
Knowledge Distillation for High Dimensional
Search Index

Zepu Lu1,2, Jin Chen3, Defu Lian1,2∗, Zaixi Zhang1,2, Yong Ge4, Enhong Chen1,2

1School of Computer Science and Technology, University of Science and Technology of China
2State Key Laboratory of Cognitive Intelligence, Hefei, Anhui, China

3University of Electronic Science and Technology of China
4University of Arizona

zplu@mail.ustc.edu.cn, chenjin@std.uestc.edu.cn, liandefu@ustc.edu.cn, zaixi@mail.ustc.edu.cn,
yongge@arizona.edu, cheneh@ustc.edu.cn

Abstract

Lightweight compressed indexes are prevalent in Approximate Nearest Neighbor
Search (ANNS) and Maximum Inner Product Search (MIPS) owing to their su-
periority of retrieval efficiency in large-scale datasets. However, results given by
compressed indexes are less accurate due to the curse of dimension and limitation of
optimization objectives (e.g., lacking interactions between queries and documents).
Thus, we are encouraged to design a new learning algorithm for the compressed
search index in high dimensions to improve retrieval performance. In this paper,
we propose a novel Knowledge Distillation for high dimensional search index
framework (KDindex), with the aim of efficiently learning lightweight indexes
by distilling knowledge from high-precision ANNS and MIPS models such as
graph-based indexes. Specifically, the student is guided to keep the same ranking
order of the top-k relevant results yielded by the teacher model, which acts as
the additional supervision signals between queries and documents to learn the
similarities between documents. Furthermore, to avoid the trivial solutions that
all candidates are partitioned to the same post list, the reconstruction loss that
minimizes the compressed error, and the posting list balance strategy that equally
allocates the candidates, are integrated into the learning objective. Experiment re-
sults demonstrate that KDindex outperforms existing learnable quantization-based
indexes and is 40× lighter than the state-of-the-art non-exhaustive methods while
achieving comparable recall quality.

1 Introduction

Vector nearest neighbor search, which retrieves the most relevant vectors with the maximum similarity
given the query vector, is a fundamental task in information retrieval, such as image retrieval [13, 55],
web search [51, 52, 53], and item recommendation [32, 5, 33, 35, 48]. With a significant number of
candidate vectors and vector dimensions, the exact nearest neighbor search becomes intractable due
to the substantial computation costs and high query latency [42], resulting in a growing interest in
Approximate Nearest Neighbors Search (ANNS).

Among the various indexes, the lightweight compressed indexes, especially those based on quantiza-
tion, are notable for their substantial advantages in terms of low storage costs and efficient parallel
processing. As a result, these indexes draw the attention from both academics and industries and
are present in well-known open repositories such as FAISS [26]. Existing learning methods for

∗Corresponding Author

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

quantizers differ in whether there are explicit labels and whether they are related to queries. Tradi-
tional clustering-based methods for learning codebooks, e.g., PQ [24], OPQ [18], and AQ [3], are
categorized as un-supervised algorithms only connected with document embeddings without the
query information. Another type of technique [20] involves training the codebooks by optimizing
the reconstruction-based loss, which relies on correlations with queries and documents but lacks
explicit natural supervision signals. The last category of algorithms employs the query-dependent
ground-truth labels to improve the retrieval performance, such as the existing interactions between
query and candidates in LightRec [34], the ground-truth nearest neighbors in BLISS [21]. These
additionally introduced supervision signals help capture the relationships between items and queries,
thus contributing to better quantizers. However, the interaction label is only available in a small
set of datasets and the expense of obtaining the ground-truth labels is particularly high, making the
scenarios without any label information a more common case.

In this paper, we creatively propose a Knowledge Distillation for high dimensional search index
framework (KDindex for short) to distill knowledge from a more advanced teacher index model into
lightweight indexes, under the circumstances without available label information. The advanced
indexes, such as graph-based indexes, can yield more accurate results owing to their powerful
expressiveness of the vector space and hence becomes able to teach the less-accurate lightweight
indexes. Specifically, the top-k nearest results obtained from the teacher indexes act as the supervision
signals to optimize the compressed functions. Therefore, index distillation is formulated as the top-k
learning for the student index model from the teacher index. Specific ranking-oriented losses are
exploited to learn the knowledge from the teacher model, which guides the results from the student
model to have the same ranking orders as the teacher models. To avoid the trivial solutions, where
the candidate vectors collapse to the identical centroid, we have two learning constraints for the
learning objective. The reconstruction loss minimizes the distance between the original input and
the compressed input, which pushes the centroids by the different query and candidate vectors. The
second strategy is the posting list balance, which encourages an equal distribution of documents
among each centroid. Thus, the candidates would be equally assigned to different centroids to avoid
trivial solutions. Lastly, unlike recent iterative approaches that compulsively modify indexes, our
approach uses a differentiable training process that updates the centroids and indexes simultaneously
per mini-batch. This aims to minimize the error resulting from asynchronous updates. In this way, the
student model would yield better performance thanks to the powerful expressiveness of the neighbor
relationships of the teacher model, while keeping the low inference time and storage cost.

The contribution of this work can be summarized as follows:

• To the best of our knowledge, this is the first attempt to extract knowledge from the high-precision
search index with advanced structures into lightweight indexes in order to improve the retrieval
performance of the lightweight index in high dimensions.

• We propose the index distillation paradigm to learn the top-k nearest neighbors retrieved from
the teacher models, where the top-k retrieved results act as the supervision signals to guide the
learning of centroids, which is label-free and takes the query information into consideration.

• We utilize ranking-oriented objectives as distillation loss with two learning constraints to avoid triv-
ial solutions. Furthermore, we design the differentiable training process to avoid the asynchronous
update of centroids and index assignments.

• Experimental results on four benchmark datasets demonstrate that KDindex achieves a 40x index
compression ratio, and 2x CPU speedup while maintaining comparable retrieval performance as
the state-of-the-art compressed ANNS models.

2 Preliminaries

2.1 Problem Definition

Assume that there are M candidates {ij}Mj=1, such as documents, images, and items, in the retrieval
system with no additional interaction information and the i-th candidate is represented by a D-
dimensional vector di ∈ RD. D usually appears to be huge numbers (larger than 100) in nowadays
retrieval systems. Given a query vector q ∈ RD, the system attempts to return the top-k relevant
candidates depending on the similarity scores S(·, ·) between the query and candidate vectors, such
as the inner product, L2 distance, and cosine distance.

2

Query 𝒒

b. Teacher
Index

Top-K Ranked
documents list

𝒟𝐾
𝑇 = {𝒅𝑟1 , 𝒅𝑟2 , … , 𝒅𝐾}

Quantized
𝑄 𝒅𝒓𝟏

Quantized
𝑄 𝒅𝒓𝟐

Quantized
𝑄 𝒅𝑲

⋯

c. Student Index

Codeword 1

Codeword 2

Codeword 3

Codeword w

Codewords Posting List Balanced

sinkhorn
-knopp

a. Input: {query} Step 1: Derive index assignment of query
and documents via quantizer.

