Limitations: The main contributions of our works are theoretical. From a theoretical point of view, the limitations of our paper are discussed in Section 5. In particular, we believe that tightening the gap between the upper and lower bounds in Nash regret for an infinite set of arms will require novel and non-trivial algorithmic ideas - we leave this as an important direction of future work.

Broader Impact: Due to the theoretical nature of this work, we do not foresee any adverse societal impact of this work.

A Proof of Concentration Bounds

Lemma 1. Any non-negative random variable $X \in[0, \mathrm{~B}]$ is B -sub Poisson, i.e., if mean $\mathbb{E}[X]=\mu$, then for all $\lambda \in \mathbb{R}$, we have $\mathbb{E}\left[e^{\lambda X}\right] \leq \exp \left(B^{-1} \mu\left(e^{B \lambda}-1\right)\right)$.

Proof. For random variable X we have

$$
\begin{aligned}
\mathbb{E}[\exp (\lambda X)] & =1+\sum_{i=1}^{\infty} \frac{\lambda^{i} \mathbb{E}\left[X^{i}\right]}{i!} \\
& \leq 1+\sum_{i=1}^{\infty} \frac{\lambda^{i} \mathbb{E}\left[\frac{X}{\mathrm{~B}} \mathrm{~B}^{i}\right]}{i!} \\
& =1+\frac{\mathbb{E}[X]}{\mathrm{B}} \sum_{i=1}^{\infty} \frac{\lambda^{i} \mathrm{~B}^{i}}{i!} \\
& \leq 1+\frac{\mu}{\mathrm{B}}\left(e^{\lambda \mathrm{B}}-1\right) \\
& \leq \exp \left(\frac{\mu}{\mathrm{B}}\left(e^{\lambda \mathrm{B}}-1\right)\right) .
\end{aligned}
$$

Lemma 5. Let $x_{1}, x_{2}, \ldots, x_{s} \in \mathbb{R}^{d}$ be a fixed set of vectors and let $r_{1}, r_{2}, \ldots, r_{s}$ be independent $\nu-$ sub Poisson random variables satisfying $\mathbb{E} r_{s}=\left\langle x_{s}, \theta^{*}\right\rangle$ for some unknown θ^{*}. In that case, let matrix $\mathbf{V}=\sum_{j=1}^{s} x_{j} x_{j}^{T}$ and $\widehat{\theta}=\mathbf{V}^{-1}\left(\sum_{j} r_{j} x_{j}\right)$ be the least squares estimator of θ^{*}. Consider any $z \in \mathbb{R}^{d}$ that satisfies $z^{T} \mathbf{V}^{-1} x_{j} \leq \gamma$ for all $j \in[s]$. Then, for any $\delta \in[0,1]$ we have

$$
\begin{align*}
& \mathbb{P}\left\{\langle z, \widehat{\theta}\rangle \geq(1+\delta)\left\langle z, \theta^{*}\right\rangle\right\} \leq \exp \left(-\frac{\delta^{2}\left\langle z, \theta^{*}\right\rangle}{3 \nu \gamma}\right) \text { and } \tag{8}\\
& \mathbb{P}\left\{\langle z, \widehat{\theta}\rangle \leq(1-\delta)\left\langle z, \theta^{*}\right\rangle\right\} \leq \exp \left(-\frac{\delta^{2}\left\langle z, \theta^{*}\right\rangle}{2 \nu \gamma}\right) \tag{9}
\end{align*}
$$

Proof. We use \mathbf{X} to denote a matrix with arm pulls $x_{1}, x_{2}, \ldots, x_{s}$ stacked as rows. We use the Chernoff method to get an upper bound on the desired probabilities, as shown below

$$
\begin{array}{rll}
\mathbb{P}\left\{\langle z, \widehat{\theta}\rangle \geq(1+\delta)\left\langle z, \theta^{*}\right\rangle\right\} & =\mathbb{P}\left(\exp (c\langle z, \widehat{\theta}\rangle) \geq \exp \left(c(1+\delta)\left\langle z, \theta^{*}\right\rangle\right)\right) & \quad \text { (for some constant } c \text {) } \\
& \leq \frac{\mathbb{E}\left[\exp \left(c z^{T} \mathbf{V}^{-1} \mathbf{X}^{T} R\right)\right]}{\exp \left(c(1+\delta)\left\langle z, \theta^{*}\right\rangle\right)} \\
& =\frac{\prod_{t=1}^{s} \mathbb{E}\left[\exp \left(c r_{t} \mathbf{V}^{-1} x_{t}\right)\right]}{\exp \left(c(1+\delta)\left\langle z, \theta^{*}\right\rangle\right)} \\
& \leq \frac{\prod_{t=1}^{s} \exp \left(\frac{\mathbb{E}\left[r_{t}\right]}{\nu}\left(e^{c \nu z^{T} \mathbf{V}^{-1} x_{t}}-1\right)\right)}{\exp \left(c(1+\delta)\left\langle z, \theta^{*}\right\rangle\right)} \quad\left(r_{t}\right. \text { 's are independent) } \\
& =\exp \left(-c\left\langle z, \theta^{*}\right\rangle(1+\delta)+\sum_{t=1}^{s} \frac{\left\langle x, \theta^{*}\right\rangle}{\nu}\left(e^{c \nu z^{T} \mathbf{V}^{-1} x_{t}}-1\right)\right) .
\end{array}
$$

398

$$
\begin{equation*}
\mathbb{P}\left\{\langle z, \widehat{\theta}\rangle \geq(1+\delta)\left\langle z, \theta^{*}\right\rangle\right\} \leq \exp \left(-\frac{\left\langle z, \theta^{*}\right\rangle}{\nu \gamma}(1+\delta) \log (1+\delta)+\sum_{t=1}^{s} \frac{\left\langle x_{t}, \theta^{*}\right\rangle}{\nu}\left((1+\delta)^{\frac{1}{\gamma} z^{T} \mathbf{v}^{-1} x_{t}}-1\right)\right) \tag{12}
\end{equation*}
$$

Substituting $c=\frac{\log (1+\delta)}{\nu \gamma}$, we get

Since $\frac{1}{\gamma} z^{T} \mathbf{V}^{-1} x_{t} \leq 1$ we have $(1+\delta)^{\frac{1}{\gamma} z^{T} \mathbf{V}^{-1} x_{t}} \leq 1+\delta \cdot \frac{1}{\gamma} z^{T} \mathbf{V}^{-1} x_{t}$. Substituting in 12 we get

$$
\begin{aligned}
\mathbb{P} & \left\{\langle z, \widehat{\theta}\rangle \geq(1+\delta)\left\langle z, \theta^{*}\right\rangle\right\} \\
& \leq \exp \left(-\frac{1}{\nu \gamma}\left\langle z, \theta^{*}\right\rangle(1+\delta) \log (1+\delta)+\sum_{t=1}^{s}\left\langle x_{t}, \theta^{*}\right\rangle \cdot \frac{\delta}{\nu \gamma} z^{T} \mathbf{V}^{-1} x_{t}\right) \\
& =\exp \left(-\frac{1}{\nu \gamma}\left\langle z, \theta^{*}\right\rangle(1+\delta) \log (1+\delta)+\frac{\delta}{\nu \gamma} \sum_{t=1}^{s} \theta^{* T} x_{t} x_{t}^{T} \mathbf{V}^{-1} z\right) \\
& =\exp \left(-\frac{1}{\nu \gamma}\left\langle z, \theta^{*}\right\rangle(1+\delta) \log (1+\delta)+\frac{\delta}{\nu \gamma}\left\langle z, \theta^{*}\right\rangle\right) .
\end{aligned} \quad\left(\sum_{t=1}^{s} x_{t} x_{t}^{T}=\mathbf{V}\right)
$$

Using \log inequality $\log (1+\delta) \geq \frac{2 \delta}{2+\delta}$ we get

$$
\begin{aligned}
\mathbb{P}\left\{\langle z, \widehat{\theta}\rangle \geq(1+\delta)\left\langle z, \theta^{*}\right\rangle\right\} & \leq \exp \left(-\frac{\left\langle z, \theta^{*}\right\rangle}{\nu \gamma}((1+\delta) \log (1+\delta)-\delta)\right) \\
& \leq \exp \left(\frac{-\delta^{2}\left\langle z, \theta^{*}\right\rangle}{(2+\delta) \nu \gamma}\right) \\
& \leq \exp \left(\frac{-\delta^{2} n\left\langle z, \theta^{*}\right\rangle}{3 \nu \gamma}\right) . \quad(\text { since } \delta \in[0,1])
\end{aligned}
$$

