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Abstract

We consider the problem of solving stochastic monotone variational inequalities
with a separable structure using a stochastic first-order oracle. Building on standard
extragradient for variational inequalities we propose a novel algorithm—stochastic
accelerated gradient-extragradient (AG-EG)—for strongly monotone variational
inequalities (VIs). Our approach combines the strengths of extragradient and
Nesterov acceleration. By showing that its iterates remain in a bounded domain and
applying scheduled restarting, we prove that AG-EG has an optimal convergence
rate for strongly monotone VIs. Furthermore, when specializing to the particular
case of bilinearly coupled strongly-convex-strongly-concave saddle-point problems,
including bilinear games, our algorithm achieves fine-grained convergence rates
that match the respective lower bounds, with the stochasticity being characterized
by an additive statistical error term that is optimal up to a constant prefactor.

1 Introduction

The variational inequality (VI) problem plays a central role in a wide range of optimization problems
with convex structure, including convex minimization, saddle-point problems, and games [Facchinei
and Pang, 2003, Nemirovski, 2004, Nemirovski et al., 2009, Juditsky et al., 2011, Jordan et al., 2023].
A general VI problem aims to find a solution z∗ ∈ Z that satisfies:

⟨W(z∗), z∗ − z⟩ ≤ 0, ∀z ∈ Z, (1)

where Z is a finite-dimensional closed and convex feasible set and W(·) is a monotone operator
in the following form:

W(z) = ∇F(z) +H(z) + J ′(z) ≡ Eξ[∇F̃(z; ξ)] + Eζ [H̃(z; ζ)] + J ′(z), (2)

where F is continuously differentiable with L-Lipschitz continuous gradient and is µ-strongly
convex,H is an M -Lipschitz monotone operator, J ′ ∈ ∂J is the subgradient of a simple and convex
function, ξ and ζ are drawn from distributions Dξ and Dζ , respectively. This formulation captures
a separable structure in which H usually models the competing forces in a system, and J models
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a nonsmooth factor. In addition, we consider the stochastic setting where we can only access ∇F
andH through their unbiased estimators∇F̃(z; ξ) and H̃(z; ζ) respectively.

A notable instance of the VI problem (1) with separable structure (2) is the widely studied bilinearly
coupled strongly-convex-strongly-concave saddle-point problem:

min
x∈Rn

max
y∈Rm

F (x,y) = F (x) +H(x,y)−G(y) ≡ Eξ [f(x; ξ)] + Eζ [h(x,y; ζ)]− Eξ [g(y; ξ)] ,

(3)
where H(x,y) ≡ x⊤By − x⊤ux + u⊤

y y is the bilinear coupling function with the coupling
matrix B ∈ Rn×m. Note that (3) is a special instance of (1) when taking F(z) = F (x) + G(y),
H(z) = [∇xH(x,y);−∇yH(x,y)] and J = 0. In addition to a wide range of applications in
economics, problems of form (3) are becoming increasingly important in machine learning. For
instance, (3) appears in reinforcement learning, differentiable games, regularized empirical risk
minimization, and robust optimization formulations. It can also be seen as a local approximation
of the nonconvex-nonconcave minimax games—e.g., the generative adversarial network (GAN)
[Goodfellow et al., 2020]—around a local Nash equilibrium [Mescheder et al., 2017, Nagarajan and
Kolter, 2017].

In this paper, we aim to improve the efficiency of solving (1) by utilizing the structural information
of the monotone operator in (2). More specifically, we consider the case when F is strongly
monotone, or zero. Although optimal convergence results have been obtained for the monotone VI
problem (1) [Chen et al., 2017] as well as the special case of convex-concave saddle-point problem
with bilinear coupling (3) [Chen et al., 2014], it remains open how to design an optimal algorithm
for the strongly monotone VI problem. Notably, for the special case (3) when F and/or G are
strongly convex, several concurrent works have independently obtained the optimal convergence
rates [Kovalev et al., 2022, Thekumparampil et al., 2022, Jin et al., 2022, Metelev et al., 2022, Li
et al., 2022b]. On the other hand, when both F and G are zero, optimal convergence results have
been obtained by Li et al. [2022a] and the accelerated-gradient optimistic gradient approach [Li et al.,
2022b]. We defer a more complete overview of related work to the appendix.

1.1 Main Contributions

We start with the strongly monotone VI problem in an unbounded feasible set, extending the scope
of recent work such as Jin et al. [2022] and going beyond earlier studies that focus on nonstrongly
monotone VIs in a bounded feasible set [Juditsky et al., 2011, Chen et al., 2017].1 We propose a
class of algorithms named stochastic accelerated gradient-extragradient (AG-EG), which combine
Nesterov acceleration with the extragradient method. By employing either a strong-convexity shifting
technique or a scheduled restarting scheme, our algorithm achieves convergence rates that match
the lower bounds for the general strongly monotone VI problem (1), the special SC-SC saddle-point
problem (3), and bilinear games, in both deterministic and stochastic settings, thus providing a unified
optimal solution. In sharp contrast to the accelerated mirror-prox (AMP) algorithm proposed by Chen
et al. [2017], Jordan et al. [2023], our analysis does not rely on the boundedness of the feasible set
Z , which makes our algorithm projection-free. We also extend our algorithm to VIs with bounded
feasible set and/or nondifferentiable convex regularization through proximal mapping. We summarize
our contributions as follows:

(1) We present a direct approach for separable strongly monotone VIs, where the iteration complexity
lower bound due to Zhang et al. [2022] is matched as O

(√
L
µ + M

µ + σ2

µ2ε2

)
log
(

L
µ

1
ε

)
, which

admits a sharp near-unity coefficient [§2.3, Theorem 2.3]. Here σ2 is the weighted, uniform
variance bound on the stochastic gradient and stochastic operator.

(2) We also present a stochastic AG-EG algorithm equipped with scheduled restarting, which achieves
the sharpest possible iteration complexity of O

((√
L
µ + M

µ

)
log
(
1
ε

)
+ σ2

µ2ε2

)
for finding an

ε-optimal point. The deterministic part matches the complexity lower bound in Zhang et al.
[2022], while the stochastic part matches the optimal statistical error.

1VIs in an unbounded feasible set is more difficult to solve because existing algorithms and analyses crucially
rely on the boundedness of the feasible set.
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When specializing the VI problem to bilinearly coupled SC-SC saddle-point problems, our results
have the following implications:

Strongly-convex-strongly-concave (SC-SC) Saddle-Point Problem. For the class of SC-SC
saddle-point problems, the stochastic AG-EG descent-ascent Algorithm 1, equipped with scaling
reduction, achieves an iteration complexity of

O

((√
LF

µF
∨ LG

µG
+

√
λmax(B

⊤B)
µFµG

)
log

(
1

ε

)
+ σ2

µ2
F ε2

)
, (4)

where F : Rn → R is LF -smooth and µF -strongly convex, G : Rm → R is LG-smooth and
µG-strongly convex. When the optimization problem is deterministic, the complexity upper bound
matches the lower bound of Zhang et al. [2022][§3.1, Corollary 2.8].

Bilinear Games. For bilinear games (∇f(x; ξ) = 0 and∇g(y; ξ) = 0 almost surely), Algorithm 1,
equipped with scheduled restarting achieves an iteration complexity of

O
(√

λmax(B
⊤B)

λmin(BB⊤)
log

(
4
√

λmin(BB⊤)λmax(B⊤B)

σBil

)
+

σ2
Bil

λmin(BB⊤)ε2

)
, (5)

where σ2
Bil is the variance of the stochastic gradient on the bilinear coupling term. When there

is no randomness, this complexity result reduces to O
(√

λmax(B⊤B)
λmin(BB⊤)

log
(
1
ε

))
for bilinear games,

matching the lower bound of Ibrahim et al. [2020] [§3.2, Corollary 3.3].2

Organization. The rest of this paper is organized as follows. Section 2 proposes the Accelerated
Gradient-Extragradient Descent-Ascent algorithm for strongly monotone VIs, showing that it achieves
an accelerated convergence rate, and extending to VIs with bounded domains with proximal operator.
Section 3 discusses two specific instances of saddle-point problems, where our proposed AG-EG
algorithm has a convergence rate that matches the corresponding lower bounds. Finally, Section 4
summarizes our results and suggests future directions.

Notation. Let λmax(M) (resp. λmin(M) be the largest (resp. smallest) eigenvalue of a real symmet-
ric matrix M. Let a∨ b ≡ max(a, b) (resp. a∧ b ≡ min(a, b)) denote the maximum (resp. minimum)
value of two reals a, b. For two nonnegative real sequences (an) and (bn), we write an = O(bn)
or an ≲ bn (resp. an = Ω(bn) or an ≳ bn) to denote an ≤ Cbn (resp. an ≥ Cbn) for all n ≥ 1
for a positive, numerical constant C, and let an ≍ bn if both an ≲ bn and an ≳ bn hold. We also
let an = Õ (bn) denote an ≤ Cbn where C hides a polylogarithmic factor in problem-dependent
constants. We let [x;y] ∈ Rn+m concatenate two vectors x ∈ Rn and y ∈ Rm. Finally for two
real symmetric matrices A and B, we denote A ⪯ B (resp. A ⪰ B) when v⊤(A − B)v ≤ 0
(resp. v⊤(A−B)v ≥ 0) holds for all vectors v.

2 Accelerated Gradient-Extragradient Descent-Ascent Algorithm

In this section, we focus on accelerating the extragradient algorithm for the strongly monotone VI
problem in (1) with separable structure (2). Our algorithm design draws inspiration from the work
of Chen et al. [2017] on the stochastic Accelerated MirrorProx (AMP) algorithm for nonstrongly
monotone VIs. The AMP algorithm applies Nesterov-type acceleration on top of the mirror-prox
method [Korpelevich, 1976, Nemirovski, 2004] and attains the optimal iteration complexity of

O
(√

L
ε + M

ε

)
. However, the big-O notation hides the diameter of the feasible set, and the existing

theory for the AMP algorithm can only deal with VIs with bounded domain. Our algorithm not
only achieves the optimal convergence rates for the strongly monotone VI problem with separable
structure but we also remove the dependency on the diameter of the feasible set. Therefore, our
algorithm can deal with VIs with unbounded domains.

2For the function class of bilinear games, we assume that n = m where B is a nonsingular square matrix,
so that λmin(BB⊤) > 0 and the complexity makes sense. See §3.2 for more on this.
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Throughout §2, we maintain conceptual simplicity by presenting all our algorithm designs in the
deterministic setting, while presenting the convergence results in the more general stochastic setting.
These results can be easily reduced to the deterministic setting when the stochastic noise vanishes.

2.1 Setting and Assumptions

In this section, we formally introduce our assumptions. We first state the smoothness and monotonicity
assumptions that we impose on F andH.

Assumption 2.1 (Monotonicity, strong convexity and smoothness) We assume that function F(·)
is continuously differentiable with L-Lipschitz continuous gradient and is µ-strongly convex. That is,
for any z, z′ ∈ Z ,

µ
2 ∥z − z′∥2 ≤ F(z)−F(z′)−∇F(z′)⊤(z − z′) ≤ L

2 ∥z − z′∥2.
Furthermore, operatorH(·) is monotone and M -Lipschitz in the sense that for any z, z′ ∈ Z ,

⟨H(z)−H(z′), z − z′⟩ ≥ 0, ∥H(z)−H(z′)∥ ≤M∥z − z′∥.

Second, we impose assumptions on the noise variance.

Assumption 2.2 (Unbiased gradients and variance bounds) We assume that z ∈ Z , samples
ξ ∼ Dξ and ζ ∼ Dζ are drawn from given distributions such that the following conditions hold:
Eξ[∇F̃(z; ξ)] = ∇F(z), Eζ [H̃(z; ζ)] = H(z), and

Eξ

[
∥∇F̃(z; ξ)−∇F(z)∥2

]
≤ σ2

Str, Eζ

[
∥H̃(z; ζ)−H(z)∥2

]
≤ σ2

Bil. (6)

For all results in this work, we suppose that Assumptions 2.1 and 2.2 hold with appropriate parameter
settings. Given a desired accuracy ε > 0, our goal is to find an ε-optimal point defined as:

Definition 2.1 (ε-Optimal point) A point z ∈ Z is called an ε-optimal point for the VI problem
in (1) if ∥z − z∗∥ ≤ ε.

2.2 The ExtraGradient (EG) Algorithm

We first consider the case where Z is the entire space Rn and the objective is smooth (J = 0).
The extragradient (EG) algorithm, introduced by Korpelevich [1976], is designed to address cyclic
behavior in saddle-point problems by introducing an extrapolated point for gradient evaluation. In
the context of VI problems (1), let zt represents the t-th iterate of the EG algorithm. The update rule
of EG is as follows:

zt+1 = zt − ηW
(
zt − ηW(zt)

)
, (7)

where η > 0 is the step size. For a L-smooth and µ-strongly monotone operatorW , Tseng [1995],
Mokhtari et al. [2020], Gidel et al. [2019a] have shown that the EG algorithm achieves an iteration
complexity of O(κ log(1/ε)), where κ = L/µ denotes the condition number of the problem.

2.3 Accelerating the ExtraGradient Algorithm, Direct Approach

The convergence rate of the EG algorithm is far from optimal for the strongly monotone VI problem
in (1) with separable structure (2). Firstly, the update rule in (7) takesW as a whole without utilizing
the separable structure. This prevents us from exploiting the properties of ∇F . Secondly, in the case
of bilinear games, the established lower bound for EG is Ω(

√
κ log(1/ε)) rather than Ω(κ log(1/ε)).

This discrepancy highlights the potential for accelerating the EG algorithm in various directions. We
first rewrite the EG update rule in (7) as follows:

zt− 1
2
= zt−1 − ηW(zt−1) = zt−1 − η

(
H(zt−1) +∇F(zt−1)

)
,

zt = zt−1 − ηW(zt− 1
2
) = zt−1 − η

(
H(zt− 1

2
) +∇F(zt− 1

2
)
)
. (8)

To accelerate the process based on ∇F , we consider Nesterov’s second acceleration scheme on
minimizing a single convex function F [Tseng, 2008, Lan and Zhou, 2018, Lin et al., 2020c]:

zmd
t−1 = (1− αt)z

ag
t−1 + αtzt−1, zt = zt−1 −

η

αt
∇F(zmd

t−1), z
ag
t = (1− αt)z

ag
t−1 + αtzt, (9)
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where αt is the extrapolation step size in the standard three-line Nesterov scheme. Here we adopt
the notation zmd and zag to indicate the middle point and the aggregated point [Chen et al., 2017],
respectively. Next, to achieve acceleration, we replace the gradient of ∇F evaluated at both zt−1

and zt− 1
2

in (8) by the gradient evaluated at the extrapolated point zmd
t−1 in (9). Furthermore, we shift

the index of zag by 1
2 to indicate the use of zt− 1

2
instead of zt in the zag update in (9). In addition,

we take into account the µ-strong convexity of F and shift the gradient of the strongly convex
part ∇z

[
µ
2 ∥z − z0∥2

]
= µ(z − z0) from ∇F(z) to H(z) asW(z) = (∇F(z)− µ(z − z0)) +

(H(z) + µ(z − z0)), we obtain the following update rule for a direct version of an accelerated EG
algorithm (different step size schemes for ηt are required for different algorithmic designs):

zmd
t−1 = (1− αt)z

ag
t− 3

2

+ αtzt−1,

zt− 1
2
= zt−1 − ηt

(
H(zt−1) +∇F(zmd

t−1)− µ(zmd
t−1 − zt−1)

)
,

zt = zt−1 − ηt

(
H(zt− 1

2
) +∇F(zmd

t−1)− µ(zmd
t−1 − zt− 1

2
)
)
,

zag
t− 1

2

= (1− αt)z
ag
t− 3

2

+ αtzt− 1
2
.