Step 2: Update codewords and posting list by
Reconstruction loss and Distillation loss.

top-K ranked candidates

𝐷𝑖𝑠𝑡𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛 Loss

Figure 1: Illustration of KDindex framework. Given the teacher index built on full-corpus, top-K
ranked documents are returned for each query vector. Then, the query and corresponding documents
are compressed by lightweight indexes (such as PQ, OPQ, and AQ) and are ideally encoded with
similar indexes, which are guided by the ranking-oriented distillation loss. Reconstruction loss and
Sinkhorn-Knopp are used to avoid trivial solutions.

2.2 Lightweight Compressed Indexes

With the increasing number of candidates, Approximate Nearest Neighbors Search (ANNS) and
Maximum Inner Product Search (MIPS) strategies are widely used to accelerate the search speed at
the expense of accuracy, among which lightweight compressed indexes (hashing and quantization)
are widely used because of their strong performance in terms of both effectiveness and efficiency.

The quantization-based indexes, a representative compressed ANNS algorithm, quantize each can-
didate vector into the reconstruction vector from the B codebooks, each of which contains W
vectors (codewords). We denote the b-th codebook as Cb and the w-th codeword in the b-th
codebook as cbw. The Additive Quantization (AQ) encodes the vector as a sum of B codewords,
i.e., d̃ = Q(d) =

∑B
b=1 c

b
wb

, while the Product Quantization (PQ) and Optimized product quan-
tization (OPQ) encode the vector as the concatenation of B codewords of each subspace, i.e.,
d̃ = Q(d) = c1w1

⊕ c2w2
⊕ ... ⊕ cBwB

. The codeword with the minimal distance from the original
vector is chosen, i.e., cbw = argmin

i∈{1,2,...,W}
∥x − cbwi

∥2. Q(·) denotes the quantizer function. The

codewords are usually learned by the unsupervised clustering algorithms or the reconstruction loss,
and the posting lists which record the belonging candidates are then constructed. During the inference
stage, the similarity scores between the query vector and the codewords are calculated and the
approximate nearest candidates are oriented. Consequently, given the well-trained indexes, the overall
inference time complexity is only correlated with the number of codewords and codebooks.

Learning to hash is also an effective method to compress high-dimensional data into low-dimensional
binarized codes, similar to those clustering-based conventional quantization methods. Learning to
hash approaches have the property that objects that are close to each other have a higher probability
of colliding than objects that are far apart across various distance metrics. The drawbacks of these
approaches are the requirement for a large number of hash tables in order to achieve good search
quality and these methods are unmindful of the distribution of vectors, often leading to lop-sided
partitions and long query times. Thus, we focus more on the quantization-based compressed methods.

3 Index Distillation

Despite the efficiency advantages of lightweight quantization-based indexes, they are still limited
by the representation space of codewords. Existing works introduce additional ground-truth labels
to supervise the learning. For example, LightRec [34] exploits the interaction information between
the certain query and document, and BLISS [21] takes the ground-truth neighbors over candidates
to enhance the discrimination probability. These extra signals benefit better capturing the query-
dependent similarity relationships between candidates. However, in more circumstances, there are
no ground-truth labels considering the high expense to obtain them. Thus, we focus on scenarios
without label information and aim to enhance the performance of lightweight indexes.

3

Several existing works introduce the knowledge of query to adjust the choice of the centroids [20] or to
randomly sample neighbors to learn the centroids. These works provide less relevant candidates, thus
resulting in less accurate inference results. Intuitively, if we use more progressive index structures,
such as graph-based methods, to encode the similarity information over the whole vector space, more
accurate results would be obtained. This motivates the progressive indexes as the teacher to distill
more informative high-dimensional knowledge to the lightweight quantization-based indexes, with
the goal of improving the accuracy of lightweight indexes under high dimensions.

3.1 Overview of Index Distillation

The whole framework, i.e., Knowledge Distillation for high dimensional search index (KDindex),
consists of a high-precision teacher search model, which is well-learned, and a lightweight student
search model to be learned, where the student model attempts to learn knowledge from the top-k
relevant candidates retrieved from the teacher model. Specifically, given the well-trained candidate
vectors, when a query vector q requests, the teacher search model returns the set of the top-k
approximate nearest neighbors DT

K = {i|rank(i|q) ≤ K}. These candidates then behave as weak
signals to supervise the learning of codewords in the student models, where the student indexes
are guided to learn the same ranking orders and finally to return the similar indexes for the given
query and candidate. Figure 1 visualizes the whole training process of KDindex, with the three key
components: Distillation Loss, two Learning Constraints, and a Differentiable Training paradigm
which are detailed in the following sections. The whole training process is illustrated in Algorithm 2.

3.2 Initialization

The initialization of the student search model involves the following steps: (1) Initialize the centroids
(codewords) and assign indexes (2) Update the centroids based on the distillation loss and reconstruc-
tion loss given the training queries (3) Adjust the posting lists depending on the latest centroids. A
straightforward process is to update the posting lists per T epochs after centroids updating is finished
by enumerating all training queries, similar to the paradigm of BLISS [21].

3.3 Distillation Loss

Knowledge distillation was first proposed for classification tasks [22], where the probabilities of
each class attained from the large-scale teacher network are considered as soft labels to supervise
the learning of the small-size student network. The cross-entropy loss is commonly used as the
distillation loss to minimize the difference between the teacher and student networks. Here, the
teacher search model provides the top-k relevant candidates rather than the continuous value of
probabilities. We exploit the following Distributed-based loss as the distillation loss to guide the
student indexes to return the same nearest results. This objective function follows as:

L(q,DT
K ;C) = −

∑
i∈DT

K

B∑
b=1

W∑
k=1

p̃qbk log(p̃
di

bk · wi) (1)

where B denotes the number of codebooks and W is the number of codewords in each codebook.
wi =

1
rank(i) corresponds to the top-k list given from the teacher model. pqbk denotes the similarity

score between the query q and the codeword cbk, i.e., pqbk = S(q, cbk), and pdi

bk denotes the similarity
score between the candidate di and the codeword cbk, i.e., pdi

bk = S(di, c
b
k). The normalized value

p̃qbk and p̃di

bk are calculated over the W codewords for each codebook through the softmax function.

This loss attempts to minimize the distance between the queries and top-k neighbors by calculating
the similarity scores with all the centroids. Thus, we could obtain more information from centroids
and focus on the top-K nearest neighbors.

3.4 Learning Constraints

Although the distillation loss supervises the learning of quantizers, the student model would collapse
with a trivial solution where all candidates are assigned to the identical centroid. To avoid trivial
solutions, we propose two strategies and we will introduce them one by one.

4

Reconstruction Loss. A straightforward solution is to design the reconstruction loss to draw the
distance between the input vector and the reconstructed vector encoded through the quantized function.
Specifically, MSE loss is adopted here to specialize the reconstruction loss for the both query and
candidate vectors:

Lreconstruction(x;C) =
1

D
∥x−Q(x)∥2 (2)

where x ∈ RD represents the original input vector such as the query vector q and the candidate
vector d. Q denotes the quantized function to reconstruct the input vector and the corresponding
codewords would be updated through the loss.