We follow similar steps for the lower tail (inequality (9)) to get the following expression -

$$
\mathbb{P}\left\{\langle z, \widehat{\theta}\rangle \leq(1-\delta)\left\langle z, \theta^{*}\right\rangle\right\} \leq \exp \left(-\frac{1}{\nu \gamma}\left\langle z, \theta^{*}\right\rangle(1-\delta) \log (1-\delta)-\frac{\delta}{\nu \gamma}\left\langle z, \theta^{*}\right\rangle\right)
$$

Now using inequality $(1-\delta) \log (1-\delta) \geq-\delta+\frac{\delta^{2}}{2}$, we get

$$
\mathbb{P}\left\{\langle z, \widehat{\theta}\rangle \leq(1-\delta)\left\langle z, \theta^{*}\right\rangle\right\} \leq \exp \left(\frac{-\delta^{2}\left\langle z, \theta^{*}\right\rangle}{2 \nu \gamma}\right)
$$

Combining (9) and (8) we get the following Corollary.
Corollary 8. Using notations as in Lemma 5 we have

$$
\begin{equation*}
\mathbb{P}\left\{\left|\langle z, \widehat{\theta}\rangle-\left\langle z, \theta^{*}\right\rangle\right| \geq \delta\left\langle z, \theta^{*}\right\rangle\right\} \leq 2 \exp \left(-\frac{\delta^{2}\left\langle z, \theta^{*}\right\rangle}{3 \gamma}\right) \tag{13}
\end{equation*}
$$

The next two lemmas are variants of 5 where we bound the error in terms of α where $\alpha \geq\left\langle x, \theta^{*}\right\rangle$.
Lemma 9. Let $x_{1}, x_{2}, \ldots, x_{s} \in \mathbb{R}^{d}$ be a fixed set of vectors and let $r_{1}, r_{2}, \ldots, r_{s}$ be independent $\nu-$ sub Poisson random variables satisfying $\mathbb{E} r_{s}=\left\langle x_{s}, \theta^{*}\right\rangle$ for some unknown θ^{*}. In that case, let matrix $\mathbf{V}=\sum_{j=1}^{s} x_{j} x_{j}^{T}$ and $\widehat{\theta}=\mathbf{V}^{-1}\left(\sum_{j} r_{j} x_{j}\right)$ be the least squares estimator of θ^{*}. Consider any $z \in \mathbb{R}^{d}$ that satisfies $z^{T} \mathbf{V}^{-1} x_{j} \leq \gamma$ for all $j \in[s]$ and $\left\langle z, \theta^{*}\right\rangle \leq \alpha$. Then for any $\delta \in[0,1]$ we have

$$
\begin{equation*}
\mathbb{P}\{\langle z, \widehat{\theta}\rangle \geq(1+\delta) \alpha\} \leq e^{-\frac{\delta^{2} \alpha}{3 \gamma \nu}} \tag{14}
\end{equation*}
$$

Proof. Following similar steps as in the proof of Lemma 5

$$
\begin{aligned}
\mathbb{P}\{\langle z, \widehat{\theta}\rangle \geq(1+\delta) \alpha\} & \leq \frac{\mathbb{E}\left[\exp \left(c z^{T} \mathbf{V}^{-1} \mathbf{X}^{T} R\right)\right]}{\exp (c(1+\delta) \alpha)} \\
& \leq \exp \left(-c \alpha(1+\delta)+\sum_{t=1}^{s} \frac{\left\langle X, \theta^{*}\right\rangle}{\nu}\left(e^{c \nu z^{T} \mathbf{V}^{-1} x_{t}}-1\right)\right)
\end{aligned}
$$

(r_{t} are sub-poisson and conditionally independent)

$$
\begin{aligned}
\mathbb{P}\{\langle z, \widehat{\theta}\rangle \geq(1+\delta) \alpha\} & \leq \exp \left(-\frac{1}{\gamma \nu} \alpha(1+\delta) \log (1+\delta)+\sum_{t=1}^{s} \frac{\langle X,\rangle}{\nu} \theta^{*}\left((1+\delta)^{\left.\left.\frac{1}{\gamma} z^{T} \mathbf{V}^{-1} x_{t}-1\right)\right)}\right.\right. \\
& \leq \exp \left(-\frac{1}{\nu \gamma} \alpha(1+\delta) \log (1+\delta)+\frac{\delta}{\nu \gamma} \sum_{t=1}^{s} \theta^{* T} x_{t} x_{t}^{T} \mathbf{V}^{-1} Z\right) \\
& =\exp \left(-\frac{1}{\nu \gamma} \alpha(1+\delta) \log (1+\delta)+\frac{\delta}{\nu \gamma}\left\langle z, \theta^{*}\right\rangle\right) \\
& \leq \exp \left(-\frac{1}{\nu \gamma} \alpha(1+\delta) \log (1+\delta)+\frac{\delta}{\nu \gamma} \alpha\right) \quad\left(\alpha \geq\left\langle z, \theta^{*}\right\rangle\right) \\
& \leq \exp \left(\frac{-\delta^{2} \alpha}{(2+\delta) \nu \gamma}\right) \quad\left(U \operatorname{sing} \log (1+\delta) \geq \frac{2 \delta}{2+\delta}\right)
\end{aligned}
$$

Since $\delta \in[0,1]$, we have the desired result.
Lemma 10. Let $x_{1}, x_{2}, \ldots, x_{s} \in \mathbb{R}^{d}$ be a fixed set of vectors and let $r_{1}, r_{2}, \ldots, r_{s}$ be independent $\nu-$ sub Poisson random variables satisfying $\mathbb{E} r_{s}=\left\langle x_{s}, \theta^{*}\right\rangle$ for some unknown θ^{*}. In that case, let matrix $\mathbf{V}=\sum_{j=1}^{s} x_{j} x_{j}^{T}$ and $\hat{\theta}=\mathbf{V}^{-1}\left(\sum_{j} r_{j} x_{j}\right)$ be the least squares estimator of θ^{*}. Consider any $z \in \mathbb{R}^{d}$ that satisfies $z^{T} \mathbf{V}^{-1} x_{j} \leq \gamma$ for all $j \in[s]$ and $\left\langle z, \theta^{*}\right\rangle \leq \alpha$. Then for any $\delta \in[0,1]$ we have

$$
\begin{equation*}
\mathbb{P}\left\{\langle z, \widehat{\theta}\rangle \leq\left\langle z, \theta^{*}\right\rangle-\delta \alpha\right\} \leq \exp \left(-\frac{\delta^{2} \alpha}{2 \gamma \nu}\right) \tag{15}
\end{equation*}
$$

Proof. Using the steps as in the previous lemmas, we arrive at

$$
\mathbb{P}\left\{\langle z, \widehat{\theta}\rangle \leq\left\langle z, \theta^{*}\right\rangle-\delta \alpha\right\} \leq \exp \left(-\frac{\left\langle z, \theta^{*}\right\rangle}{\nu \gamma}(\log (1-\delta)+\delta)+\frac{\alpha}{\nu \gamma} \delta \log (1-\delta)\right)
$$

Note that since $\log (1-\delta)+\delta$ is negative, we can upper bound the above expression by replacing $\left\langle z, \theta^{*}\right\rangle$ with α.

$$
\begin{aligned}
\mathbb{P}\left\{\langle z, \widehat{\theta}\rangle \leq\left\langle z, \theta^{*}\right\rangle-\delta \alpha\right\} & \leq \exp \left(-\frac{\alpha}{\nu \gamma}(\log (1-\delta)+\delta-\delta \log (1-\delta))\right) \\
& \leq \exp \left(-\frac{\delta^{2} \alpha}{2 \nu \gamma}\right) \quad\left(\text { since }(1-\delta) \log (1-\delta) \geq-\delta+\frac{\delta^{2}}{2}\right)
\end{aligned}
$$

B Regret Analysis of Algorithm 2

Let us define events E_{1} and E_{2} for each phase of the algorithm and show that they hold with high probability. We will use the events in the missing proofs from Section 3.3 .
E_{1} At the end of Part I, let $\widehat{\theta}$ be the unbiased estimator of θ^{*}. All arms $x \in \mathcal{X}$ with $\left\langle x, \theta^{*}\right\rangle<$ $10 \sqrt{\frac{d \log (T|\mathcal{X}|)}{T}}$ satisfy

$$
\langle x, \widehat{\theta}\rangle \leq 20 \sqrt{\frac{d \log (\mathrm{~T}|\mathcal{X}|)}{\mathrm{T}}}
$$