(10)

We call the algorithm in (10) the accelerated gradient-extragradient, direct approach (AG-EG-Direct),
and postpone its full description to Algorithm 2 in §C.1. The final output of the direct approach is
zT after T iterates. The following theorem records the convergence rate and iteration complexity of
AG-EG (direct approach).

Theorem 2.3 (Convergence of stochastic AG-EG, direct approach) Suppose Assumptions 2.1
and 2.2 hold. Fix any r ∈ (0, 1), β ∈ (0,∞), let κβ = L

µ + (1+β)M2

µ2 and set the step size
upper bound ᾱ ≡ r

1+
√

1+rκβ
. For any sequence of step sizes αt ∈ (0, ᾱ] and ηt =

αt

µ , the iterates of

stochastic AG-EG (direct approach) satisfy that for all t = 1, . . . , T , we have

E ∥zt − z∗∥2 ≤ ∥z0 − z∗∥2
(

L
µ + 1

) t∏
s=1

(1− αs) +
3σ2

µ2

t∑
s=1

α2
s

t∏
τ=s+1

(1− ατ ), (11)

where we define σ = 1√
3

√
1

1−rσ
2
Str + (2 + 1

β )σ
2
Bil.

In the rest of the paper, we use the same definition σ as in Theorem 2.3. The proof of Theorem 2.3 is
provided in §D.4. We further note that one possible choice of step size is to let αt ≡ α, such that (11)
reduces to

E ∥zt − z∗∥2 ≤ ∥z0 − z∗∥2
(

L
µ + 1

)
e−αt + 3σ2

µ2 α.

For any given T ≥ 1, by choosing the optimal α = 1
T

(
1 + log

(
µ2T
3σ2

(
L
µ + 1

)
∥z0 − z∗∥2

))
∧

ᾱ, (11) implies

E∥zT − z∗∥2 ≤ ∥z0 − z∗∥2
(

L
µ + 1

)
e−ᾱT + 3σ2

µ2T

(
1 + log

(
µ2T
3σ2

(
L
µ + 1

)
∥z0 − z∗∥2

))
.

Prescribing the desired accuracy ε > 0, the iteration complexity to output an ε-optimal minimax
point is 3

O
((√

L
µ + M

µ + σ2

µ2ε2

)
log
((

L
µ + 1

)
∥z0 − z∗∥2/ε2

))
.

We conjecture that the logarithmic factor in the optimal statistical rate σ2

µ2ε2 is removable using
a proper diminishing step size, a possibility that we reserve for future study. In the setting of
deterministic optimization, setting σ = 0 and r → 1−, β → 0+ in Theorem 2.3, we obtain the
optimal iteration complexity bound as follows:(

1 +
√
1 + L

µ + M2

µ2

)
log
((

L
µ + 1

)
/ε2
)
. (12)

3Throughout this work, we focus on the iteration complexity whereas the required number of queries to the
stochastic gradient oracle is three times the iteration complexity.
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Algorithm 1 Stochastic AcceleratedGradient-ExtraGradient (AG-EG) Descent-Ascent Algorithm,
with Scheduled Restarting

Require: Initialization z
[0]
0 , total number of epochs S ≥ 1, total number of per-epoch iterates

(Ts : s = 1, . . . ,S ), stepsizes (αt, ηt : t = 1, 2, . . .).
for s = 1, 2, . . . ,S do

Set zag

− 1
2

← z
[s−1]
0 , z0 ← z

[s−1]
0 , zmd

0 ← z
[s−1]
0

for t = 1, 2, . . . , Ts do
Draw samples ξt− 1

2
∼ Dξ from oracle, and also ζt− 1

2
, ζt ∼ Dζ independently from oracle

zt− 1
2
← zt−1 − ηt

(
H̃(zt−1; ζt− 1

2
) +∇F̃(zmd

t−1; ξt− 1
2
)
)

zag

t− 1
2

← (1− αt)z
ag

t− 3
2

+ αtzt− 1
2

zt ← zt−1 − ηt

(
H̃(zt− 1

2
; ζt) +∇F̃(zmd

t−1; ξt− 1
2
)
)

zmd
t ← (1− αt+1)z

ag

t− 1
2

+ αt+1zt

end for
Set z[s]

0 ← zag

Ts− 1
2

{//Warm-start using the output of the previous epoch}
end for
Output: z[S ]

0

Remark 2.4 Our complexity bounds fundamentally differs from the previous analysis [Chen et al.,
2017, Jordan et al., 2023] for separable smooth (strongly) monotone VIs. The convergence results
in previous studies are dependent on the diameter of the domain, whereas our convergence rate is
independent of the domain parameters and eliminates the need for projection onto a bounded domain.
Moreover, our contributions go beyond those of Chen et al. [2017] by extending the analysis to the
strongly monotone case. In comparison with Jordan et al. [2023], we design an algorithm where∇F
is strongly monotone and resolve the open problem of extending the analysis to the stochastic case.
Additionally, our complexity bound in (12) indicates a near-unity coefficient on the condition-number
exponent, improving the corresponding coefficient in Chen et al. [2017, Theorem 15] by an asymptotic
factor of 4.

The direct approach, which reduces to EG when∇F = 0 and µ = 0, falls short of attaining optimality
within the specific regime of bilinear games. In the next subsection, we will introduce a new algorithm
that can overcome this limitation.

2.4 Accelerating the ExtraGradient Algorithm with Scheduled Restarting

In this subsection, we solve problem (1) by further accelerating the stochastic EG algorithm. Rather
than directly relying on the strong monotonicity of ∇F , the inner updates of our new algorithm
are identical to the updates in (10) with µ = 0. Due to the domain-independent nature of our
analysis, we can apply the scheduled restarting technique [O’donoghue and Candes, 2015, Roulet
and d’Aspremont, 2017, Renegar and Grimmer, 2022] to the outer loop, accelerating the algorithm
from sublinear convergence to linear convergence. In addition, the output of our algorithm is the
aggregated point zag

T− 1
2

after T iterates. We present the full algorithm in Algorithm 1.

We first present the convergence rate of a single epoch (i.e., the inner loop) of Algorithm 1 in
Theorem 2.5. To accommodate more flexibility in the choice of parameters, we introduce three
constants r, β, and C in the theorem statement.

Theorem 2.5 (Convergence of stochastic AG-EG, one epoch) Suppose Assumptions 2.1 and 2.2
hold. For any fixed epoch length T ≥ 1, any constant r ∈ (0, 1), β ∈ (0,∞), C ∈ (0,∞), choose
step sizes αt =

2
t+1 and ηt such that

t
ηt

= 2
rL ∨B +

√
1+β
r Mt, (13)
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where B = σ
√
T (T+1)

C
√

E∥z0−z∗∥2
. The output zag

T− 1
2

of a single epoch of Algorithm 1 satisfies

E
∥∥∥zag

T− 1
2

− z∗
∥∥∥2 ≤ 2

µ(T+1)

(
2L
rT +A

√
1+β
r M

)
E ∥z0 − z∗∥2 + 2( 1

C +C)σ

µ
√
T

√
E ∥z0 − z∗∥2,

(14)
where the prefactor A ≡ 1 + C2Bη1 ≤ 1 + C2 reduces to 1 when σ = 0.

The proof of Theorem 2.5 is provided in §D.3. We make a few remarks on Theorem 2.5 as follows:

Remark 2.6 In the setting of deterministic optimization, by taking σ = 0, r → 1−, β → 0+ in our
analysis, with step size choice ηt =

t
2L+Mt , we obtain that

∥zag
T− 1

2

− z∗∥2 ≤ 2
µ(T+1)

(
2L
T +M

)
∥z0 − z∗∥2, (15)

In this setting, the algorithm is independent of B and requires no knowledge of ∥z0 − z∗∥2. In
the face of stochasticity, we choose C = 1 when the initial distance to the optimal point is known.
Alternatively, when only an over-estimate Γ0 of

√
E∥z0 − z∗∥2 is available, we can set (large

enough) C = Γ0√
E∥z0−z∗∥2

≥ 1 to obtain

E∥zag
T− 1

2

− z∗∥2 ≤ 2
µ(T+1)

(
2L

rT
+ 2
√

1+β
r M

)
Γ2
0 +

4σ
µ
√
T
Γ0. (16)

Remark 2.7 When the constants are not a concern, the coarse-grained choices of r = 1
2 and β = 1

would suffice. Nevertheless, to optimize the constants, the tradeoff between the deviation of r from 1
and β from 0 is crucial, as it determines a balance between the stochastic gradient noise variance
and the convergence rate coefficients.

To prepare for our multi-epoch result with the help of scheduled restarting, we perform an induction
based on (16) as follows. Supposing that E∥z[s−1]

0 − z∗∥2 ≤ Γ2
0e

1−s hold, by taking r = 1
2 and

β = 1, we have

E∥z[s]
0 − z∗∥2 ≲ L

µT 2
s
Γ2
0e

1−s + M
µTs

Γ2
0e

1−s + σ
µ
√
Ts
Γ0e

1−s
2 .

Setting the right-hand side of the above inequality to satisfy≤ Γ2
0e

−s, and solving for Ts, we need the

epoch length satisfies Ts ≍
√

L
µ + M

µ + σ2

µ2Γ2
0e

1−s . Thus, we can obtain the total iteration complexity
as

S∑
s=1

[√
L
µ + M

µ + σ2

µ2Γ2
0e

1−s

]
=
(√

L
µ + M

µ

)
S + σ2

µ2Γ2
0
· e

S−1
e−1 ,

where S ≡
⌈
log

Γ2
0

ε2

⌉
. This yields the following multi-epoch iteration complexity bound:

Corollary 2.8 (Iteration complexity of stochastic AG-EG with scheduled restarting) Under the
same condition of Theorem 2.5, the stochastic AG-EG with scheduled restarting in Algorithm 1 with
epoch length Ts ≍

√
L
µ + M

µ + σ2

µ2Γ2
0e

1−s has a total iteration complexity of

O
((√

L
µ + M

µ

)
log
(
1
ε

)
+ σ2

µ2ε2

)
. (17)

Note that the hard instance constructed by Zhang et al. [2022] can be modified in a straightforward
way to establish a lower bound of Ω

((√
L
µ + M

µ

)
log
(
1
ε

))
for our monotone VI (1), demonstrating

the optimality of Corollary 2.8 in the deterministic separable setting. An alternative optimality
argument proceeds as follows: the first term

√
L
µ matches the lower bound for the minimization of a

strongly convex function F [Nesterov, 2004], and the second term M
µ matches the lower bound for

VI for non-strongly monotone operator when ∇F = 0 [Ouyang and Xu, 2021]. This together gives
a lower bound for solving monotone VI (1) via a similar argument by Thekumparampil et al. [2022].
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It is worth noting that while both complexity bounds in Corollary 2.8 and Theorem 2.3 match
the lower bound in Zhang et al. [2022] for strongly monotone VIs with separable structure, the
direct approach in §2.3 reduces to the last-iterate independent-sample stochastic extragradient (SEG)
algorithm in bilinear games. Consequently, the deterministic part (σ = 0) fails to match the lower
bound in Ibrahim et al. [2020]. In the stochastic case with noise variance bounded away from zero,
the direct approach in §2.3 can exhibit nonconvergence behavior [Hsieh et al., 2020, §3]. The AG-EG
algorithm in §2.4 resolves this issue by restarting the average-iterate SEG, matching the lower bound
results (see §3.2 for more details). In addition, the complexity bound in (17) also eliminates the log

prefactor of the statistical error term σ2

µ2ε2 compared to Theorem 2.3. The optimality of our algorithm

lies in not only the optimization complexity but also the statistical error rate σ2

µ2ϵ2 . Here the ε-optimal
point z is defined as ∥z − z∗∥ ≤ ε.4

2.5 Extension of AG-EG to Proximal Algorithms

In previous subsections, we have focused on the case where the feasible set Z represents the entire
space and the nondifferentiable convex function J is dropped. We now extend the AG-EG algorithm
and its analysis to the more general setting that has a bounded feasible set (via Euclidean projection
onto the feasible set) as well as a nondifferentiable convex regularization term (via a proximal
operator). These settings are useful in various applications, such as the variational inequality on
the Lorentz cone where projection onto Z =

{
(x, t) ∈ R(n+1) : ∥x∥ ≤ t

}
is required [Chen et al.,

2017], and the two-player game that involves projection onto the probability simplex, among others.
To deal with bounded feasible set Z , we adopt a variant of the EG algorithm, where we project the
extrapolated point and the main iterates back onto the feasible set Z ofW:

zt− 1
2
= PZ [zt−1 − ηW(zt−1)] = argmin

z∈Z
⟨z − zt−1, ηW(zt−1)⟩+

1

2
∥z − zt−1∥2 ,

zt = PZ

[
zt−1 − ηW(zt− 1

2
)
]
= argmin

z∈Z

〈
z − zt−1, ηW(zt− 1

2
)
〉
+

1

2
∥z − zt−1∥2 , (18)

where PZ(z) = argminz′∈Z ∥z − z′∥2 is the Euclidean projection operator. To handle the nondif-
ferentiable simple convex function J , we replace the projection operator in (18) by the following
proximal mapping defined via a Bregman divergence B(·, ·):

proxJ
z(v) ≡ argmin

u∈Z
⟨v,u− z⟩+ B(z,u) + J(u). (19)

In fact, (18) can be seen as a special case of (19) when choosing the Bregman divergence B(z,u) =
1
2∥z − u∥2 and J(u) as the set indicator function of the feasible set Z . Therefore, by substituting
the prox-mapping (19) into the AG-EG updates introduced in §2.4, we obtain the more general
proximal AG-EG algorithm in Algorithm 3 (See in §C.2), which reduces to Algorithm 1 when
J = 0, B(z,u) = 1

2∥z − u∥2 and Z = Rn. Moreover, we assume that B(·, ·) is µB-strongly convex.
Without loss of generality, in contrast to the previous assumption of µ-strong convexity for F , we
instead assume that F is µ-strongly convex with respect to the Bregman divergence B(·, ·) (See, for
example, Hazan and Kale [2014], Xu et al. [2018]). Similar to Corollary 2.8, we have the following
iteration complexity result, whose proof is deferred to §D.5:

Corollary 2.9 (Iteration complexity of stochastic proximal AG-EG with scheduled restarting)
Under the same condition of Theorem 2.5, the stochastic proximal AG-EG with scheduled restarting
in Algorithm 3, with epoch length Ts ≍

√
L

µµB
+ M

µµB
+ σ2B(z0,z

∗)
µ2µBΓ2

0e
1−s , has a total iteration complexity

of

O
((√

L
µµB

+ M
µµB

)
log
(
1
ε

)
+ σ2B(z0,z

∗)
µ2µBε2

)
.

