
Combinatorial Group Testing with Selfish Agents

Georgios Chionas
Department of Computer Science

University of Liverpool
Liverpool, United Kingdom

g.chionas@liverpool.ac.uk

Dariusz R. Kowalski
School of Computer and Cyber Sciences

Augusta University
Augusta, Georgia, USA

dkowalski@augusta.edu

Piotr Krysta∗

School of Computer and Cyber Sciences
Augusta University

Augusta, Georgia, USA
pkrysta@augusta.edu

Abstract

We study the Combinatorial Group Testing (CGT) problems in a novel game-
theoretic framework, with a solution concept of Adversarial Equilibrium (AE). In
this new framework, we have n selfish autonomous agents, corresponding to the
elements of the universe [n] = {0, 1, . . . , n − 1}, and a hidden set K ⊆ [n] of
active agents of size |K| = k ≪ n. In each round of the game, each active agent
decides if it is present in a query Q ⊆ [n], and all agents receive some limited
feedback on Q ∩K. The goal of each active agent is to ensure that its id could be
revealed from the feedback as early as possible.
We present a comprehensive set of results for this new game, where we design and
analyze adaptive algorithmic strategies of agents which are AE’s. In particular,
if k is known to the agents, then we show adaptive AE strategies with provably
near-optimal maximum revealing time of O(k log(n/k)). In the case of unknown
k, we design adaptive AE strategies with maximum revealing time of order nk−1,
and we prove a lower bound of Ω(n) on the maximum revealing time of any such
algorithmic strategies. This shows a strong separations between the two models of
known and unknown k, as well as between the classic CGT, i.e., without selfish
agents, and our game theoretic CGT model.

1 Introduction

Combinatorial Group Testing (CGT) is a classic area of learning theory, see the book Du et al. [2000].
It is about revealing elements from a hidden set of size k, typically much smaller than the size n of the
universe of all elements, by asking queries and receiving answers (feedback). Queries are typically
subsets of the universe, while feedback is a fixed function that provides some limited information
about the intersection of the query with the hidden set, e.g., how big is the size of the intersection.
CGT was introduced by Dorfman [1943] in the context of revealing infected individuals in large
populations using pooled tests, and has been intensively explored recently during the COVID-19
pandemic, c.f., Augenblick et al. [2020], Mallapaty et al. [2020], Sinnott-Armstrong et al. [2020].
CGT has growing applications to Machine Learning, c.f.: simplifying multi-label classifiers Ubaru
et al. [2020], approximating the nearest neighbor Engels et al. [2021], and accelerating forward
pass of a deep neural network Liang and Zou [2021]. CGT was also used in data mining and

∗Piotr Krysta is also affiliated with Computer Science Department, University of Liverpool, U.K.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

stream processing, c.f.: extracting the most frequent elements Cormode et al. [2003], Cormode and
Muthukrishnan [2005], Cormode and Hadjieleftheriou [2008], Yu et al. [2004], Kowalski and Pajak
[2022b], quantile tracking Cormode et al. [2005], Gilbert et al. [2002b], Greenwald and Khanna
[2001], or approximate histogram maintenance and reconstruction Gibbons et al. [2002], Gilbert
et al. [2002a]. Another areas include coding and network communication, c.f.: Kautz and Singleton
[1964], Clementi et al. [2001], Porat and Rothschild [2011]. The adversarial aspects of CGT were
also considered, c.f., Klonowski et al. [2022], Kowalski and Pajak [2022a].

We study the Combinatorial Group Testing (CGT) problems in a novel game theoretic framework,
with a solution concept which is an Adversarial Equilibrium (AE). In this enhanced model, elements
are autonomous selfish players, also called agents, while those with id in the hidden set are active.
Ideally, the active agents should follow a CGT algorithm to have them revealed after some number of
queries has been answered.2 We study efficient deterministic CGT algorithms which are also AE
– that is, which additionally incentivise the active agents to follow the CGT algorithm without any
deviations. In particular, they are designed in such a way that an agent could worsen its revealing time
if it decides to include/exclude itself from the query created by the CGT algorithm (see Section 2.1
for a detailed definition of AE). We also show substantial limitations on scalability of the maximum
revealing time when the number k of active agents is unknown.

Closest related work and their relevance. The concept of deterministic Adversarial Equilibrium
(AE), used in our work, was introduced in the context of non-adaptive contention resolution (CR)
games by Chionas et al. [2023]. CR is a communication problem in which each player has a
packet to transmit successfully (i.e., alone) in a given time unit on the multiple-access channel to
which it is connected, together with other agents. It was introduced in the context of resolving
conflicts in Local Area Networks (LAN), co-funded by the recent Turing Award winner Robert
Metcalfe, c.f., Metcalfe and Boggs [1976]. Initially it was assumed that agents would respect the
given algorithm. Greenberg and Winograd [1985] proved a lower bound Ω

(
k log(n)
log(k)

)
on the running

time of any adaptive deterministic CR algorithm with restricted feedback with collision detection
(corresponding to the main CGT feedback considered in this work, while the running time, or latency,
corresponds to the maximum revealing time). Capetanakis [1979a,b] and Hayes [1978] independently
found an adaptive, deterministic binary tree algorithm to solve the CR problem, which runs in
O(k + k log(n/k)) time.

CR could be interpreted as a CGT-type problem with some subtle differences. The main conceptual
similarity between CR and CGT is the environment – agents decide to transmit in CR (equivalently,
be included in the query in the CGT) or not and they receive feedback from the channel (equivalently,
broker of the CGT process – the feedback function). The main, though subtle, difference is that in
CR it is required that every active agent needs to eventually be in a singleton intersection with some
query (i.e., to transmit successfully on the channel, without interference from other active agent),
while this is not required in the CGT – in the CGT, the set of active agents could be revealed based
on analyzing the feedback, even if some agents are not in singleton intersections with any queries.

Fiat et al. [2007] initiated the work on CR algorithms in which agents seek to minimize their
individual latency costs. They designed randomized algorithms that are Nash equilibria with bounded
latency. Later, Christodoulou et al. [2014] studied CR games where the cost of each agent depends
on the number of attempted transmissions before success. As mentioned earlier, Chionas et al.
[2023] were the first who introduced deterministic game theoretic framework to CR. In particular,
they showed non-adaptive adversarial equilibria of well-scalable O(log n) latency (i.e., revealing
time), but only for k = 2, 3 active agents. In contrast, we study more general adaptive algorithms
(which correspond to much richer space of strategies), provide a wider framework for the analysis of
adversarial equilibrium for general field of CGT with any feedback function, and design well-scalable
equilibria for any size k of the hidden set.

Bolouki et al. [2017] studied a Bayesian game where the population is partitioned in two sets, i.e.,
healthy and infected individuals. The goal of the former set is to have the infected individuals revealed
as soon as possible, while the goal of the latter set is not to get revealed for as long as possible. The
only strategy of individuals is to comply or not when they are called for a test. Our setting is quite

2Depending on the feedback function, revealing of a hidden agent/element could be direct, when the id of
this element is returned in the feedback, or indirect, when the analysis of the feedback for the previous queries
assures that the agent must be in the hidden set.

2

Class (n, k)-CGT (n, k)-CGT and (n, k)-AE
Lower Bound Upper Bound Lower Bound Upper Bound

known k Ω
(

k log(n)
log(k)

)
∗ O(k log(n/k)) † Ω

(
k log(n)
log(k)

)
∗ O(k log(n/k)) Thm. 3.1

unknown k Ω
(

k log(n)
log(k)

)
∗ O(k log(n/k)) † Ω(n) Thm. 4.1 O(nk−1) Thm. 4.2

Table 1: Summary of our main results. Asymptotic notations O,Ω denote an upper/lower estimate
wrt a constant factor. All logarithms are to base 2, unless stated otherwise. Results marked ∗ and †
were published in Greenberg and Winograd [1985] and in Capetanakis [1979a,b], Hayes [1978], resp.

different in the following aspect. We consider a richer space of strategies, since the agents may
choose to comply with the query or to deviate by either including themselves in a query without
being called for, or not including themselves in a query while being called for.

Technical contributions. Apart from our conceptual contribution of designing an adversarial
equilibrium model for general (i.e., adaptive) CGT (see Section 2.1), we demonstrate we demonstrate
its difference compared to the classical CGT (and related settings, such as CR) by providing several
new techniques and performance bounds, c.f., Table 1. The main conceptual difference between the
classical and our CGT setting is that while we preserve all features of the classical model, in addition
we augment it with the game theoretic aspect. This adds new technical challenges in designing
efficient algorithms in this new setting. In the main part, we focus on popular feedback function with
collisions, and design two algorithms with two very different revealing mechanisms that are also
adversarial equilibria. The first algorithm (see Section 3) assumes knowledge of k and reveals agents’
ids one by one, using appropriate shortcuts in the binary search process. The second algorithm (see
Section 4.2), designed for unknown k, reveals all the active players during the first successful query,
by gradually decreasing the size of subsequent queries.

The maximum revealing time of the first algorithm is O(k log(2n/k)), for any 2 ≤ k ≤ n. This
is very close to the best possible maximum revealing time, due to the lower bound Ω

(
k log(n)
log(k)

)
by Greenberg and Winograd [1985] for any adaptive deterministic solution in the considered CGT
setting. In contrast, Chionas et al. [2023] designed scalable non-adaptive algorithms only for k = 2, 3.
Moreover, proving AE for general adaptive CGT algorithms, done in this work, is more challenging
than proving it for non-adaptive solutions, as the space of all adaptive algorithms is much bigger and
complex than the space of pre-defined sequences of queries, i.e., non-adaptive algorithms.

The existence of such algorithms allows to consider the price of stability, c.f., Nisan et al. [2007],
Maschler et al. [2020], in CGT games with respect to adversarial equilibria in adaptive strategies.
Our equilibria with deterministic adaptive strategies imply an upper bound of O(log k) on the price
of stability (PoS).3 This upper bound on PoS follows by dividing our bound O(k log(2n/k)) on
the maximum revealing time by the lower bound Ω

(
k log(n)
log(k)

)
of Greenberg and Winograd [1985].

To compare, Chionas et al. [2023] designed adversarial equilibria in less complex deterministic
non-adaptive strategies in the CR game (related to our setting), achieving constant PoS only for
k = 2, 3 and the PoS of only n

Θ(k log(n/k)) for any k > 3.

All the abovementioned results and comparisons assume known k. In case of unknown k, we formally
show that this setting is more difficult than the one with known k by proving a lower bound Ω(n) on
the maximum revealing time even if an upper bound k′ ≥ 3 on k is known (see Section 4.1). We also
designed a universal AE for any unknown k, mentioned earlier, which has polynomial revealing time
if the actual number of active agents is constant in n (see Section 4.2).

Extensions and applications. We analyzed several extensions and applications of the new framework,
showing its generality. We applied it to other feedback functions: ones that instead of returning an
id of a singleton intersection return a “beep” (i.e., a single bit indicating that the intersection is a
singleton), and others which return “null” in case of non-singleton intersection of the query with the

3PoS is the ratio between the cost of the best-case equilibrium and the cost of the socially optimal outcome.
In our case, the cost is the maximum revealing time.

3

hidden set. Direct applications include adaptive equilibria contention resolution algorithms and new
mechanisms for blockchain. These extensions and applications are contained in Section 5.

2 The Model, the Problem and the Preliminaries

In Combinatorial Group Testing (CGT) types of problems, we are given a universe [n] =
{0, 1, . . . , n− 1} of n elements and a hidden subset K ⊆ [n] of size |K| = k, where 2 ≤ k ≤ n.4
Later, when introducing game theoretic framework for CGT, we will also be referring to the hidden
subset K as configuration of the game. Let Fk

n be the set of all k-element subsets of [n], i.e., the
family of all possible hidden sets. The goal of an algorithm is to learn the set K using the smallest
number of queries. A query Q ⊆ [n] returns a value of some function, called Feedback(Q ∩K). We
consider a classical feedback defined in the following way:

• if |Q ∩K| = 0, then Feedback(Q ∩K) = ∅ (“empty”);
• if |Q ∩K| = 1, then Feedback(Q ∩K) = i, where {i} = Q ∩K (element i “selected”);
• if |Q ∩K| ≥ 2, then Feedback(Q ∩K) =⊥ (“clash” or “collision” or “2+”).

This feedback function is one of the simplest considered in CGT, known in the literature as a ternary
feedback or (2, log n)-feedback in the generalized CGT terminology, cf. Klonowski et al. [2022]. If
the query has a singleton intersection with the hidden set, then naturally the feedback reveals the
respective agent’s ID. If the intersection is empty or has size at least 2 (clash), then the feedback is
empty or clash, respectively. We also study different feedback functions in extensions in Section 5.