E_{2} : Let $\widetilde{\mathcal{X}}$ denote the candidate set at the start of a phase in Part II, and T^{\prime} be as defined in Algorithm 2. For all phases and for all $z \in \widetilde{\mathcal{X}}$ such that $\left\langle x, \theta^{*}\right\rangle \geq 10 \frac{\sqrt{d \log (\mathrm{~T}|\mathcal{X}|)}}{\sqrt{\mathrm{T}}}$, the estimator $\widehat{\theta}$ (calculated at the end of the phase) satisfies

$$
\begin{aligned}
\mid\left\langle x, \theta^{*}\right\rangle-\langle x, \widehat{\theta}\rangle & \leq 3 \sqrt{\frac{d\left\langle x, \theta^{*}\right\rangle \log (\mathrm{T}|\mathcal{X}|)}{\mathrm{T}^{\prime}}} \\
\frac{1}{2}\left\langle x, \theta^{*}\right\rangle & \leq\langle x, \widehat{\theta}\rangle
\end{aligned} \frac{4}{3}\left\langle x, \theta^{*}\right\rangle .
$$

Lemma 11 (Chernoff Bound). Let Z_{1}, \ldots, Z_{n} be independent Bernoulli random variables. Consider the sum $S=\sum_{r=1}^{n} Z_{r}$ and let $\nu=\mathbb{E}[S]$ be its expected value. Then, for any $\varepsilon \in[0,1]$, we have

$$
\mathbb{P}\{S \leq(1-\varepsilon) \nu\} \leq \exp \left(-\frac{\nu \varepsilon^{2}}{2}\right)
$$

Lemma 12. During Part I, arms from D-optimal design are added to S at least $\widetilde{\mathrm{T}} / 3$ times with probability greater than $1-\frac{1}{\mathrm{~T}}$

Proof. We use Lemma 11 with Z_{i} as indicator random variables, that take value one when an arm for \mathcal{A} (the support of λ in the optimal design) is chosen. Taking $\epsilon=\frac{1}{3}$ and $\nu=\frac{\widetilde{T}}{2}$ we get the required probability bound.

Lemma 13. Using the notation in Algorithm \square for $z \in \mathcal{X}$ we have

$$
z^{T} \mathbf{V}^{-1} X_{t} \leq \frac{3 d}{\widetilde{\mathrm{~T}}}
$$

Proof. Let $\mathbf{U}(\lambda)$ and λ be the optimal design matrix (as defined in (4)) and the solution to the D-optimal design problem in Algorithm ?? i.e. if λ is the solution of the objective function in equation (5) then, $\mathbf{U}(\lambda)=\sum_{x \in \mathcal{X}} \lambda_{x} x x^{T}$. Clearly, from Lemma 2 we must have that for any $z \in \mathcal{X}$, $\|z\|_{\mathbf{U}(\lambda)-1} \leq d$. By construction of the sequence \mathcal{S} in Step 1 (Subroutine GenerateArmSequence), we have $\mathbf{V} \succ \frac{\widetilde{T}}{3} \mathbf{U}(\lambda)$. Hence

$$
\begin{array}{rlr}
z^{T} \mathbf{V}^{-1} X_{t} & \leq\|z\|_{\mathbf{V}^{-1}}\left\|\mathbf{V}^{-1} X_{t}\right\|_{\mathbf{V}} & \text { (By Hölder's inequality) } \\
& =\|z\|_{\mathbf{V}^{-1}}\left\|X_{t}\right\|_{\mathbf{V}^{-1}} \\
& \left.\left.\leq\|z\|_{\left(\frac{\tilde{T}}{3}\right.} \mathbf{U}(\lambda)\right)^{-1}\left\|X_{t}\right\|_{\left(\frac{\tilde{T}}{3}\right.} \mathbf{U}(\lambda)\right)^{-1} & \\
& =\sqrt{\frac{3}{\widetilde{\mathrm{~T}}}}\|Z\|_{\mathbf{U}(\lambda)^{-1}} \sqrt{\frac{3}{\widetilde{\mathrm{~T}}}}\left\|X_{t}\right\|_{\mathbf{U}(\lambda)^{-1}} \\
& \leq \sqrt{\frac{3 d}{\widetilde{T}}} \sqrt{\frac{3 d}{\widetilde{\mathrm{~T}}}} \\
& =\frac{3 d}{\widetilde{\mathrm{~T}}}
\end{array}
$$

Lemma 14. Let $\widehat{\theta}$ be the estimate computed at the end of Part I of Algorithm 2 Following holds with probability greater than $1-\frac{4}{T}$ -

- All arms $x \in \mathcal{X}$ with $\left\langle x, \theta^{*}\right\rangle \leq 10 \sqrt{d \nu \mathrm{~T}^{-1} \log (\mathrm{~T}|\mathcal{X}|)}$ satisfy

$$
\begin{equation*}
\langle x, \widehat{\theta}\rangle \leq 20 \sqrt{d \nu \mathrm{~T}^{-1} \log (\mathrm{~T}|\mathcal{X}|)} \tag{16}
\end{equation*}
$$

- All arms $x \in \mathcal{X}$ with $\left\langle x, \theta^{*}\right\rangle \geq 10 \sqrt{d \nu \mathrm{~T}^{-1} \log (\mathrm{~T}|\mathcal{X}|)}$ satisfy

$$
\begin{align*}
& \mid\left\langle x, \theta^{*}\right\rangle-\langle x, \widehat{\theta}\rangle \leq 3 \sqrt{\frac{d\left\langle x, \theta^{*}\right\rangle \log (\mathrm{T}|\mathcal{X}|)}{\mathrm{T}^{\prime}}} \text { and } \tag{17}\\
& \frac{1}{2}\left\langle x, \theta^{*}\right\rangle \leq\langle x, \widehat{\theta}\rangle \leq \frac{4}{3}\left\langle x, \theta^{*}\right\rangle \tag{18}
\end{align*}
$$

Proof. First, consider the set $\mathcal{X}_{\text {low }}$. We use Lemma 9 for the proof. We set $\gamma=\frac{3 d}{\bar{T}}$ (from Lemma 13, $\alpha=10 \sqrt{\frac{d \nu \log (\mathrm{~T} \nu|\mathcal{X}|)}{\mathrm{T}}}$ and $\delta=1$,

$$
\mathbb{P}\left\{\langle x, \widehat{\theta}\rangle \leq 20 \sqrt{\frac{d \nu \log (\mathrm{~T}|\mathcal{X}|)}{\mathrm{T}}}\right\} \leq e^{-\frac{\delta^{2} \alpha}{3 \gamma \nu}}
$$

$$
\leq \exp \left(-\frac{3 \sqrt{\frac{d \nu \log (\mathrm{~T}|\mathcal{X}|)}{\mathrm{T}}} 3 \sqrt{T d \nu \log (\mathrm{~T}|\mathcal{X}|)}}{3 \nu d}\right)
$$

$$
\leq \frac{1}{\mathrm{~T}|\mathcal{X}|}
$$

$$
\begin{aligned}
& \mathbb{P}\left\{\left|\left\langle X, \theta^{*}\right\rangle-\langle X, \widehat{\theta}\rangle\right| \geq 3 \sqrt{\frac{\nu d\left\langle x, \theta^{*}\right\rangle \log (\mathrm{T}|\mathcal{X}|)}{\widetilde{\mathrm{T}}}}\right\} \\
& \quad \leq 2 \exp \left(-\frac{\frac{9 d \nu \log (\mathrm{~T}|\mathcal{X}|)}{\left\langle x, \theta^{*}\right\rangle \tilde{\mathrm{T}}} \cdot\left\langle x, \theta^{*}\right\rangle}{3 \nu \frac{3 d}{\widetilde{\mathrm{~T}}}}\right) \\
& \quad=\frac{2}{\mathrm{~T}|\mathcal{X}|} .
\end{aligned}
$$

Next, we prove 18. The upper tail is obtained by setting $\gamma=\frac{3 d}{\tilde{\mathrm{~T}}}, \delta=\frac{1}{3}$ in expression 8 of Lemma 5. we get

$$
\begin{aligned}
\mathbb{P}\left\{\langle X, \widehat{\theta}\rangle \geq \frac{4}{3}\left\langle x, \theta^{*}\right\rangle\right\} & \leq \exp \left(-\frac{3 \sqrt{\mathrm{~T} \nu d \log (\mathrm{~T}|\mathcal{X}|)} \cdot 10 \sqrt{\frac{d \nu \log (\mathrm{~T}|\mathcal{X}|)}{T}}}{27 \nu d}\right) \\
& \quad \quad \begin{array}{l}
\text { Since } \left.\left\langle x, \theta^{*}\right\rangle \geq 10 \sqrt{\frac{d \nu \log (\mathrm{~T}|\mathcal{X}|)}{\mathrm{T}}}\right)
\end{array} \\
& \leq \frac{1}{\mathrm{~T}|\mathcal{X}|} .
\end{aligned}
$$

Similarly substituting $\delta=1 / 2$ in expression 9 of Lemma 5 we get

$$
\mathbb{P}\left\{\langle X, \widehat{\theta}\rangle \leq \frac{1}{2}\left\langle x, \theta^{*}\right\rangle\right\} \leq \frac{1}{\mathrm{~T}|\mathcal{X}|}
$$

Union bound over all arms in \mathcal{X} gives us the required probability bound.
Next, we look at Part II of Algorithm 2 and show that the event E_{2} holds with high probability. Note that since we find a sparse λ (with support size almost $\frac{d(d+1)}{2}$) in every phase, the phase length is upper bounded as $\mathrm{T}^{\prime}+\frac{d(d+1)}{2}$.