For the deterministic case, proximal AG-EG with scheduled restarting has a total iteration complexity
of O

((√
L

µµB
+ M

µµB

)
log
(
1
ε

))
to output an ε-optimal point of (1).

4The optimal statistical error rate σ2

µ2T
has been achieved by a multistage algorithm in Fallah et al. [2020],

where the ε-optimal point is defined by
∥∥z − z∗∥∥2 ≤ ε. In our paper, the ε-optimal point is defined by∥∥z − z∗∥∥ ≤ ε. Therefore, our statistical error rate can be translated into σ2

µ2T
using their definition, which

matches their result.
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3 Implications for Specific Instances

In this section, we discuss the implications of our AG-EG algorithm and its convergence rates when
applying to two instances of saddle-point problems.

3.1 Strongly-Convex-Strongly-Concave Saddle-Point Problem

For the stochastic bilinearly-coupled SC-SC saddle-point problem (3), we note that the smoothness
and strong convexity parameters LF , LG, µF , and µG of F and G may differ. To accommodate these
variations in curvature information, we employ a scaling reduction technique. This technique enables
us to convert the SC-SC with equal strong convexity parameters for F and G by reparametrizing the
objective function. The same argument is also applicable to the direct approach.

In lieu of (3), we consider

min
x̂

max
ŷ

F̂ (x̂, ŷ) = F (x̂) + Ĥ(x̂, ŷ)− Ĝ(ŷ),

where F̂ (x̂, ŷ) = F (x,y) with the symbolic reparametrization x̂ = x, ŷ =
√

µG

µF
y, Ĥ(x̂, ŷ) =

H(x,y), Ĝ(ŷ) = G(y) and also their derivatives ∇ŷĤ(x̂, ŷ) =
√

µF

µG
∇yH(x,y),∇Ĝ(ŷ) =√

µF

µG
∇G(y) (the stochastic oracles ĥ, ĝ follow the same rule). It is straightforward to verify

that F̂ (x̂, ŷ) is µ-strongly-convex-µ-strongly-concave. The essence of our update rules can be
summarized by the rescaled updates on y:

ŷt = ŷt−1 − ηt

(
−∇ŷh(x̂t− 1

2
, ŷt− 1

2
; ζt) +∇g(ŷmd

t−1; ξt− 1
2
)
)

⇔ yt = yt−1 − ηt · µF

µG

(
−∇yh(xt− 1

2
,yt− 1

2
; ζt) +∇g(ŷmd

t−1; ξt− 1
2
)
)
.

Therefore, it suffices to analyze Algorithm 3 for F̂ (x̂, ŷ) and due to this scaling reduction, we
only need to prove all results for the case of µF = µG = µ. It is also straightforward to justify
corresponding scaling changes as: L = LF ∨ µF

µG
LG, M =

√
µF

µG
λmax(B⊤B), and µ = µF . The

following corollary is recovered by reverting the scaling reduction from F̂ (x̂, ŷ) to F (x,y).

Corollary 3.1 (Iteration complexity of stochastic AG-EG on SC-SC saddle-point problem)
For solving (3), Algorithm 1 with an epoch length Ts ≍

√
LF

µF
∨ LG

µG
+
√

λmax(B
⊤B)

µFµG
+ σ2

µ2
FΓ2

0e
1−s

has a total iteration complexity of

O

((√
LF

µF
∨ LG

µG
+

√
λmax(B

⊤B)
µFµG

)
log
(
1
ε

)
+ σ2

µ2
F ε2

)
.

In the deterministic case, the iteration complexity in Theorem 2.8 matches the lower bound established

by Zhang et al. [2022], i.e., Ω
((√

LF

µF
∨ LG

µG
+
√

λmax(B⊤B)
µFµG

)
log
(
1
ε

))
. Moreover, our algorithm

achieves the optimal statistical rate of σ2

µ2
F ε2

up to a constant prefactor.

Remark 3.2 A well-known finding regarding the second scheme of Nesterov acceleration is its
connection to the primal-dual method [Lan and Zhou, 2018, Lin et al., 2020c]. This finding has
been incorporated into the design of the LPD algorithm [Thekumparampil et al., 2022], where a
Chambolle-Pock-style primal-dual method is utilized as an approximation of proximal point methods,
instead of the extragradient used in this paper. The LPD algorithm [Thekumparampil et al., 2022]
also achieves the optimal complexity for the deterministic bilinearly-coupled saddle-point problem.

3.2 Bilinear Games

In this subsection, we consider the particular case of bilinear games. We assume n = m such that B
is a nonsingular square matrix, ∇f(x; ξ) = 0 and∇g(y; ξ) = 0 a.s., so (3) reduces to

min
x

max
y

F (x,y) = Eζ [h(x,y; ζ)] = H(x,y) = x⊤By − x⊤ux + u⊤
y y, (20)
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and Algorithm 3 reduces to the independent-sample extragradient descent-ascent algorithm for (20).
The saddle point [z∗;ω⋆

y] in this case is the unique solution to the linear equation[
0 B

−B⊤ 0

] [
z∗

ω⋆
y

]
=

[
ux

uy

]
, which has a closed-form solution

[
z∗

ω⋆
y

]
=

[
−(B⊤)−1uy

B−1ux

]
.

Our results imply the following iteration complexity for solving stochastic bilinear games.

Corollary 3.3 (Iteration complexity of stochastic AG-EG, bilinear games) For solving (20),
choose the step sizes αt =

2
t+1 and ηt ≡ 1√

λmax(B⊤B)
, in which case Algorithm 1 with an epoch

length Ts ≍
√

λmax(B
⊤B)

λmin(BB⊤)
has the total iteration complexity of

O

(√
λmax(B

⊤B)
λmin(BB⊤)

log

(
4
√

λmin(BB⊤)λmax(B⊤B)

σBil

)
+

σ2
Bil

λmin(BB⊤)ε2

)
. (21)

Note that our choice of the step size is maximal and is independent of the noise. In the deterministic
setting, letting σBil ≍ ε 4

√
λmin(BB⊤)λmax(B⊤B), the complexity bound in Corollary 3.3 reduces

to O
(√

λmax(B
⊤B)

λmin(BB⊤)
log
(
1
ε

))
, which matches the lower bound in Ibrahim et al. [2020]. Notably,

Azizian et al. [2020b] proposed an algorithm achieving an upper bound that matches the lower bound
in Ibrahim et al. [2020].Li et al. [2022a] also proposed a lower-bound matching SEG algorithm that
uses a shared sample in both steps under an unbounded noise assumption. In contrast, our algorithm
is in the independent-sample setting with bounded noise variance.

Remark 3.4 Standard acceleration techniques do not attain the optimal nonasymptotic convergence
rate for bilinear games [Gidel et al., 2019b]. This limitation applies to various algorithms, including
the direct approach [§2.3], as well as several other acceleration techniques [Thekumparampil et al.,
2022, Kovalev et al., 2022, Jin et al., 2022], all of which fall short of achieving optimal acceleration
for bilinear games. Therefore, matching both lower bounds in a single algorithm in the general
stochastic setting has been an open problem. While Li et al. [2022b] present an algorithm that
achieves both lower bounds in a single algorithm, it relies on the use of optimistic gradients rather
than extragradients on the bilinear coupling function. Furthermore, our algorithm and analysis is
more general than those in Li et al. [2022b] as we can handle the general variational inequality with
proximal operators.

4 Conclusions

We have presented a stochastic extragradient-based acceleration algorithm, AG-EG, for solving
stochastic monotone variational inequalities with separable structure. The iteration complexity of our
algorithm matches the lower bound and is independent of the size of the feasible set. When specialized
to solving the bilinearly coupled saddle-point problem (3), our AG-EG algorithm simultaneously
matches lower bounds due to Zhang et al. [2022] and Ibrahim et al. [2020] for strongly-convex-
strongly-concave and bilinear games, respectively. To the best of our knowledge, this is the first time
that all three lower bounds have been met by a single algorithm. There are some remaining issues to
be addressed, however, including the case of one-sided nonstrong convexity, the setting of unbounded
noise variance, and the characterization of the full parameter regime dependency on λmin(BB⊤).
These are left as important directions for future research.
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The supplementary material is organized as follows. Section A provides specific examples in our
minimax optimization setting. Section B compares our work with prior related works. Section C
discusses the stochastic AG-EG algorithms in detail. Section D proves the main results. Finally,
Section E provides proofs of auxiliary lemmas that support the proofs of main results.

A Examples

We conduct an overview of some applications in this section.

Reinforcement learning. Reinforcement learning problems can be formalized as Markov Decision
Processes (MDPs) where, at each step t = 1, . . . , n, the learner receives a four-element tuple,
{st, at, rt, st+1}, where (st, at) is the current state-action pair, rt is the reward received upon
choosing at, and st+1 is the next state drawn from a transition distribution. For example, policy
evaluation with a linear function approximator can be formalized in terms of the minimization of the
mean squared projected Bellman-Error (MSPBE) [Dann et al., 2014] based on a set of tuples:

min
θ

1

2
∥Aθ − b∥2C−1 +

ρ

2
∥θ∥2 , (22)

where A = 1
n

∑n
t=1 ϕ(st)(ϕ(st) − γϕ(st+1))

⊤, b = 1
n

∑n
t=1 rtϕ(st), and C =

1
n

∑n
t=1 ϕ(st)ϕ(st)

⊤ for a given feature mapping ϕ. To reduce the computational cost incurred by
calculating the inverse of matrix C, Du et al. [2017] propose an alternative minimax form of (22):

min
θ

max
w

ρ

2
∥θ∥2 −w⊤Aθ − 1

2
∥w∥2C +w⊤b,

which falls under the umbrella of problem (3) whenever C is positive definite.

Quadratic games. Another class of examples arises in the setting of bilinear games, where the
minimax objective is:

F (x,y) =
1

2
x⊤MFx+ x⊤By − 1

2
y⊤MGy − x⊤vx + v⊤

y y, (23)

where MF ,MG are real-valued matrices of dimensions n × n and m ×m. This has the form (3)
with F (x) = 1

2x
⊤MFx− x⊤vx, G(y) = 1

2y
⊤MGy − v⊤

y y and H(x,y) ≡ x⊤By. A particular
case we will be considering in §3.2 is the case of bilinear games; i.e., where there are no quadratic
terms. We provide a detailed analysis of the nonasymptotic convergence in this setting in §3.2 and
show that the upper bound on the convergence rate given by our algorithm matches the lower bound
of Ibrahim et al. [2020, Theorem 3].

Regularized empirical risk minimization. The problem of the minimization of the regularized
empirical risk for convex losses and linear predictors is a core problem in classical supervised
learning:

min
x∈Rd

L(Ax) + F (x) ≡ 1

n

n∑
i=1

Li(a
⊤
i x) + F (x),

where A = [a1, . . . ,an]
⊤ ∈ Rn×d consists of feature vectors {ai}, Li(y) is a univariate convex loss

for the ith data point, and F (x) is a convex regularizer. A standard construction turns this empirical
risk minimization problem into a saddle-point problem as follows:

min
x∈Rd

max
y∈Rm

F (x) + x⊤Ay − L⋆(y)︸ ︷︷ ︸
Legendre dual function of L(y)

≡ F (x) +
1

n

n∑
i=1

xiy
⊤ai −

1

n

n∑
i=1

L⋆(yi).

See Zhang and Xiao [2017], Wang and Xiao [2017], Xiao et al. [2019] for in-depth discussions of
solving this problem under such a dual form of representation.

B Related Work

Here we compare our results with related work on saddle-point (minimax) optimization in the machine
learning and optimization literature. In Table 1, we compare our AG-EG algorithm with previous
work on solving saddle-point optimization problems, in terms of gradient complexity.
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Bilinear games. In the bilinear game setting, where LF = µF = LG = µG = 0, a lower bound has

been established by Ibrahim et al. [2020]: Ω
(√

λmax(B⊤B)
λmin(BB⊤)

log
(
1
ε

) )
. The study of bilinear game has

been initiated by Daskalakis et al. [2018] for understanding saddle-point optimization. They proposed
the optimistic gradient descent-ascent (OGDA) algorithm and achieved a sublinear convergence
rate. Subsequently, the classical methods of ExtraGradient (EG) and Optimistic Gradient Descent
Ascent (OGDA) algorithms were proven to have a linear convergence rate for strongly monotone and
Lipschitz operator with O

(
λmax(B

⊤B)
λmin(BB⊤)

log( 1ε )
)

iteration complexity [Gidel et al., 2019b, Mokhtari
et al., 2020]. Azizian et al. [2020a] proved that by considering first-order methods with a fixed
number of composed gradient evaluations and the last iterate as output (this class of methods is called
1-SCLI and excludes momentum and restarting), the O

(
λmax(B

⊤B)
λmin(BB⊤)

log( 1ε )
)

iteration complexity for
EG is optimal. In the absence of strong monotonicity assumption, Loizou et al. [2020] provided the
first set of nonasymptotic last-iterate convergence guarantees for smooth games over a noncompact
domain from a Hamiltonian viewpoint. The proposed stochastic Hamiltonian gradient method attains
convergence in the finite-sum bilinear game setting as well. In a very recent work, Kovalev et al.
[2022] derived an O

(
λmax(B

⊤B)
λmin(BB⊤)

log( 1ε )
)

iteration complexity for convex-concave saddle-point
problems with bilinear coupling. This is comparable to the rates in Daskalakis et al. [2018], Liang
and Stokes [2019], Gidel et al. [2019b], Mokhtari et al. [2020], Mishchenko et al. [2020]. To match
the Ω

(√
λmax(B⊤B)
λmin(BB⊤)

log( 1ε )
)

lower bound provided by Ibrahim et al. [2020], Azizian et al. [2020b]
considered EG with momentum. They used a perturbed spectral analysis encompassing Polyak
momentum. Nonetheless, Azizian et al. [2020b] only provided accelerated rates in the regime where
the condition number is large. Li et al. [2022a] is the first to show that a variant of stochastic
extragradient method converges at an accelerated rate for bilinear games with unbounded domain and
unbounded stochastic noise using restarted iterate averaging, and matches the lower bound [Ibrahim
et al., 2020] in the deterministic setting.