A (deterministic) algorithm for the CGT problem is an adaptive algorithm which, based on the
history of the computation, generates subsequent queries Qt, which are asked by the algorithm
in the order specified by index t, for t = 1, 2, 3, Each query Qt may depend on the feedback
Feedback(Q1∩K), . . . ,Feedback(Qt−1∩K) from the previous queries Q1, Q2, . . . , Qt−1 generated
by the algorithm, where K is the hidden set on which the algorithm is executed. We will refer to the
index t as time, step or round of the algorithm. Note that the first query Q1 is hardwired since the
feedback history before round 1 is fixed (empty).

Feedback histories. Suppose that a given algorithm for a given hidden set K, generates a sequence of
queries Q1, Q2, . . . , Qt when the algorithm is executed on K by a round t. The corresponding unique
sequence of feedbacks received in such execution, ϕ[1..t] = Feedback(Q1 ∩K),Feedback(Q2 ∩
K), . . . ,Feedback(Qt ∩K), is called a feedback history (of the algorithm on set K, if we know the
algorithm and K) by round t.5 Note that for a given feedback history there is a unique sequence of
queries that resulted in such feedback history – this is because we consider deterministic algorithms.
We have ϕ[t] ∈ {∅,⊥} ∪ [n], for a round t ∈ {1, 2, 3, . . .}, and ϕ[1..t] ∈ ({∅,⊥} ∪ [n])t (when t is
irrelevant, we simply write ϕ, where ϕ ∈ ({∅,⊥} ∪ [n])∗). Although the algorithm is not given set
K as an input, for each round t it knows the feedback history. We call a given sequence of queries,
or feedbacks, a valid query sequence/feedback history iff they are query sequence/feedback history
obtained in an execution of the algorithm on some hidden set K ∈ Fk

n .

Compatibility. For a given algorithm, we say that a set K ∈ Fk
n is compatible with a given feedback

history, if the execution of the algorithm on the hidden set K generates that feedback history. For
a given feedback history ϕ, let Kϕ ⊆ Fk

n be the family of all sets K compatible with ϕ, and let
Kϕ|i = {K ∈ Kϕ : i ∈ K}.
Definition 1 (Revealing time). Suppose we are given an algorithm, a hidden set K ∈ Fk

n , and an
element i ∈ K. Let ϕt be the feedback history of the algorithm run on the hidden set K for t rounds.
The smallest t such that all sets K ′ ∈ Fk

n compatible with ϕt contain element i is called the revealing
time of element i on the hidden set K.

Note that, in our feedback model above, the revealing time t of agent i could sometimes result from
explicit feedback in round t, i.e., Feedback(Qt ∩ K) = i, but in other cases could be deducted
implicitly by ruling out non-compatible configurations that do not contain i (c.f., Definition 1).

We say that an algorithm solves the CGT problem, or is an (n, k)-CGT, if for any hidden set K ∈ Fk
n

the revealing time of any element i ∈ K is finite. The maximum of the revealing time, over all hidden
4Typically CGT assumes that k ≪ n, that is, the hidden set is much smaller than the size of the universe, n.
5ρ[t1, . . . , ta] denotes a sub-sequence of ρ consisting of values of sequence ρ in positions t1, . . . , ta.

4

sets K ∈ Fk
n and i ∈ K, is called the maximum revealing time of the (n, k)-CGT algorithm. A

performance measure of a secondary interest is the maximum completion time, which is the maximum,
over all hidden sets K ∈ Fk

n , of the minimum round when empty queries follow. 6

2.1 Game-theoretic framework for CGT

We now define the game theoretic setting of the CGT problem. The set of available selfish players,
also called agents, coincides with the elements of the universe [n]. The hidden set K ⊆ [n] is the set
of active agents chosen among available agents, who participate in the given instance of the game.
As mentioned earlier, we also refer to the hidden set K as configuration of the game. Initially an
adversary chooses a configuration K ∈ Fk

n and informs every agent of their status with respect to the
configuration, i.e., each active agent knows about the fact that it is in set K, but does not know ids of
the other active agents in K.

Each agent then executes the same deterministic algorithm, called a strategy, determined by the
parameter n (and k, if given) and the feedback history. Actions of an agent will also be determined
by its unique id. We will usually denote the algorithm as a collection of deterministic algorithms
(strategies) (s0, s1, . . . , sn−1), one for each of the n agents. In each round, the strategy determines if
the agent, say i, is in the current query in a round t or not, i.e., si[t] = 1 or si[t] = 0, respectively.
After each agent decides whether it is present in the query or not, the outcome of the feedback
function is computed centrally, based on the combined agents’ decisions and communicated to all the
agents.7

Given an algorithm, the goal of each active agent i ∈ K is to minimize the revealing time of i.
Therefore, the payoff or utility of agent i ∈ K is a strictly decreasing function of i’s revealing time. In
order to improve its payoff, an agent i ∈ K may want to deviate from the algorithm at some rounds t,
in which the corresponding query Qt generated by the algorithm could be modified by i by either:

• including itself in the query Qt: the original query, where i ̸∈ Qt, is modified to Q′
t =

Qt ∪ {i}; or
• excluding itself from the query Qt: the original query, where i ∈ Qt, is modified to
Q′

t = Qt \ {i}.

The agents following the algorithm are not informed about the deviation of the other agent, although
could deduct some information later on, based on the received feedback – the feedback is given for
the modified query, i.e., ϕ[t] = Feedback(Q′

t ∩K) for the game configuration K.

Adversarial equilibria. The following notion of an adversarial equilibrium has been introduced by
Chionas et al. [2023] in the context of related but more restricted non-adaptive contention resolution
games. We extend this definition to the CGT game. A collection of deterministic algorithms (strategy
profile) (s0, s1, . . . , sn−1), one for each of the n players, solving the CGT problem, is called an
(n, k)-adversarial equilibrium, or (n, k)-AE, iff for each player i ∈ [n] and any change of its strategy
(a.k.a. a deviation) from si to some other strategy s′i ̸= si (while all other players j ̸= i follow their
strategies sj), if there is a configuration K of k players for which the change strictly decreases the
revealing time of player i, then there is a configuration K ′ of k players for which this change strictly
increases the revealing time of player i. K (K ′, resp.) is called an improving (worsening, resp.)
configuration for player i under deviation s′i. We also call strategies (s0, s1, . . . , sn−1) a n-AE if it is
(n, k)-AE for any k = 2, 3, . . . , n.
Essentially, the notion of adversarial equilibrium is similar to the notion of individual Pareto optimality.
This means that, for a strategy profile that is adversarial equilibrium, for each player there does
not exists an action (deviation) that improves its payoff in one configuration (compared to its
respective payoff before deviation) without worsening it in another configuration (again compared
to its respective payoff before the deviation). We refer the reader for a further discussion about this
definition to Chionas et al. [2023].

6Clearly, an (n, k)-CGT algorithm has to reveal all elements in the hidden set before stopping to generate
non-empty queries (feedback to which does not bring any information); therefore, the maximum completion
time is not earlier than the maximum revealing time.

7Note that, since the algorithm is deterministic, all agents could compute the strategies of other agents –
however, due to initially unknown configuration (and, thus, ambiguity) and potential deviations (see the next
paragraph), such strategies’ computation may not often help the agent to predict the actual feedback (which
could help to improve the revealing time by deviation, see again the next paragraph for details).

5

Universal Adversarial Equilibria (with unknown k). An algorithm is universal (n, k)-AE if the
algorithm is an (n, k′)-AE for every 2 ≤ k′ ≤ k. An algorithm which is universal (n, n)-AE, is also
called universal n-AE. By analogy, we say that an algorithm is a universal (n, k)-CGT if it is an
(n, k′)-CGT for any k′ ≤ k.

2.2 Preliminaries

Grim-trigger strategies. Similarly to the other related models and papers Fiat et al. [2007], Chionas
et al. [2023], we will also use the following Grim-Trigger (GT) mechanisms in agents’ strategies.
When the algorithm, run by an agent (who is not deviating), discovers certain state that may suggest
deviation of other agents, it (repeatedly) includes itself in subsequent queries for a long period. This is
done to discourage agents from creating deviations to the CGT algorithm. We will call such behavior
persistent inclusions (of the agent). Strategies with the GT mechanism are called Grim-Trigger
strategies. The notion of Grim-trigger strategies were also used in a similar context in repeated games,
see [Axelrod and Hamilton, 1981, Nisan et al., 2007, Sec. 27.2]. It plays the role of a punishment
mechanism, which is necessary for the existence of equilibria.

Search trees and (ambiguous) queries. For the purpose of designing algorithms which are AE’s, we
will study binary trees whose leaves are uniquely labeled with elements of the universe [n] and the
internal nodes correspond to queries that could be generated by a search algorithm. More specifically,
for such given binary tree and its vertex v, a query Qv contains all leaves in the subtree rooted at v. Let
ϕ be a given feedback history. We say that a query Qv is ϕ-ambiguous iff there are at least two different
configurations K1,K2 ∈ Fk

n compatible with ϕ such that Feedback(Qv∩K1) ̸= Feedback(Qv∩K2).
We could omit parameter ϕ whenever it is clear from the context. If the query Qv associated with
vertex v is ambiguous, we also call vertex v ambiguous – all this with respect to some family of
configurations K.

Eulerian tour. For a given binary tree, we will be often referring to a left-to-right Eulerian tour along
the tree (or an Eulerian tour, for short). This is a standard procedure that lists vertices of the tree in
the left-to-right recursive order, that is, it lists the root, then recursively vertices in the left sub-tree,
followed by recursive enlisting of vertices in the right sub-tree.

2.3 Binary tree search algorithms

Tree algorithms have been extensively studied to solve the combinatorial group testing and contention
resolution problems. These algorithms can be thought of as a short version of an Eulerian tour on
the (complete) binary tree in which the leaves correspond 1-1 to the n elements and stations in the
literature of CGT and contention resolution, respectively, or agents in our game theoretic framework.
As a warm-up, we study the algorithm proposed by Capetanakis [1979a] and we shall call it Binary
Search, or BS for short. This algorithm is based on a simple divide and conquer technique. Firstly,
as said, consider that the total number of agents correspond 1-1 to n leaves of a (complete) binary
tree. Let Qv denote the agents that correspond to the leaves of the subtree with root v. We shall
call v vertex with token, or a token for short (we will formalize the appropriate notation in Section 3
where we analyze our more sophisticated algorithm). At each time t, agents Qv form the query, and
afterwards v changes its location depending on the feedback ϕ. Initially, v is the root of the tree and
v changes its position as follows. At each round t if Qv results in no collision, i.e., ϕ[t] ∈ {∅} ∪ {i},
where i ∈ K, then token v moves to the next-right subtree where collisions are not yet resolved.
If Qv results in a collision, then token v moves to the left subtree in order to resolve the collision.
Essentially, the algorithm BS traverses the left-to-right Eulerian tour of the binary tree by doing some
shortcuts. In order to understand the shortcuts of the token in the algorithm BS compared to the
Eulerian tour see Figure 1(a). Note that if k = n, the tour of the token is exactly the Eulerian tour of
the binary tree.

BS runs in Θ(k+k log(n/k)) time. This algorithm was proposed in the classical setting of contention
resolution without deviations. It is easy to see that BS is (n, k)-CGT but it is not a (n, k)-AE. We
modify BS by adding the grim trigger strategies as follows. If agent i is not revealed as long as token
v is the root of a subtree that it belongs to, it will start including itself in the queries persistently
in every following round (we may also set up a cap, say, to these persistent inclusions in the next
4n rounds, just to make sure that it is longer than the search algorithm’s maximum revealing time

6

w1

w2

w4

0 1

w5

2 3

w3

w6

4 5

w7

6 7

(a) In BS the tour of the token is
(w1, w2, w3, w6, w7, 6, 7)

w1

w2

w4

0 1

w5

2 3

w3

w6

4 5

w7

6 7

(b) In BS_Jumps the tour of token, with the appropriate
shortcuts, is (w2, w6, 6, 7)

Figure 1: Here, n = 8, k = 3, and active agents are K = {0, 6, 7}. (a): In BS agents
are present in the queries with the following sequence according to the token and feedback:
{0, 1, 2, 3, 4, 5, 6, 7} →⊥, {0, 1, 2, 3} → 0, {4, 5, 6, 7} →⊥, {4, 5} → ∅, {6, 7} →⊥, {6} →
6, {7} → 7. Note that the tour of the token was ((w1), w2, w3, w6, w7, 6, 7), whereas the Eule-
rian tour is (w1, w2, w4, 0, 1, w5, 2, 3, w3, w6, 4, 5, w7, 6, 7). (b): Illustration of BS_Jumps.

without deviation). Let us call this algorithm Grim Trigger Binary Search or GT_BS for short. Even
with this modification BS is not an (n, k)-AE.