Lemma 15. Using the notation in Algorithm 2 For all arms $x \in \widetilde{\mathcal{X}}$ with $\left\langle x, \theta^{*}\right\rangle \geq 10 \frac{\sqrt{d \nu \log (\mathrm{~T}|\mathcal{X}|)}}{\sqrt{\mathrm{T}}}$, the following holds (for every phase) with probability greater than $1-\frac{3 \log T}{T}$

$$
\begin{align*}
& \mid\left\langle x, \theta^{*}\right\rangle-\langle x, \widehat{\theta}\rangle \leq 3 \sqrt{\frac{d \nu\left\langle x, \theta^{*}\right\rangle \log (\mathrm{T}|\mathcal{X}|)}{\mathrm{T}^{\prime}}} \tag{19}\\
& \frac{1}{2}\left\langle x, \theta^{*}\right\rangle \leq\langle x, \widehat{\theta}\rangle \leq \frac{4}{3}\left\langle x, \theta^{*}\right\rangle \tag{20}
\end{align*}
$$

Proof. The proof follows the same structure as the proof of Lemma 14 Consider any Phase in Part II andet $\mathbf{U}(\lambda)$ be the optimal design matrix obtained after solving the D -optimal design problem at the start of the phase. Since each arm a in the support of λ (denoted by \mathcal{A}) is pulled at least $\left\lceil\lambda_{a} T^{\prime}\right\rceil$ times, we have $\mathbf{V} \succ \frac{\mathrm{T}^{\prime}}{3} \mathbf{U}(\lambda)$. Thus by Theorem 2, for $x \in \mathcal{A}$ and all $z \in \widetilde{\mathcal{X}}$ we have

$$
\begin{align*}
z^{T} \mathbf{V}^{-1} x & \leq\|z\|_{\mathbf{V}^{-1}}\left\|\mathbf{V}^{-1} x\right\|_{\mathbf{V}} \\
& \leq\|z\|_{\mathbf{V}^{-1}}\|x\|_{\mathbf{V}^{-1}} \tag{21}\\
& \leq \sqrt{\frac{d}{\mathrm{~T}^{\prime}}} \sqrt{\frac{d}{\mathrm{~T}^{\prime}}}=\frac{d}{\mathrm{~T}^{\prime}} \tag{22}
\end{align*}
$$

Now we use Lemma 5 with $\delta=3 \sqrt{\frac{d \nu \log (\mathrm{~T}|\mathcal{X}|)}{\left\langle x, \theta^{*}\right\rangle \mathrm{T}^{\prime}}}$ and $\gamma=\frac{d}{\mathrm{~T}^{\prime}}$. Note that given the lower bound on $\left\langle x, \theta^{*}\right\rangle$ and $\mathrm{T}^{\prime} \geq 2 \sqrt{\mathrm{~T} d \nu \log (\mathrm{~T}|\mathcal{X}|)}$ in every phase, δ always lies in $[0,1]$. Substituting in Lemma 5 we get

$$
\begin{aligned}
\mathbb{P}\left\{\left|\left\langle X, \theta^{*}\right\rangle-\langle X, \widehat{\theta}\rangle\right| \geq 3 \sqrt{\frac{d \nu\left\langle x, \theta^{*}\right\rangle \log (\mathrm{T}|\mathcal{X}|)}{\mathrm{T}^{\prime}}}\right\} & \leq 2 \exp \left(-\frac{\frac{9 d \log (\mathrm{~T}|\mathcal{X}|)}{\left\langle x, \theta^{*}\right\rangle \mathrm{T}^{\prime}} \cdot\left\langle x, \theta^{*}\right\rangle}{3 \frac{d}{\mathrm{~T}^{\prime}}}\right) \\
& \leq \frac{2}{(\mathrm{~T}|\mathcal{X}|)^{3}}
\end{aligned}
$$

Similar to the proof of Lemma 14 , we use Lemma 5 with $\delta=\frac{1}{3}$ and $\delta=\frac{1}{2}$ to bound the upper and lower tails of 20) respectively. Furthermore, a union bound across arms in \mathcal{X} and all - at most $\log T$ - phases gives us the desired probability bound of $1-\frac{3 \log T}{T}$.

Corollary 16.

$$
\mathbb{P}\left\{E_{1} \cap E_{2}\right\} \geq 1-\frac{4 \log \mathrm{~T}}{\mathrm{~T}} .
$$

Proof. From Lemma 14 we have $\mathbb{P}\left\{E_{1}\right\} \geq 1-\frac{4}{\mathrm{~T}}$. Furthermore from Lemma 15 we have $\mathbb{P}\left\{E_{2}\right\} \geq$ $1-\frac{3 \log T}{T}$. Taking union bound over the complements of the two events proves the corollary.

476
Proof. From Lemma 14 for any arm with $\left\langle x, \theta^{*}\right\rangle \leq 10 \sqrt{\frac{d \nu \log (\mathrm{~T}|\mathcal{X}|)}{\mathrm{T}}}$ we have,

$$
\begin{align*}
\operatorname{UNCB}(x, \widehat{\theta}, \widetilde{\mathrm{~T}} / 3) & =\langle x, \widehat{\theta}\rangle+6 \sqrt{\frac{3\langle x, \widehat{\theta}\rangle d \nu \log (\mathrm{~T}|\mathcal{X}|)}{\widetilde{\mathrm{T}}}} \\
& \leq 20 \sqrt{\frac{d \nu \log (\mathrm{~T}|\mathcal{X}|)}{T}}+6 \sqrt{\frac{3\langle x, \widehat{\theta}\rangle d \nu \log (\mathrm{~T}|\mathcal{X}|)}{\widetilde{\mathrm{T}}}} \\
& \leq 20 \sqrt{\frac{d \nu \log (\mathrm{~T}|\mathcal{X}|)}{T}}+6 \sqrt{\frac{3 \cdot 20 \sqrt{\frac{d \nu \log (\mathrm{~T}|\mathcal{X}|)}{T}} d \nu \log (\mathrm{~T}|\mathcal{X}|)}{3 \sqrt{\mathrm{~T} \nu d \log (\mathrm{~T}|\mathcal{X}|)}}} \\
& \leq 47 \sqrt{\frac{d \nu \log (\mathrm{~T}|\mathcal{X}|)}{T}} .
\end{align*}
$$

477 For the optimal arm x^{*} we have

$$
\begin{align*}
\left\langle x^{*}, \widehat{\theta}\right\rangle \leq\left\langle x^{*}, \theta^{*}\right\rangle+3 \sqrt{\frac{d \nu\left\langle x^{*}, \theta^{*}\right\rangle \log (\mathrm{T}|\mathcal{X}|)}{\widetilde{\mathrm{T}}}} & =\left\langle x^{*}, \theta^{*}\right\rangle\left(1+3 \sqrt{\left.\frac{d \nu \log (\mathrm{~T}|\mathcal{X}|)}{\left\langle x^{*}, \theta^{*}\right\rangle 3 \sqrt{\mathrm{~T} d \nu \log (\mathrm{~T}|\mathcal{X}|)}}\right)}\right. \\
& \quad \text { (Substituting the value of } \widetilde{\mathrm{T}}) \\
& \leq\left\langle x^{*}, \theta^{*}\right\rangle\left(1+3 \sqrt{\left.\frac{d \nu \log (\mathrm{~T}|\mathcal{X}|)}{192 \sqrt{\frac{d \nu \log (\mathrm{~T}|\mathcal{X}|)}{T}} 3 \sqrt{T \nu d \log (\mathrm{~T}|\mathcal{X}|)}}\right)}\right. \\
& =\frac{17}{16}\left\langle x^{*}, \theta^{*}\right\rangle . \tag{24}
\end{align*}
$$