Balanced Posting List. The posting list refers to the candidate list according to the certain centroids.
The trivial solutions would result in an imbalanced posting list, where some posting lists would be
substantially longer than others and thus resulting linear complexity in the worst case. Thus, we
impose a balanced clustering constraint to guide the candidate vectors to be equally assigned to all
quantization centroid embeddings. Here, we take one codebook as an example to formulate the
learning objective with the constraint:

min
C

M∑
i=1

W∑
k=1

q(k|di)∥cw − di∥2

subject to q(k|di) ∈ {0, 1},
W∑
k=1

q(k|di) = 1,

M∑
i=1

q(k|di) =
M

W

(3)

where q(k|di) denotes the binary value indicating whether the candidate vector is quantized to the
k-th centroid and the second condition ensures that only one centroid is selected. The last condition
guides each centroid to be allocated an equal number of candidates to achieve a balanced posting list.
Thus, the indexes for different candidates would be varied to avoid the trivial solution.

To solve Eq (3), we relax the binary constraint q(k|di) to the continuous probability, i.e., q(k|di) ∈
(0, 1), to get the approximated solution. The problem then can be reduced to the optimal transport
problem by taking the distance as the cost of quantization and we use the Sinkhorn-Knopp algo-
rithm [10] to solve it. Algorithm 1 details the balance strategy to uniformly allocate the candidates.

Algorithm 1: Posting List Balance

Input: Document Vectors {di}Mi=1, Codebook C = {ck}Wk=1

Output: Posting Lists {Pk}Wk=1
1 Initialize the posting lists with empty sets ;
2 Generate the probability matrix P ∈ RM×W with the normalized similarity scores over the

codewords pik = expS(di,ck)∑W
k′=1

expS(di,ck′)
;

3 Get the transferred probability matrix P s ∈ RM×W by inputting P into Sinkhorn-Knopp;
4 for i ∈ {1, ...,M} do
5 Determine the index according to the transferred probability, i.e.,

t = argmax(psi1, p
s
i2, ..., p

s
iW) ;

6 Add i into the corresponding posting list Pt = Pt ∪ {i};
7 end

3.5 Differentiable Training

The re-assignment of the indexes, including “argmin” operation, avoids the consecutive computation
and thus interrupts the backward of the gradient, resulting in the iterative training with the two
separate steps. However, the update of the index is later than the update of embedding, resulting
in a large deviation in the quantized vector and inaccuracy of the retrieval performance. To keep
the index assignment up-to-date during each training batch, we attempt to design a differentiable
training manner for continuous computation. The Gumbel-Softmax Trick [23] is a common and
popular solution, motivated by which we adopt a similar sample operation to copy the gradient
into the one-hot embeddings. Surprisingly, the probabilities of each centroid are calculated in the

5

aforementioned balanced posting list and can be regarded as the weight of the centroids for updating,
as shown in Line 9-11 of Algorithm 2.

The whole training process is illustrated in Algorithm 2, which can be computed in parallel for each
mini-batch. Accordingly, the learning of centroids and the index re-assignment are updated within
the same mini-batch, rather than the asynchronous epochs.

Algorithm 2: KDindex with Differentiable Training

Input: Training Queries Q = {qm}Nm=1, Document Vectors Document Vectors {di}Mi=1,
Teacher Search Model T

Output: Student Search Model including Codebooks and Index assignment
1 Initialize the codebooks C;
2 while not reaching convergence conditions do
3 Get the quantized vector for the query Q(q);
4 Sample a mini-batch queries QB from Q;
5 Assign indexes according to Algorithm 1;
6 for q ∈ QB do
7 Retrieve the top-K nearest neighbors DT

K from the teacher search model T ;
8 for i ∈ DT

K do
9 Get the one hot embedding of the index, i.e.,

ei = One_Hot(t), t = argmax(psi1, p
s
i2, ..., p

s
iW);

10 Copy the corresponding probability pi = [pi1, pi2, ..., piW] ;
11 Update the one hot encoding with gradient, i.e., ẽi = (ei − pi).detach() + pi ;
12 Get the quantized vector Q(di) ≈ ẽi ·C ;
13 end
14 Update the codebook C depending on the distillation loss Eq (6) and the

reconstruction loss Eq (2);
15 end
16 end

3.6 Complexity Analysis

The training ways of KDindex and basic Qutization methods (AQ, PQ and OPQ) are different,
therefore the complexity is different in the training phase. The indexing and inference way of
KDindex and Qutization methods are consistent and there is no additional time complexity in the
index and inference stages. More details are described in Table 1.

Table 1: The time complexity of KDindex, HNSW, and ScaNN. Denoted by D item embedding
dimension, B the number of subspaces, W the number of centroids in each codebook, M the batch
size (the number of queries in each batch), and K the number of neighbors. N is the number of items.
As for ScaNN, Kv denotes the number of centroids in VQ (vector quantization) and Kp in PQ (
Product Quantization).

Methods Initialization Training Indexing
KDindex (PQ) O(MWD) O(MWD +MBW +MBWK) O(NWD)

KDindex (OPQ) O(MWD2) O(MWD2 +MBW +MBWK) O(NBW ((D/B) +D2))
KDindex (AQ) O(MBWD) O(MBWD +MBW +MBWK) O(NBWD)

HNSW N/A N/A O(ND logN)
ScaNN N/A O(MWD +MBW +MBWK) O(N(BKp(D/B) +KvD))

4 Experiment

4.1 Experiment Setup

Datasets and Metrics. Four large-scale retrieval benchmarks, including SIFT1M, GIST1M from
ANN datasets [2], MS MARCO Doc and MS MARCO Passage from the TREC 2019 Deep Learning

6

Table 2: Comparison with Quantization-based methods. The improvement over the strongest baseline
is statistically significant on a paired t-test (p < 0.05).

Model SIFT1M GIST1M MS MARCO Doc MS MARCO Passage
Recall@10 Recall@10 Recall@10 Recall@10

PQ [24] 31.27±0.12 5.04±0.14 2.85±0.32 1.80±0.08
OPQ [18] 33.85±0.14 15.99±0.17 14.63±0.25 9.13±0.53
AQ [3] 35.48±0.34 19.32±0.19 16.73±0.57 10.18±0.69
DiffPQ [6] 29.01±0.24 4.43±0.29 4.17±0.26 2.53±0.06
DeepPQ [17] 25.02±0.50 4.39±0.18 6.47±0.33 8.43±0.72
GCD [25] 33.58±0.63 15.76±0.13 15.59±0.27 10.28±0.46
RepCONC [53] 33.59±0.32 15.32±0.46 16.07±0.31 10.37±0.37
PQVAE [49] 30.39±0.65 6.09±0.33 12.43±0.25 8.26±0.21
KDindex (PQ) 32.53±0.34 9.43±0.15 8.74±0.32 4.32±0.53
KDindex (OPQ) 34.77±0.47 17.32±0.17 16.70±0.28 10.66±0.69
KDindex (AQ) 37.30±0.17 21.33±0.23 18.93±0.76 11.19±0.26

NDCG@10 NDCG@10 MRR@10 MRR@10

PQ 73.21±0.17 19.84±0.75 3.82±0.19 2.84±0.35
OPQ 75.76±0.09 49.10±0.74 34.75±0.14 29.06±0.49
AQ 77.82±0.42 60.33±0.63 38.52±1.02 33.52±0.58
DiffPQ 70.53±0.16 17.39±0.64 10.43±0.39 3.69±0.12
DeepPQ 65.80±0.75 16.60±0.71 14.90±0.18 28.33±0.73
GCD 75.49±0.23 48.82±0.58 38.89±0.29 34.01±0.62
RepCONC 75.47±0.52 47.69±0.79 39.03±0.73 34.27±0.59
PQVAE 69.84±0.27 23.48±0.42 34.47±0.92 27.91±0.74
KDindex (PQ) 73.90±0.59 30.62±0.58 17.64±0.13 6.42±0.59
KDindex (OPQ) 76.32±0.63 52.36±0.49 39.75±0.25 34.62±0.47
KDindex (AQ) 80.01±0.37 63.17±0.62 41.69±0.34 35.23±0.38

Track [9], are used to validate the effectiveness of the proposed KDindex. SIFT1M and GIST1M both
have exactly 1 Million database points, and the dimension is 128 and 960, respectively. Document
Retrieval consists of 3.2M documents, 0.36M training queries, and 5K development queries. Passage
Retrieval has a corpus of 8.8M passages, 0.8M training queries, and 0.1M development queries. All
the datasets offer the set of training queries and testing queries. The detailed specifications of the
datasets are shown in Table 6. The search model returns the top-K retrieval results given the test
query and thus we use ranking-based metrics to evaluate the performance, including Recall, NDCG
and MRR with a cutoff of 10.