Lemma 1. GT_BS is not an (n, k)-AE.

Proof. Consider n agents, the complete binary tree defined above, and k active agents. Assume that
the agent with id n− 1 deviates from BSby following the strategy s′n−1: after selecting (k − 1)-st
element, it adds itself to the next query. By playing strategy s′n−1, there is no configuration in which
the revealing time of the agent is worse compared to the respective one of BS, as after the other k − 1
agents have been selected, they stopped being included in subsequent queries and thus there is no
active agent to clash with agent n − 1 in the round it deviates. However, it is easy to construct a
configuration wherein strategy s′n incurs shorter revealing time, implying an improving configuration,
e.g., when agent with id n− 2 is not active (i.e., not in this configuration).

In the example in Figure 1(a), in the given configuration, agent 7 could deviate by including itself in
the query after the second active agent is selected (i.e., the feedback is equal to the id of this agent).
It improves its revealing time compared to the one by following BS. By following this simple strategy,
the agent will either be better off or will have the same revealing time compared to BS. This leads us
to the following important observation that will help us construct our next algorithm (in Section 3):
In order for an algorithm to be an (n, k)-AE, an active agent who has not been selected should be
included in the query immediately after the revealing of the (k − 1)’st active agent.

3 Efficient equilibrium with known size k

The algorithm, called Binary Search with Jumps (or BS_Jumps, for short), is based on a binary tree,
in which leaves correspond 1-1 to agents (this correspondence is part of the input to every agent, thus
it is common). More specifically, we enumerate leaves from left to right, using consecutive numbers
in [n] = {0, 1, . . . , n− 1}, and i-th leaf corresponds to agent i. The tree is complete, if n is a power
of 2, or almost complete otherwise, in the sense that all leaves are at the same distance from the root,
if possible, or their distances may differ only by 1, respectively.

Vertex with token and definition of queries. In each round, an agent maintains a distinguished
vertex of the tree, called vertex with token, or a token for short. The query consists of ids of all
leaves that are descendants of the vertex with token. Here a descendant means that the token vertex is
located on the path from the leaf to the root, including both ends. From the perspective of an agent, it
finds itself included in the query if its corresponding leaf is a descendant of the current vertex with
token – we call it an (algorithmic) query inclusion rule.

7

The initial position of the token, in round 1, is in the leftmost child of the root of the tree. The
current (round) position of the vertex with token is computed based only on feedback history and the
agent id i. The token update rule, described later, is based on the concept of feedback-compatible
configurations and ambiguous queries, defined in Section 2 and 2.2, respectively.

Updating token location. The location of the token is calculated at the beginning of each round t as
follows. Consider an execution of the algorithm by an agent i. Let αi[t

′] be the location (vertex of
the binary tree) of the token at the beginning of step t′ of the considered execution, for 1 ≤ t′ ≤ t− 1,
stored by agent i. We define αi[t] to be the earliest of the following two vertices on the left-to-right
Eulerian tour on the binary tree starting at αi[t− 1]:

• the first internal (i.e., non-leaf) vertex v of the tree in that tour such that query Qv is
ambiguous with respect to the set of configurations Kϕ|i

• the first leaf in that tour that is in every configuration in Kϕ|i.

Note that if the vertex defined in the first bullet does not exist, it means that all configurations in
Kϕ|i have the same feedback at each subsequent internal vertex of the Eulerian tour. Then, αi[t] is
defined in the second bullet as the first leaf j in the tour such that the corresponding agent j is in
every K ∈ Kϕ|i.
Grim-trigger sequence. If the computed token location αi[t] is after the leaf corresponding to
agent i, according to the Eulerian tour, and agent i has not been revealed, it starts including itself
persistently in the following queries.

Termination rule. The algorithm for agent i finishes its algorithm execution immediately after it is
revealed, if it occurs before starting the grim-trigger sequence by this agent. If such revealing does
not occur and the agent (eventually) starts its grim-trigger sequence, it continues including itself in
the following queries until the end of the sequence and then it switches off.

Algorithm 1: BS_Jumps(n, k), pseudo-code for active agent j
v ← root // Initialization of the token
K ← ∅ // Initialization of the set of revealed active agents
for t = 1, 2, . . . k log n do

if j ∈ Right(v) then
j ̸∈ Qv

else if j ∈ Child(v) then
j ∈ Qv

else
if j ̸∈ K then

j ∈ Qv // Persistent inclusions if j has not yet revealed

if ϕ[t] = {i} then
K ← K ∪ {i} // Agent i is revealed from feedback ϕ[t] in current

round t

v ← update_token(v, k)
Output K

The Algorithm 1 shows how BS_Jumps works. We use three functions:

• Right(·) – which takes as an argument the current token location and returns the set of
leaves of a right subtree;

• Child(·) – which takes as an argument the token location and returns the set of leaves that
are descendants of the token;

• update_token(·, ·) – which takes as arguments the current token location and the feedback
history and returns the next token location according to the token update rule (see the two
bullets in the “Updating token location” paragraph).

8

Algorithm 2: update_token(v, k)
S ← S ∪ {v}
if v = leaf or Leaves(v) = 1 then

return v
if k ≥ EulerLeaves(v)− Leaves(v) + 2 then

return update_token(left_child(v), k)
if sibling(v) ∈ S and k ≥ 2 then

return update_token(left_child(v), k)
return v

Algorithm 2 uses the following functions:

• left_child(·): which takes as argument the current token location and returns the root node
of its left subtree

• sibling(·): which takes as argument the current token location and returns the node with the
same parent

• S: is the set of nodes visited by the token in BS
• Leaves(·): which takes as argument the current token location and returns the number of

leaves in subtree rooted at that location
• EulerLeaves(·): which takes as argument the current token location and returns the number

of leaves on the Euler tour starting from that location.

Essentially, Algorithm 2 expresses in a combinatorial way the conditions of ambiguity defined in
Section 2.2

Efficient implementation of BS_Jumps. In this work, the main metric of consideration is the reveal-
ing time (or query complexity), in which the last agent was revealed. In this paragraph, we briefly
discuss other metrics of efficiency of our protocol, such as the computational and communication
complexity. The most time-consuming part of algorithm BS_Jumps is the token update. Because
of the structure of binary tree, identifying ambiguous internal vertices or leaves that are in every ϕ-
compatible configuration could be done fast by each agent, in each step. In short, the agent simulates
locally the Binary-Search-like process and evaluates whether the number of “remaining” leaves is
large enough compared to the number of remaining active agents (the latter could be computed from
the feedback ϕ). If it is, it yields ambiguity, as the number of active leaves/agents in the subtree of
the currently considered vertex could be 0 or larger. As this local procedure is built on the top of
Binary Search (simulated locally), it is efficient, in the sense that the number of local computational
time in any agent is O(k + k log(n/k)), which is O(1) time amortized per round. Regarding the
communication complexity of the protocol, it can be derived as a function of the revealing time of
the protocol. In each round, each active agent communicates a single bit. The output of the ternary
feedback can be encoded by log n bits. Let revtime be the revealing time of the protocol. Thus, total
communication complexity of a protocol is (k+log n) ·revtime bits. The total number of local steps
during the protocol could be upper bounded by log n · revtime, because each step/round of algorithm
BS_Jumps requires updating of the token, which is a logarithmic operation (see the Supplementary
Materials, Section 3). Lastly, the memory needed in each agent is logarithmic, mainly due to the
simple recursion in the main algorithm and the token update, and a constant number of variables.
This is under assumption that any basic arithmetic operation on variables/values, represented by
logarithmic numbers of bits, could be done in a single local step, while these numbers could be stored
in a unit of memory.
Theorem 3.1. Algorithm BS_Jumps(n, k) is an (n, k)-AE, for any 2 ≤ k ≤ n, and has revealing
time O(k log(2n/k)).

For the technical proof of Theorem 3.1 we refer the reader to Section 6.

4 Equilibria for unknown size k

We first show in Section 4.1 that in the restricted feedback – with collision detection only – universal
n-AE come at a high cost in performance measures. Intuitively, the high cost in that setting occurs

9

because the adversary has even more power, since it does not only select the configuration but also
the size of it and the agents are agnostic to it. We then give a universal (n, k′)-AE which is an
(n, k)-CGT with maximum revealing time O(nk−1), for any 2 ≤ k ≤ k′ ≤ n. Here, k is the actual
number of active agents, unknown to the agents, while k′ is the known upper bound. In particular, the
maximum revealing time is polynomial for constant-size configurations.

4.1 Equilibria characteristics and lower bounds

We start from proving that universal adversarial equilibria require (at least some) dense queries.

Lemma 2. For any 3 ≤ k′ ≤ n, no algorithm with first query of size different from n − 1 is a
universal (n, k′)-AE.

Proof. Suppose, to arrive with a contradiction, that there is an algorithm which is a universal (n, k′)-
AE, for some 3 ≤ k′ ≤ n, and has the first query of size different from n − 1. According to
the definition of a universal (n, k′)-AE, in order to get a contradiction we need to show that there
is a deviation of some player i such that for some 2 ≤ k ≤ k′, for any configuration of size k
consistent with the deviation the revealing time of player i does not increase while for at least one
such configuration the revealing time decreases. In our arguments below, we will be showing that
such contradiction actually occurs for k = 2 or k = 3.

The first query, call it Q1, is fixed, as there is no feedback before it.

Consider first the extreme cases when Q1 = ∅ or Q1 = [n].

Case Q1 = ∅: player 0 could simply deviate by additionally adding itself to Q1. This way, it improves
in any configuration it is in, as it is always selected in the first round while before the deviation – in
round bigger than 1. Hence, there is no worsening configuration (independently of what k ≥ 2 is
considered). Thus we get a contradiction with the definition of a universal (n, k′)-AE.

Case Q1 = [n]: first observe that the feedback is ⊥ for any configuration of size k′ ≥ 2. Therefore,
the second query, Q2, is uniquely defined. Let i be an arbitrary player not in Q2, if Q2 ̸= [n], or i = 0
otherwise (i.e., when Q2 = [n]). Player i deviates by removing itself from query Q1 and adding to
query Q2 (if i already belongs to Q2, which is possible only if Q2 = [n], there is no need to adjust
Q2). Consider k′ = 2. In any configuration of size 2 player i is in, say {i, j} for some j ∈ [n] \ {i},
before the deviation player i is selected in round 2 at the earliest. However, after the deviation, player
i is selected always in round 2, as j is selected in round 1. Hence, no configuration worsens for i after
deviation. Additionally, for configuration {i, j} such that j is in the original Q2, before deviation i is
selected after round 2, which means that the deviation improves the revealing time of player i in this
configuration. Thus we get a contradiction with the definition of a universal (n, k′)-AE.

Next, consider the case 1 ≤ |Q1| ≤ n− 2.

Case 1 ≤ |Q1| ≤ n− 2: Suppose that the feedback in round 1 is v ∈ Q1, for some arbitrarily chosen
v ∈ Q1. Consider query Q2 which comes after such feedback. There are two complementary sub-
cases:

Sub-case (a): at least one element, say i, in [n] \Q1 is not in Q2. Fix a deviation of element i that
after result v in round 1, puts itself to query Q2 (to which it originally does not belong). Consider
k = 2. There is only one configuration of size 2 consistent with the deviation, containing element
v (the feedback in the first round) and element i itself (note that i ̸= v since v is in Q1 while i is
not). In the configuration {v, i}, before deviation i was selected in round bigger than 2 (as it does
not belong to Q1 and to Q2), while after the deviation – in round 2. Hence we get a contradiction
with the definition of a universal (n, k′)-AE, since {v, i} is the only configuration consistent with
feedback v in the first round.

Sub-case (b): all elements in [n] \Q1 are in Q2. By the case assumption |Q1| ≤ n− 2, there are at
least two such elements. Assume that the feedback in the second round is ⊥, and consider the query
Q3 in round 3 of the algorithm (under feedback v,⊥ in the first two rounds). Consider k = 3.