This gives us a lower bound on the LNCB of x^{*}

$$
\begin{align*}
\operatorname{LNCB}\left(x^{*}, \widehat{\theta}, \widetilde{\mathrm{~T}} / 3\right) & =\left\langle x^{*}, \widehat{\theta}\right\rangle-6 \sqrt{\frac{3\left\langle x^{*}, \widehat{\theta}\right\rangle d \nu \log (\mathrm{~T}|\mathcal{X}|)}{\widetilde{\mathrm{T}}}} \\
& \geq\left\langle x^{*}, \theta^{*}\right\rangle-3 \sqrt{\frac{d \nu\left\langle x^{*}, \theta^{*}\right\rangle \log (\mathrm{T}|\mathcal{X}|)}{\widetilde{\mathrm{T}}}}-6 \sqrt{\frac{3\left\langle x^{*}, \widehat{\theta}\right\rangle d \nu \log (\mathrm{~T}|\mathcal{X}|)}{\widetilde{\mathrm{T}}}} \\
& \geq\left\langle x^{*}, \theta^{*}\right\rangle-\left(3+6 \sqrt{\frac{51}{16}}\right) \sqrt{\frac{d \nu\left\langle x^{*}, \theta^{*}\right\rangle \log (\mathrm{T}|\mathcal{X}|)}{\widetilde{\mathrm{T}}}} \\
& \geq\left\langle x^{*}, \theta^{*}\right\rangle\left(1-14 \sqrt{\frac{d \nu \log (\mathrm{~T}|\mathcal{X}|)}{\left\langle x^{*}, \theta^{*}\right\rangle \widetilde{\mathrm{T}}}}\right) \\
& \geq\left\langle x^{*}, \theta^{*}\right\rangle\left(1-14 \sqrt{\left.\frac{14}{192 \sqrt{\frac{d \nu \log (\mathrm{~T}|\mathcal{X}|)}{T}} 3 \sqrt{\mathrm{~T} d \nu \log (\mathrm{~T}|\mathcal{X}|)}}\right)}\right. \\
& \geq \frac{5}{12}\left\langle x^{*}, \theta^{*}\right\rangle \\
& \geq 80 \sqrt{\frac{d \nu \log (\mathrm{~T}|\mathcal{X}|)}{\mathrm{T}}} .
\end{align*}
$$

From (25) and (23) we have

$$
\begin{equation*}
\operatorname{UNCB}(x, \widehat{\theta}, \widetilde{\mathrm{~T}} / 3) \leq \operatorname{LNCB}\left(x^{*}, \widehat{\theta}, \widetilde{\mathrm{~T}} / 3\right) \tag{26}
\end{equation*}
$$

Lemma 6. The optimal arm x^{*} always exists in the surviving set $\widetilde{\mathcal{X}}$ in Part I and in every phase in Part II of Algorithm 2 with probability at least $1-O\left(\mathrm{~T}^{-1} \log \mathrm{~T}\right)$.

Proof. Let us assume that events E_{1} and E_{2} hold. For any arm x in \mathcal{X} with $\left\langle x, \theta^{*}\right\rangle \geq$ $10 \sqrt{\frac{d \nu \log (\mathrm{~T}|\mathcal{X}|)}{\mathrm{T}}}$, we have

$$
\begin{aligned}
\operatorname{LNCB}\left(x, \widehat{\theta}, \mathrm{~T}^{\prime}\right) & =\langle x, \widehat{\theta}\rangle-6 \sqrt{\frac{\langle x, \widehat{\theta}\rangle d \nu \log (\mathrm{~T}|\mathcal{X}|)}{\mathrm{T}^{\prime}}} \\
& \leq\left\langle x, \theta^{*}\right\rangle+3 \sqrt{\frac{d \nu\left\langle x, \theta^{*}\right\rangle \log (\mathrm{T}|\mathcal{X}|)}{\mathrm{T}^{\prime}}}-6 \sqrt{\frac{\langle x, \widehat{\theta}\rangle d \nu \log (\mathrm{~T}|\mathcal{X}|)}{\mathrm{T}^{\prime}}} \\
& \leq\left\langle x, \theta^{*}\right\rangle-\left(\frac{6}{\sqrt{2}}-3\right) \sqrt{\frac{d \nu\left\langle x, \theta^{*}\right\rangle \log (\mathrm{T}|\mathcal{X}|)}{\mathrm{T}^{\prime}}} \\
& \leq\left\langle x, \theta^{*}\right\rangle .
\end{aligned}
$$

Similarly, we have

$$
\begin{aligned}
\operatorname{UNCB}\left(x^{*}, \widehat{\theta}, \mathrm{~T}^{\prime}\right) & =\left\langle x^{*}, \widehat{\theta}\right\rangle+6 \sqrt{\frac{\left\langle x^{*}, \widehat{\theta}\right\rangle d \nu \log (\mathrm{~T}|\mathcal{X}|)}{\mathrm{T}^{\prime}}} \\
& \geq\left\langle x^{*}, \theta^{*}\right\rangle-3 \sqrt{\frac{d \nu\left\langle x^{*}, \theta^{*}\right\rangle \log (\mathrm{T}|\mathcal{X}|)}{\widetilde{\mathrm{T}}}}+6 \sqrt{\frac{\left\langle x^{*}, \widehat{\theta}\right\rangle d \nu \log (\mathrm{~T}|\mathcal{X}|)}{\mathrm{T}^{\prime}}} \\
& \geq\left\langle x^{*}, \theta^{*}\right\rangle+\left(\frac{6}{\sqrt{2}}-3\right) \sqrt{\frac{d \nu\left\langle x^{*}, \theta^{*}\right\rangle \log (\mathrm{T}|\mathcal{X}|)}{\widetilde{\mathrm{T}}}} \\
& \geq\left\langle x^{*}, \theta^{*}\right\rangle .
\end{aligned}
$$

Since $\left\langle x^{*}, \theta^{*}\right\rangle \geq\left\langle x, \theta^{*}\right\rangle \forall x \in \mathcal{X}$, we have $\operatorname{UNCB}\left(x^{*}, \widehat{\theta}, \mathrm{~T}^{\prime}\right) \geq \operatorname{LNCB}\left(x, \widehat{\theta}, \mathrm{~T}^{\prime}\right) \forall \mathcal{X}$. From Corollary 16 , we have that the events E_{1} and E_{2} hold with probability greater than $1-\frac{4 \log T}{T}$. Hence, the lemma stands proven.

Lemma 7. Consider any phase ℓ in Part II of Algorithm 2 and let $\widetilde{\mathcal{X}}$ be the surviving set of arms at the beginning of that phase. Then, with $\widetilde{T}=\sqrt{d \nu \top \log (\mathbb{T}|\mathcal{X}|)}$, we have

$$
\begin{equation*}
\operatorname{Pr}\left\{\left\langle x, \theta^{*}\right\rangle \geq\left\langle x^{*}, \theta^{*}\right\rangle-25 \sqrt{\frac{3 d \nu\left\langle x^{*}, \theta^{*}\right\rangle \log (\mathrm{T}|\mathcal{X}|)}{2^{\ell} \cdot \widetilde{\mathrm{T}}}} \text { for all } x \in \widetilde{\mathcal{X}}\right\} \leq 4 \mathrm{~T}^{-1} \log \mathrm{~T} \tag{10}
\end{equation*}
$$

Here, ν is the sub-Poisson parameter of the stochastic rewards.
Proof. Let us assume that events E_{1} and E_{2} hold. From the second phase onwards, if an arm is pulled in a phase with phase length parameter T^{\prime}, then it was not eliminated in the previous phase with phase length parameter $\frac{T^{\prime}}{2}$. Additionally, since the best arm is always present in the surviving arm set $\widetilde{\mathcal{X}}$ (via Lemma 6), we have $\operatorname{UNCB}\left(x, \widehat{\theta}, \mathrm{~T}^{\prime} / 2\right) \geq \operatorname{LNCB}\left(x^{*}, \widehat{\theta}, \mathrm{~T}^{\prime} / 2\right)$. That is

$$
\langle x, \widehat{\theta}\rangle+6 \sqrt{\frac{\langle x, \widehat{\theta}\rangle d \nu \log (\mathrm{~T}|\mathcal{X}|)}{\frac{\mathrm{T}^{\prime}}{2}}} \geq\left\langle x^{*}, \widehat{\theta}\right\rangle-6 \sqrt{\frac{\left\langle x^{*}, \widehat{\theta}\right\rangle d \nu \log (\mathrm{~T}|\mathcal{X}|)}{\frac{\mathrm{T}^{\prime}}{2}}}
$$