Implementation Details. SIFT1M and GIST1M datasets contain the candidate vectors with the
dimension of 128 and 960 respectively. The vectors for MS MARCO Doc and MS MARCO Passage
are generated based on huggingface transformers [47] and the dimension is set to 768 following
previous works [14]. The similarity function S for SIFT1M and GIST1M is the Euclidean distance
and for MS MARCO Doc and Passage is the inner product. We exploit a well-trained HNSW [37]
model as the teacher model and K = 10 nearest neighbors are retrieved accordingly. We adopt PQ,
OPQ, and AQ as the student model for KDindex. For a fair comparison, we run current supervised
methods with optimized objectives proposed in KDindex instead of interaction information-based
loss function. Each vector is quantized by B = 8 codebooks, each of which contains W = 256
codewords by default. The centroids are trained with a learning rate of 0.01 and optimized by the
Adam [28] optimizer. The batch size is set to 64.

4.2 Overall performance

We first compare the retrieval performance within the same retrieval time to verify the effectiveness
of KDindex. Experiments are run 5 times to conduct the t-test and the performance of the retrieval is
illustrated in Table 2, from which we have the following findings:

KDindex respectively improves the retrieval performance of three native student models, demonstrat-
ing the general effectiveness of KDindex. KDindex has a relative 10.49% and 9.65% improvement in

7

Figure 2: Curves for recall during training warmed up by initialization.

Recall@10 over all datasets compared with the native OPQ and AQ, respectively. This demonstrates
that KDindex receives the supervision signals of the top-k retrieved results and thus more neighbour
relationships are distilled for the student, resulting in better performance of item recall.

KDindex shows better performance than learnable quantization-based indexes with no ground-truth
labels. By choosing appropriate quantization-based indexes, KDindex would outperform all baseline
methods, especially the learnable indexes DeepPQ, demonstrating the advantage of the proposed
KDindex. The introduction of distillation loss has an edge over capturing the relationships between
candidates, where the top-k retrieved candidates provide stronger signals for learning.

The improvement of KDindex is more significant when the distribution between query space and
database space is different. KDindex obtains more improvements on MS MARCO Doc and MS
MARCO Passage datasets which search documents by the inner product. The similarity could not
be obtained by original quantization methods. Experiments have proved that KDindex could indeed
learn the neighbor relationship between query vectors and candidates by the distillation loss function.

4.3 Performance of Differentiable Training

It is extremely difficult for the model to learn the codebooks as well as the index at the same time
during the initialization phase in a differentiable training manner. Thus, we perform experiments by
warming up the codebooks by Initialization and we get the following results in terms of Recall@10
on four datasets as Fig. 2. We adopt the early stop strategy to get the best model.

Initialization. We obtain the pre-trained codebooks by iterative training manners and continue differ-
entiable training when the index assignment is approaching being balanced (max|Pi| −min|Pj | <
N
W , i, j ∈ W) where |Pi| denotes the length of the i-th posting list. To accelerate the iterative training,
codebooks are warmed by original quantization methods such as PQ, OPQ, and AQ.

Findings. KDindex converges to a better solution through the differential training manner. Within
the dozens of epochs, the index assignment of iterative training becomes balanced, which warms
up the centroids for later easier learning and thus relatively reduces the learning difficulty for both
codebooks and indexes. Starting from this point, KDindex with differentiable training consecutively
outperforms that with iterative training, which achieves a relative improvement of 1.63% in terms of
Recall@10 on both datasets, demonstrating the effectiveness of synchronizing updates for codebooks
and indexes. As for the different quantization functions, the improvements of Recall@10 among
different student models (PQ, OPQ, and AQ) are 1.49%, 1.46%, and 1.94%, respectively. The better
performance of KDindex(AQ) may be attributed to its better expressiveness with more parameters.
Finally, the improvement of Recall@10 on MS MARCO Doc by KDindex(PQ) is 0.40%, which
is smaller than the other model since the express ability of PQ is limited. The improvement of
Recall@10 on SIFT1M by KDindex(AQ) is 0.39% since the express ability of AQ is strong on the
L2 distance dataset and no more improvements can be obtained easily.

4.4 Memory Efficiency

8

Table 3: Memory (GB) of Indexes on different ANNS methods.
Compression Ratio denotes the ratio between the memory of the
non-exhaustive method (HNSW) and KDindex.

Index(GB) SIFT1M GIST1M MS MARCO
Doc

MS MARCO
Passage

HNSW 0.51200 3.84000 9.19480 25.2967
KDindex 0.07036 0.06064 0.19962 0.53507

Compress Ratio 7x 63x 46x 46x

As shown in Table 3, KDindex is
more memory-efficient than the
non-exhaustive ANNS method,
HNSW, while performing com-
parable effectiveness. The in-
dex size of KDindex is less
than 0.6GB, while HNSW re-
quires storing all the original
vectors and the graphs and con-
sumes 0.5GB, 3.8GB, 9.2GB,
and 25.3GB on four datasets respectively for storing indexes. The average Compression Ratio
between the memory of the non-exhaustive method (HNSW) and KDindex on four datasets ap-
proximates 40x, demonstrating the superiority of the low memory cost of KDindex owing to the
lightweight structure.

4.5 Hyperparameter Analysis

In this section, we analyze the effects of hyperparameters, including the number of nearest neighbors
retrieved from the teacher model K, the number of codebooks B, and the number of codewords in
each codebook W .

Figure 3: Heat-maps of performance for various B and W
values on SIFT1M. The first line is the results of the origi-
nal Quantization methods on Recall@10. The second line
is KDindex based on corresponding quantization methods.
Darker is better.

Effects of B and W Figure 3 shows
the effects of B and W , where B
varies in {4, 8, 16, 32} and W in
{64, 128, 256, 512}. We conduct ex-
periments on SIFT1M and compare
the results of KDindex with different
quantization methods.

Firstly, we see that, in terms of task
performance, decreasing W has a far
more traumatizing impact on KDin-
dex. This is due to the nearest neigh-
bor estimate losing accuracy when the
number of codewords in each code-
book drops.

Secondly, increasing B or W would
typically improve the task perfor-
mance at the expense of lower effi-
ciency and more storage cost, which
means one can adjust B and W in
the meantime to obtain a trade-off be-
tween effectiveness and efficiency.