Smooth and strongly-convex-strongly-concave saddle point problems. Lower bound has been
recently studied by Ouyang and Xu [2021] for smooth convex-concave minimax optimization, and
by Zhang et al. [2022] for strongly-convex-strongly-concave saddle-point problems. The latter is of

order Ω
((√

LF

µF
∨ LG

µG
+
√

λmax(B⊤B)
µFµG

)
log
(
1
ε

) )
. As for upper bounds, earlier extragradient-based

methods [Tseng, 1995] and accelerated dual extrapolation algorithm [Nesterov and Scrimali, 2011]
achieve, when restricted to the bilinearly coupled problem, an iteration complexity of Õ

(
LF

µF
∨

LG

µG
+
√

λmax(B⊤B)
µFµG

)
. The same iteration complexity has also been achieved by Gidel et al. [2019a],

Mokhtari et al. [2020], Cohen et al. [2021] from a relative Lipschitz viewpoint.5 Improving upon

this result, Lin et al. [2020b] achieved a complexity of Õ
(√

LFLG

µFµG
+
√

λmax(B⊤B)
µFµG

)
using proper

acceleration methods. Wang and Li [2020] achieved6 Õ
(√

LF

µF
∨ LG

µG
+ 4

√
λmax(B⊤B)

µFµG
· LFLG

µFµG
+√

λmax(B⊤B)
µFµG

)
iteration complexity and a Hermitian-skew-based analysis nearly matches Zhang

et al. [2022] for the quadratic minimax game. For the same problem, Xie et al. [2021] achieved

a complexity of Õ
(

4

√
LFLG

µFµG

(
LF

µF
∨ LG

µG

)
+
√

λmax(B⊤B)
µFµG

)
. These works improve upon Lin et al.

[2020b] in a fine-grained fashion where separate Lipschitz constants on different parts of the objective
are allowed. In early 2022, three concurrent works Kovalev et al. [2022], Thekumparampil et al.
[2022], Jin et al. [2022] study the deterministic problem and independently match the lower bound by
Zhang et al. [2022]. The main novelty of this work is that both lower bounds Ibrahim et al. [2020]
and Zhang et al. [2022] are achieved in a single algorithm, plus an optimal statistical error rate up

5Mokhtari et al. [2020] report an Õ
(

LF∨LG+
√

λmax(B⊤B)

µF∧µG

)
complexity, but the mentioned complexity

can be obtained via a scaling-reduction argument: consider µF = µG case first, then consider the general case
by rescaling the y variable by a factor of

√
µG
µF

.

6Note the cross term here, Õ
(

4

√
λmax(B⊤B)

µF µG
· LFLG

µF µG

)
, cannot be absorbed into the summation of the

remaining terms.
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to a constant prefactor in the stochastic setting. Recently, an independent work by Li et al. [2022b]
also proposed a single algorithm that can achieve the optimal rates for both settings. However, their
algorithm is based on optimistic gradient, and is less general than the variational inequality setting
studied in this paper.

Method
Setting Bilinearly-coupled

SC-SC
Bilinear
Game

Stochastic
VI

EG / OGDA
[Mokhtari et al., 2020]

[Cohen et al., 2021]
LF

µF
∨ LG

µG
+
√

λmax(B⊤B)
µFµG

λmax(B
⊤B)

λmin(BB⊤)
✓✓✓

Minimax-APPA
[Lin et al., 2020b]

√
LFLG

µFµG
+
√

λmax(B⊤B)
µFµG

— XXX

Proximal Best Response
[Wang and Li, 2020]

√
LF

µF
∨ LG

µG
+ 4

√
λmax(B⊤B)

µFµG
· LFLG

µFµG
+
√

λmax(B⊤B)
µFµG

— XXX

DIPPA
[Xie et al., 2021]

4

√
LFLG

µFµG

(
LF

µF
∨ LG

µG

)
+
√

λmax(B⊤B)
µFµG

— XXX

LPD
[Thekumparampil et al., 2022]

√
LF

µF
∨ LG

µG
+
√

λmax(B⊤B)
µFµG

λmax(B
⊤B)

λmin(BB⊤)
XXX

APDG
[Kovalev et al., 2022]

√
LF

µF
∨ LG

µG
+
√

λmax(B⊤B)
µFµG

λmax(B
⊤B)

λmin(BB⊤)
XXX

PD-EG
[Jin et al., 2022]

√
LF

µF
∨ LG

µG
+
√

λmax(B⊤B)
µFµG

— XXX

EG+Momentum
[Azizian et al., 2020b] —

√
λmax(B

⊤B)
λmin(BB⊤)

XXX

SEG with Restarting
[Li et al., 2022a] —

√
λmax(B

⊤B)
λmin(BB⊤)

✓✓✓

AG-EG-Direct
(this work)

√
LF

µF
∨ LG

µG
+
√

λmax(B⊤B)
µFµG

λmax(B
⊤B)

λmin(BB⊤)
✓✓✓

AG-EG with Restarting
(this work)

√
LF

µF
∨ LG

µG
+
√

λmax(B⊤B)
µFµG

√
λmax(B

⊤B)
λmin(BB⊤)

✓✓✓

Lower Bound
[Zhang et al., 2022]

[Ibrahim et al., 2020]
Ω

((√
LF

µF
∨ LG

µG
+
√

λmax(B⊤B)
µFµG

)
log
(
1
ε

))
Ω̃

(√
λmax(B

⊤B)
λmin(BB⊤)

log
(
1
ε

))
—

Reference Stochastic
variational inequality

No bounded
domain assumption

No bounded
noise assumption

[Korpelevich, 1976]
[Juditsky et al., 2011]
[Hsieh et al., 2020]

L∨M
ε D

2 + σ2

ε2D
2 XXX XXX

[Li et al., 2022a] for bilinear games L∨M
ε Γ2

0 +
σ2

ε2 Γ
2
0 XXX ✓✓✓

[Chen et al., 2017]
[Lan and Ouyang, 2021]

√
L
εD + M

ε D
2 + σ2

ε2D
2 XXX XXX

This work
√

L
ε Γ0 +

M
ε Γ2

0 +
σ2

ε2 Γ
2
0 ✓✓✓ XXX

Lower Bound
[Zhang et al., 2022]

[Ouyang and Xu, 2021]
Ω

(√
L
εD + M

ε D
2 + σ2

ε2D
2

)
XXX XXX

Table 1: A comparison of the first-order gradient complexities of our proposed algorithm with selected
prevailing algorithms in terms of gradient complexity for solving a variety of saddle-point problems. Upper
tabular: comparison of several cases such as general bilinearly-coupled SC-SC, bilinear games for finding
an ε-optimal point, as well as a column indicating whether the stochastic variational inequality (VI) case is
discussed. Lower tabular: complexities for stochastic VI for finding a point of ε primal-dual gap, as well as
columns of domain/noise assumptions (note that Γ0 ≤ D). The row in red background is the convergence result
presented in this paper. The "—" indicates that the complexity does not apply to the given case. A polylogarithm
factor in each upper bound in the table is ignored.

Stochastic minimax optimization. Stochastic minimax optimization has been studied intensively
as a special case of the variational inequalities. It is widely assumed in the classical literature on
stochastic variational inequality [Juditsky et al., 2011] that the set of parameters and the variance
of the stochastic estimate of the vector field are bounded. Chen et al. [2017] extended the analysis
of Juditsky et al. [2011] and achieved an accelerated convergence rates for a class of variational
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Algorithm 2 Stochastic AcceleratedGradient-ExtraGradient (AG-EG) Descent-Ascent Algorithm,
Direct Approach
Require: Initialization z0, total number of iterates T , step sizes (αt, ηt : t = 1, 2, . . . )

1: Set zag
− 1

2

← z0, zmd
0 ← z0

2: for t = 1, 2, . . . , T do
3: Draw samples ξt− 1

2
∼ Dξ from oracle, and also ζt− 1

2
, ζt ∼ Dζ independently from oracle

4: zt− 1
2
← zt−1 − ηt

(
H̃(zt−1; ζt− 1

2
) +∇F̃(zmd

t−1; ξt− 1
2
)− µ(zmd

t−1 − zt−1)
)

5: zag
t− 1

2

← (1− αt)z
ag
t− 3

2

+ αtzt− 1
2

6: zt ← zt−1 − ηt

(
H̃(zt− 1

2
; ζt) +∇F̃(zmd

t−1; ξt− 1
2
)− µ(zmd

t−1 − zt− 1
2
)
)

7: zmd
t ← (1− αt+1)z

ag
t− 1

2

+ αt+1zt

8: end for
9: Output: zT

inequalities. Iusem et al. [2017] proposed an analysis of stochastic extragradient using large batches
to reduce the variance. Mertikopoulos et al. [2018] showed almost sure convergence of Stochastic EG
to a strictly coherent solution (a.k.a., star-strict monotone variational inequality problem). In a similar
vein, Ryu et al. [2019] showed that stochastic gradient descent ascent (SGDA) with anchoring almost
surely converges to strictly convex-concave saddle points. Fallah et al. [2020] developed a multistage
variant of SGDA and stochastic optimistic gradient descent ascent with constant learning rate decay
schedule. We improve upon their rates since their iteration complexity depends on a significantly
larger condition number than our method and is infinite in the absence of strong convexity and strong
concavity. They achieved the optimal dependency on the noise variance but suboptimal dependency
on the condition number. Hsieh et al. [2020] developed a double step size extragradient method
and proved the last-iterate convergence rates under an error bound condition similar to star-strong
monotonicity. Kotsalis et al. [2020] proposed a simple and optimal scheme for a class of generalized
strongly monotone (stochastic) variational inequalities. Due to the unconstrained nature of stochastic
bilinear games, these two assumptions do not hold in this case because the noise increases with
the value of the parameters. Mishchenko et al. [2020] showed that stochastic extragradients can be
computed under a different step size, which removes the bounded domain assumption, while still
requiring the bounded noise assumption. They also discussed the advantages of using the same
mini-batch for the two stochastic gradients in stochastic extragradient. In another vein, Jelassi et al.
[2020] focused on stochastic extragradient in games with a large number of players. They proposed
an extragradient algorithm that randomly updates a small subset of the players at each iteration. Yan
et al. [2019, 2020], Rafique et al. [2021] studied the nonsmooth setting and obtained fast rates. More
recent works consider minimax optimization problems without convexity and/or concavity, where the
goal is to find first-order and second-order stationary points [Lin et al., 2020a, Guo et al., 2020, Chen
et al., 2021, Yang et al., 2022, Luo et al., 2022, Sebbouh et al., 2022]. One interesting direction is to
extend our algorithm to these settings and obtain a fine-grained complexity bound with optimal rates.

C Algorithms

In this section we provide delayed algorithms for the AG-EG (direct approach) and the AG-EG with
bounded domain and proximal operator.

C.1 Stochastic AG-EG, Direct Approach

The full algorithm for AG-EG, direct approach is shown in Algorithm 2.

C.2 Stochastic AG-EG, with Restarting and Projection

The full algorithm for AG-EG, with restarting and projection is shown in algorithm 3.
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Algorithm 3 Stochastic AcceleratedGradient-ExtraGradient (AG-EG) Descent-Ascent Algorithm,
with Scheduled Restarting

Require: Initialization z
[0]
0 , total number of epochs S ≥ 1, total number of per-epoch iterates

(Ts : s = 1, . . . ,S ), step sizes (αt, ηt : t = 1, 2, . . .), ratio of strong-convexity params. R = µG

µF

for s = 1, 2, . . . ,S do
Set zag

− 1
2

← z
[s−1]
0 , z0 ← z

[s−1]
0 , zmd

0 ← z
[s−1]
0

for t = 1, 2, . . . , Ts do
Draw samples ξt− 1

2
∼ Dξ from oracle, and also ζt− 1

2
, ζt ∼ Dζ independently from oracle

zt− 1
2
← proxηtJ

zt−1

(
ηtH̃(zt−1; ζt− 1

2
) + ηt∇F̃(zmd

t−1; ξt− 1
2
)
)

zag

t− 1
2

← (1− αt)z
ag

t− 3
2

+ αtzt− 1
2

zt ← proxηtJ
zt−1

(
ηtH̃(zt− 1

2
; ζt) + ηt∇F̃(zmd

t−1; ξt− 1
2
)
)

zmd
t ← (1− αt+1)z

ag

t− 1
2

+ αt+1zt

end for
Set z[s]

0 ← zag

ts− 1
2

{//Warm-start using the output of the previous epoch}
end for
Output: z[S ]

0

D Proofs of Main Results

In this section we present the proofs of our main results. §D.1 illustrates the scaling reduction
argument used in the instance of bilinearly-coupled saddle-point problem. §D.2 provides auxiliary
lemmas. With a slight adjustment of their presentation order §D.3 proves Theorem 2.5, §D.4 proves
Theorem 2.3, §D.5 proves Corollary 2.9 and finally §D.6 proves Corollary 3.3. Throughout the
section, we assume that the Bregman divergence B(·, ·) is µB-strongly convex.

D.1 Scaling Reduction Argument

Here we illustrate the scaling reduction argument that reduces our analysis of our AG-EG Algorithm 1
under bilinearly-coupled saddle-point problem to the one with equal strong-convexity parameters of
F and G using a reparameterized objective function; the same argument applies to Algorithm 2 and
we omit the details. The idea is in fact analogous to mirror descent-ascent with respect to a Bregman
divergence, and our goal here is to detail this argument for our analysis.

In lieu to (3) we consider

min
x̂

max
ŷ

F̂ (x̂, ŷ) = F (x̂) + Ĥ(x̂, ŷ)− Ĝ(ŷ),

where we have F̂ (x̂, ŷ) = F (x,y) with the symbolic reparameterization x̂ = x, ŷ =
√

µG

µF
y,

Ĥ(x̂, ŷ) = H(x,y), ĥ(x̂, ŷ; ζ) = h(x,y; ζ), Ĝ(ŷ) = G(y), ĝ(ŷ; ξ) = g(y; ξ) and also their
derivatives

∇ŷĤ(x̂, ŷ) =

√
µF

µG
∇yH(x,y), ∇ŷĥ(x̂, ŷ; ζ) =

√
µF

µG
∇yh(x,y; ζ),

and

∇Ĝ(ŷ) =

√
µF

µG
∇G(y), ∇ĝ(ŷ; ξ) =

√
µF

µG
∇g(y; ξ).