First assume that there is at least one element, say i, which is in Q2 ∩ ([n] \Q1) and is not in Q3.
Define a deviation of player i which, after hearing feedback v in the first round removes itself from
query Q2 but adds to the query in the third round of the execution, call it Q′

3. (Note that in such
execution query Q′

3 could be different from Q3, because it depends on the feedback in round 2 which

10

could be different from the original when player i deviates.) For any configuration that is consistent
with the history before the deviation and contains player i, say {v, j, i} where j ∈ Q2 \ {v, i}, before
deviation player i is selected after round 3 (as the feedback is v,⊥ in the first two rounds, as i, j ∈ Q2,
and i is not in Q3), while after the deviation the feedback in the first three rounds is v, j, i; hence the
revealing time is improved. Such deviation for k = 3 yields contradiction with the initial assumption
of being a universal (n, k′)-AE.

Second, complementary to the previous assumption, consider a situation when all elements that are in
Q2 ∩ ([n] \Q1) are also in Q3. Using the same deviation as in the previous argument, applied to any
element i ∈ Q2 ∩ ([n] \Q1) ∩Q3, and k = 3, we get that after the deviation element i is selected in
the third round for any configuration {v, j, i} of three different element that is consistent with the
history prior the deviation, while when i has followed the algorithm the feedback in the first two
rounds would be v,⊥,⊥ as i, j ∈ Q2 ∩Q3. This is again a contradiction with the algorithm being a
universal (n, k′)-AE.

Intuitively, by applying Lemma 2 to the first n/2 queries (assuming that the feedback is collision),
we either get impossibility at some point or all these queries have to be of size n− 1. This intuition
cannot be extended much beyond the first n/2 queries produced by an algorithm, because each query
of size n− 1 somehow restricts the family of configurations of size 2 that we could use in the proof
of Lemma 2.

Theorem 4.1. Any algorithm that is an (n, k′)-CGT and a universal (n, k′)-AE has the maximum
revealing time Ω(n), for any k′ ≥ 3. Moreover, the total number of elements in the queries in some
executions are Ω(n2).

Proof. Fix any 3 ≤ k ≤ n. We argue now that if an algorithm is a universal (n, k)-AE and an
(n, k)-CGT, then it has maximum revealing time Ω(n). Suppose, to the contrary, that there is such
an algorithm with maximum revealing time smaller than n/2. By Lemma 2, the first query of such
algorithm has n−1 elements. Assume that the feedback to each query of size n−1 is⊥, until a query
of size smaller than n− 1 occurs, say at round t, for some 1 ≤ t < n/2. Note that such assumption
is valid: there are configurations of size k resulting in such feedback before round t, and round t is
well-defined because the algorithm has to ask queries of size smaller than n− 1 to have any feedback
different than ⊥, which is needed to be able to reveal configuration K of size k ≥ 3 (essentially, to
distinguish between any two different configurations of size k). Note that any deviation of an active
agent before round t is worsening for some configuration of size 2: if an agent swaps 0 to 1, it could
create collision while without switching it would be a round revealing the configuration. Similarly, if
an agent swaps from 1 to 0 it may create situation of empty feedback, which does not reveal itself,
while without swapping it could have revealed itself by being selected. Hence, in what follows, we
consider only deviations that happen after round t.

We now extend the arguments from the proof of Lemma 2 to the considered scenario up to round t.
First observe that cases Qt = ∅, as well as sub-case (b) of case 1 ≤ |Qt| ≤ n − 2 – i.e., ([n] \
Qt) ∩ ([n] \Qt+1) ̸= ∅, where Qt+1, which is the query after Qt, gets feedback v for some arbitrary
v ∈ Qt – could be analyzed analogously as in the proof of Lemma 2, because the argument relies
only on configurations of size k = 3 while all such configurations result in collisions in preceding
queries of size n− 1 each. Note that this is consistent with the assumed feedback ⊥ in those queries,
as the intersections are of size at least 2.

It remains to analyze the analogous sub-case (a) of case 1 ≤ |Qt| ≤ n−2 from the proof of Lemma 2:
at least one element, say i, in [n] \Qt is not in Qt+1. Fix a deviation of agent i that after feedback v
in round t, includes itself into query Qt+1 (to which it originally does not belong). Consider k = 2.
There is only one configuration of size 2 compatible with the deviation, containing agent v (selected
in round t) and agent i itself (note that i ̸= v since v is in Qt while i is not). In the configuration
{v, i}, before the deviation agent i was revealed in round bigger than t+ 1 (as it does not belong to
Qt and to Qt+1), while after the deviation – in round t+ 1. Hence we get a contradiction with the
definition of the universal (n, k)-AE, since {v, i} is the only configuration consistent with feedback
in the first t rounds.

11

Algorithm 3: BB_GR(n, k′), pseudo-code for active agent j
for x = 1, . . . , k′ − 1 do

// We execute blocks Bx, until first selection
for r = 1, 2, . . . ,

(
n

n−x

)
do

Qx
r ← r-th query in Fn−x

n (arbitrarily ordered)
if Feedback(Qx

r ∩K) = i for some i ∈ K then
t∗ ← r
K ← {i} ∪ ([n] \Qx

r) // Hidden set revealed
break

if Feedback(Qx
r ∩K) = j then

for r = t∗ + 1, . . . ,
(

n
n−x

)
do

// We continue in block Bx but with grim trigger
Qx

r ← {j} // Persistent inclusions
if x < k′ − 1 then

for r = 1, 2, . . . ,
(

n
n−(x+1)

)
do

// We run one more block Bx+1 with grim trigger when x < k′ − 1
Qx+1

r ← {j} // Persistent inclusions

Qx+2
1 ← {j} // Last persistent inclusion when x < k′ − 1

else
Qx+1

1 ← {j} // Last persistent inclusion when x = k′ − 1

Output K

4.2 Equilibrium algorithm for unknown k

We now present the algorithm called Block Builder with Grim Trigger (or BB_GR for short), see
Algorithm 3 for a pseudo-code. The structure of algorithm BB_GR(n, k′), where k′ ≤ n is the known
upper bound on k, consists of some x′ ≤ k′ subsequent blocks of queries. In each block of queries Bx,
for an integer x such that 1 ≤ x < x′, there are yx =

(
n

n−x

)
=

(
n
x

)
queries, while the last block, x′,

contains only one query. To simplify the notation for the sake of this algorithm, but with some abuse
of the notation used in previous sections, herewe denote the rth query of block Bx as Qx

r . Until the
first selection of an element, we define a query Qx

r as the r-th set from the family Fn−x
n (where the

order of these sets could be fixed arbitrarily by the algorithm). When the first successful selection
happens, say for some query Qx∗

r in block x∗ such that x∗ = x′ − 2 (or x∗ = k′ − 1 in some cases
when x′ = k′, see the second part of the pseudo-code when the value of x has been set to k′ − 1), the
hidden set K is revealed as

K =
{
Feedback(Qx∗

r ∩K)
}
∪
(
[n] \Qx∗

r

)
.

After the first selection, the selected agent with id = Feedback(Qx∗

r ∩K) includes itself persistently
in the following queries up to query Qx′

1 , which is the first query of the last block Bx′ executed by the
algorithm in the current game. Then, the algorithm stops following the block structure and terminates.

In the analysis of BB_GR(n, k′) below we show that the block number of the revealing time, x∗,
satisfies x∗ = k − 1, where k is the actual size of a configuration. Consequently, the number of
blocks in the game execution is x′ = k + 1 or x′ = k, where the latter occurs when k = k′ (see the
second part of the algorithm’s pseudo-code, with these two cases).
Lemma 3. BB_GR is an (n, k)-CGT, for any 2 ≤ k ≤ k′, with maximum revealing time O(nk−1).

Proof. Consider that the adversary chooses k ∈ [2, k′]. In this case, the first successful selection will
happen in the block Bk−1 and let us also name the respective query Qk−1

r . The first selection will
happen in the block Bk−1 because for every round in all the previous blocks of queries Bx where
x < k − 1, at least two active agents were included in the queries, since the number of agents who
were not asked was n− (n− x) = x < k − 1. The hidden set K comprises of the id of the selected
agent which is given by Feedback(Qx

r ∩K) plus the remaining k − 1 agents that were not included

12

in this query. The remaining k − 1 agents are [n] \Qx
r . Thus, the hidden set K is revealed. Let us

now denote the time of the first selection as t∗ (the time when query Qk−1
r happened). It holds that

t∗ =
∑

1≤x<k−1

(
n
x

)
+ r. Since

(
n
x

)
∈ O(nx), this implies that t∗ is O(nk−1) for any k ≤ k′ ≤ n.

Lemma 4. BB_GR is a universal (n, k′)-AE.

Proof. Now, we will prove that deviations are not profitable. As noted before, it is critical to keep in
mind that the characteristic property of this algorithm is when the first selection happens, subsequently,
the whole hidden set is revealed at the same round. Consider that adversary selects k. First, we
argue that deviations from 0 to 1 (i.e., when an agent was excluded from the query and it included
itself) by agent i are not profitable. It is easy to see that such deviations do not make any difference
in the first k − 2 blocks of queries since in every round there will be at least two active agents
included in the queries and hence the feedback will be collision independently of what i does. In
block Bk−1, depending on the configuration selected by the adversary, the only rounds when agent
i can be selected are the ones allocated by the algorithm, in which i is the only active agent in the
query. In the other queries of block Bk−1, there will be at least one more active agent included since
|Qk−1

r | = n− (k − 1). We consider now deviations from 1 to 0 (i.e., when the agent was included
in the query and it excluded itself) by agent i. Following the same reasoning, deviations by agent
i do not influence the feedback channel up until block k − 2, since for each round there will be at
least two active agents included in the query and thus the output of the feedback will be collision.
Suppose now that agent i deviates in block Bk−2 by not including itself in a query Qk−2

r where it
was initially included by the algorithm. And more specifically we consider a configuration where
agent j is also active, that is j ∈ K, and that out of |Qk−2

r | = n − (k − 2) included in the query
only i, j ∈ K . Thus, the deviation of i will lead agent j to be be selected in query Qk−2

r . Since j
follows the algorithm, it will include itself to the following queries up to query Qk

1 and hence this
will render agent i unable to reveal itself up until that round. Thus this deviation is not profitable for i
because if it didn’t deviate it would have been revealed in some round of block Bk−1, depending on
the configuration chosen by the adversary. The same reasoning also holds for deviations of agent i
from 1 to 0 in block Bk−1. Thus we conclude that deviations are not profitable.

Theorem 4.2. BB_GR is universal (n, k′)-AE and (n, k)-CGT with maximum revealing time O(nk−1)
for any number of active agents k such that k ≤ k′ ≤ n.

Proof. The maximum revealing time follows from Lemma 3. Being a universal (n, k′)-AE follows
from Lemma 4.

5 Extensions and applications

Contention Resolution Games

In the Contention Resolution Game (CR Game), there are n selfish agents (players), each having a
single packet to be broadcast on a single shared channel. We will use the term agent and player inter-
changeably. Each agent has a unique name (id) which is an integer in the range [n] = {0, 1, . . . , n−1},
and they are modeled as elements [n] in the CGT problem. The communication is in synchronous
rounds, also called steps, interchangeably.

A shared channel. An agent transmitting in the Contention Resolution problem in round t corre-
sponds to the agent being included in the query Qt within the CGT model. The revealing time of an
agent in the CGT game where the agent is selected corresponds to a successful transmission in the
CR game. In the CR game, if only one agent transmits a message in a round then the transmission is
successful. If two or more agents transmit their packets at the same round then there is a collision on
the channel and none of them is successful. Agents attached to the channel receive feedback in each
round. In the model without collision detection, we assume that each player hears feedback from
the channel in each round, which is: silence (if nobody or at least two players transmit at that round)
or busy channel (if exactly one player transmits). In the model with collision detection, each player
receives ternary feedback in each round, which is: silence (in nobody transmits), collision (if at least
two players transmit at that round), or busy channel (if exactly one player transmits).

13

Contention resolution (CR) games. A distributed communication algorithm executed by an agent
serves as its strategy. We consider only deterministic algorithms. An algorithm determines for each
round if the agent transmits or pauses, or possibly halts and exits. An algorithm is non-adaptive if the
sequence of attempts to transmit and pauses for each individual agent is determined in advance and
encoded as a sequence of zeros and ones. Such non-adaptive algorithms are studied in paper Chionas
et al. [2023].

5.1 CR Games: Feedback with collision detection

An adaptive algorithm, studied here, can determine in each round whether the player transmits, pauses
or halts and exists, based on the complete history of the channel feedback up to the current round.
There is a natural translation of all notions and algorithms defined for CGT to the corresponding
notions and algorithms for the CR games. In this way, all our results in theorems for CGT translate
naturally to CR games.