Thirdly, we notice that the small W
and large B combination is preferable
to the opposite way around. For instance, among the three quantization methods with KDindex, (B =
32; W = 64) performs better than (B = 4; W = 512) on the SIFT1M.

Table 4: The results under the different number of nearest
neighbors K in distillation loss on MS MARCO Doc.

K=5 K=10 K=20 K=50 K=100

Recall@10 18.32 18.93 17.56 17.18 16.43
MRR@10 41.32 41.69 40.33 39.44 39.03

Effects of K The relevant results
come from the teacher model di-
rectly influence the distribution be-
tween the teacher and student and
thus play a vital role in distilla-
tion loss. We vary the number
of the nearest neighbors among
{5, 10, 20, 50, 100} and report the
results in Table 4.

The model performs best when the number of neighbors is equal to 10, which is consistent with the
cutoff. When the number of neighbors increases, leading to more data points are trained, the effects

9

degrade instead, which is contrary to the intuition that more candidates get better. The reason may lie
in that the lower-ranked items have lower relevance with lower confidence and may bring more noise
in training compared with the high-ranked items.

4.6 Ablation Study

KDindex includes three strategies, i.e., distillation loss, balance strategy, and differentiable training.
We conduct an ablation study by incrementally adding the strategies to the basic quantization methods
(PQ, OPQ, and AQ) to investigate their contributions. Specifically, we use the following model
variants: (1) Quantization [24, 18, 3]: They are general quantization methods that serve as the
backbone of the student model in KDindex. (2) Initialization is warmed up by quantization methods.
It updates index assignments and centroids iteratively. is warmed up by quantization methods. It
updates index assignments and centroids iteratively. (Details can be found in Section 4.4. We
obtain the pre-trained codebooks by iterative training manners.) (3) w/o Distillation loss denotes
the training without knowledge distilled from the teacher model (HNSW in the experiment). It
optimizes the centroids and trains the encoder under the constraint of reconstruction loss and balance
strategy. (4) w/o Balance strategy denotes methods that without Sinkhorn-Knopp balance strategy.
The reconstruction loss is so necessary to avoid a trivial solution that could not be removed. (5)
KDindex denotes methods that differentially train models with Reconstruction loss, Distillation loss,
and Balance strategy.

Table 5: Ablation study on MSMARCO Doc dataset.
Model variants Quantization Initialization w/o Distillation loss w/o Balance strategy KDindex

PQ Recall@10 2.85 6.32 6.69 8.62 8.74
MRR@10 3.82 14.33 15.27 17.01 17.64

OPQ Recall@10 14.63 15.87 15.93 16.25 16.70
MRR@10 34.75 38.96 39.01 39.22 39.75

AQ Recall@10 16.73 17.39 17.60 18.26 18.93
MRR@10 38.52 36.52 37.02 40.39 41.69

We conduct experiments on the MS MARCO Doc dataset with the same settings as mentioned above
and report MRR@10 and Recall@10. Results are shown in Tab. 5. We can see that all three strategies
contribute to the effectiveness of KDindex. With the help of the distillation loss, Recall@10 and
MRR@10 achieve 14.34% and 10.01% relative improvements respectively. This indicates that the
knowledge distilled based on the ranking list retrieved from the teacher model contributes to the
learning of the centroids in the student model. Furthermore, the posting list balance strategy leads
to a relative 2.61% and 2.76% improvement on Recall@10 and MRR@10, demonstrating that the
avoidance of trivial solutions by controlling the length of the posting list is beneficial to building
more appropriate centroids.

5 Conclusion

This paper presents KDindex, a novel framework for learning compressed indexes in high dimensions,
which distills knowledge of the top-k relevant documents from the teacher index into the lightweight
indexes to improve the retrieval accuracy for the student search model. To guide the student model to
learn the same ranking list, rank-oriented distillation losses are designed and the posting list balance
strategy is proposed to avoid the trivial solutions implemented with the Sinkhorn-Knopp algorithm.
The learning of the student search model consists of the centroids embedding learning and the index
assignment is exploited to realize the end-to-end differentiable learning. We conduct experiments
on four publicly available benchmarks, where KDindex achieves impressive performance. Even if
KDindex utilizes the approximated nearest neighbors and compresses the index by 40x, it outperforms
some competitive models regarding ground truth generated by bruce-force as labels and gains better
ranking performance than the state-of-the-art one.

Acknowledgments and Disclosure of Funding

The work was supported by grants from the National Natural Science Foundation of China
(No.62022077 and 61976198).

10

References

[1] Martin Aumüller, Erik Bernhardsson, and Alexander Faithfull. Ann-benchmarks: A benchmark-
ing tool for approximate nearest neighbor algorithms. In Similarity Search and Applications:
10th International Conference, SISAP 2017, Munich, Germany, October 4-6, 2017, Proceedings
10, pages 34–49. Springer, 2017.

[2] Martin Aumüller, Erik Bernhardsson, and Alexander Faithfull. Ann-benchmarks: A bench-
marking tool for approximate nearest neighbor algorithms. Information Systems, 87:101374,
2020.

[3] Artem Babenko and Victor Lempitsky. Additive quantization for extreme vector compression.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
931–938, 2014.

[4] Christopher Burges, Robert Ragno, and Quoc Le. Learning to rank with nonsmooth cost
functions. Advances in neural information processing systems, 19, 2006.

[5] Jin Chen, Defu Lian, Binbin Jin, Xu Huang, Kai Zheng, and Enhong Chen. Fast variational
autoencoder with inverted multi-index for collaborative filtering. In Proceedings of the ACM
Web Conference 2022, pages 1944–1954, 2022.

[6] Ting Chen, Lala Li, and Yizhou Sun. Differentiable product quantization for end-to-end
embedding compression. In International Conference on Machine Learning, pages 1617–1626.
PMLR, 2020.

[7] Ting Chen, Martin Renqiang Min, and Yizhou Sun. Learning k-way d-dimensional discrete
codes for compact embedding representations. In International Conference on Machine Learn-
ing, pages 854–863. PMLR, 2018.

[8] Yuntao Chen, Naiyan Wang, and Zhaoxiang Zhang. Darkrank: Accelerating deep metric
learning via cross sample similarities transfer. In Proceedings of the AAAI conference on
artificial intelligence, volume 32, 2018.

[9] Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, and Ellen M Voorhees. Overview
of the trec 2019 deep learning track. arXiv preprint arXiv:2003.07820, 2020.

[10] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in
neural information processing systems, 26, 2013.

[11] Xinyan Dai, Xiao Yan, Kelvin KW Ng, Jiu Liu, and James Cheng. Norm-explicit quantization:
Improving vector quantization for maximum inner product search. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pages 51–58, 2020.

[12] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. Locality-sensitive hashing
scheme based on p-stable distributions. In Proceedings of the twentieth annual symposium on
Computational geometry, pages 253–262, 2004.

[13] Ritendra Datta, Dhiraj Joshi, Jia Li, and James Z Wang. Image retrieval: Ideas, influences, and
trends of the new age. ACM Computing Surveys (Csur), 40(2):1–60, 2008.

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[15] Chao Feng, Wuchao Li, Defu Lian, Zheng Liu, and Enhong Chen. Recommender forest for
efficient retrieval. Advances in Neural Information Processing Systems, 35:38912–38924, 2022.

