting with P30, P35, P37 as
evaluation videos and use all the remaining videos as training videos. This results in a
62-class action dataset with 29k training videos and 6.2k evaluation videos.
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Ego4D EPIC-Kitchens

uniform 38.46 52.43

random 36.85 48.48
first 38.68 46.40
last 35.46 41.72
center 37.04 44.85

Table A1: Effect of frame selection. We compare the accuracy of using different frame selection
heuristics for EgoDistill when N = 4. We observe that Uniform on average achieves better results.

C Implementation Details.

IMU input processing. For each input clip, IMU input is a 422× 6 matrix (around 2 seconds with
198Hz frequency), representing the accelerometer and gyroscope readings along the xyz axes. We
observe that the raw IMU input has significant drifting and bias issues. This induces inconsistent
correspondence between camera motion and IMU reading across different clips and videos. Therefore,
for IMU reading of each clip, on each dimension we separately subtract raw readings by the mean
values on the corresponding dimension. This operation normalizes IMU readings in each dimension
to have zero average value. In this way, our model can only focus on the temporal motion patterns in
each clip.

Audio input processing. For ListenToLook (3), we process the audio input in the same way
mentioned in the paper. Specifically, we subsample the audio at 16kHZ, and compute STFT using
Hann window size of 400 and hop length of 160. Please refer to (3) for more details.

Model architecture. For the image backbone, we use the ImageNet-pretrained ResNet-18 model. For
the IMU backbone, we use a 5-layer 1D Dilated CNN, as found effective for IMU data processing (1).
We use the same network setting (kernel dimension, dilation gap and channel dimension) as in
prior work (1). The feature fusion model consists of a concatenation operation following two fully-
connected layers with hidden dimension of 1024. Each layer except for the output layer is followed by
a ReLU activation. The output dimension is the same as the teacher video model’s feature dimension
(768 in the case of MotionFormer). When N > 1, we use a one-layer GRU module to aggregate
extracted features for each frame. We use a single-directioal GRU with hidden dimension of 512.

Model training. We train our models in two stages. In the self-supervised IMU feature learning
stage, we train random initialized IMU encoder fM, IMU predictor h and the fusion network Π with
LNCE. Here the image encoder fI is a fixed ImageNet pretrained model. On both datasets, we train
the model for 50 epochs with AdamW and batch size 64. The initial training rate is 1e−4. We decay
the training rate by 0.1 at epoch 30 and epoch 40. In the second video feature distillation stage, we
initialize the model with parameters obtained in the last stage and finetune. On both datasets, we use
AdamW with batch size 64 and initial learning rate 1e−4. On Ego4D, we train for 150 epochs. We
decay the training rate by 0.1 at epoch 90 and epoch 120. On EPIC-Kitchens, we train for 50 epochs.
We decay the training rate by 0.1 at epoch 30 and epoch 40.

D Analysis.

Effect of frame selection. In Section 3.2, we mentioned that we use uniform sampling to obtain
the N frames from each video clip. In this section, we compare the performance of our work under
uniform sampling with other heuristics. Specifically, we compare with random sampling, the first N
frames, the last N frames and the center N frames. We show the results in Table A1 under N = 4.
These results indicate that uniform sampling leads to the best performance on average. Intuitively,
uniform sampling on average leads to a broader coverage of both semantic contexts as well as scene
motion.

Why we set N to be small. In our experiments, we set N to be 1 to 4. Using larger N (e.g.,
8 or 16) with densely sampled frames could lead to better results of all the methods with more
computational cost. Efficient video understanding methods could benefit more as they have better
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Figure A1: Per-class accuracy improvement over VisOnly-Distill. Best and worst performing
classes are shown.

Figure A2: Best (top) and worst (bottom) reconstructed videos.

temporal aggregation mechanisms given densely-sampled frames. However, the core purpose of our
model is to deal with cases where we only use a few number of samples. Therefore, our model is not
comparable to video clip models under dense-frame setting. Furthermore, setting N to be a small
number is very important in many applications. As loading more image frames takes additional time
and memory, applications with streaming videos or low-resource AR/VR devices will benefit from
loading only a few frames.