5.2 CR Games: Restricted feedback without collision detection

We present in Subsections 5.2 and 5.3 our extensions of these result from Subsection 5.1 in the
CGT model to CR games with restricted feedback. We assume in Subsections 5.2 and 5.3 that each
station hears feedback from the channel in each round, which is: silence (if nobody or at least two
players transmit) or a transmission (if exactly one player transmits). We slightly modify the feedback
history here, where ϕ[t] = 0 will denote that there was silence in round t, and ϕ[t] = 1 – denoting a
transmission in round t (in this case 1 does not correspond to the agent’s id, as in this case any of the
agents in [n] successfully transmits).

Chionas et al. [2023] introduced a non-adaptive modification of Round-Robin principle, called
Persistent_RR, in which a player i who fails to successfully transmit in its dedicated slot i +
1, starts grim-trigger sequence until slot n. Surprisingly, this is not an equilibrium if adaptive
algorithms are considered.

Algorithm 4: Persistent_RR_Jump(n), player i
succ = 0
for t ∈ [n] do

if t = i or succ = k − 1 then
transmit(packet) (switch-off upon ack)

if t > i then
transmit(noise)

if ϕ[t] = 1 then
succ ++

Consider a strategy when each player with id i transmits in slot i + 1 or in the next slot after the
slot when the (k − 1)’st successful transmission was heard, whatever comes first. Consider all
configurations in which i > k is the player with largest id; they exist since n > k. For some of
these configurations, there are less than k − 1 successful transmissions before slot i+ 1, the player i
transmits in its slot i+ 1 complying with Persistent_RR and does not change its Persistent_RR-based
latency. However, there is a configuration K such that player i− 1 does not belong to it (again, since
i > k and i is the largest id in the configuration), and in such case i transmits successfully before slot
i+ 1 without causing any collision and thus not triggering the persistent transmissions.

Lemma 5. For known k ≥ 2 and n > k, Persistent_RR(n) is not (n, k)-AE.

Proof. Consider a strategy when each player with id i transmits in slot i+ 1 or in the next slot after
the slot when the (k − 1)’st successful transmission was heard, whatever comes first. Consider all
configurations in which i > k is the player with largest id; they exist since n > k. For some of
these configurations, there are less than k − 1 successful transmissions before slot i+ 1, the player i
transmits in its slot i+ 1 complying with Persistent_RR and does not change its Persistent_RR-based
latency. However, there is a configuration K such that player i− 1 does not belong to it (again, since
i > k and i is the largest id in the configuration), and in such case i transmits successfully before slot
i+ 1 without causing any collision and thus not triggering the persistent transmissions.

14

Consider the following adaptive modification to Persistent_RR in the model without collision detec-
tion, motivated by the proof of Lemma 5: if some player just heard (k− 1)-st successful transmission,
it transmits in the very next round. We call this new algorithm Persistent_RR_Jump, see the pseudo-
code of Algorithm 4 in the Appendix.

Before we prove that Persistent_RR_Jump is an (n, k)-AE, we will show how to model any adaptive
(strategy) algorithm σ in the setting without collision detection. Let ϕ[1, . . . , t − 1] be a given
feedback history, for any t ≥ 1. If t = 1, then the history ϕ[1, . . . , t− 1] is empty and the algorithm
σ takes a deterministic decision of whether to transmit or not in the first round, without any prior
knowledge. If t ≥ 2, then the algorithm σ takes a deterministic decision of whether to transmit or
not in round t, based on the history ϕ[1, . . . , t− 1]. In particular the algorithm σ knows how many
among the k players successfully transmitted by time t− 1.

Theorem 5.1. Algorithm Persistent_RR_Jump is an adversarial equilibrium, (n, k)-AE, with maxi-
mum latency n.

Proof. The maximum latency n follows from the case when both id’s n− 2 and n− 1 are present in
the configuration set. It remains to prove that the algorithm is an adversarial equilibrium. Recall that
in Persistent_RR if player i ∈ [n], before deviation, transmits for the first time at round i+ 1, and if
unsuccessful, it transmits persistently from round i+ 2 onward until round n.

Let us fix a player i ∈ [n] who follows the strategy si = (0, 0, . . . , 0, 1, 1, . . . , 1), where the first 1 is
in slot i + 1 and strategy si is augmented by the above modification. That is, player i follows the
Persistent_RR_Jump strategy si. Let strategy (algorithm) s′i be any deviation of player i from its
strategy si; that is, algorithm s′i is any deterministic algorithm modeled as defined above. We will
prove that (excluding some obvious cases), there always exists a worsening configuration K ∈ Fk

n ,
i ∈ K, for player i under the deviation s′i.

Let us choose any feedback history ϕ ∈ {0, 1}∗. Suppose that t ∈ {1, . . . , n} is the round of
the first deviation, that is, the first time t, where the algorithm s′i took a different decision from
that of algorithm si. Suppose that this happened after feedback history ϕ[1, . . . , t − 1] and under
configuration K ∈ Fk

n , that was ϕ-compatible with algorithm s′i.

We observe first that if t ≥ i+ 2, then player i cannot have any improvement in its transmission time,
therefore for such deviation there is no improving configuration. Assume otherwise, that t ≤ i+1. If
t = i+ 1 and player i deviated from si[t] = 1 to s′i[t] = 0, then configuration K itself is worsening
for player i.

Suppose now that t ≤ i. The first case is when the algorithm si told player i to not transmit at time
t after history ϕ[1, . . . , t− 1], and the deviator algorithm s′i transmitted at time t. This means that
under configuration K, by time t−1 inclusive, at most k−2 players from K successfully transmitted.
Let K ′ ⊂ K, |K ′| ≤ k − 2 be the set of those players who successfully transmitted by time t− 1.
Notice that i ̸∈ K ′ because time t was the first deviation of player i from strategy si.

We now define a new configuration K ′′ = K ′ ∪ {i, t − 1}, which contains player t − 1 such that
st−1 = (0, 0, . . . , 0, 1, 1, . . . , 1), where the first 1 is in slot t and strategy st−1 is augmented by the
above modification (Persistent_RR_Jump). Notice that t− 1 ̸∈ K ′, because the first transmission
time of player t−1 could only be t, as we know that until time t−1 at most k−2 players successfully
transmitted. Moreover if |K ′′| < k, we add to K ′′ any players from K \K ′′ to make its size exactly
k; this change clearly will not affect the claim that until time t− 1 at most k − 2 players successfully
transmitted under this new configuration K ′′. Under configuration K ′′, player t− 1 will block player
i’s deviation at time t, and because player t − 1 is unsuccessful at time t, it will start persistently
transmitting from time t+ 1 onward, completely blocking player i who plays its deviation s′i, under
configuration K ′′. Thus, configuration K ′′ is worsening for player i.

The second case is when the algorithm si tells player i to transmit at time t after history ϕ[1, . . . , t−1],
and the deviator algorithm s′i does not transmit at time t. This means that under configuration K, by
time t− 1 inclusive, exactly k − 1 players from K successfully transmitted. Because player i could
have safely transmitted in time t, and has chosen not to do so in s′i, configuration K is worsening for
player i. This finishes the proof of the theorem.

15

5.3 CR Games: Restricted feedback without revealing id

We will show here how to modify our algorithms so that in addition to still being adversarial
equilibria, they let the players to learn the ids of all other active players, while achieving the same
maximum latency as before. All the players in a configuration K chosen by the adversary, listen to
the channel (even after they successfully transmitted, due to the adaptivity) and based on the channel
feedback they will be able to learn other players ids, as we will show below.

Theorem 5.2. Algorithm Persistent_RR_Jump can be modified such that it is an adversarial equilib-
rium, (n, k)-AE, with maximum latency n, and it allows for learning of id’s of the active players.

Proof. We modify the algorithm Persistent_RR_Jump for player i ∈ [n] as follows: if player i hears
that the (k − 1)-st player successfully transmitted at time t, then i transmits at time t+ 1 and then if
t+ 1 < i+ 1, then i persistently transmits in slots t+ 2, t+ 3, . . . , i+ 1, and switches off after that.

Notice that in the original (and modified) Persistent_RR_Jump the first k − 1 players transmit
(without deviations) at time that is their id+1, thus allowing other players to learn their id’s. The last,
k-th, player might transmit in the modified algorithm Persistent_RR_Jump before its original slot
id+1, but then it will keep transmitting until time id+1 inclusively. Thus, its last transmission will let
the other players learn its id.

Obviously, this modification does not increase the maximum latency beyond n. We will argue now
that it is still an (n, k)-AE. Let us fix any player i ∈ [n], who follows the strategy si according to the
modified algorithm Persistent_RR_Jump. Let us also denote by s′i any deterministic algorithm that is
any deviation of player i from strategy si.

Suppose that t ∈ {1, . . . , n} is the round of the first deviation, that is, the first time t, where the
algorithm s′i took a different decision from that of algorithm si for some configuration K. Suppose
that this happened after feedback history ϕ[1, . . . , t− 1] and under configuration K ∈ Fk

n , i ∈ K,
that was ϕ-compatible with algorithm s′i (as then it has not deviated from the original si).

The first case to consider is that at round t there are still at least two active players from K, including
player i. Because up to round t the original and modified algorithm Persistent_RR_Jump are identical,
such deviation s′i is not profitable for player i by the proof of Theorem 5.1.

The second case to consider is that at round t there is only one active player from K, i.e., player i.
Because t is the first round where player i deviated, there exists a round t′ < t at which the (k− 1)-st
player successfully transmitted. Without deviation, player i should transmit at time t′ + 1, and if i
has not done so, configuration K is worsening for i. No deviation of player i after time t′ + 1 can be
profitable for that player as well.

In case of restricted feedback – only either silence or 1 in case of success (no id’s are revealed), we
need a new mechanism for learning agents’ id’s. The mechanism is as follows. A player i transmits a
sequence of log(n) 0’s (silence) and 1’s which code its id, i.e., number i ∈ [n] in binary. We use this
mechanism in the proof of the theorem below.

Theorem 5.3. Algorithm BS_Jumps(n, k) can be modified in such a way that it is an (n, k)-AE, for
any 2 ≤ k ≤ n, has maximum latency O(k log(2n/k)), and it allows for learning of id’s of the active
players.

Proof. We will use the position of the token in the original algorithm BS_Jumps(n, k) to learn the
id’s of the players. The position of the token v encodes the following number in binary, which we
call the token code: following the path in the binary tree starting from the root to v, any time we go
left to a child, we append at the end of the code bit 0, and whenever we go right, we append the bit 1.
Clearly, if token v is at a leaf, say i ∈ [n], of the binary tree, the token code is equal to i, the id of that
player. Therefore, whenever in the original algorithm BS_Jumps(n, k), a leaf i successfully transmits
and the token is at that leaf, all other players can learn the id of player i.

We will show next how to modify algorithm BS_Jumps(n, k) in case when a player i successfully
transmits but the token is in an internal vertex v. By correctness of BS_Jumps, v is an ancestor of i in
the tree. By similar argument as above, the token code is a correct prefix (of length y, corresponding
to the depth of v) of the binary id of player i. Instead of continuing to the next step (and token

16

location) of the BS_Jumps, all players freeze that algorithm for x rounds, where x is the length of
a path from v to leaf i. During that time, only player i could transmit, and it does it according to
the digits of its id beyond the prefix consistent with the token code of v – we call it token descend.
More precisely, in the j-th round of the frozen period (of x rounds in total), if player i has 1 in
position y + j of its id, it transmits, otherwise it stays silent. All players receive feedback 1 on such
transmissions and feedback 0 on silences, which allow them to uniquely decode the remaining x bits
(to be concatenated with the token code, in order to get the full id of player i). However, if a collision
is heard at any point of a token descend, the player i who is actively executing the token descend
starts the grim-trigger sequence of 4n consecutive transmissions (and switch off after it). This is
to discourage any deviator from interrupting the learning process. After the token descend finishes
successfully, i.e., a whole id of a leaf is discovered and grim-trigger has not started (no collisions
during the token descend), the algorithm BS_Jumps is resumed by all active players.

Observe that the maximum latency remains O(k+ k log(n/k)), as BS_Jumps enhanced by the token
descend described above is still not slower than the original Binary Search; hence Lemmas 8 and 9
could be used.

Finally, we need to argue what happens if a deviation occurs during token descend. If the first deviation
occurs during token descend (recall that all other cases were already covered by Lemmas 10 and 12),
we apply the same construction of configuration as done recursively in the proof of Lemma 12, which
leads to grim-trigger sequence scheduled by the player who is doing the token descend. Clearly, it
would be a worsening configuration.