[16] Chao Feng, Defu Lian, Xiting Wang, Zheng Liu, Xing Xie, and Enhong Chen. Reinforcement
routing on proximity graph for efficient recommendation. ACM Transactions on Information
Systems, 41(1):1–27, 2023.

[17] Lianli Gao, Xiaosu Zhu, Jingkuan Song, Zhou Zhao, and Heng Tao Shen. Beyond product quan-
tization: Deep progressive quantization for image retrieval. arXiv preprint arXiv:1906.06698,
2019.

[18] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. Optimized product quantization. IEEE
transactions on pattern analysis and machine intelligence, 36(4):744–755, 2013.

[19] Ruiqi Guo, Sanjiv Kumar, Krzysztof Choromanski, and David Simcha. Quantization based fast
inner product search. In Artificial intelligence and statistics, pages 482–490. PMLR, 2016.

11

[20] Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern, and Sanjiv
Kumar. Accelerating large-scale inference with anisotropic vector quantization. In International
Conference on Machine Learning, pages 3887–3896. PMLR, 2020.

[21] Gaurav Gupta, Tharun Medini, Anshumali Shrivastava, and Alexander J Smola. Bliss: A billion
scale index using iterative re-partitioning. In Proceedings of the 28th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, pages 486–495, 2022.

[22] Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2(7), 2015.

[23] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax.
arXiv preprint arXiv:1611.01144, 2016.

[24] Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor
search. IEEE transactions on pattern analysis and machine intelligence, 33(1):117–128, 2010.

[25] Yunjiang Jiang, Han Zhang, Yiming Qiu, Yun Xiao, Bo Long, and Wen-Yun Yang. Givens
coordinate descent methods for rotation matrix learning in trainable embedding indexes. arXiv
preprint arXiv:2203.05082, 2022.

[26] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with GPUs.
IEEE Transactions on Big Data, 7(3):535–547, 2019.

[27] SeongKu Kang, Junyoung Hwang, Wonbin Kweon, and Hwanjo Yu. De-rrd: A knowledge
distillation framework for recommender system. In Proceedings of the 29th ACM International
Conference on Information & Knowledge Management, pages 605–614, 2020.

[28] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[29] Jon Kleinberg. The small-world phenomenon: An algorithmic perspective. In Proceedings of
the thirty-second annual ACM symposium on Theory of computing, pages 163–170, 2000.

[30] Jae-woong Lee, Minjin Choi, Jongwuk Lee, and Hyunjung Shim. Collaborative distillation for
top-n recommendation. In 2019 IEEE International Conference on Data Mining (ICDM), pages
369–378. IEEE, 2019.

[31] Wen Li, Ying Zhang, Yifang Sun, Wei Wang, Mingjie Li, Wenjie Zhang, and Xuemin Lin.
Approximate nearest neighbor search on high dimensional data—experiments, analyses, and
improvement. IEEE Transactions on Knowledge and Data Engineering, 32(8):1475–1488,
2019.

[32] Defu Lian, Yong Ge, Fuzheng Zhang, Nicholas Jing Yuan, Xing Xie, Tao Zhou, and Yong Rui.
Content-aware collaborative filtering for location recommendation based on human mobility
data. In 2015 IEEE international conference on data mining, pages 261–270. IEEE, 2015.

[33] Defu Lian, Qi Liu, and Enhong Chen. Personalized ranking with importance sampling. In
Proceedings of The Web Conference 2020, pages 1093–1103, 2020.

[34] Defu Lian, Haoyu Wang, Zheng Liu, Jianxun Lian, Enhong Chen, and Xing Xie. Lightrec: A
memory and search-efficient recommender system. In Proceedings of The Web Conference
2020, pages 695–705, 2020.

[35] Defu Lian, Yongji Wu, Yong Ge, Xing Xie, and Enhong Chen. Geography-aware sequential
location recommendation. In Proceedings of the 26th ACM SIGKDD international conference
on knowledge discovery & data mining, pages 2009–2019, 2020.

[36] Jie Liu, Xiao Yan, Xinyan Dai, Zhirong Li, James Cheng, and Ming-Chang Yang. Understanding
and improving proximity graph based maximum inner product search. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 34, pages 139–146, 2020.

[37] Yu A Malkov and Dmitry A Yashunin. Efficient and robust approximate nearest neighbor search
using hierarchical navigable small world graphs. IEEE transactions on pattern analysis and
machine intelligence, 42(4):824–836, 2018.

[38] Stanislav Morozov and Artem Babenko. Non-metric similarity graphs for maximum inner
product search. Advances in Neural Information Processing Systems, 31, 2018.

[39] Marius Muja and David G Lowe. Scalable nearest neighbor algorithms for high dimensional
data. IEEE transactions on pattern analysis and machine intelligence, 36(11):2227–2240, 2014.

12

[40] Behnam Neyshabur and Nathan Srebro. On symmetric and asymmetric lshs for inner product
search. In International Conference on Machine Learning, pages 1926–1934. PMLR, 2015.

[41] Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang Ren, Wayne Xin Zhao, Daxiang Dong,
Hua Wu, and Haifeng Wang. Rocketqa: An optimized training approach to dense passage
retrieval for open-domain question answering. In Proceedings of the 2021 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pages 5835–5847, 2021.

[42] Hanan Samet. Foundations of multidimensional and metric data structures. Morgan Kaufmann,
2006.

[43] Anshumali Shrivastava and Ping Li. Asymmetric lsh (alsh) for sublinear time maximum inner
product search (mips). Advances in neural information processing systems, 27, 2014.

[44] Jiaxi Tang and Ke Wang. Ranking distillation: Learning compact ranking models with high
performance for recommender system. In Proceedings of the 24th ACM SIGKDD international
conference on knowledge discovery & data mining, pages 2289–2298, 2018.

[45] Haoyu Wang, Defu Lian, and Yong Ge. Binarized collaborative filtering with distilling graph
convolutional networks. arXiv preprint arXiv:1906.01829, 2019.

[46] Jun Wang, Wei Liu, Sanjiv Kumar, and Shih-Fu Chang. Learning to hash for indexing big
data—a survey. Proceedings of the IEEE, 104(1):34–57, 2015.

[47] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer,
Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain
Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-
art natural language processing. In Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing: System Demonstrations, pages 38–45, Online, October 2020.
Association for Computational Linguistics.

[48] Chenwang Wu, Defu Lian, Yong Ge, Zhihao Zhu, and Enhong Chen. Influence-driven data
poisoning for robust recommender systems. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2023.

[49] Hanwei Wu and Markus Flierl. Learning product codebooks using vector-quantized autoen-
coders for image retrieval. In 2019 IEEE Global Conference on Signal and Information
Processing (GlobalSIP), pages 1–5. IEEE, 2019.

[50] Xiang Wu, Ruiqi Guo, Ananda Theertha Suresh, Sanjiv Kumar, Daniel N Holtmann-Rice, David
Simcha, and Felix Yu. Multiscale quantization for fast similarity search. Advances in neural
information processing systems, 30, 2017.

[51] Shitao Xiao, Zheng Liu, Weihao Han, Jianjin Zhang, Defu Lian, Yeyun Gong, Qi Chen, Fan
Yang, Hao Sun, Yingxia Shao, et al. Distill-vq: Learning retrieval oriented vector quantization
by distilling knowledge from dense embeddings. In Proceedings of the 45th International ACM
SIGIR Conference on Research and Development in Information Retrieval, pages 1513–1523,
2022.