Where does our model work best/worst? In Figure 3 of our main paper, we saw that using IMU
leads to an overall performance improvement on action recognition, indicating better video feature
prediction capability. In this section, we further Next, we explore what kinds of clips are better
reconstructed using EgoDistill. Figure A1 shows the improvement of EgoDistill over the VisOnly-
Distill model on Ego4D and EPIC-Kitchens split by action class. We observe that IMU is more useful
for actions with predictable head motion (e.g., break, cut, close), and is less helpful for actions where
head motion may be small or unrelated (e.g., empty, fill, press).

Figure A2 shows clip examples whose video features are best and worst reconstructed. We observe
that the best reconstructed clips (top) contain moderate head motion that is predictive of scene
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motion and action semantics. For example, the camera wearer’s head moves slightly backwards while
opening the cabinet. On the other hand, more poorly reconstructed clips tend to contain little head
motion (third row)—in which case IMU is redundant to the RGB frame—or drastic head motion that
is weakly correlated with the camera wearer’s activity and introduces blur to the frame (last row).

References
[1] M. Brossard, S. Bonnabel, and A. Barrau. Denoising imu gyroscopes with deep learning for open-loop

attitude estimation. IEEE Robotics and Automation Letters, 5(3):4796–4803, 2020. 2
[2] Dima Damen, Hazel Doughty, Giovanni Maria Farinella, , Antonino Furnari, Jian Ma, Evangelos Kazakos,

Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, and Michael Wray. Rescaling egocentric
vision: Collection, pipeline and challenges for epic-kitchens-100. International Journal of Computer Vision
(IJCV), 130:33–55, 2022. 1

[3] Ruohan Gao, Tae-Hyun Oh, Kristen Grauman, and Lorenzo Torresani. Listen to look: Action recognition by
previewing audio. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 10457–10467, 2020. 2

[4] Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino Furnari, Rohit Girdhar,
Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, Miguel Martin, Tushar Nagarajan, Ilija Radosavovic,
Santhosh Kumar Ramakrishnan, Fiona Ryan, Jayant Sharma, Michael Wray, Mengmeng Xu, Eric Zhongcong
Xu, Chen Zhao, Siddhant Bansal, Dhruv Batra, Vincent Cartillier, Sean Crane, Tien Do, Morrie Doulaty,
Akshay Erapalli, Christoph Feichtenhofer, Adriano Fragomeni, Qichen Fu, Christian Fuegen, Abrham
Gebreselasie, Cristina Gonzalez, James Hillis, Xuhua Huang, Yifei Huang, Wenqi Jia, Weslie Khoo, Jachym
Kolar, Satwik Kottur, Anurag Kumar, Federico Landini, Chao Li, Yanghao Li, Zhenqiang Li, Karttikeya
Mangalam, Raghava Modhugu, Jonathan Munro, Tullie Murrell, Takumi Nishiyasu, Will Price, Paola Ruiz
Puentes, Merey Ramazanova, Leda Sari, Kiran Somasundaram, Audrey Southerland, Yusuke Sugano, Ruijie
Tao, Minh Vo, Yuchen Wang, Xindi Wu, Takuma Yagi, Yunyi Zhu, Pablo Arbelaez, David Crandall, Dima
Damen, Giovanni Maria Farinella, Bernard Ghanem, Vamsi Krishna Ithapu, C. V. Jawahar, Hanbyul Joo,
Kris Kitani, Haizhou Li, Richard Newcombe, Aude Oliva, Hyun Soo Park, James M. Rehg, Yoichi Sato,
Jianbo Shi, Mike Zheng Shou, Antonio Torralba, Lorenzo Torresani, Mingfei Yan, and Jitendra Malik.
Ego4d: Around the World in 3,000 Hours of Egocentric Video. In IEEE/CVF Computer Vision and Pattern
Recognition (CVPR), 2022. 1

4


	Supplementary Video
	Dataset Details.
	Implementation Details.
	Analysis.