5.4 Applications of the framework to blockchain related problems

Our algorithm BS_Jumps resolves contention in a multi access single link channel and the algorithm is
also adversarial equilibrium. Such an algorithm can be applied in a multi agent setting like blockchain
in order to achieve consensus. Similarly with the context of a single link channel, in blockchain, only
one block proposer at a time can extend the chain. If more than one agent creates new blocks, there
would be a collision (a.k.a., fork of the chain). There are different mechanisms to achieve consensus in
blockchain but the most well-known are Proof-of-Work (PoW) Nakamoto [2009] and Proof-of-Stake
(PoS) Nguyen et al. [2019], such as Ouroboros, Algorand and Tendermint. Our algorithm can be
considered as a modification of PoS. We can interpret our algorithm as achieving consensus for the
the next k blocks. Each block producer wants its block to be included in the chain as soon as possible
and receive the respective block reward. We assume that the protocol distributes to n block proposers
different ids randomly. Then, for the next k blocks the protocol selects a configuration of k block
proposers. Those k agents will propose blocks based on the algorithm BS_Jumps(n, k), which takes
as input their ids. Each block producer is disincetivized to deviate from the given strategy since we
have proven that by deviating there exists another configuration in which the agent will not be able to
propose a block.

6 Analysis of Algorithm BS_Jumps – Proof of Theorem 3.1

We start by proving some technical invariants regarding properties of BS_Jumps(n, k) before any
deviation. Let ϕ be a feedback history, and for the sake of smooth argument, assume that αi[0] is the
root of the tree. The invariant for time step t is as follows:

Assumption: Assuming a fixed feedback history ϕ up to t − 1 and assuming that there was no
deviation by any agent by a step t ≥ 1,

Invt (i): for any t′ < t such that ϕ[t′] ∈ [n] and for any configuration K ∈ Kϕ, |K ∩Qαi[t′]| = 1,
for any i ∈ K;

Invt (ii): for any t′ < t′′ < t such that ϕ[t′] = i, ϕ[t′′] = j, queries Qαi[t′] and Qαj [t′′] are disjoint,
for any i, j ∈ K, i ̸= j;

Invt (iii): let x be the number of steps t′ < t with ϕ[t′] ∈ [n], then for any agent i active in step t:

• if ϕ[t− 1] = ∅ or ϕ[t− 1] ∈ [n], then for any subset A of k − x leaves located after the last
leaf below αi[t− 1] in the Eulerian tour, there is a configuration K ∈ Kϕ such that A ⊆ K;

17

• if ϕ[t− 1] =⊥ then for any subset A of k − x leaves located after the vertex αi[t− 1] in
the Eulerian tour such that |A ∩Qαi[t−1]| ≥ 2, there is a configuration K ∈ Kϕ such that
A ⊆ K;

Invt (iv): for any two agents i, j active in a step t′ ≤ t, their token locations in step t′ are the same,
i.e., αi[t

′] = αj [t
′];

Invt (v): there is a configuration K ∈ Kϕ such that K ∩Qαi[t] is a singleton, for any i ∈ K.

Note that Invt (iv) ensures that token locations, and thus subsequently asked queries, are consistent for
all active agents. Invt (i), (ii) and (iii), on the other hand, characterize any ϕ-compatible configuration:
identify unique subtree of single agents/leaves prior to the current token location and any configuration
of the remaining agents after the token location. Finally, Invt (v) says that for an ambiguous query Qv

there is a ϕ-compatible configuration K having exactly one element in Qv, i.e., ambiguous queries
cannot have only configurations resulting in feedback ∅ or ⊥. Now we prove Invt formally.
Lemma 6. For any feedback sequence ϕ fixed up to some step t− 1, and assuming there were no
deviations of any agent by step t, the Invariant Invt for t holds.

Proof. The proof is by induction on t. In the beginning (t = 1) all the five properties clearly hold, by
the initialization of the algorithm.

Suppose that the Invariant holds up to some time t− 1 ≥ 1, and we will prove it for t.

Proof of Invt (i). By inductive assumption for Invt−1 (i), the statement of Invt (i) holds for any
t′ < t− 1. By Invt−1 (iv), the token locations were consistent in each step t′ ≤ t− 1 across active
players in a configuration K ∈ Kϕ. Hence, the feedback ϕ[t′] was correctly answered based on the
size of intersection K ∩ Qαi[t′], where i is an arbitrarily chosen player active in step t′ ≤ t − 1.
Hence, since ϕ[t− 1] ∈ [n] then indeed |K ∩Qαi[t−1]| = 1 and Invt (i) follows also for t′ = t− 1.

Proof of Invt (ii). The corresponding queries Qαi[t′], Qαi[t′′] have to be disjoint, because the token
after receiving feedback in [n] jumps to some next vertices of the Eulerian tour, and they have
different sets of leaves below them. (Here, similarly as in the proof of Invt (i), we also use Invt−1 (iv)
about consistency of token locations across active processes in a step smaller equal to t− 1.) Hence,
Invt (ii) holds.

Proof of Invt (iii). Note that if ϕ[t− 1] ∈ {∅,⊥} then the value of x is the same as in the inductive
assumption for t−1. If ϕ[t−1] = ∅ then also no configuration K ∈ Kϕ has any leaf in Qαi[t−1], thus
all other k − x leaves are after the last leaf below αi[t− 1] on the Eulerian tour. If ϕ[t− 1] =⊥ then
at least two leaves under Qαi[t−1] must belong to A and all k − x elements must be after αi[t− 1]
on the Eulerian tour. Finally, in case ϕ[t − 1] ∈ [n], we have K ∩ Qαi[t−1] is a singleton. Hence,
the value x is bigger by 1 compared to Invt−1, and any set A of |A| = k − x leaves on the right of
the last leaf below αi[t − 1] is in some ϕ-compatible configuration K. Formally, we take any A′

satisfying Invt−1, of size k − x+ 1, which contains a single intersection with Qαi[t−1], and observe
that A = A′ \Qαi[t−1] could be any set of k − x leaves on the right of the last leaf below αi[t− 1].
And since A′ was a subset of some ϕ-compatible configuration K (until step t− 2), A is a subset of
the same configuration K and K is also compatible until step t− 1 (as, by Invt−1 (ii) and the fact
that A′ \A ⊆ K is a singleton, K \A has x elements being singletons in queries Qv corresponding
to token locations α[t′] = v such that ϕ[t′] ∈ [n], which also includes t′ = t− 1).

Proof of Invt (iv). It is enough to prove that if for an internal vertex v in the Eulerian tours (which
are the same for all active agents, as they start from the same node, by inductive assumption) the
query Qv is ambiguous for an active agent i, then it is also ambiguous for any other active agent j.
Being ambiguous for agent i means there are ϕ-compatible configurations K1,K2 containing agent
i that give different feedbacks on query Qv. Consider another active agent j ̸= i. It is enough to
consider the following three cases (others are symmetric and obtained by swapping roles of K1,K2).
In all of them we consider only cases when j does not belong to some of K1,K2, as otherwise those
configurations would also prove ambiguity of vertex v for agent j.

Case 1: K1 ∩Qv = ∅ and K2 ∩Qv = {j′}, for some j′ ∈ [n].

Note that j′ ̸= i since j′ ∈ Qv, i ∈ K1 and K1 ∩ Qv = ∅. If j′ ̸= j then we define K ′
1 =

(K1 \ {i}) ∪ {j} and K ′
2 = (K2 \ {i}) ∪ {j}. Observe that if j ∈ Qv then K ′

1 ∩ Qv = {j} and
K ′

2 ∩ Qv = {j, j′}, thus K ′
1,K

′
2 resulting in two different feedbacks on query Qv. Similarly, if

18

j /∈ Qv then K ′
1 ∩ Qv = ∅ and K ′

2 ∩ Qv = {j′}, thus again K ′
1,K

′
2 resulting in two different

feedbacks on query Qv . Hence, Qv is ambiguous for agent j as well. It remains to consider sub-case
j′ = j. Since v is an internal vertex, Qv contains at least two elements. Let j′′ ̸= j′ be another
element in Qv . Consider configurations K ′

1 = (K1 \ {i}) ∪ {j} and K ′
2 = (K2 \ {i}) ∪ {j′′}. They

both contain j = j′ and K ′
1 ∩Qv = {j} while K ′

2 ∩Qv = {j, j′′}, hence the feedback is different
for agent j and v is thus ambiguous.

Case 2: |K1 ∩Qv| ≥ 2 and K2 ∩Qv = {j′}, for some j′ ∈ [n].

We define K ′
1 = (K1 \ {i}) ∪ {j} and K ′

2 = (K2 \ {i}) ∪ {j}. Assume first that i = j′. If j /∈ Qv

then both K ′
1,K

′
2 contain agent j and result in feedback in [n] ∪ {⊥} in case of K ′

1 and feedback
∅ in case of K ′

2, thus v is ambiguous also for agent j. If j ∈ Qv then the feedback for K ′
1 and K ′

2
would be ⊥ and in [n], respectively, which again proves v being ambiguous for agent j. It remains to
consider case i ̸= j′. If j′ ̸= j then we re-define K ′

2 = (K2 \ {j′}) ∪ {j}. Now, if j ∈ Qv we have
|K ′

1 ∩Qv| ≥ 2 and K ′
2 ∩Qv = {j}, thus K ′

1,K
′
2 resulting in two different feedbacks on query Qv .

Similarly, if j /∈ Qv then |K ′
1 ∩ Qv| ≥ 1 and K ′

2 ∩ Qv = ∅, thus again K ′
1,K

′
2 resulting in two

different feedbacks on query Qv . Hence, Qv is ambiguous for agent j as well. It remains to consider
sub-case j′ = j. Since it implies that j ∈ K2, we have j /∈ K1. Hence, we get feedback ⊥ on
configuration K ′

1 and feedback in [n] on K2, both configurations containing agent j. Thus, v is also
ambiguous for agent j.

Case 3: |K1 ∩Qv| ≥ 2 and K2 ∩Qv = ∅.
In this case, we could create a configuration K ′

2 = (K2 \ {j′′}) ∪ {j′} for any j′ ∈ Qv and any
j′′ ∈ K2 being after leaves in Qv in the Eulerian tour. This way we consider K1 and K ′

2 as in Case 2.
Note that j′ obviously exists as Qv is non-empty, while j′′ exists because of Invt (iii) (note here that
for a given t, we prove invariants in the order from (i) to (v)).

Proof of Invt (v). By the token update rule, v is either a leaf belonging to any configuration in Kϕ|i,
for some active agent i – which automatically confirms existence of the desired configuration – or
is an internal ambiguous vertex. In the latter, the argument is exactly the same as in Case 3: if we
had ambiguity between feedbacks ∅ and ⊥, we could construct another ϕ-compatible execution with
feedback in [n].

This completes the proof of Lemma 6.

The next lemma shows that, without any deviation, the token locations are the same across all active
agents.

Lemma 7. If there are at least two active agents in the beginning of step t of an execution of
BS_Jumps(n, k) and there was no deviation by step t − 1, then for any two such agents i, j their
token locations in step t are the same, i.e., αi[t] = αj [t].

Proof. The proof is by induction on step t. For step 1 every agent sets its token location to the
left-most child on the root, hence they are the same. Suppose the lemma holds up to step t− 1; we
now prove it for step t.

It is enough to prove that if for an internal vertex v in the Eulerian tours (which are the same for all
active players, as they start from the same node, by inductive assumption) the query Qv is ambiguous
for an active agent i then it is also ambiguous for any other active agent j. We have to prove here
that the locations of the token αi[t] and αj [t] are the same at the beginning ot step t. But by our
assumption, there is no deviation of any player at the beginning of step t. We can therefore prove the
claim by exactly following the proof of Invt (iv).

The next result compares the tokens’ locations in parallel executions of algorithms BS_Jumps(n, k)
and BS (Binary Search), both on the same configuration.

Lemma 8. Consider a configuration of agents K, and their concurrent executions of algorithms BS
and BS_Jumps(n, k) without deviations. Then, in any step t:

(i) if an agent is active in both executions then its token in the latter is not behind the token in the
former, with respect to the left-to-right Eulerian tour along the binary tree,

(ii) if an agent is active in the latter then it is also active in the former.

19

Proof. Recall that, by Invt (iv) and Lemma 6, in each step of BS_Jumps(n, k) all active agents have
the same token location. The next token location is some vertex in the subsequent part of the Eulerian
tour. If an agent in the BS skips some vertices, it is because of feedback 0 or [n], and BS_Jumps(n, k)
does it as well. Therefore, the token in the latter is never behind the token in the former. This proves
point (i) of the lemma.