[52] Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, and Shaoping Ma. Jointly
optimizing query encoder and product quantization to improve retrieval performance. In Pro-
ceedings of the 30th ACM International Conference on Information & Knowledge Management,
pages 2487–2496, 2021.

[53] Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, and Shaoping Ma. Learning
discrete representations via constrained clustering for effective and efficient dense retrieval. In
Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining,
pages 1328–1336, 2022.

[54] Ting Zhang, Chao Du, and Jingdong Wang. Composite quantization for approximate nearest
neighbor search. In International Conference on Machine Learning, pages 838–846. PMLR,
2014.

[55] Zaixi Zhang and Qi Liu. Learning subpocket prototypes for generalizable structure-based drug
design. In Proceedings of the 40th International Conference on Machine Learning, ICML’23,
2023.

13

A Related Work

A.1 ANNs and MIPS

ANNS achieves highly efficient vector search by allowing a small number of errors. Generally,
there are two kinds of ANNS algorithms: non-exhaustive ANNS methods [39, 36, 38, 29] and vector
compression methods [12, 3, 20]. Specifically, Non-exhaustive ANNS methods do not compress
the index. They reduce the number of candidates for each query to speed up the retrieval process.
Popular algorithms include tree search [16, 15] and graph search [36, 38, 29]. Vector compression
methods mainly aim to compress the index to accelerate retrieval. Popular algorithms include hashing
[12, 40, 43] and quantization [3, 20, 19].

Under the constraints of storage, compressed methods are widely investigated by researchers. Prod-
uct quantization [24, 7] decomposes the vector representation space into the Cartesian product of
subspaces. Optimized product quantization (OPQ) [18] jointly learns space decomposition and
subspace quantization. Multi-scale Quantization [50] includes a multi-scale framework so that it
can learn a separate scalar quantizer. Composite Quantization [54] and Additive Quantization [3]
do not decompose space but directly learn multiple codebooks. There are also some algorithms
that take query information into account. NEQ [11] decomposes the quantization error into norm
error and direction error and improves existing VQ techniques for MIPS. ScaNN [20] computes
the weight for each pair of vectors. Different from NEQ and ScaNN, KDindex utilizes query and
corresponding top-k candidates. LSH (Local sensitive hashing) is a data-independent un-supervised
method, similar to those clustering-based conventional quantization methods. BLISS [21] regards
ground truth as labels. However, the ground truth is difficult to obtain in huge quantities of databases.
LSH approaches have the property that objects that are close to each other have a higher probability
of colliding than objects that are far apart across various distance metrics. The drawbacks of these
approaches are the requirement for a large number of hash tables in order to achieve good search
quality and these methods are unmindful of the distribution of vectors, often leading to lop-sided
partitions and long query times. Interested readers could refer to the surveys [46, 31].

A.2 Knowledge Distillation

Knowledge Distilling (KD) was first proposed in [22], in which a complex neural network was firstly
trained and then transferred to a small model. Following this, DarkRank [8] proposed a method
combining deep metric learning and Learning to rank technique with KD to solve image retrieval
and image clustering tasks. In addition, a few recent methods [30, 41] have adopted knowledge
distillation to RS. RD [44] firstly proposes a KD method that makes the student give high scores on
the top-ranked items of the teacher’s recommendation list. Similarly, CD [30] makes the student
imitate the teacher’s prediction scores with particular emphasis on the items ranked highly by the
teacher. The most recent work, RRD [27], formulates the distillation process as a relaxed ranking
matching problem between the ranking list of the teacher and that of the student. However, there are
limited works focusing on index building under knowledge distillation.

There are also numerous works that use knowledge distillation to improve the performance of hashing-
based [45] and quantization-based [51] codes, The ranking information is distilled from a graph-based
network to enhance the performance of hashing codes. However, these works rely on the ground-truth
labels (user-item interactions) to learn the ranking orders. This is different from our work, where
label information is not accessible for learning. The quantization based method uses knowledge
distillation for ranking candidates in web search tasks and applies the sampling technique to rank
a sample of the document from data each time. But this technique is not applicable to training a
ranking model when documents and queries are represented with no content information. In this case,
the labeled model training cannot be easily generalized to all documents and queries. In contrast,
KDindex relaxes the requirement on labeled data and can be trained purely with unlabeled data.

14

Table 6: Statistics of the datasets.

Datasets #Database #Train #Test Dim

SIFT1M 1,000,000 100,000 10,000 128
GIST1M 1,000,000 500,000 1,000 960

MS MARCO Doc 3,213,833 367,013 5,193 768
MS MARCO Passage 8,841,823 808,731 101,093 768

B More Details of Experimental Settings

B.1 Dataset Statistics

B.2 Baselines

The two groups of baseline ANNS models are compared to KDindex.

The first group is Non-quantization-based ANNS methods, which accelerate the search by reducing the
number of candidates. BLISS [21] adopts the learning-to-index framework to learn the hashing-based
compressed functions. ScaNN [20] quantizes with anisotropic quantization loss functions which
greatly penalizes the parallel component of a datapoint’s residual relative to its orthogonal component.
HNSW [37] builds a hierarchical set of proximity graphs. Results can be found in Appendix D.

The second is Quantization-based ANNS methods, which compress the embeddings by hashing
or quantization functions. PQ [24] decomposes the vector representation space into the Cartesian
product of subspaces. OPQ [18] jointly learns space decomposition and subspace quantization.
AQ [3] represents each vector as a sum of several components each coming from a separate codebook.
The baselines are implemented based on the Faiss ANNS library [26]. The parameters B and W
are set to be the same as KDindex. DiffPQ [6], differentiable product quantization, a generic and
end-to-end learnable compression framework. DeepPQ [17], deep progressive quantization, end-to-
end learns the quantization codes sequentially. PQ-VAE [49], an unsupervised model for learning
discrete representations by combining product quantization and auto-encoders. The CNN blocks are
replaced with MLP because the image datasets have been extracted as 512-dimension features. GCD
[25] learns rotation matrix via a family of block Givens coordinate descent algorithms. RepCONC
[53] requires data points to be uniformly clustered around the quantization centroids.

B.3 Implemental details

Table 7: Details of teacher model (HNSW).

Teacher (HNSW) SIFT1M GIST1M MS MARCO Doc MS MARCO Passage
M 32 32 32 32

efConstruction 40 40 100 100
efSearch 100 512 1024 1024

Search Time (s) 0.5862 1.3082 1.4805 4.7689
Building Time (s) 20.1s 2m25.4s 17m52s 98m17.2s

Recall@10 0.9865 0.9859 0.9292 0.9182

Teacher model is instantiated as HNSW. The details are described as Tab. 7, where M denotes
the number of neighbors each node, efConstruction denotes expansion factor at construction time
and efSearch denotes expansion factor at search time. To obtain good recall performance, M,
efConstruction and efSearch are tuned. Building and Searching are on multi-threads for train sets.

C Varying Distillation Loss

C.1 Distillation Losses

Knowledge distillation was first proposed for classification tasks, where the probabilities of each class
attained from the large-scale teacher network are considered as soft labels to supervise the learning

15

of the small-size student network. The cross-entropy loss is commonly used as the distillation loss to
minimize the difference between the teacher and student networks. Here, the teacher search model
provides the top-k relevant candidates rather than the continuous value of probabilities. Thus, three
ranking-oriented losses are designed to distill knowledge from the more accurate indexes to guide the
student indexes to return the same nearest results.