It is straightforward to verify F̂ (x̂, ŷ) is arguably µ-strongly-convex-µ-strongly-concave. The
essence of our update rules is captured by 8 lines corresponding to Lines 5–8 in Algorithm 1, which
becomes:

x̂t− 1
2
= x̂t−1 − ηt

(
∇f(x̂md

t−1; ξt− 1
2
) +∇x̂h(x̂t−1, ŷt−1; ζt− 1

2
)
)
, (24a)

ŷt− 1
2
= ŷt−1 − ηt

(
−∇ŷh(x̂t−1, ŷt−1; ζt− 1

2
) +∇g(ŷmd

t−1; ξt− 1
2
)
)
, (24b)
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x̂ag
t− 1

2

= (1− αt)x̂
ag
t− 3

2

+ αtx̂t− 1
2
, (24c)

ŷag
t− 1

2

= (1− αt)ŷ
ag
t− 3

2

+ αtŷt− 1
2
, (24d)

x̂t = x̂t−1 − ηt

(
∇f(x̂md

t−1; ξt− 1
2
) +∇x̂h(x̂t− 1

2
, ŷt− 1

2
; ζt)

)
, (24e)

ŷt = ŷt−1 − ηt

(
−∇ŷh(x̂t− 1

2
, ŷt− 1

2
; ζt) +∇g(ŷmd

t−1; ξt− 1
2
)
)
, (24f)

x̂md
t = (1− αt+1)x̂

ag
t− 1

2

+ αt+1x̂t, (24g)

ŷmd
t = (1− αt+1)ŷ

ag
t− 1

2

+ αt+1ŷt. (24h)

The rest translations are also straightforward, represented by

x̂t− 1
2
= x̂t−1 − ηt

(
∇f(x̂md

t−1; ξt− 1
2
) +∇x̂h(x̂t−1, ŷt−1; ζt− 1

2
)
)

⇔ xt− 1
2
= xt−1 − ηt

(
∇f(xmd

t−1; ξt− 1
2
) +∇xh(xt−1,yt−1; ζt− 1

2
)
)
,

as well as

ŷt = ŷt−1 − ηt

(
−∇ŷh(x̂t− 1

2
, ŷt− 1

2
; ζt) +∇g(ŷmd

t−1; ξt− 1
2
)
)

⇔ yt = yt−1 − ηt · µF

µG

(
−∇yh(xt− 1

2
,yt− 1

2
; ζt) +∇g(ŷmd

t−1; ξt− 1
2
)
)
.

It is also straightforward to justify that Assumptions 2.1 and 2.2 are rediscovered by reverting
the scaling reduction from F̂ (x̂, ŷ) to F (x,y). Therefore, it suffices to analyze Algorithm 1 for
F̂ (x̂, ŷ) and due to this scaling reduction, we only need to prove all results for the case of µF

µG
= 1.

To keep the notations simple, till the rest of this work we slightly abuse the notations and remove the
hats in all symbols.

D.2 Auxiliary Lemmas

We first state the following basic lemma to handle the inner-product induced terms for extragradient
analysis:

Lemma D.1 . Given θ,φ1,φ2 ∈ Z , a simple and convex function J(·), and also δ1, δ2 that satisfies

φ1 = proxJθ (δ1), φ2 = proxJθ (δ2), (25)

then for any z ∈ Z we have

⟨δ2,φ1 − z⟩+ J(φ1)− J(z) ≤ 1

2µB
∥δ2 − δ1∥2 + B(θ, z)− B(φ2, z)− B(θ,φ1). (26)

Furthermore, when taking J = 0, Z = Rd and B(z,u) = 1/2∥z − u∥2, (26) reduces to:

⟨δ2,φ1 − z⟩ ≤ 1

2
∥δ2 − δ1∥2 +

1

2

[
∥θ − z∥2 − ∥φ2 − z∥2 − ∥θ −φ1∥2

]
. (27)

Proof of Lemma D.1 is provided in §E.1. Lemma D.1 is standard and commonly adopted in
extragradient-based analysis; see Lemma 2 of [Chen et al., 2017] for one with similar flavor.

En route to our proofs of Theorems 2.5 and 2.3, we first introduce some notations. Let z̃ ∈ Z and let
the pointwise primal-dual gap function be

V (z | z̃) = F(z)−F(z̃) + ⟨H(z̃), z − z̃⟩ . (28)

We prove that this quantity is lower bounded by a positive quadratic function:

Lemma D.2 For L-smooth and µ-strongly convex F(z), simple and convex J , and for any z ∈ Z
we have

V (z | z∗) = F(z)−F(z∗) + ⟨∇H(z∗), z − z∗⟩+ J(z)− J(z∗) ≥ µ

2
∥z − z∗∥2 . (29)
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Proof of Lemma D.2 is provided in §E.2. Our final auxiliary lemma on the key properties on step
sizes writes as follows:

Lemma D.3 Our step size choice (13) satisfies (i) ηt ≤ t
B ; (ii)

(
t
ηt

: t ≥ 1
)

is a nonnegative,

nondecreasing arithmetic sequence with common difference
√

1+β
r M ; (iii) Mηt ≤ 1, and (iv) the

step size condition

r − 2L

t+ 1
ηt − (1 + β)M2η2t ≥ 0. (30)

Proof of Lemma D.3 is provided in §E.3.

D.3 Proof of Theorem 2.5

Proof.[Proof of Theorem 2.5]

We first introduce some notations. Denote the incurred stochastic noise terms as

∆
t− 1

2

F ≡ ∇F̃(zmd
t−1; ξt− 1

2
)−∇F(zmd

t−1), ∆
t− 1

2

H ≡ H̃(zt−1; ζt− 1
2
)−H(zt−1),

∆t
H ≡ H̃(zt− 1

2
; ζt)−H(zt− 1

2
).

(31)

For our martingale analysis we adopt the filtrations Fξ
t ≡ σ

(
ξs : s =

1
2 ,

3
2 , . . . , s ≤ t

)
and Fζ

t ≡
σ
(
ζs : s =

1
2 , 1,

3
2 , . . . , s ≤ t

)
, and also Ft ≡ σ(Fξ

t ∪ F
ζ
t ) be the σ-algebra generated by the union

of Fξ
t and Fζ

t . We are ready for the proof which proceeds as the following steps:

Step 1. Estimating the primal-dual gap function difference sequence. We provide the following
Lemma (D.4), whose proof is in §E.4:

Lemma D.4 For arbitrary z̃ ∈ Z the iterates of Algorithm 1 satisfy for t = 1, . . . , T , almost surely

V (zag
t− 1

2

| z̃)− (1− αt)V (zag
t− 3

2

| z̃)

≤ αt⟨∇F(zmd
t−1) +H(zt− 1

2
), zt− 1

2
− z̃⟩+ α2

tL
2

∥∥∥zt− 1
2
− zt−1

∥∥∥2. (32)

Note the proof only relies on the interpolation updates in our algorithm as in Lines 6 and 8, and hence
this result holds in a per-trajectory (almost-sure) fashion.

Step 2. We target to prove the following lemma, the complete proof is in §E.5

Lemma D.5 For our choice of ηt that satisfies, for a given r ∈ (0, 1), (30) of Lemma D.3(iv) that
r − 2L

t+1ηt − (1 + β)M2η2t ≥ 0, we have for any z̃ ∈ Rn, ỹ ∈ Rm and t = 1, . . . , T that

t(t+ 1)E[V (zag
t− 1

2

| z̃)]− (t− 1)tE[V (zag
t− 3

2

| z̃)]

≤ t

ηt
E
[
∥zt−1 − z̃∥2 − ∥zt − z̃∥2

]
+
(

1
1−rσ

2
Str + (2 + 1

β )σ
2
Bil

)
tηt,

(33)

Now for a given 1 ≤ T ≤ T , we finish the proof by telescope the above recursion for t =
1, . . . , T . We conclude from our choice of step size as in (13) that satisfies (30) so by denoting
σ ≡ 1√

3

√
1

1−rσ
2
Str + (2 + 1

β )σ
2
Bil, we have by Lemma D.3(i)

(
1

1−rσ
2
Str + (2 + 1

β )σ
2
Bil

) T∑
t=1

tηt = 3σ2
T∑
t=1

tηt ≤ 3σ2 · 1
B

T∑
t=1

t2

= 3σ2 ·
C
√

E[∥z0 − z̃∥2]
σ[T (T + 1)2]1/2

·
T (T + 1

2 )(T + 1)

3
=
T (T + 1

2 )(T + 1)

[T (T + 1)2]1/2
· σC

√
E[∥z0 − z̃∥2],
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where B ≡ σ[T (T+1)2]1/2

C
√

E[∥z0−z̃∥2]
. Finally by summing over t = 1, . . . , T , we have

T (T + 1)E[V (zag
T − 1

2

| z̃)]

≤
T∑
t=1

t

ηt
E
[
∥zt−1 − z̃∥2 − ∥zt − z̃∥2

]
+
(

1
1−rσ

2
Str + (2 + 1

β )σ
2
Bil

) T∑
t=1

tηt

=
1

η1
E∥z0 − z̃∥2 +

T∑
t=2

(
t

ηt
− t− 1

ηt−1

)
E∥zt−1 − z̃∥2 − T

ηT
E∥zT − z̃∥2

+
T (T + 1

2 )(T + 1)

[T (T + 1)2]1/2
· Cσ

√
E∥z0 − z̃∥2.

Following the above derivations and apply Lemma D.3(ii) we obtain t
ηt
− t−1

ηt−1
=
√

1+β
r M . Rear-

ranging the terms along with Jensen’s inequality, and noting that

T (T + 1
2 )(T + 1)

[T (T + 1)2]1/2
≤

T (T + 1
2 )(T + 1)

[T (T + 1)2]1/2
≤ [T (T + 1)2]1/2

proves the following inequality (34).

T (T + 1)E[V (zag
T − 1

2

| z̃)] + T
ηT

E∥zT − z̃∥2

≤ 1

η1
E∥z0 − z̃∥2 +

√
1+β
r M

T∑
t=2

E∥zt−1 − z̃∥2 + [T (T + 1)2]1/2 · Cσ
√
E∥z0 − z̃∥2.

(34)

Step 3. Bounded Iterates We conduct the following “bootstrapping” argument to arrive at our
final theorem. Starting from the recursion (34) we have by setting z̃ = z∗, Lemma D.2 implies that
its first summand on the left hand T (T +1)E[V (zag

T − 1
2

| z∗)] is nonnegative, and hence we can drop
it and have for any T = 1, . . . , T

T
ηT

E∥zT − z∗∥2 (35)

≤ 1

η1
E∥z0 − z∗∥2 +

√
1+β
r M

T∑
t=2

E∥zt−1 − z∗∥2 + [T (T + 1)2]1/2 · Cσ

√
E ∥z0 − z∗∥2

= ( 2rL ∨B)E∥z0 − z∗∥2 +
√

1+β
r M

T∑
t=1

E∥zt−1 − z∗∥2︸ ︷︷ ︸
≡QT −1

+ [T (T + 1)2]1/2 · Cσ

√
E ∥z0 − z∗∥2︸ ︷︷ ︸

R0

.

(36)

Converting (36) to a version of partial sumQT −1 ≡
∑T

t=1 E∥zt−1− z∗∥2 that for all T = 1, . . . , T

T
ηT

E∥zT − z∗∥2 =
T
ηT

(QT −QT −1) ≤
√

1+β
r MQT −1 +R0 + ( 2rL ∨B)Q0︸ ︷︷ ︸

D0

. (37)

(37) is equivalently written as

T
ηT
QT ≤

T + 1

ηT +1
QT −1 +D0.

From here and onwards, we denote κt ≡ t
ηt

= 2
rL∨B+

√
1+β
r Mt for each t = 1, . . . , T . Dividing

both sides of the above display by κT κT +1 = T
ηT
· T +1
ηT +1

gives

QT

κT +1
≤ QT −1

κT
+

D0

κT · κT +1
.
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Telescoping up from 1, . . . , T − 1 for 1 ≤ T ≤ T yields

QT −1

κT
≤ Q0

κ1
+

T −1∑
t=1

D0

κt · κt+1
≤ Q0

κ1
+D0

T −1∑
t=1

1

κt · κt+1
,

where we applied Lemma D.3(ii) that for all t = 1, . . . , T − 1 we have κt+1 − κt =
√

1+β
r M . This

yields √
1+β
r M

T −1∑
t=1

1

κt · κt+1
=

T −1∑
t=1

[
1

κt
− 1

κt+1

]
=

1

κ1
− 1

κT
,

and hence√
1+β
r M

QT −1

κT
≤
√

1+β
r M

Q0

κ1
+D0

√
1+β
r M

T −1∑
t=1

1

κt · κt+1
=
√

1+β
r M

Q0

κ1
+D0

(
1

κ1
− 1

κT

)
.

Next, we rearrange the above quantity and derive√
1+β
r MQ0 +D0

κ1
− D0

κT
=

√
1+β
r MQ0 +

(
R0 + ( 2rL ∨B)Q0

)
κ1

− D0

κT
= Q0 +

R0

κ1
− D0

κT
.

Plugging this into (37) we have for all iterates 1 ≤ T ≤ T

E∥zT − z∗∥2 ≤
√

1+β
r M

QT −1

κT
+
D0

κT
≤ Q0 +

R0

κ1
≤
(
1 +

Cσ[T (T + 1)2]1/2

κ1

√
Q0

)
Q0

=
(
1 + C2Bη1

)︸ ︷︷ ︸
A

E∥z0 − z∗∥2,
(38)

where the prefactor A lies in [1, 1 + C2] and reduces to 1 when the argument is set as 0.

Now we drop the second summand on the left hand of (34) with z∗ = z∗, T = T . Combining with
(38) gives

T (T + 1)E[V (zag
T − 1

2

| z∗)]

≤ 1

η1
E∥z0 − z∗∥2 +

√
1+β
r M

T∑
t=2

E∥zt−1 − z∗∥2 + [T (T + 1)2]1/2 · Cσ

√
E ∥z0 − z∗∥2

≤
(

2
rL ∨B +

√
1+β
r M

)
E∥z0 − z∗∥2

+
√

1+β
r M(T − 1) ·A · E∥z0 − z∗∥2 + Cσ[T (T + 1)2]1/2

√
E∥z0 − z∗∥2

≤
(

2
rL+A

√
1+β
r MT

)
E∥z0 − z∗∥2 + ( 1

C + C)σ[T (T + 1)2]1/2
√
E∥z0 − z∗∥2.

Using (29) in Lemma D.2 again lower bounds the left hand in the last display as

T (T + 1)E[V (zag
T− 1

2

| z∗)] ≥ µ

2
T (T + 1)E

∥∥∥zag
T− 1

2

− z∗
∥∥∥2 ≥ 0.

Dividing both sides by µ
2T (T + 1) concludes

E
∥∥∥zag

T− 1
2

− z∗
∥∥∥2 ≤ 2

(
2
rL+A

√
1+β
r MT

)
µT (T + 1)

E∥z0 − z∗∥2 +
2( 1

C + C)σ

µT 1/2

√
E∥z0 − z∗∥2,

and hence concludes (14) and the whole proof of Theorem 2.5.