Rearranging terms, we get

$$
\begin{aligned}
\langle x, \widehat{\theta}\rangle & \geq\left\langle x^{*}, \widehat{\theta}\right\rangle-6 \sqrt{\frac{\left\langle x^{*}, \widehat{\theta}\right\rangle d \nu \log (\mathrm{~T}|\mathcal{X}|)}{\frac{\mathrm{T}^{\prime}}{2}}}-6 \sqrt{\frac{\langle x, \widehat{\theta}\rangle d \nu \log (\mathrm{~T}|\mathcal{X}|)}{\frac{\mathrm{T}^{\prime}}{2}}} \\
& \geq\left\langle x^{*}, \widehat{\theta}\right\rangle-6 \sqrt{\frac{4\left\langle x^{*}, \theta^{*}\right\rangle d \nu \log (\mathrm{~T}|\mathcal{X}|)}{\mathrm{T}^{\prime}}}-6 \sqrt{\frac{4\left\langle x, \theta^{*}\right\rangle d \nu \log (\mathrm{~T}|\mathcal{X}|)}{\mathrm{T}^{\prime}}} \\
& \geq\left\langle x^{*}, \widehat{\theta}\right\rangle-20 \sqrt{\frac{\left\langle x^{*}, \theta^{*}\right\rangle d \nu \log (\mathrm{~T}|\mathcal{X}|)}{\mathrm{T}^{\prime}}}
\end{aligned}
$$

Now using the additive confidence intervals we have,

$$
\begin{aligned}
\left\langle x, \theta^{*}\right\rangle & \geq\left\langle x^{*}, \theta^{*}\right\rangle-20 \sqrt{\frac{\left\langle x^{*}, \theta^{*}\right\rangle d \nu \log (\mathrm{~T}|\mathcal{X}|)}{\mathrm{T}^{\prime}}}-3 \sqrt{\frac{\left\langle x^{*}, \theta^{*}\right\rangle d \nu \log (\mathrm{~T}|\mathcal{X}|)}{\frac{\mathrm{T}^{\prime}}{2}}} \\
& \geq\left\langle x^{*}, \theta^{*}\right\rangle-25 \sqrt{\frac{\left\langle x^{*}, \theta^{*}\right\rangle d \nu \log (\mathrm{~T}|\mathcal{X}|)}{\mathrm{T}^{\prime}}} .
\end{aligned}
$$

Substituting $T^{\prime}=2^{l \widetilde{\top}} / 3$ in the above inequality proves the Lemma. From Corollary 16 , we have that the events E_{1} and E_{2} hold with probability greater than $1-\frac{4 \log T}{T}$. Hence, the lemma stands proven.

Theorem 1. Consider the stochastic linear bandits problem over a horizon of T rounds such that at every round $t \in[\mathrm{~T}]$, an arm $X_{t} \in \mathcal{X} \subset \mathbb{R}^{d}$ is selected and the corresponding reward r_{t} is obtained satisfying equation (2). In the setting when \mathcal{X} is finite, Algorithm 2 achieves a Nash regret of

$$
\mathrm{NR}_{\mathrm{T}}=O\left(\sqrt{\frac{d \nu\left\langle x^{\star}, \theta^{*}\right\rangle}{\mathrm{T}}} \log (\mathrm{~T}|\mathcal{X}|)\right) .
$$

Proof. WLOG we assume that $\left\langle x^{*}, \theta^{*}\right\rangle \geq 192 \sqrt{\frac{d \nu}{T}} \log (\mathrm{~T}|\mathcal{X}|)$, otherwise the Nash Regret bound is trivially true. During Part I of Algorithm 2, the product of expected rewards, conditioned on the event $E_{1} \cap E_{2}$, satisfies

$$
\begin{aligned}
\prod_{t=1}^{\widetilde{\mathrm{T}}} \mathbb{E}\left[\left\langle X_{t}, \theta^{*}\right\rangle \mid E_{1} \cap E_{2}\right]^{\frac{1}{T}} & \geq\left(\frac{\left\langle x^{*}, \theta^{*}\right\rangle}{2(d+1)}\right)^{\frac{\tilde{\mathrm{T}}}{T}} \quad \text { (From Lemma4) } \\
& =\left\langle x^{*}, \theta^{*}\right\rangle^{\frac{\tilde{\mathrm{T}}}{T}}\left(1-\frac{1}{2}\right)^{\frac{\log (2(d+1)) \tilde{\mathrm{T}}}{T}} \\
& \geq\left\langle x^{*}, \theta^{*}\right\rangle^{\frac{\tilde{\mathrm{T}}}{T}}\left(1-\frac{\log (2(d+1)) \widetilde{\mathrm{T}}}{T}\right) .
\end{aligned}
$$

For Part II, we use Lemma 7 Let set \mathcal{E}_{i} denote all t that belong to $i^{t h}$ phase and let T_{i}^{\prime} be the phase length parameter in that phase. Since each $\operatorname{arm} x$ in \mathcal{A} (the support of D-optimal design) is pulled $\left\lceil\lambda_{x} \mathrm{~T}_{i}^{\prime}\right\rceil$ times, we have $\left|\mathcal{E}_{i}\right| \leq \mathrm{T}_{i}^{\prime}+\frac{d(d+1)}{2}$. Since the phase length parameter doubles after phase, the algorithm would have at most $\log \mathrm{T}$ phases. Hence we have

$$
\begin{aligned}
\prod_{t=\widetilde{\mathrm{T}}+1}^{T} \mathbb{E}\left[\left\langle X_{t}, \theta^{*}\right\rangle \mid E_{1} \cap E_{2}\right]^{\frac{1}{T}} & =\prod_{\mathcal{E}_{j}} \prod_{t \in \mathcal{E}_{j}} \mathbb{E}\left[\left\langle X_{t}, \theta^{*}\right\rangle \mid E_{1} \cap E_{2}\right]^{\frac{1}{T}} \\
& =\prod_{\mathcal{E}_{j}} \prod_{t \in \mathcal{E}_{j}} \mathbb{E}\left[\left\langle X_{t}, \theta^{*}\right\rangle \mid E_{1} \cap E_{2}\right]^{\frac{1}{T}} \\
& \geq \prod_{\mathcal{E}_{j}}\left(\left\langle x^{*}, \theta^{*}\right\rangle-25 \sqrt{\frac{d \nu\left\langle x^{*}, \theta^{*}\right\rangle \log (\mathrm{T}|\mathcal{X}|)}{\mathrm{T}_{j}^{\prime}}}\right)^{\frac{\left|\mathcal{E}_{j}\right|}{T}} \\
& \geq\left\langle x^{*}, \theta^{*}\right\rangle^{\frac{T-\tilde{\widetilde{T}}}{T}} \prod_{i=1}^{\log T}\left(1-25 \sqrt{\frac{d \nu \log (\mathrm{~T}|\mathcal{X}|)}{\left\langle x^{*}, \theta^{*}\right\rangle \mathrm{T}_{j}^{\prime}}}\right)^{\frac{\left|\mathcal{E}_{j}\right|}{T}} \\
& \geq\left\langle x^{*}, \theta^{*}\right\rangle^{\frac{T-\tilde{T}}{T}} \prod_{i=1}^{\log T}\left(1-50 \frac{\left|\mathcal{E}_{j}\right|}{T} \sqrt{\frac{d \nu \log (\mathrm{~T}|\mathcal{X}|)}{\left\langle x^{*}, \theta^{*}\right\rangle \mathrm{T}_{j}^{\prime}}}\right)
\end{aligned}
$$

The last inequality is due to the fact that $(1-x)^{r} \geq(1-2 r x)$ where $r \in[0,1]$ and $x \in[0,1 / 2]$. Note that the term $\sqrt{\frac{d \log (\mathrm{~T}|\mathcal{X}|)}{\left\langle x^{*}, \theta^{*}\right\rangle \mathrm{T}_{j}^{\prime}}} \leq 1 / 2$ for $\left\langle x^{*}, \theta^{*}\right\rangle \geq 192 \sqrt{\frac{d}{\mathrm{~T}}} \log (\mathrm{~T}|\mathcal{X}|), \mathrm{T}^{\prime} \geq 2 \sqrt{\mathrm{~T} d \log \mathrm{~T}|\mathcal{X}|}$ and $\mathrm{T} \geq e^{4}$. We now further simplify the expression as shown below