To prove point (ii), suppose, to the contrary, that for some configuration K some agent i ∈ K switches
off earlier when executing BS than when executing BS_Jumps(n, k). By point (i), at that time its
token location in the former is not after its token in the latter execution. By the query inclusion rule,
the switch-off may happen only when the token is on the path to the root and the feedback is [n]. Let
us call this vertex v. If the token in BS_Jumps(n, k) is at v at that time, it also switches off and we
obtain contradiction that finishes the proof. Otherwise, the token in BS_Jumps(n, k) is ahead of v
according to the Eulerian tour. If it was at v earlier, then because it is the same configuration as in the
other execution, agent i would also get feedback [n] to its query then and would switch off – leading
again to contradiction ending the proof. Hence, the token must have passed across v without choosing
it for the token location, which means that v was not ambiguous for configurations in Kϕ|i, where
ϕ is the feedback sequence by that time. But since K must also be in Kϕ|i, as ϕ is obtained during
the execution for configuration K, it means that for every configuration K ′ ∈ Kϕ the feedback is
the same as for K. However, the feedback for K when query Qv is considered is [n] – since agent i
switches off when configuration K executes BS, and it happens only when K ∩Qv = {i}. Hence, for
every configuration K ′ ∈ Kϕ, we have i ∈ K ′ and no other leaf in Qv belongs to K ′. Consequently,
although the token in the BS_Jumps(n, k) execution could have passed through v without choosing
it, it needed to go directly to the first leaf on the Eulerian tour that belongs to every ϕ-compatible
configuration K ′, which is i. Hence, i would have also been selected in BS_Jumps(n, k) when the
token was in its leaf, and thus switched off after that – this is a contradiction which concludes the last
remaining case of the proof of Lemma 8.

It follows from Lemma 8(ii) that in an execution of BS_Jumps(n, k) without deviating agent, no
agent starts its persistent inclusion – otherwise, it would become active for more than 4n step, which
is longer than the length of the whole left-to-right Eulerian tour along the binary tree, which would
violate Lemma 8(ii).

Lemma 9. BS_Jumps(n, k) has maximum revealing time O(k log(2n/k)), for any 2 ≤ k ≤ n.

Proof. The Binary Search algorithm BS has maximum latency of Θ(k + k log(n/k)) =
O(k log(2n/k)) Capetanakis [1979a]. It means that every agent has been revealed by that time
when running BS. By Lemma 8(ii), no agent i in any deviation-free execution of BS_Jumps(n, k)
could finish later than in the execution of BS on the same configuration of agent (i.e., in any step
t it cannot be active in the former while being switched off in the latter) – thus, it switches off
(which happens after successful selection, as grim-trigger sequence is not activated in deviation-free
executions) in O(k log(2n/k)) steps. Thus, the maximum revealing time is O(k log(2n/k)).

For a given agent i, we call a vertex vi in the binary tree a deviation point for agent i if vi is the first
vertex v in the left-to-right Eulerian tour such that

(a) for all configurations K containing agent i and the corresponding executions of
BS_Jumps(n, k) on them, the agent i starts deviating not earlier than when its token location
is at v or after (according to the Eulerian tour), and

(b) there is a configuration Ki containing agent i such that in the corresponding execution of
BS_Jumps(n, k) the player i starts deviating when its computed token location is at vertex v.

Lemma 10. If vi is after the leaf i (corresponding to agent i) according to the Eulerian tour, then
there is no improving configuration.

Proof. Indeed, according to the definition of vi, in each configuration K containing agent i, no
deviation occurs until the token location is in vi, but since token locations are consistent across agents
before the deviation (see Invt (iv) and Lemma 6, where t is the deviation step number), agent i
succeeds before its token location reaches vi, as vi is after leaf i in the Eulerian tour. Otherwise, it
would contradict Invt (i-iii) and Lemma 6 with respect to configuration K, uniquely characterized
before the token location vi (i.e., since i is alone in some preceding subtree, there is a step t′ with

20

αi[t
′] located at the root of some of such subtree, and feedback ϕ[t′] = 1, which means that only

agent i in K could have been revealed at that step). We conclude that the considered deviation does
not improve revealing time of agent i in any configuration.

It follows from Lemma 10 and the definition of (n, k)-AE that in such case we do not have to point
out any worsening configuration. The next two lemmas cover the analysis of the remaining cases.

Lemma 11. If vi is located on the path from the root to leaf i (corresponding to agent i), then there
is a worsening configuration.

Proof. Assume that agent i deviates (for the first time) when its token is in vi and vi is above i or
equal to i. Let K be the configuration for which it happens. The query inclusion rule says that since
vi is above leaf i (corresponding to player i), agent i should transmit in the algorithm; therefore, a
deviation means that it chooses not to transmit at that step. If K ∩Qvi = {i} then such a deviation
automatically worsens the latency of agent i, as it would normally be revealed while because of
deviation it is not. Note that there is at least one configuration K ∈ Kϕ|i satisfying K ∩Qvi = {i},
as otherwise Qvi would not be ambiguous (i.e., only feedbacks 0 or only feedbacks ⊥ would have
occurred) and thus vi would not have been chosen as token location by agent i.

Finally, observe that vi could be equal to i, but in this case a deviation (i.e., choosing not to be
included) would obviously worsen the revealing time of agent i whose turn is to be alone in the query
according to the algorithm.

Lemma 12. If vi is prior to the leaf i (corresponding to agent i) according to the Eulerian tour, then
there is a worsening configuration.

Proof. If vi is located on the path from the root to leaf i, then the claim follows from Lemma 11. In
the remainder, we assume that vi is not on that path – we show that there is a configuration that results
in some agent with smaller id j < i starting its grim-trigger sequence before successful selection of
agent i, and therefore delaying it till step at least 4n+ 1 and thus worsening its revealing time (which
would be O(k log(2n/k)) if agent i and all other agents were honest, by Lemma 9).

Consider the remaining case in which vi is located prior to the leaf i on the Eulerian tour, but not on
the path from the root to leaf i. By the definition of vi, there is a configuration K ∈ Kϕ|i during the
execution of which, agent i deviates when its token is in vertex vi. By the inclusion rule, without
deviation, agent i would not be included in the query in such step; thus, after deviation, it is revealed.
By the token update rule, vi is such that either it is an internal vertex and query Qvi is ambiguous or it
is a leaf j belonging to all configurations K ′ ∈ Kϕ|i. In the latter case, there is a collision in this step
(as the deviator i is revealed), and since in the subsequent steps the token location computed by agent
j will be after leaf j while j has not been revealed, agent j initiates persistent inclusion in the next 4n
steps. During that time, no other agent could be revealed, and thus it worsens the revealing time of
agent i. Note that in the above argument we used the fact that by the time of deviation, the algorithm
is correct in the sense that all active agents have consistent token locations v and are revealed if they
are in query Qv; this may not hold after the first deviation occurs in the execution.

In the remainder, we focus on the case when vi is an internal vertex of the binary tree. By Invt (v) and
Lemma 6, where t is the step when the deviation in token location vi happens, there is a configuration
K ∈ Kϕ such that |K ∩Qvi | = 1. By Invt (i) and Lemma 6, for any j ∈ Qvi there is a configuration
Kj ∈ Kϕ such that Kj ∩Qvi = {j}. Note that j ̸= i, as we consider now the case when leaf i is
not in the subtree of vi. By Invt (iv) and Lemma 6, all active agents except the deviating agent i use
the same token location vi at the deviation time t (we can apply this invariant because there were
no deviations before, and the current token locations have been computed based on the preceding
part of the execution without deviations). Therefore, in execution of any Kj , there will be a collision
feedback in the considered step t, because the deviator i will also be revealed. Thus, all active nodes
choose the left-most child of vi as the next token location. If the deviating agent i chooses again to
deviate and is revealed, then we apply recursively the above argument and continue to the next step
and move down the token location at all active and honest agents to the left-most child. If, however,
agent i chooses not to deviate, we restrict configurations to Kj having j in the subtree rooted at the
(right-side) sibling of the current token – for such configurations, the feedback in this step will be 0
and the token at honest active agents automatically moves to the left-most child of the sibling. We
continue the above recursive argument until we go down with the token location to a leaf, say j.

21

Now, if agent i deviates then, it creates a collision with agent j, which makes agent j to start persistent
inclusion in the next step (as its token location passes its corresponding leaf j). It obviously worsens
latency of agent i, as it could not be revealed for the next 4n steps.

The only remaining scenario is when agent i does not transmit together with player j. Observe that
the token has been moved from vi to j through a sequence of recursive moves of token locations
(described above), each next location at next level of the tree. Each of those intermediate token
locations were ambiguous from perspective of honest agents (by straightforward inductive argument
following from the recursive definition of next token location). At the same time, the recursive
construction prevents agent i from revealing itself for any ϕ-compatible configuration. Since we do a
recursive step at least once, and since each time the token moves down at least once, it also delays
the maximum revealing time of agent i by at least 1 comparing to the execution without deviation.
Indeed, in the latter, the single agent at the first ambiguous vertex would transmit immediately and the
token would jump immediately to the next ambiguous vertex in other parallel subtree. It completes
the argument for the last case and the whole proof.

This finishes the proof of Lemma 12.

Theorem 6.1 is a restatement of Theorem 3.1.
Theorem 6.1. Algorithm BS_Jumps(n, k) is an (n, k)-AE, for any 2 ≤ k ≤ n, and has revealing
time O(k log(2n/k)).

Proof. The maximum revealing time follows from Lemma 9. Being an (n, k)-AE follows from
Lemmas 10 and 12. More precisely, for deviations that first occur after leaf i on the Eulerian tour,
Lemma 10 proves that there is no improving configuration; thus, according to the definition of (n, k)-
AE, we do not need to prove existence of a worsening configuration. For other deviations, Lemma 12
proves that there is a worsening configuration. This completes the proof of the theorem.

7 Other related work

Combinatorial Group Testing (CGT), to which we applied our game theoretical framework, is a
classic area of learning theory, see the book Du et al. [2000]. It also has a connection with Contention
Resolution problem and coding, see the following representative papers providing influential frame-
works and solutions in both areas Capetanakis [1979a], Clementi et al. [2001], Kautz and Singleton
[1964], Porat and Rothschild [2011]. The adversarial aspects of CGT was also considered in the
classic (i.e., non game-theoretic) setting, c.f., Klonowski et al. [2022].

Shared channels model contention occurring in local-area networks, see Metcalfe and Boggs [1976],
Chlebus [2001]. Bender et al. [2005] proposed to study broadcasting in shared channels with queue-
free stations in the framework of adversarial queuing. Chlebus et al. [2012] introduced deterministic
distributed broadcast performed by stations with queues in adversarial shared channels. Anantharamu
et al. [2019] studied latency of broadcasting by deterministic algorithms in shared channels with
adversarial packet injection. The meaning of “adversarial” in these papers refers to the way of how
players are generated and is different to our adversary, who decides which k ≤ n players are present
in a configuration of the game. These papers do not study game theoretic settings.

Contention resolution (CR) algorithms have been studied to help multiple users use efficiently a shared
channel. Initially it was assumed that agents would respect the given algorithm. Assuming the channel
with collision detection, Greenberg and Winograd [1985] prove a lower bound of Ω

(
k log(n)
log(k)

)
on the

running time of any adaptive deterministic contention resolution algorithm. Capetanakis [1979a],
Capetanakis [1979b] and Hayes [1978] independently found an adaptive, deterministic tree algorithm
to solve the contention resolution problem with collision detection, which runs in O(k + k log(n/k))
time. If we do not have collision detection, then Clementi et al. [2001, 2003] proved a lower bound
of Ω(k log(n/k)) on the running time on any non-adaptive, therefore also any adaptive, deterministic
algorithm for the CR problem.

Komlós and Greenberg [1985] proved that there exist non-adaptive CR algorithms (that do not use
collision detection) with running time O(k+k log(n/k)). This matched the lower bound in Clementi
et al. [2001], but the proof of Komlós and Greenberg [1985] was existential using the probabilistic
method. Later, Kowalski [2005] showed a polynomial time construction of CR protocol of length

22

O(k logc n), for some constant c > 1, which employs partial selectors by Indyk [2002], Chlebus and
Kowalski [2005], efficient dispersers (Ta-Shma et al. [2007]) and superimposed codes (Kautz and
Singleton [1964] and Porat and Rothschild [2011]).

Acknowledgment-based, i.e., without collision detection, shared-channel algorithms, have been ex-
tensively studied in various communication problems, both deterministic and randomized Abramson
[1970], Chlebus et al. [2012], De Marco and Stachowiak [2017], Hradovich et al. [2021], Komlós
and Greenberg [1985], Kowalski [2005].