23



D.4 Proof of Theorem 2.3

We overload function notations F ,H to the new group accordingly where F(z)← F(z)− µ⋆

2 ∥z −
z0∥2 is non-strongly convex and H(z) ← H(z) + µ⋆

(
z − z0

)
. For convenience we repeat the

iterates of Algorithm 2 as

zt− 1
2
= zt−1 − ηt

(
∇F̃(zmd

t−1; ξt− 1
2
) + H̃(zt−1; ζt− 1

2
)− µ(zmd

t−1 − zt−1)
)
,

zag
t− 1

2

= (1− αt)z
ag
t− 3

2

+ αtzt− 1
2
,

zt = zt−1 − ηt

(
∇F̃(zmd

t−1; ξt− 1
2
) + H̃(zt− 1

2
; ζt)− µ(zmd

t−1 − zt− 1
2
)
)
,

zmd
t = (1− αt+1)z

ag
t− 1

2

+ αt+1zt,

with the initialization z0 = zmd
0 = zag

− 1
2

∈ Rn+m. We continue to assume the noise-related setting as
in (31). Our proof proceeds in the following steps:

Step 1. We prove the following generalization of Lemma D.4, whose proof is in §E.6:

Lemma D.6 For arbitrary z̃ ∈ Rn+m and αt ∈ (0, 1] the iterates of Algorithm 2 satisfy almost
surely

V (zag
t− 1

2

| z̃)− (1− αt)V (zag
t− 3

2

| z̃)

≤ αt⟨∇F(zmd
t−1) +H(zt− 1

2
), zt− 1

2
− z̃⟩+ α2

tL
2

∥∥∥zt− 1
2
− zt−1

∥∥∥2 − αtµ⋆

∥∥∥zt− 1
2
− z̃

∥∥∥2 .
(39)

Step 2. Analogous to Step 2 in the proof of Theorem 2.5 in §D.3 we conclude for all z ∈ Rn,
z ∈ Rm,

ηtE⟨∇F̃(zmd
t−1; ξt− 1

2
) + H̃(zt− 1

2
; ζt), zt− 1

2
− z̃⟩

≤ 1

2

(
E[∥zt−1 − z̃∥2]− E[∥zt − z̃∥2]

)
− 1− (1 + β)M2η2t

2
E
[∥∥∥zt− 1

2
− zt−1

∥∥∥2]
+

η2t
2
(2 + 1

β )σ
2
Bil.

To show this, note that

ηt⟨∇F̃(zmd
t−1; ξt− 1

2
) + H̃(zt− 1

2
; ζt), zt− 1

2
− z̃⟩

≤ 1

2

(
∥zt−1 − z̃∥2 − ∥zt − z̃∥2 − ∥zt− 1

2
− zt−1∥2

)
+

η2t
2
∥H̃(zt− 1

2
; ζt)− H̃(zt−1; ζt− 1

2
)∥2.

To handle the stochastic terms, Young’s inequality combined with the martingale structure, along
with the definition of M , indicates

E
∥∥∥H̃(zt− 1

2
; ζt)− H̃(zt−1; ζt− 1

2
)
∥∥∥2 = E

∥∥∥H(zt− 1
2
)−H(zt−1)−∆

t− 1
2

H

∥∥∥2 + E
∥∥∥∆t

H

∥∥∥2
≤ (1 + β)M2E∥zt− 1

2
− zt−1∥2 + (1 + 1

β )E
∥∥∥∆t− 1

2

H

∥∥∥2 + E∥∆t
H∥2.

Combining the last three displays gives

ηtE⟨∇F̃(zmd
t−1; ξt− 1

2
) + H̃(zt− 1

2
; ζt), zt− 1

2
− z̃⟩

≤ 1

2

(
E[∥zt−1 − z̃∥2]− E[∥zt − z̃∥2]

)
− 1− (1 + β)M2η2t

2
E
[∥∥∥zt− 1

2
− zt−1

∥∥∥2]
+

η2t
2

(
(1 + 1

β )E
∥∥∥∆t− 1

2

H

∥∥∥2 + E∥∆t
H∥2

)
. (40)
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Combining this with Lemma D.6, we have

E[V (zag
t− 1

2

| z̃)]− (1− αt)E[V (zag
t− 3

2

| z̃)]

≤ αtE⟨∇F(zmd
t−1) +H(zt− 1

2
), zt− 1

2
− z̃⟩+α2

tL
2 E

[∥∥∥zt− 1
2
− zt−1

∥∥∥2]− αtµ⋆E
[∥∥∥zt− 1

2
− z̃

∥∥∥2]
= αtE⟨∇F̃(zmd

t−1; ξt− 1
2
) + H̃(zt− 1

2
; ζt), zt− 1

2
− z̃⟩

−αtE⟨∆
t− 1

2

F +∆t
H, zt− 1

2
− z̃⟩+α2

tL
2 E

[∥∥∥zt− 1
2
− zt−1

∥∥∥2]− αtµ⋆E
[∥∥∥zt− 1

2
− z̃

∥∥∥2]
≤ αt

ηt

(
1

2

(
E[∥zt−1 − z̃∥2]− E[∥zt − z̃∥2]

)
− 1− (1 + β)M2η2t

2
E
[∥∥∥zt− 1

2
− zt−1

∥∥∥2]
+

η2t
2
(2 + 1

β )σ
2
Bil

)
− αtE⟨∆

t− 1
2

F +∆t
H, zt− 1

2
− z̃⟩+ α2

tL
2 E

[∥∥∥zt− 1
2
− zt−1

∥∥∥2]
− αtµ⋆E

[∥∥∥zt− 1
2
− z̃

∥∥∥2].
Continuing this estimation gives (note Young’s inequality applies, and E⟨∆t− 1

2

F +∆t
H, zt− 1

2
− z̃⟩ =

E⟨∆t− 1
2

F , zt− 1
2
− zt−1⟩)

E[V (zag
t− 1

2

| z̃)]− (1− αt)E[V (zag
t− 3

2

| z̃)]

≤ αt

2ηt

(
E[∥zt−1 − z̃∥2]− E[∥zt − z̃∥2]

)
− αt

2ηt

(
r − αtLηt − (1 + β)M2η2

t

)
E
[∥∥∥zt− 1

2
− zt−1

∥∥∥2
]

+
αtηt
2

(2 + 1
β
)σ2

Bil −
αt(1− r)

2ηt
E
[∥∥∥zt− 1

2
− zt−1

∥∥∥2
]

−αtE⟨∆
t− 1

2
F ,zt− 1

2
− zt−1⟩ − αtµ⋆E

[∥∥∥zt− 1
2
− z̃

∥∥∥2
]

≤ αt

2ηt

(
E[∥zt−1 − z̃∥2]− E[∥zt − z̃∥2]

)
− αt

2ηt

(
r − αtLηt − (1 + β)M2η2

t

)
E
[∥∥∥zt− 1

2
− zt−1

∥∥∥2
]

+
αtηt
2

(2 + 1
β
)σ2

Bil+
αtηt

2(1− r)
E
∥∥∥∆t− 1

2
F

∥∥∥2

− αtµ⋆E
[∥∥∥zt− 1

2
− z̃

∥∥∥2
]

≤ αt

2ηt

(
E
[
∥zt−1 − z̃∥2

]
− E

[∥∥zt − z̃
∥∥2])− αt

2ηt

(
r − αtLηt − (1 + β)M2η2

t

)
E
[∥∥∥zt− 1

2
− zt−1

∥∥∥2
]

− αtµ⋆E
[∥∥∥zt− 1

2
− z̃

∥∥∥2
]
+

αtηt
2

(
1

1−r
σ2
Str + (2 + 1

β
)σ2

Bil

)
.

By applying Young’s inequality, it yields

E[V (zag
t− 1

2

| z̃)]− (1− αt)E[V (zag
t− 3

2

| z̃)]− αtηt
2

(
1

1−rσ
2
Str + (2 + 1

β )σ
2
Bil

)
+

αt

2ηt

(
r − αtLηt − (1 + β)M2η2t

)
E
[∥∥∥zt− 1

2
− zt−1

∥∥∥2]
≤ αt

2ηt

(
E[∥zt−1 − z̃∥2]− E[∥zt − z̃∥2]

)
− αtµ⋆E

[∥∥∥zt− 1
2
− z̃

∥∥∥2]
≤ αt

2ηt

(
(1− αt)E[∥zt−1 − z̃∥2]− E[∥zt − z̃∥2]

)
+

α2
t

2ηt
E[∥zt−1 − z̃∥2]− αtµ⋆E

[∥∥∥zt− 1
2
− z̃

∥∥∥2
]

≤ αt

2ηt

(
(1− αt)E[∥zt−1 − z̃∥2]− E[∥zt − z̃∥2]

)
+ ηtµ

2
⋆E
[∥∥∥zt− 1

2
− zt−1

∥∥∥2].
Setting ηt =

αt

µ⋆
we have

E[V (zag
t− 1

2

| z̃)] + µ⋆

2
E[∥zt − z̃∥2]− (1− αt)

(
E[V (zag

t− 3
2

| z̃)] + µ⋆

2
E[∥zt−1 − z̃∥2]

)
≤ −µ⋆

2

(
r − 2αt −

(
L
µ⋆

+ (1+β)M2

µ2
⋆

)
α2
t

)
E
[∥∥∥zt− 1

2
− zt−1

∥∥∥2]
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+
α2
t

2µ⋆

(
1

1−rσ
2
Str + (2 + 1

β )σ
2
Bil

)
.

Step 3. By the definition αt we have r − 2αt −
(

L
µ⋆

+ (1+β)M2

µ2
⋆

)
α2
t ≥ 0, so we obtain regularity

condition αt ≤ ᾱ = r

1+

√√√√1+r

(
L
µ⋆

+
(1+β)M2

µ2
⋆

) of Theorem 2.3. Since we assumed both F and G

are nonstrongly convex and H is a µ⋆-strongly-convex-µ⋆-strongly-concave isotropic quadratic, this
implies

E[V (zag
t− 1

2

| z̃)] + µ⋆

2
E[∥zt − z̃∥2] ≤ (1− αt)

(
E[V (zag

t− 3
2

| z̃)] + µ⋆

2
E[∥zt−1 − z̃∥2]

)
+

3α2
t

2µ⋆
σ2.

Plugging in z̃ = z∗ gives

E[V (z̃ | z∗)] = F(z̃)−F(z∗) + ⟨H(z∗), z̃ − z∗⟩ ≥ ⟨∇F(z∗) +H(z∗), z̃ − z∗⟩ = 0,

and also

E[V (z̃ | z∗)] ≤ ⟨∇F(z∗) +H(z∗), z̃ − z∗⟩+ L
2 ∥z̃ − z∗∥2 = L

2 ∥z̃ − z∗∥2 ,

so (by the fact that zag
− 1

2

= z0 and zag
− 1

2

= z0)

µ⋆

2
E[∥zt − z∗∥2] ≤ E[V (zag

t− 1
2

| z∗) +
µ⋆

2
E[∥zt − z∗∥2]

≤
(
V (zag

− 1
2

| z∗) +
µ⋆

2
∥z0 − z∗∥2

) t∏
τ=1

(1− ατ ) +

t∑
τ=1

3α2
τ

2µ⋆

[
t∏

τ ′=τ+1

(1− ατ ′)

]
σ2

≤ ∥z0 − z∗∥2 L+ µ⋆

2

t∏
τ=1

(1− ατ ) +
3σ2

2µ⋆

t∑
τ=1

α2
τ

t∏
τ ′=τ+1

(1− ατ ′).

Dividing both sides by µ⋆

2 gives (11) and our theorem.

D.5 Proof of Corollary 2.9

The proof of Corollary 2.9 mostly follows the proof of Theorem 2.5 and Corollary 2.8, except that
we modify some steps to adapt to the proximal operator. The proof is as follows:

Step 1. Estimating the primal-dual gap function difference sequence. We have the following
Lemma (D.7), whose proof is in §E.7:

Lemma D.7 For arbitrary z̃ ∈ Z the iterates of Algorithm 1 satisfy for t = 1, . . . , T , almost surely

V (zag
t− 1

2

| z̃)− (1− αt)V (zag
t− 3

2

| z̃)

≤ αt⟨∇F(zmd
t−1) +H(zt− 1

2
), zt− 1

2
− z̃⟩+ α2

tL
2

∥∥∥zt− 1
2
− zt−1

∥∥∥2 + αt

(
J(zt− 1

2
)− J(z̃)

)
.

(41)

Note the proof only relies on the interpolation updates in our algorithm as in Lines 6 and 8, and hence
this result holds in a per-trajectory (almost-sure) fashion.

Step 2. We target to prove the following lemma, the complete proof is in §E.8:

Lemma D.8 For our choice of ηt that satisfies, for a given r ∈ (0, 1), that

rµB −
2L

t+ 1
ηt −

(1 + β)M2η2t
µB

≥ 0, (42)

we have for any z̃ ∈ Rn, ỹ ∈ Rm and t = 1, . . . , T that

t(t+ 1)E[V (zag
t− 1

2

| z̃)]− (t− 1)tE[V (zag
t− 3

2

| z̃)]

≤ 2t

ηt
(E[B(zt−1, z̃)]− E[B(zt, z̃)]) +

(
1

1−rσ
2
Str + (2 + 1

β )σ
2
Bil

) tηt
µB

,
(43)
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We note that (43) in Lemma D.8 only differs with (33) in Lemma D.5 by the use of Bregman
distance B and a factor of 1/µB on the variance term. Following similar derivations as in the proof of
Theorem 2.5, we telescope the above recursion for t = 1, . . . , T and choose the step size as

µB · t
ηt

= 2
rL ∨B +

√
1+β
r Mt, (44)

with B = σ
√
T (T+1)

C
√

2
µB

B(z0,z̃)
that satisfies (42). By denoting σ ≡ 1√

3

√
1

1−rσ
2
Str + (2 + 1

β )σ
2
Bil, we have

by Lemma D.3(i) and the same derivative as in §D.3(
1

1−rσ
2
Str + (2 + 1

β )σ
2
Bil

) T∑
t=1

tηt ≤ 3σ2 · µB

B

T∑
t=1

t2

=
T (T + 1

2 )(T + 1)

[T (T + 1)2]1/2
· σµBC

√
2

µB
EB(z0, z̃),

Finally by summing over t = 1, . . . , T , we have

T (T + 1)E[V (zag
T − 1

2

| z̃)]

≤
T∑
t=1

2t

ηt
(E[B(zt−1, z̃)]− E[B(zt, z̃)]) +

(
1

1−rσ
2
Str + (2 + 1

β )σ
2
Bil

) T∑
t=1

tηt
µB

=
2

η1
B(z0, z̃) + 2

T∑
t=2

(
t

ηt
− t− 1

ηt−1

)
EB(zt−1, z̃)−

2T
ηT

EB(zT , z̃)

+
T (T + 1

2 )(T + 1)

[T (T + 1)2]1/2
· Cσ

√
2

µB
EB(z0, z̃)

=
2

η1
B(z0, z̃) + 2

√
1+β
r

M

µB

T∑
t=2

EB(zt−1, z̃)−
2T
ηT

EB(zT , z̃)

+ [T (T + 1)2]1/2 · Cσ

√
2

µB
EB(z0, z̃).

Rearranging the terms proves the following inequality (45).

T (T + 1)E[V (zag
T − 1

2

| z̃)] + 2T
ηT

EB(zT , z̃)

≤ 2

η1
B(z0, z̃) + 2

√
1+β
r

M

µB

T∑
t=2

EB(zt−1, z̃) + [T (T + 1)2]1/2 · Cσ

√
2

µB
EB(z0, z̃).