$$
\begin{aligned}
& \prod_{j=1}^{\log T}\left(1-50 \frac{\left|\mathcal{E}_{j}\right|}{T} \sqrt{\frac{d \nu \log (\mathrm{~T}|\mathcal{X}|)}{\left\langle x^{*}, \theta^{*}\right\rangle \mathrm{T}_{j}^{\prime}}}\right) \geq \prod_{j=1}^{\log T}\left(1-50 \frac{\mathrm{~T}_{j}^{\prime}+\frac{d(d+1)}{2}}{T} \sqrt{\frac{d \nu \log (\mathrm{~T}|\mathcal{X}|)}{\left\langle x^{*}, \theta^{*}\right\rangle \mathrm{T}_{j}^{\prime}}}\right) \\
& \geq \prod_{j=1}^{\log T}\left(1-75 \frac{\sqrt{T_{j}^{\prime}}}{T} \sqrt{\frac{d \nu \log (\mathrm{~T}|\mathcal{X}|)}{\left\langle x^{*}, \theta^{*}\right\rangle}}\right) \\
&\left(\text { (assuming } \mathrm{T}_{j}^{\prime} \geq d(d+1)\right) \\
& \geq 1-\frac{75}{\mathrm{~T}} \sqrt{\frac{d \nu \log (\mathrm{~T}|\mathcal{X}|)}{\left\langle x^{*}, \theta^{*}\right\rangle}}\left(\sum_{j=1}^{\log \mathrm{T}} \sqrt{\mathrm{~T}_{j}^{\prime}}\right) \\
&(\text { since }(1-a)(1-b) \geq 1-a-b \forall a, b \geq 0) \\
& \geq 1-\frac{75}{\mathrm{~T}} \sqrt{\frac{d \nu \log (\mathrm{~T}|\mathcal{X}|)}{\left\langle x^{*}, \theta^{*}\right\rangle}}(\sqrt{\mathrm{T} \log \mathrm{~T}}) \\
& \text { (using Cauchy Schwarz) } \\
& \geq 1-75 \sqrt{\frac{d \nu}{\mathrm{~T}\left\langle x^{*}, \theta^{*}\right\rangle}} \log (\mathrm{T}|\mathcal{X}|) .
\end{aligned}
$$

Combining the lower bound for rewards in the two phases, we get

$$
\begin{aligned}
\prod_{t=1}^{\top} \mathbb{E}\left[\left\langle X_{t}, \theta^{*}\right\rangle\right]^{\frac{1}{\top}} & \geq \prod_{t=1}^{\mathrm{T}}\left(\mathbb{E}\left[\left\langle X_{t}, \theta^{*}\right\rangle \mid E_{1} \cap E_{2}\right] \cdot \mathbb{P}\left\{E_{1} \cap E_{2}\right\}\right)^{\frac{1}{\top}} \\
& \geq\left\langle x^{*}, \theta^{*}\right\rangle\left(1-\frac{\log (2(d+1)) \tilde{\mathrm{T}}}{T}\right)\left(1-75 \sqrt{\frac{d}{T\left\langle x^{*}, \theta^{*}\right\rangle}} \log (\mathrm{T}|\mathcal{X}|)\right) \mathbb{P}\left\{E_{1} \cap E_{2}\right\} \\
& \geq\left\langle x^{*}, \theta^{*}\right\rangle\left(1-\frac{\log (2(d+1) \widetilde{\mathrm{T}}}{T}-75 \sqrt{\frac{d}{T\left\langle x^{*}, \theta^{*}\right\rangle}} \log (\mathrm{T}|\mathcal{X}|)\right) \mathbb{P}\left\{E_{1} \cap E_{2}\right\} \\
& \geq\left\langle x^{*}, \theta^{*}\right\rangle\left(1-\frac{\log (2(d+1)) \widetilde{\mathrm{T}}}{T}-75 \sqrt{\frac{d}{T\left\langle x^{*}, \theta^{*}\right\rangle}} \log (\mathrm{T}|\mathcal{X}|)\right)\left(1-\frac{2 \log T}{T}\right) \\
& \geq\left\langle x^{*}, \theta^{*}\right\rangle\left(1-\frac{\log (2(d+1)) 3 \sqrt{T d \log (\mathrm{~T}|\mathcal{X}|)}}{T}-75 \sqrt{\frac{d}{T\left\langle x^{*}, \theta^{*}\right\rangle}} \log (\mathrm{T}|\mathcal{X}|)-\frac{2 \log T}{T}\right) \\
& \geq\left\langle x^{*}, \theta^{*}\right\rangle-75 \sqrt{\frac{\left\langle x^{*}, \theta^{*}\right\rangle d \nu}{T}} \log (\mathrm{~T}|\mathcal{X}|)-6 \sqrt{\frac{d \nu \log (\mathrm{~T}|\mathcal{X}|)}{T}} \log (2(d+1))\left\langle x^{*}, \theta^{*}\right\rangle .
\end{aligned}
$$

Instead of working with probability bounds on individual arms, we construct a confidence ellipsoid around θ^{*}. Using the notations in Algorithm 3 we first define a new set of events for the regret analysis

```
Algorithm 3 LinNASH (Nash Confidence Bound Algorithm for Infinite Set of Arms)
Input: Arm set \(\mathcal{X}\) and horizon of play \(T\).
    : Initialize matrix \(\mathbf{V} \leftarrow[0]_{d, d}\) and number of rounds \(\widetilde{\mathbf{T}}=3 \sqrt{\mathrm{~T} d^{2.5} \nu \log (\mathrm{~T})}\).
    Part I
    Generate arm sequence \(\mathcal{S}\) for the first \(\widetilde{T}\) rounds using Algorithm 1
    for \(t=1\) to \(\widetilde{T} \mathbf{d o}\)
        Pull the next arm \(X_{t}\) from the sequence \(S\).
        Observe reward \(r_{t}\) and update \(\mathbf{V} \leftarrow \mathbf{V}+X_{t} X_{t}^{T}\)
    end for
    Set estimate \(\hat{\theta}:=\mathbf{V}^{-1}\left(\sum_{t=1}^{\tilde{T}} r_{t} X_{t}\right)\)
    Find \(\eta=\max _{z \in \mathcal{X}}\langle z, \widehat{\theta}\rangle\)
    Update \(\widetilde{\mathcal{X}} \leftarrow\left\{x \in \mathcal{X}:\langle x, \widehat{\theta}\rangle \geq \eta-16 \sqrt{\frac{3 \eta d^{\frac{5}{2}} \nu \log (\mathrm{~T})}{\tilde{\mathrm{T}}}}\right\}\)
    \(\mathrm{T}^{\prime} \leftarrow \frac{2}{3} \widetilde{\mathrm{~T}}\)
    Part II
    while end of time horizon T is reached do
        Initialize \(V=[0]_{d, d}\) to be an all zeros \(d \times d\) matrix and \(s=[0]_{d}\) to be an all-zeros vector.
        // Beginning of new phase.
        Find the probability distribution \(\lambda \in \Delta(\widetilde{\mathcal{X}})\) by maximizing the following objective
                \(\log \operatorname{Det}(\mathbf{V}(\lambda))\) subject to \(\lambda \in \Delta(\widetilde{\mathcal{X}})\) and \(\operatorname{Supp}(\lambda) \leq d(d+1) / 2\).
        for \(a\) in \(\operatorname{Supp}(\lambda)\) do
            Pull \(a\) for the next \(\left\lceil\lambda_{a} T^{\prime}\right\rceil\) rounds.
            Observe rewards and Update \(\mathbf{V} \leftarrow \mathbf{V}+\left\lceil\lambda_{A} \mathbf{T}^{\prime}\right\rceil \cdot a a^{T}\)
            Observe \(\left\lceil\lambda_{a} \mathrm{~T}^{\prime}\right\rceil\) corresponding rewards \(z_{1}, z_{2}, \ldots\) and update \(s \leftarrow s+\left(\sum_{j} z_{j}\right) a\).
        end for
        Estimate \(\widehat{\theta}=\mathbf{V}^{-1}\left(\sum_{t \in \mathcal{E}} r_{t} X_{t}\right)\)
        Find \(\eta=\max _{z \in \mathcal{X}}\langle z, \widehat{\theta}\rangle\)
        \(\tilde{\mathcal{X}} \leftarrow\left\{x \in \mathcal{X}:\langle x, \widehat{\theta}\rangle \geq \eta-16 \sqrt{\frac{\eta d^{\frac{5}{2}} \log (\mathrm{~T})}{\mathrm{T}^{\prime}}}\right\}\)
        \(\mathrm{T}^{\prime} \leftarrow 2 \times \mathrm{T}^{\prime} \quad / /\) End of phase.
    end while
```

G_{1} During Part I arms from the D-optimal design are chosen at least $\widetilde{T} / 3$ times. If $\left\langle x^{*}, \theta^{*}\right\rangle \geq$ $196 \sqrt{\frac{d^{2.5}}{T}} \log T$, then $\widehat{\theta}$ calculated at the end of Part I satisfies,

$$
\left\|\widehat{\theta}-\theta^{*}\right\|_{\mathbf{V}} \leq 7 \sqrt{\left\langle x^{*}, \theta^{*}\right\rangle d^{\frac{3}{2}} \nu \log \top}
$$

G_{2} During Part II, for every phase, if $\left\langle x^{*}, \theta^{*}\right\rangle \geq 196 \sqrt{\frac{d^{2.5}}{\mathrm{~T}}} \log \mathrm{~T}$ the estimators $\hat{\theta}$ satisfy the following

$$
\left\|\widehat{\theta}-\theta^{*}\right\|_{\mathbf{V}} \leq 7 \sqrt{\left\langle x^{*}, \theta^{*}\right\rangle d^{\frac{3}{2}} \nu \log \mathrm{~T}}
$$