8 Discussion and further directions

We initiated a study of combinatorial group testing algorithms that are also adversarial equilibria – no
agent/element has an incentive to deviate under presence of an adversary. Our solution in case of
known size k of the hidden set is almost optimal, in the sense that the price of stability is O(log k), i.e.,
the ratio between our result and the absolute lower bound on revealing time Ω(k logn

log k) by Greenberg
and Winograd [1985]. Closing this gap, and more importantly, devising an efficient equilibrium for
less complex feedback function is an interesting direction. If negative results could be proved for
deterministic solutions, then the question about efficient mixed equilibria (i.e., using randomized
algorithms as strategies) would be interesting.

Another interesting question would be to try to close the gap between the bounds on maximum
revealing time where the number k of active agents is known, that is O(k log n), and the bounds
where k is unknown, which is O(nk−1).

Other potential areas of application include: considering different feedbacks (e.g., full quantitative)
and other related problems, e.g., discovering hidden multi-sets or transmissions of packets on a
multiple-access channel without collisions. One may also consider weaker “risk awerseness” in the
definition of AE, and how it influences efficiency of CGT.

Finally, it would be interesting to study connections of our games to repeated games, see, e.g.,
Osborne and Rubinstein [1994], where each agent has to transmit more than one packet.

Acknowledgments and Disclosure of Funding

The work of Dariusz R. Kowalski was partially supported by the NSF grant 2131538. The work of
Piotr Krysta has been partially supported by the Network Sciences and Technologies (NeST) initiative
of the University of Liverpool.

References
Norman M. Abramson. The ALOHA system: Another alternative for computer communications. In

Proceedings of the 1970 Fall Joint Computer Conference (AFIPS), pages 281–285. ACM, 1970.

Lakshmi Anantharamu, Bogdan S. Chlebus, Dariusz R. Kowalski, and Mariusz A. Rokicki. Packet
latency of deterministic broadcasting in adversarial multiple access channels. Journal of Computer
and System Sciences, 99:27–52, 2019.

Ned Augenblick, Jonathan T Kolstad, Ziad Obermeyer, and Ao Wang. Group testing in a pandemic:
The role of frequent testing, correlated risk, and machine learning. Technical report, National
Bureau of Economic Research, 2020.

Robert Axelrod and William D. Hamilton. The evolution of cooperation. Science, 211(4489):
1390–1396, 1981.

Michael A. Bender, Martin Farach-Colton, Simai He, Bradley C. Kuszmaul, and Charles E. Leiserson.
Adversarial contention resolution for simple channels. In Proceedings of the 17th ACM Symposium
on Parallel Algorithms and Architectures (SPAA), pages 325–332, 2005.

Sadegh Bolouki, Mohammad Hossein Manshaei, Vida Ravanmehr, Angelia Nedić, and Tamer Başar.
Group testing game. IFAC-PapersOnLine, 50(1):9668–9673, 2017. ISSN 2405-8963. 20th IFAC
World Congress.

23

John I. Capetanakis. Tree algorithms for packet broadcast channels. IEEE Transactions on Information
Theory, 25(5):505–515, 1979a. doi: 10.1109/TIT.1979.1056093.

John I. Capetanakis. Generalized tdma: The multi-accessing tree protocol. IEEE Transactions on
Communications, 27(10):1476–1484, 1979b.

Giorgos Chionas, Bogdan S. Chlebus, Dariusz R. Kowalski, and Piotr Krysta. Adversarial con-
tention resolution games. In Proceedings of the 32nd International Joint Conference on Artificial
Intelligence (IJCAI), 2023.

Bogdan S. Chlebus. Randomized communication in radio networks. In Panos M. Pardalos, Sanguthe-
var Rajasekaran, John H. Reif, and Jose D. P. Rolim, editors, Handbook of Randomized Computing,
volume I, pages 401–456. Kluwer Academic Publishers, 2001.

Bogdan S. Chlebus and Dariusz R. Kowalski. Almost optimal explicit selectors. In Proceedings of
the 15th International Symposium on Fundamentals of Computation Theory (FCT), volume 3623
of Lecture Notes in Computer Science, pages 270–280. Springer, 2005.

Bogdan S. Chlebus, Dariusz R. Kowalski, and Mariusz A. Rokicki. Adversarial queuing on the
multiple access channel. ACM Transactions on Algorithms, 8(1):5:1–5:31, 2012.

George Christodoulou, Katrina Ligett, and Evangelia Pyrga. Contention resolution under selfishness.
Algorithmica, 70(4):675–693, 2014.

Andrea E. F. Clementi, Angelo Monti, and Riccardo Silvestri. Selective families, superimposed codes,
and broadcasting on unknown radio networks. In Proceedings of the Twelfth Annual Symposium
on Discrete Algorithms, January 7-9, 2001, Washington, DC, USA, pages 709–718. ACM/SIAM,
2001.

Andrea E. F. Clementi, Angelo Monti, and Riccardo Silvestri. Distributed broadcast in radio networks
of unknown topology. Theoretical Computer Science, 302(1-3):337–364, 2003.

Graham Cormode and Marios Hadjieleftheriou. Finding frequent items in data streams. Proceedings
of the VLDB Endowment, 1(2):1530–1541, 2008.

Graham Cormode and Shan Muthukrishnan. What’s hot and what’s not: tracking most frequent items
dynamically. ACM Transactions on Database Systems (TODS), 30(1):249–278, 2005.

Graham Cormode, Flip Korn, Shanmugavelayutham Muthukrishnan, and Divesh Srivastava. Finding
hierarchical heavy hitters in data streams. In Proceedings 2003 VLDB Conference, pages 464–475.
Elsevier, 2003.

Graham Cormode, Minos Garofalakis, Shanmugavelayutham Muthukrishnan, and Rajeev Rastogi.
Holistic aggregates in a networked world: Distributed tracking of approximate quantiles. In
Proceedings of the 2005 ACM SIGMOD international conference on Management of data, pages
25–36, 2005.

Gianluca De Marco and Grzegorz Stachowiak. Asynchronous shared channel. In Proceedings of the
ACM Symposium on Principles of Distributed Computing (PODC), pages 391–400. ACM, 2017.

Robert Dorfman. The detection of defective members of large populations. The Annals of Mathemat-
ical Statistics, 14(4):436–440, 1943.

Dingzhu Du, Frank K Hwang, and Frank Hwang. Combinatorial group testing and its applications,
volume 12. World Scientific, 2000.

Joshua Engels, Benjamin Coleman, and Anshumali Shrivastava. Practical near neighbor search via
group testing. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan,
editors, Advances in Neural Information Processing Systems, volume 34, pages 9950–9962. Curran
Associates, Inc., 2021.

Amos Fiat, Yishay Mansour, and Uri Nadav. Efficient contention resolution protocols for selfish
agents. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 179–188. SIAM, 2007.

24

Phillip B Gibbons, Yossi Matias, and Viswanath Poosala. Fast incremental maintenance of approxi-
mate histograms. ACM Transactions on Database Systems (TODS), 27(3):261–298, 2002.

Anna C. Gilbert, Sudipto Guha, Piotr Indyk, Yannis Kotidis, Sivaramakrishnan Muthukrishnan,
and Martin J Strauss. Fast, small-space algorithms for approximate histogram maintenance. In
Proceedings of the thiry-fourth annual ACM symposium on Theory of computing, pages 389–398,
2002a.

Anna C. Gilbert, Yannis Kotidis, S Muthukrishnan, and Martin J Strauss. How to summarize the
universe: Dynamic maintenance of quantiles. In VLDB’02: Proceedings of the 28th International
Conference on Very Large Databases, pages 454–465. Elsevier, 2002b.

Albert G. Greenberg and Shmuel Winograd. A lower bound on the time needed in the worst case to
resolve conflicts deterministically in multiple access channels. Journal of the ACM, 32(3):589–596,
1985.

Michael Greenwald and Sanjeev Khanna. Space-efficient online computation of quantile summaries.
ACM SIGMOD Record, 30(2):58–66, 2001.

Jeremiah F. Hayes. An adaptive technique for local distribution. IEEE Transactions on Communica-
tions, 26(8):1178–1186, 1978.

Elijah Hradovich, Marek Klonowski, and Dariusz R. Kowalski. New view on adversarial queueing
on MAC. IEEE Communication Letters, 25(4):1144–1148, 2021.

Piotr Indyk. Explicit constructions of selectors and related combinatorial structures, with applications.
In Proceedings of the 13th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 697–704,
2002.

William Kautz and Roy Singleton. Nonrandom binary superimposed codes. IEEE Transactions on
Information Theory, 10(4):363–377, 1964.

Marek Klonowski, Dariusz R. Kowalski, and Dominik Pajak. Generalized framework for group
testing: Queries, feedbacks and adversaries. Theor. Comput. Sci., 919:18–35, 2022.

János Komlós and Albert G. Greenberg. An asymptotically fast nonadaptive algorithm for conflict
resolution in multiple-access channels. IEEE Trans. Inf. Theory, 31(2):302–306, 1985.

Dariusz Kowalski and Dominik Pajak. Scalable and efficient non-adaptive deterministic group testing.
In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in
Neural Information Processing Systems, volume 35, pages 15132–15146. Curran Associates, Inc.,
2022a.

Dariusz R. Kowalski. On selection problem in radio networks. In Marcos Kawazoe Aguilera and
James Aspnes, editors, Proceedings of the Twenty-Fourth Annual ACM Symposium on Principles
of Distributed Computing, PODC 2005, Las Vegas, NV, USA, July 17-20, 2005, pages 158–166.
ACM, 2005.

Dariusz R. Kowalski and Dominik Pajak. Light agents searching for hot information. In Luc De Raedt,
editor, Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence,
IJCAI 2022, Vienna, Austria, 23-29 July 2022, pages 363–369. ijcai.org, 2022b.

Weixin Liang and James Zou. Neural group testing to accelerate deep learning. In 2021 IEEE
International Symposium on Information Theory (ISIT), pages 958–963. IEEE, 2021.

Smriti Mallapaty et al. The mathematical strategy that could transform coronavirus testing. Nature,
583(7817):504–505, 2020.

Michael Maschler, Eilon Solan, and Shmuel Zamir. Game Theory. Cambridge University Press,
second edition, 2020.

Robert M. Metcalfe and David R. Boggs. Ethernet: Distributed packet switching for local computer
networks. Communications of the ACM, 19(7):395–404, 1976.

25

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2009. URL http://www.
bitcoin.org/bitcoin.pdf.

Cong T. Nguyen, Dinh Thai Hoang, Diep N. Nguyen, Dusit Niyato, Huynh Tuong Nguyen, and Eryk
Dutkiewicz. Proof-of-stake consensus mechanisms for future blockchain networks: Fundamentals,
applications and opportunities. IEEE Access, 7:85727–85745, 2019. doi: 10.1109/ACCESS.2019.
2925010.

Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V. Vazirani. Algorithmic Game Theory.
Cambridge University Press, 2007.

Martin Osborne and Ariel Rubinstein. A Course in Game Theory. MIT Press, 1994.

Ely Porat and Amir Rothschild. Explicit nonadaptive combinatorial group testing schemes. IEEE
Transactions on Information Theory, 57(12):7982–7989, 2011.

Nasa Sinnott-Armstrong, Daniel L Klein, and Brendan Hickey. Evaluation of group testing for
sars-cov-2 rna. MedRxiv, 2020.

Amnon Ta-Shma, Christopher Umans, and David Zuckerman. Lossless condensers, unbalanced
expanders, and extractors. Combinatorica, 27(2):213–240, 2007.

Shashanka Ubaru, Sanjeeb Dash, Arya Mazumdar, and Oktay Gunluk. Multilabel classification by
hierarchical partitioning and data-dependent grouping. In H. Larochelle, M. Ranzato, R. Hadsell,
M.F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33,
pages 22542–22553. Curran Associates, Inc., 2020.

Jeffrey Xu Yu, Zhihong Chong, Hongjun Lu, and Aoying Zhou. False positive or false negative:
Mining frequent itemsets from high speed transactional data streams. In VLDB, volume 4, pages
204–215, 2004.

26

http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf

	Introduction
	The Model, the Problem and the Preliminaries
	Game-theoretic framework for CGT
	Preliminaries
	Binary tree search algorithms

	Efficient equilibrium with known size k
	Equilibria for unknown size k
	Equilibria characteristics and lower bounds
	Equilibrium algorithm for unknown k

	Extensions and applications
	CR Games: Feedback with collision detection
	CR Games: Restricted feedback without collision detection
	CR Games: Restricted feedback without revealing id
	Applications of the framework to blockchain related problems

	Analysis of Algorithm BS_Jumps – Proof of Theorem 3.1
	Other related work
	Discussion and further directions