(45)

The same bootstrapping argument gives

EB(zt−1, z
∗) ≤

(
1 + C2Bη1

)
EB(z0, z

∗),

which further derives

T (T + 1)E[V (zag
T − 1

2

| z∗)] ≤ 2

µB

(
2
rL+A

√
1+β
r MT

)
EB(z0, z

∗)

+ ( 1
C + C)σ[T (T + 1)2]1/2

√
2

µB
EB(z0, z∗)

Again we can lower bounds the left hand in the last display as

T (T + 1)E[V (zag
T− 1

2

| z∗)] ≥ µ

2
· T (T + 1)EB

(
zag
T− 1

2

, z∗
)
≥ 0.

Dividing both sides by µ
2T (T + 1) concludes

EB
(
zag
T− 1

2

, z∗
)
≤

4

(
2
rL+A

√
1+β
r MT

)
µµBT (T + 1)

EB(z0, z
∗) +

2( 1
C + C)σ

µT 1/2

√
2

µB
EB(z0, z∗),
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The rest of the proof follows the same bounded iterates argument and the restarting argument exactly
as in the previous proof of Theorem 2.5 with only a difference in a factor of µB. Similar derivatives
gives us a total iteration complexity of

O
((√

L
µµB

+ M
µµB

)
log
(
1
ε

)
+ σ2B(z0,z

∗)
µ2µBε2

)
with epoch length Ts ≍

√
L

µµB
+ M

µµB
+ σ2B(z0,z

∗)
µ2µBΓ2

0e
1−s .

D.6 Proof of Corollary 3.3

Before the proof we first adopt the scaling reduction argument as in §D.1, to argue that we only need
to prove the result for the case of bilinear games centered at zero, i.e., F (x) = 0 = G(y) we have

L = µ = µF = 0. We set the iteration symbol z ≡
[
x̂
ŷ

]
=

[
x− z∗

y − ω⋆
y

]
and also F̂ (x̂, ŷ) = x̂⊤Bŷ,

with F̂ (x̂, ŷ) being equal to F (x,y) defined as in (20) up to an additive constant. Our scaling-
reduction argument hence applies.

Proof.[Proof of Corollary 3.3] From the update rule we have

zt− 1
2
= zt−1 − ηJzt−1 + ηεt− 1

2
, (46a)

zag
t− 1

2

= t−1
t+1z

ag
t− 3

2

+ 2
t+1zt− 1

2
, (46b)

zt = zt−1 − ηJzt− 1
2
+ ηεt. (46c)

Note the [xmd
t ;ymd

t ] sequence becomes irrelevant in this update; J ≡
[

0 B
−B⊤ 0

]
is skew-

symmetric with J⊤ = −J, so J2 = −J⊤J is symmetric and negative semidefinite. We proceed with
the proof in steps:

Step 1. We target to show the last-iterate bound

E∥zt∥2 ≤ E∥z0∥2 + 2tη2σ2
Bil (47)

Note (46a) and (46c) together gives

zt =
(
I− ηJ+ η2J2

)
zt−1 − η2Jεt− 1

2
+ ηεt (48)

Taking squared norm on both sides of (48), we have when η ≤ 1√
λmax(B⊤B)

, zt does not expand in

Euclidean norm (noiseless), so

E∥zt∥2 = E
[
(zt−1)

⊤ (I+ η2J2 + η4J4
)
zt−1

]
+ E

∥∥∥−η2Jεt− 1
2
+ ηεt

∥∥∥2
≤ E∥zt−1∥2 + E

∥∥∥η2Jεt− 1
2

∥∥∥2 + E ∥ηεt∥2

≤ E∥zt−1∥2 + η2
(
1 + η2λmax(B

⊤B)
)
σ2
Bil ≤ E∥zt−1∥2 + 2η2σ2

Bil.

(49)

Recursively applying the above concludes (47).

Step 2. We start from the update rule (46b) which implies (t+ 1)tzag
t− 1

2

= t(t− 1)zag
t− 3

2

+ 2tzt− 1
2

holds for t = 1, . . . , T , so

(T + 1)Tzag
T− 1

2

= 2

T∑
t=1

tzt− 1
2
⇒ zag

T− 1
2

=
2

(T + 1)T

T∑
t=1

tzt− 1
2
.

Using this to analyze our algorithm:

tzt − (t− 1)zt−1 − zt−1 = t(zt − zt−1) = −ηJ
[
tzt− 1

2

]
+ ηtεt,

so telescoping gives

TzT −
T∑

t=1

zt−1 = −ηJ
T∑

t=1

tzt− 1
2
+ η

T∑
t=1

tεt,
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which yields

zag
T− 1

2

=
2

(T + 1)T

T∑
t=1

tzt− 1
2
=

2

−η(T + 1)T
J−1

(
TzT −

T∑
t=1

zt−1 − η

T∑
t=1

tεt

)
. (50)

Obviously the least singular value of the matrix J can be lower bounded as σmin(J) ≥
√

λmin(BB⊤).
We conclude from (50) along with Young’s inequality that

λmin(BB⊤)E
∥∥∥zag

T− 1
2

∥∥∥2 ≤ E
∥∥∥Jzag

T− 1
2

∥∥∥2
= (1 + γ)

4

η2(T + 1)2T 2
E

∥∥∥∥∥
T∑

t=1

(zT − zt−1)

∥∥∥∥∥
2

+ (1 + 1
γ )

4

η2(T + 1)2T 2
E

∥∥∥∥∥η
T∑

t=1

tεt

∥∥∥∥∥
2

≡ (1 + γ)I + (1 + 1
γ )II,

where applying the last-iterate bound (47) together with some elementary estimates leads to

I ≤ 4

η2(T + 1)2T 2
· T

T∑
t=1

[
2E ∥zT ∥2 + 2E ∥zt−1∥2

]
≤ 4

η2(T + 1)2T 2
· T

T∑
t=1

[
4E∥z0∥2 + 4(T + t− 1)η2σ2

Bil

]
≤ 16E∥z0∥2 + 24η2σ2

BilT

η2(T + 1)2
≤ 16λmax(B

⊤B)E∥z0∥2

(T + 1)2
+

24σ2
Bil

T + 1
,

and, using the property of square-integrable martingales,

II ≤ 4

η2(T + 1)2T 2
E

∥∥∥∥∥η
T∑

t=1

tεt

∥∥∥∥∥
2

=
4

η2(T + 1)2T 2
· η2

T∑
t=1

t2E ∥εt∥2

≤ 4σ2
Bil

η2(T + 1)2T 2
· η2

T (T + 1
2 )(T + 1)

3
≤ 4σ2

Bil

3T
.

To summarize we have for arbitrary γ ∈ (0,∞)

λmin(BB⊤)E
∥∥∥zag

T− 1
2

∥∥∥2 ≤ (1 + γ)

(
16λmax(B

⊤B)E∥z0∥2

(T + 1)2
+

24σ2
Bil

T + 1

)
+ (1 + 1

γ )
4σ2

Bil

3T
.

Optimizing γ gives along with
√
a+ b ≤

√
a+
√
b for nonnegatives a and b:√

λmin(BB⊤)

√
E
∥∥∥zag

T− 1
2

∥∥∥2 ≤
√

16λmax(B⊤B)E∥z0∥2
(T + 1)2

+
24σ2

Bil

T + 1
+

√
4σ2

Bil

3T

≤

√
16λmax(B⊤B)E∥z0∥2

(T + 1)2
+

√
24σ2

Bil

T + 1
+

√
4σ2

Bil

3T
≤ 4

√
λmax(B⊤B)

T + 1

√
E∥z0∥2 +

7σBil√
T

.

Dividing both sides by
√
λmin(BB⊤) and taking squares conclude the result.

E Proof of Auxiliary Lemmas

E.1 Proof of Lemma D.1

The analysis in this subsection is partially motivated by Lemma 2 of Chen et al. [2017].

Proof.[Proof of Lemma D.1] We first introduce the following lemma on the operator P:

Lemma E.1 (Lemma 2 in Ghadimi and Lan 2012 and Lemma 1 in Chen et al. 2017) If ϕ =
Pθ(δ) for arbitrarily chosen θ, δ ∈ Rd, then for ∀z ∈ Z , we have the following inequality

⟨δ,ϕ− z⟩+ J(ϕ)− J(z) ≤ B(θ, z)− B(θ,ϕ)− V (ϕ, z)

29



By applying Lemma E.1 to (25), we have for any z ∈ Z

⟨δ1,φ1 − z⟩+ J(φ1)− J(z) ≤ B(θ, z)− B(θ,φ1)− B(φ1, z), (51)
⟨δ2,φ2 − z⟩+ J(φ2)− J(z) ≤ B(θ, z)− B(θ,φ2)− B(φ2, z). (52)

Specifically, letting z = φ2 in (51) we have

⟨δ1,φ1 −φ2⟩+ J(φ1)− J(φ2) = B(θ,φ2)− B(θ,φ1)− B(φ1,φ2). (53)

Now, combining inequalities (52) and (53) we have

⟨δ2,φ2 − z⟩+ ⟨δ1,φ1 −φ2⟩+ J(φ1)− J(z) ≤ B(θ, z)− B(φ2, z)− B(θ,φ1)− B(φ1,φ2),

which in turn gives

⟨δ2,φ1 − z⟩+ J(φ1)− J(z)

≤ ⟨δ2 − δ1,φ1 −φ2⟩+ B(θ, z)− B(φ2, z)− B(θ,φ1)− B(φ1,φ2).

An application of the Young and Cauchy-Schwartz inequalities gives

⟨δ2,φ1 − z⟩+ J(φ1)− J(z)

≤ ∥δ2 − δ1∥∥φ1 −φ2∥+ B(θ, z)− B(φ2, z)− B(θ,φ1)− B(φ1,φ2)

≤ 1

2µB
∥δ2 − δ1∥2 +

µB

2
∥φ1 −φ2∥2

+ B(θ, z)− B(φ2, z)− B(θ,φ1)− B(φ1,φ2)

≤ 1

2µB
∥δ2 − δ1∥2 + B(θ, z)− B(φ2, z)− B(θ,φ1).

(54)

In the last inequality, we uses the fact that
µB

2
∥φ1 −φ2∥

2 ≤ B(φ1,φ2).

This establishes (27) and hence Lemma D.1.

E.2 Proof of Lemma D.2

Proof.[Proof of Lemma D.2]

Since F(z) is L-smooth and µ-strongly convex. For the rest of this proof, we observe that the saddle
definition of z∗ satisfies the first-order stationary condition for problem (3):

∇F(z∗) +H(z∗) + J ′(z∗) = 0. (55)

Furthermore, we have

F(z)−F(z∗) + ⟨H(z∗), z − z∗⟩+ J(z)− J(z∗)

≥ ⟨∇F(z∗), z − z∗⟩+ µ

2
∥z − z∗∥2 + ⟨H(z∗), z − z∗⟩+ ⟨J ′(z∗), z − z∗⟩

= ⟨∇F(z∗) +H(z∗) + J ′(z∗), z − z∗⟩+ µ

2
∥z − z∗∥2 =

µ

2
∥z − z∗∥2 ,

where in both of the two displays, the inequality holds due to the µ-strong convexity of F , and the
equality holds due to the first-order stationary condition (55). This completes the proof.

E.3 Proof of Lemma D.3

Proof.[Proof of Lemma D.3] Items (i)—(iii) are straightforward. For the proof of (30) in item (iv),
we note that ηt = η̄t(σ;T,C, r, β) ≤ t

2
rL+

√
1+β
r Mt

≤ 1√
1+β
r M

which gives

r − 2L

t+ 1
ηt − (1 + β)M2η2t ≥

r

t

(
t−

(
2

r
L+

√
1+β
r Mt

)
ηt

)
≥ 0,

and hence completes the proof.
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E.4 Proof of Lemma D.4

Proof.[Proof of Lemma D.4] From the convexity and L-smoothness of F as in Assumption 2.1, we
know that for arbitrary z̃:

F(zag
t− 1

2

)−F(z̃) = F(zag
t− 1

2

)−F(zmd
t−1)−

(
F(z̃)−F(zmd

t−1)
)

≤ ⟨∇F(zmd
t−1), z

ag
t− 1

2

− zmd
t−1⟩+ L

2

∥∥∥zag
t− 1

2

− zmd
t−1

∥∥∥2 − ⟨∇F(zmd
t−1), z̃ − zmd

t−1⟩.

Taking z̃ = zag
t− 3

2

in the above inequality, we have

F(zag
t− 1

2

)−F(zag
t− 3

2

) = F(zag
t− 1

2

)−F(zmd
t−1)−

(
F(zag

t− 3
2

)−F(zmd
t−1)

)
≤ ⟨∇F(zmd

t−1), z
ag
t− 1

2

− zmd
t−1⟩+ L

2

∥∥∥zag
t− 1

2

− zmd
t−1

∥∥∥2 − ⟨∇F(zmd
t−1), z

ag
t− 3

2

− zmd
t−1⟩.

Multiplying the first display by αt and the second display by (1− αt) and adding them up, we have

F(zag
t− 1

2

)− (1− αt)F(zag
t− 3

2

)− αtF(z̃)

≤ ⟨∇F(zmd
t−1), z

ag
t− 1

2

− zmd
t−1⟩+ L

2

∥∥∥zag
t− 1

2

− zmd
t−1

∥∥∥2 − ⟨∇F(zmd
t−1), (1− αt)z

ag
t− 3

2

+ αtz̃ − zmd
t−1⟩

≤ ⟨∇F(zmd
t−1), αt(zt− 1

2
− zt−1)⟩+ L

2 ∥αt(zt− 1
2
− zt−1)∥2 − ⟨∇F(zmd

t−1), αt(z̃ − zt−1)⟩

= αt⟨∇F(zmd
t−1), zt− 1

2
− z̃⟩+ α2

tL
2 ∥zt− 1

2
− zt−1∥2,

(56)

where we applied the fact from our update rules that zag
t− 1

2

− zmd
t−1 = αt(zt− 1

2
− zt−1).

On the other hand, due to Line (6) in Algorithm 1 we have

⟨H(z̃), zag
t− 1

2

− z̃⟩ − (1− αt)⟨H(z̃), zag
t− 3

2

− z̃⟩ = ⟨H(z̃), zag
t− 1

2

− z̃ − (1− αt)(z
ag
t− 3

2

− z̃)⟩

= αt⟨H(z̃), zt− 1
2
− z̃⟩.

Further, due to our monotonicity assumption onH we have

⟨H(z̃), zt− 1
2
− z̃⟩ ≤ ⟨H(zt− 1

2
), zt− 1

2
− z̃⟩.

Combining the above two displays together yields

⟨H(z̃), zag
t− 1

2

− z̃⟩ − (1− αt)⟨H(z̃), zag
t− 3

2

− z̃⟩ ≤ αt⟨H(zt− 1
2
), zt− 1

2
− z̃⟩. (57)

Now, summing up Eqs. (56), (57) and recalling the definition of V in (28), we conclude that

V (zag
t− 1

2

| z̃)− (1− αt)V (zag
t− 3

2

| z̃)

= F(zag
t− 1

2

)− (1− αt)F(zag
t− 3

2

)− αtF(z̃) + ⟨H(z̃), zag
t− 1

2

− z̃⟩ − (1− αt)⟨H(z̃), zag
t− 3

2

− z̃⟩

≤ αt⟨∇F(zmd
t−1) +H(zt− 1

2
), zt− 1

2
− z̃⟩+ α2

tL
2 ∥zt− 1

2
− zt−1∥2,

and hence conclude (32) and Lemma D.4.