Lambdarank loss: The pair-wise ranking-based loss is widely used to learn the ranking list by
leading the high-ranked candidate to have higher similarity scores. Lambdarank [4] further introduces
the change of the indicators, e.g., NDCG, to put more attention on more important candidates that
have not been well ranked. The loss follows as:

L(q,DT
K ;C) =

∑
i,j∈DT

K

log (1 + exp(pi − pj)) |∆NDCG@10ij | (4)

where DT
K denotes the top-k results retrieved from the teacher model and pi = S(q, Q(di)) is the

similarity score between the query vector and the quantized vector of the candidate i. Q is the
quantizer function related to the codebooks C. ∆NDCG@10ij denotes the change with respect to
NDCG@10 if changing the i-th ranked and j-th ranked candidate.

Weighted KL loss: Similar to the class distribution in classification tasks, the similarity distribution
over the top-k retrieved candidates can also be obtained. One is based on the ground-truth vectors and
the other one is based on the quantized vectors. In order to ensure the ranking orders correspond to the
top-k list, the rank information is also considered where the high-ranked items are more concerned.
Finally, the loss function follows as:

L(q,DT
K ;C) = −

∑
i∈DT

K

p̃gi log
p̃gi
p̃i

(5)

where p̃i denotes the normalized ranked similarity score with the quantized vector and p̃gi with the
ground-truth vector. Specifically,

pi = wi · S (q, Q(di)) , pgi = wi · S(q,di),

p̃i and p̃gi are the normalized values over the top-k retrieved candidates depending on the softmax
function. wi =

1
rank(i) denotes the ranking weight according to the ranking orders among the top-k

results from the teacher model. The weighted KL loss attempts to minimize the distance between the
ground-truth vector and the quantized vector for the top-k relevant candidates to learn better centroids.
The introduced rank-oriented weight further guides the student index to return the same ranking list.

Distributed-based loss: Instead of being oriented by the score between query and candidates as
above, we attempt to minimize the distance between the queries and top-k neighbors by calculating
the similarity scores with all the centroids. Thus, we could obtain more information from centroids
and focus on the top-K nearest neighbors. The distributed-based loss function follows as:

L(q,DT
K ;C) = −

∑
i∈DT

K

B∑
b=1

W∑
k=1

p̃qbk log(p̃
di

bk · wi) (6)

where B denotes the number of codebooks and W is the number of codewords in each codebook.
wi =

1
rank(i) corresponds to the top-k list given from the teacher model. pqbk denotes the similarity

score between the query q and the codeword cbk, i.e., pqbk = S(q, cbk), and pdi

bk denotes the similarity
score between the candidate di and the codeword cbk, i.e., pdi

bk = S(di, c
b
k). The normalized value

p̃qbk and p̃di

bk are calculated over the W codewords for each codebook through the softmax function.

This loss requires the enumeration of all the centroids, while the Weighted KL loss only includes
parts of the centroids corresponding to the quantized function. It also aligns with the goal of nearest
searching for the query with the learnable centroids as the bridge.

C.2 Experimental Performances

We compare the effectiveness of the three different distillation losses, i.e., Weighted KL loss,
Distributed-based loss, and Lambdarank loss as reported in Table 8.

16

Findings. Overall, the Distributed-based loss leads to comparatively better performances than
Weighted KL loss and Lambdarank loss. Compared with Weighted KL Loss and Lambdarank
Loss, Distributed-based Loss gains the 2.03% and 3.54% improvements of Recall@10, 0.38%, and
0.70% of NDCG@10, respectively. The Lambdarank Loss concerns more about the relationships
between the pair of items, while the other two care about the whole ranking order of the list. The
weighted KL loss actually optimizes parts of the centroids, depending on which query vectors and
candidate vectors are quantized, to match the ranking list, while all of the centroids are updated in the
Distributed-based loss since the probabilities are calculated over all the centroids. Furthermore, the
Distributed-based loss requires the similarity calculation between the original input vectors and the
centroids, which eliminates the error caused by the compressed functions. The last observation is that
Distributed-based Loss works better on inner product metric datasets, since it obtains the average
improvements of 2.24% and 3.33% of Recall@10 on L2 distance and inner product, respectively,
wherein the overall improvements for inner-product similarities.

Table 8: The results of KDindex under different distillation loss functions.

Loss Function SIFT1M GIST1M MS MARCO Doc MS MARCO Passage
Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 MRR@10 Recall@10 MRR@10

Lambdarank Loss 36.32 79.18 20.69 62.06 17.60 40.01 11.10 34.86
Weighted KL Loss 36.68 79.33 21.02 62.75 18.24 40.93 11.06 34.63

Distributed-based Loss 37.30 80.01 21.33 63.17 18.93 41.69 11.19 35.23

D Search Efficiency and Retrieval Quality

Figure 4: Comparison with more compressed ANNS models
and uncompressed method (HNSW, ngtqg, qsgngt, vamana,
and Milvus) in terms of effectiveness-latency trade-off on
two datasets. Up and left is better. The results of ScaNN,
HNSW, ngtqg, qsgngt, vamana, and Milvus come from ANN-
Benchmarks [1].

The search efficiency and the com-
prise performance are important in-
dicators of a compression search in-
dex. Thus, we report the effectiveness-
latency performance for inference in
Figure 4.

The time efficiency is measured by
the latency of getting the Top-10 can-
didates for each query. The retrieval
performance and the running time
are governed by the number of post-
ing lists we probe among the code-
books. The compressed ANNS meth-
ods (ScaNN and BLISS) and an un-
compressed method (HNSW) are in-
troduced for comparison. We can
see that KDindex substantially outper-
forms baselines in terms of both effectiveness and time efficiency. Specifically, we find that KDindex
cost less time to arrive at a similar Recall than both ScaNN and BLISS. Although HNSW can achieve
better results in the early stage, KDindex will surpass it after half a second.

E Limitations and Future Works

In this paper, we propose a novel knowledge distillation framework for high dimension index, which
reduce storage obviously and can learn neighbor information from the teacher model. Especially,
KDindex is independent to label (such as interaction information in the recommendation system or
ground-truth neighbors in ANNS), which makes it flexible to be applied in more label-free scenarios.
In the future, we will try more student models such as lattice quantization, whose codes already
imply neighbors relationship. And we will take labels into account to improve retrieval performance
progressively. We will further improve our work to benefit the broad community.

17

	Introduction
	Preliminaries
	Problem Definition
	Lightweight Compressed Indexes

	Index Distillation
	Overview of Index Distillation
	Initialization
	Distillation Loss
	Learning Constraints
	Differentiable Training
	Complexity Analysis

	Experiment
	Experiment Setup
	Overall performance
	Performance of Differentiable Training
	Memory Efficiency
	Hyperparameter Analysis
	Ablation Study

	Conclusion
	Related Work
	ANNs and MIPS
	Knowledge Distillation

	More Details of Experimental Settings
	Dataset Statistics
	Baselines
	Implemental details

	Varying Distillation Loss
	Distillation Losses
	Experimental Performances

	Search Efficiency and Retrieval Quality
	Limitations and Future Works