E.5 Proof of Lemma D.5

Proof.[Proof of Lemma D.5] To bound the inner-product terms in (32), by setting φ1 = zt− 1
2

,

θ = zt−1, φ2 = zt, δ1 = ηt

(
∇F̃(zmd

t−1; ξt− 1
2
) + H̃(zt−1; ζt− 1

2
)

)
, δ2 = ηt

(
∇F̃(zmd

t−1; ξt− 1
2
) +

H̃(zt− 1
2
; ζt)

)
as in Lemma D.1 (with z = z̃), we have

ηt⟨∇F̃(zmd
t−1; ξt− 1

2
) + H̃(zt− 1

2
; ζt), zt− 1

2
− z̃⟩

≤ 1

2

[
∥zt−1 − z̃∥2 − ∥xt − z̃∥2 −

∥∥∥zt− 1
2
− zt−1

∥∥∥2]+ η2t
2
∥H̃(zt− 1

2
; ζt)− H̃(zt−1; ζt− 1

2
)∥2,
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where Young’s inequality combined with the martingale structure yields (also noting (31))

E∥H̃(zt− 1
2
; ζt)− H̃(zt−1; ζt− 1

2
)∥2

= E∥H(zt− 1
2
)−H(zt−1)−∆

t− 1
2

H ∥2 + E
∥∥∥∆t

H

∥∥∥2
≤ (1 + β)M2E∥zt− 1

2
− zt−1∥2 + (1 + 1

β )E
∥∥∥∆t− 1

2

H

∥∥∥2 + E
∥∥∥∆t

H

∥∥∥2.
Combining the above two displays with expectation taken gives

E
[
ηt⟨∇F̃(zmd

t−1; ξt− 1
2
) + H̃(zt− 1

2
; ζt), zt− 1

2
− z̃⟩

]
≤ 1

2
E
[
∥zt−1 − z̃∥2 − ∥xt − z̃∥2 −

∥∥∥zt− 1
2
− zt−1

∥∥∥2]
+

η2t
2

(
(1 + β)M2E

∥∥∥zt− 1
2
− zt−1

∥∥∥2 + (1 + 1
β )E

∥∥∥∆t− 1
2

H

∥∥∥2 + E
∥∥∥∆t

H

∥∥∥2) .

(58)

Further, by definition of the primal-dual gap function and the definition of the noisy terms (31), by
taking αt =

2
t+1 in (32) of Lemma D.4 and taking expectations on both sides, we have

E
[
V
(
zag
t− 1

2

| z̃
)]
− t− 1

t+ 1
E
[
V
(
zag
t− 3

2

| z̃
)]

≤ 2

t+ 1
E
〈
∇F(zmd

t−1) +H(zt− 1
2
), zt− 1

2
− z̃

〉
+

2L

(t+ 1)2
E
∥∥∥zt− 1

2
− zt−1

∥∥∥2
=

2

t+ 1
E
〈
∇F̃(zmd

t−1; ξt− 1
2
) + H̃(zt− 1

2
; ζt), zt− 1

2
− z̃

〉
+

2L

(t+ 1)2
E
∥∥∥zt− 1

2
− zt−1

∥∥∥2
− 2

t+ 1
E
〈
∆

t− 1
2

F +∆t
H, zt− 1

2
− z̃

〉
Bringing in (58) into the above derivation, we obtain

E
[
V
(
zag
t− 1

2

| z̃
)]
− t− 1

t+ 1
E
[
V
(
zag
t− 3

2

| z̃
)]

≤ 1

(t+ 1)ηt
E
[
∥zt−1 − z̃∥2 − ∥zt − z̃∥2

]
− 1

(t+ 1)ηt

(
1− 2L

t+ 1
ηt − (1 + β)M2η2t

)
E
∥∥∥zt− 1

2
− zt−1

∥∥∥2
+

ηt
t+ 1

(
(1 + 1

β )E
∥∥∥∆t− 1

2

H

∥∥∥2 + E
∥∥∥∆t

H

∥∥∥2)− 2

t+ 1
E
〈
∆

t− 1
2

F +∆t
H, zt− 1

2
− z̃

〉
.

Recalling that we use the choice of ηt that satisfies for a given r ∈ (0, 1) that r − 2L
t+1ηt − (1 +

β)M2η2t ≥ 0. With some manipulations we obtain

E
[
V
(
zag
t− 1

2

| z̃
)]
− t− 1

t+ 1
E
[
V
(
zag
t− 3

2

| z̃
)]

≤ 1

(t+ 1)ηt
E
[
∥zt−1 − z̃∥2 − ∥zt − z̃∥2

]
+

ηt
(t+ 1)

(
(1 + 1

β )E
∥∥∥∆t− 1

2

H

∥∥∥2 + E
∥∥∥∆t

H

∥∥∥2)− (1− r)

(t+ 1)ηt
E
[∥∥∥zt− 1

2
− zt−1

∥∥∥2]
− 2

t+ 1
E
〈
∆

t− 1
2

F , zt− 1
2
− zt−1

〉
− 2

t+ 1
E
〈
∆

t− 1
2

F , zt−1 − z̃
〉
− 2

t+ 1
E
〈
∆t

H, zt− 1
2
− z̃

〉
︸ ︷︷ ︸

I

.

(59)

Due to the law of iterated expectation applied to martingale difference conditions E
[
∆

t− 1
2

F | Ft−1

]
=

0 and E
[
∆t

H | Ft− 1
2

]
= 0, i = 1, 2, we have

I = 0.
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Moreover, for the rest of the terms in (59), we note that there is a basic quadratic inequality that

− 1−r
ηt

∥∥∥zt−1 − xt− 1
2

∥∥∥2 − 2
〈
∆

t− 1
2

F , zt− 1
2
− zt−1

〉
≤ ηt

1−r

∥∥∥∆t− 1
2

F

∥∥∥2. (59) reduces to

E
[
V
(
zag
t− 1

2

| z̃
)]
− t− 1

t+ 1
E
[
V
(
zag
t− 3

2

| z̃
)]
≤ 1

(t+ 1)ηt
E
[
∥zt−1 − z̃∥2 − ∥zt − z̃∥2

]
+

ηt
t+ 1

(
(1 + 1

β )E
∥∥∥∆t− 1

2

H

∥∥∥2 + E
∥∥∥∆t

H

∥∥∥2)+
ηt

(1− r)(t+ 1)
E
∥∥∥∆t− 1

2

F

∥∥∥2. (60)

Multiplying both sides of (60) by t(t+ 1), we obtain for all t = 1, . . . , T

t(t+ 1)E
[
V
(
zag
t− 1

2

| z̃
)]
− (t− 1)tE

[
V
(
zag
t− 3

2

| z̃
)]

≤ t

ηt
E
[
∥zt−1 − z̃∥ − ∥zt − z̃∥2

]
+ tηt

(
1

1−rE
∥∥∥∆t− 1

2

F

∥∥∥2 + (1 + 1
β )E

∥∥∥∆t− 1
2

H

∥∥∥2 + E∥∆t
H∥2

)
≤ t

ηt
E
[
∥zt−1 − z̃∥2 − ∥zt − z̃∥2

]
+
(

1
1−rσ

2
Str + (2 + 1

β )σ
2
Bil

)
tηt,

where in the last line above we applied Assumption 2.2, so by law of iterated expectations

E
∥∥∥∆t− 1

2

F

∥∥∥2 = E
[
∥∇F̃ (zmd

t−1; ξt− 1
2
)−∇F (zmd

t−1)∥2
]
≤ σ2

Str,

E
∥∥∥∆t− 1

2

H

∥∥∥2 = E
[
∥H̃(zt−1; ζt− 1

2
)−H(zt−1)∥2

]
≤ σ2

Bil,

E∥∆t
H∥2 = E

[
∥H̃(zt− 1

2
; ζt)−H(zt− 1

2
)∥2
]
≤ σ2

Bil.

(61)

E.6 Proof of Lemma D.6

Proof.[Proof of Lemma D.6] The proof of Lemma D.6 goes in an analogous fashion as the proof of
Lemma D.4, except that the display above (57) is replaced by

⟨H(z̃), zt− 1
2
− z̃⟩ ≤ ⟨H(zt− 1

2
), zt− 1

2
− z̃⟩ − µ⋆

∥∥∥zt− 1
2
− z̃

∥∥∥2 ,
due to that H is a µ⋆-strongly-convex-µ⋆-strongly-concave isotropic quadratic function after scaling
reduction. Hence (57) becomes

⟨H(z̃), zag
t− 1

2

− z̃⟩ − (1− αt)⟨H(z̃), zag
t− 3

2

− z̃⟩ ≤ αt

[
⟨H(zt− 1

2
), zt− 1

2
− z̃⟩ − µ⋆

∥∥∥zt− 1
2
− z̃

∥∥∥2] .
(62)

Therefore, we omit its detailed proof.

E.7 Proof of Lemma D.7

Proof.[Proof of Lemma D.7] From the convexity and L-smoothness of F as in Assumption 2.1, we
know that for arbitrary z̃:

F(zag
t− 1

2

)−F(z̃) = F(zag
t− 1

2

)−F(zmd
t−1)−

(
F(z̃)−F(zmd

t−1)
)

≤ ⟨∇F(zmd
t−1), z

ag
t− 1

2

− zmd
t−1⟩+ L

2

∥∥∥zag
t− 1

2

− zmd
t−1

∥∥∥2 − ⟨∇F(zmd
t−1), z̃ − zmd

t−1⟩.

Taking z̃ = zag
t− 3

2

in the above inequality, we have

F(zag
t− 1

2

)−F(zag
t− 3

2

) = F(zag
t− 1

2

)−F(zmd
t−1)−

(
F(zag

t− 3
2

)−F(zmd
t−1)

)
≤ ⟨∇F(zmd

t−1), z
ag
t− 1

2

− zmd
t−1⟩+ L

2

∥∥∥zag
t− 1

2

− zmd
t−1

∥∥∥2 − ⟨∇F(zmd
t−1), z

ag
t− 3

2

− zmd
t−1⟩.
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Multiplying the first display by αt and the second display by (1− αt) and adding them up, we have

F(zag
t− 1

2

)− (1− αt)F(zag
t− 3

2

)− αtF(z̃)

≤ ⟨∇F(zmd
t−1), z

ag
t− 1

2

− zmd
t−1⟩+ L

2

∥∥∥zag
t− 1

2

− zmd
t−1

∥∥∥2 − ⟨∇F(zmd
t−1), (1− αt)z

ag
t− 3

2

+ αtz̃ − zmd
t−1⟩

≤ ⟨∇F(zmd
t−1), αt(zt− 1

2
− zt−1)⟩+ L

2 ∥αt(zt− 1
2
− zt−1)∥2 − ⟨∇F(zmd

t−1), αt(z̃ − zt−1)⟩

= αt⟨∇F(zmd
t−1), zt− 1

2
− z̃⟩+ α2

tL
2 ∥zt− 1

2
− zt−1∥2,

(63)

where we applied the fact from our update rules that zag
t− 1

2

− zmd
t−1 = αt(zt− 1

2
− zt−1).

On the other hand, due to Line (6) in Algorithm 3 we have

⟨H(z̃), zag
t− 1

2

− z̃⟩ − (1− αt)⟨H(z̃), zag
t− 3

2

− z̃⟩ = ⟨H(z̃), zag
t− 1

2

− z̃ − (1− αt)(z
ag
t− 3

2

− z̃)⟩

= αt⟨H(z̃), zt− 1
2
− z̃⟩.

Further, due to our monotonicity assumption onH we have

⟨H(z̃), zt− 1
2
− z̃⟩ ≤ ⟨H(zt− 1

2
), zt− 1

2
− z̃⟩.

Combining the above two displays together yields

⟨H(z̃), zag
t− 1

2

− z̃⟩ − (1− αt)⟨H(z̃), zag
t− 3

2

− z̃⟩ ≤ αt⟨H(zt− 1
2
), zt− 1

2
− z̃⟩. (64)

Moreover, we have

J(zag
t− 1

2

)− J(z̃)− (1− αt)
(
J(zag

t− 3
2

)− J(z̃)
)
= J(zag

t− 1
2

)− (1− αt)J(z
ag
t− 3

2

)− αtJ(z̃)

≤ αtJ(zt− 1
2
)− αtJ(z̃) (65)

Now, summing up Eqs. (63), (64) and recalling the definition of V , we conclude that

V (zag
t− 1

2

| z̃)− (1− αt)V (zag
t− 3

2

| z̃)

= F(zag
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2
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2
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2
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t− 3

2
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≤ αt⟨∇F(zmd
t−1) +H(zt− 1

2
), zt− 1

2
− z̃⟩+ α2

tL
2 ∥zt− 1

2
− zt−1∥2,

and hence conclude (41) and Lemma D.7.

E.8 Proof of Lemma D.8

Proof.[Proof of Lemma D.8] To bound the inner-product terms in (41), by setting φ1 = zt− 1
2

,

θ = zt−1, φ2 = zt, δ1 = ηt

(
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t−1; ξt− 1
2
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2
)

)
, δ2 = ηt

(
∇F̃(zmd
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2
) +
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2
; ζt)

)
and J = ηtJ as in Lemma D.1 (with z = z̃), we have
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2
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2
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2
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2
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2µB
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2
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2
)∥2,

where Young’s inequality combined with the martingale structure yields (also noting (31))
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Combining the above two displays with expectation taken gives

E
[
ηt⟨∇F̃(zmd
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(66)

Applying the inequality B(zt− 1
2
, zt−1) ≥ µB

2

∥∥∥zt− 1
2
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∥∥∥2 again gives

E
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2
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Further, by definition of the primal-dual gap function and the definition of the noisy terms (31), by
taking αt =

2
t+1 in (41) of Lemma D.7 and taking expectations on both sides, we have

E[V (zag
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2
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t+ 1
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)
Bringing in (66) into the above derivation, we obtain
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Recalling that we use the choice of ηt that satisfies for a given r ∈ (0, 1) that rµB − 2L
t+1ηt −

(1+β)M2η2
t

µB
≥ 0. With some manipulations we obtain
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(67)
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Due to the law of iterated expectation applied to martingale difference conditions E
[
∆

t− 1
2

F | Ft−1

]
=

0 and E
[
∆t

H | Ft− 1
2

]
= 0, i = 1, 2, we have

I = 0.

Moreover, for the rest of the terms in (67), we note that there is a basic quadratic inequality that
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∥∥∥2. (67) reduces to
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Multiplying both sides of (68) by t(t+ 1), we obtain for all t = 1, . . . , T
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,

where in the last line above we applied Assumption 2.2, so by law of iterated expectations
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(69)
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