C. 1 Regret Analysis

WLOG let us assume that $\left\langle x^{*}, \theta^{*}\right\rangle \geq 196 \frac{d^{1.25}}{\sqrt{\top}} \log \mathrm{~T}$, otherwise the regret bound is trivially satisfied. Let \mathcal{B} denote the unit ball in \mathbb{R}^{d}, we have

$$
\begin{aligned}
\left\|\widehat{\theta}-\theta^{*}\right\|_{\mathbf{V}} & =\left\|\mathbf{V}^{\frac{1}{2}}\left(\widehat{\theta}-\theta^{*}\right)\right\|_{2} \\
& =\max _{y \in \mathcal{B}}\left\langle y, \mathbf{V}^{\frac{1}{2}}\left(\widehat{\theta}-\theta^{*}\right)\right\rangle
\end{aligned}
$$

Lemma 18. Let $x_{1}, x_{2}, \ldots, x_{n}$ be a sequence of fixed arm pulls (from a set \mathcal{X}) such that each arm x in the support λ from D-optimal design is pulled at least $\left\lceil\lambda_{x} \tau\right\rceil$ times. Consider $\mathbf{V}=\sum_{j=1}^{s} x_{j} x_{j}^{\top}$ and let w be a vector such that $\|w\|_{2} \leq 1$ and $\left\langle w \mathbf{V}^{\frac{1}{2}}, \theta^{*}\right\rangle \geq 6 \sqrt{\frac{d}{\tau}} \log \left(\mathrm{~T}\left|\mathcal{C}_{\varepsilon}\right|\right)$. Then, with probability greater than $1-\frac{2}{\mathrm{~T}\left|\mathcal{C}_{\varepsilon}\right|}$, we have,

$$
\left|\left\langle w \mathbf{V}^{\frac{1}{2}}, \theta^{*}-\widehat{\theta}\right\rangle\right| \leq\left(3 \sqrt{\frac{n d}{\tau}} \log \left(\mathrm{~T}\left|\mathcal{C}_{\varepsilon}\right|\right)\left\langle x^{*}, \theta^{*}\right\rangle\right)^{\frac{1}{2}}
$$

Proof. We will make use of Lemma[5] We find the γ parameter used in the lemma. We have

$$
\begin{aligned}
\left(w \mathbf{V}^{\frac{1}{2}}\right)^{T} \mathbf{V}^{-1} X_{t} & \leq\left\|w \mathbf{V}^{\frac{1}{2}}\right\|_{\mathbf{V}^{-1}}\left\|\mathbf{V}^{-1} X_{t}\right\|_{\mathbf{V}} \\
& \leq\|w\|_{2}\left\|X_{t}\right\|_{\mathbf{V}^{-1}} \\
& \leq\left\|X_{t}\right\|_{\mathbf{V}^{-1}} \quad(\text { since }\|w\| \leq 1)
\end{aligned}
$$

Let A_{λ} be the optimal design matrix then we have $\mathbf{V} \succ \tau A_{\lambda}$. This gives us the following

$$
\begin{aligned}
\left(w \mathbf{V}^{\frac{1}{2}}\right)^{T} \mathbf{V}^{-1} X_{t} & \leq\left\|X_{t}\right\|_{\mathbf{V}^{-1}} \\
& \leq\left\|X_{t}\right\|_{\frac{1}{\tau} A_{\lambda}^{-1}} \\
& \leq \sqrt{\frac{d}{\tau}}
\end{aligned}
$$

(By Theorem 2)
534 We use Corollary $\left[8\right.$ with $\gamma=\sqrt{\frac{d}{\tau}}$ and $\delta=\left(6 \sqrt{\frac{d}{\tau}} \frac{\nu \log \left(\boldsymbol{T}\left|\mathcal{C}_{\varepsilon}\right|\right)}{\left\langle w \mathbf{V}^{\frac{1}{2}}, \theta^{*}\right\rangle}\right)^{\frac{1}{2}}$. Note that $\delta \in[0,1]$ since ${ }_{535}\left\langle w \mathbf{V}^{\frac{1}{2}}, \theta^{*}\right\rangle \geq 6 \sqrt{\frac{d}{\tau}} \log \left(\mathbf{T}\left|\mathcal{C}_{\varepsilon}\right|\right)$. We have the following probability bound

$$
\begin{aligned}
\mathbb{P}\left\{\left|\left\langle w \mathbf{V}^{\frac{1}{2}}, \theta^{*}-\widehat{\theta}\right\rangle\right| \geq\left(6 \sqrt{\frac{d}{\tau}} \nu \log \left(\mathbf{T}\left|\mathcal{C}_{\varepsilon}\right|\right)\left\langle w \mathbf{V}^{\frac{1}{2}}, \theta^{*}\right\rangle\right)^{\frac{1}{2}}\right\} & \leq 2 \exp \left(-\frac{6 \sqrt{\frac{d}{\tau}} \frac{\log \left(\mathrm{~T}\left|\mathcal{C}_{\varepsilon}\right|\right)}{\left\langle w \mathbf{V}^{\frac{1}{2}}, \theta^{*}\right\rangle}\left\langle w \mathbf{V}^{\frac{1}{2}}, \theta^{*}\right\rangle}{3 \sqrt{\frac{d}{\tau}}}\right) \\
& \leq \frac{2}{\mathrm{~T}\left|\mathcal{C}_{\varepsilon}\right|}
\end{aligned}
$$

536 We can get an upper bound on the term $\left\langle w \mathbf{V}^{\frac{1}{2}}, \theta^{*}\right\rangle$ as follows

$$
\begin{array}{rlr}
\left\langle w \mathbf{V}^{\frac{1}{2}}, \theta^{*}\right\rangle & \leq\|w\|_{2}\left\|\mathbf{V}^{\frac{1}{2}} \theta^{*}\right\|_{2} & \\
& \leq \sqrt{\theta^{* T} \mathbf{V} \theta^{*}} & \quad(\text { since }\|w\| \leq 1) \\
& =\sqrt{\left(\sum_{i \in[n]} \theta^{* T} x_{i} x_{i}^{T} \theta^{*}\right)} & \left(\left\langle x_{i}, \theta^{*}\right\rangle \leq\left\langle x^{*}, \theta^{*}\right\rangle\right) \\
& =\sqrt{n\left\langle x^{*}, \theta^{*}\right\rangle} &
\end{array}
$$

537 This proves the lemma.

Lemma 19. Using the same notation as Lemma 18 If $\left\langle w \mathbf{V}^{\frac{1}{2}}, \theta^{*}\right\rangle \leq 6 \sqrt{\frac{d}{\tau}} \log \left(\mathrm{~T}\left|\mathcal{C}_{\varepsilon}\right|\right)$

$$
\left|\left\langle w \mathbf{V}^{\frac{1}{2}}, \theta^{*}-\widehat{\theta}\right\rangle\right| \leq 12 \sqrt{\frac{d}{\tau}} \log \left(\mathrm{~T}\left|\mathcal{C}_{\varepsilon}\right|\right)
$$

Proof. We first use Lemma 9 to show $\left\langle w \mathbf{V}^{\frac{1}{2}}, \widehat{\theta}\right\rangle \leq 12 \sqrt{\frac{d}{\mathrm{~T}^{\prime}}}$ by substituting $\delta=1$, $\alpha=$ $6 \sqrt{\frac{d}{\mathrm{~T}^{\prime}}} \log \left(\mathrm{T}\left|\mathcal{C}_{\varepsilon}\right|\right)$ and $\gamma=\sqrt{\frac{d}{\mathrm{~T}^{\prime}}}$. This trivially gives us $\left\langle w \mathbf{V}^{\frac{1}{2}}, \theta^{*}-\widehat{\theta}\right\rangle \left\lvert\, \leq 12 \sqrt{\frac{d}{\mathrm{~T}^{\prime}}} \log \left(\mathrm{T}\left|\mathcal{C}_{\varepsilon}\right|\right)\right.$.
Next we Lemma 10 with $\delta=1$ and $\alpha=6 \sqrt{\frac{d}{\mathrm{~T}^{\prime}}} \log \left(\mathrm{T}\left|\mathcal{C}_{\varepsilon}\right|\right)$ which gives $\left.\left\langle w \mathbf{V}^{\frac{1}{2}}, \theta^{*}-\widehat{\theta}\right\rangle \right\rvert\, \leq$ $6 \sqrt{\frac{d}{\mathrm{~T}^{\prime}}} \log \left(\mathrm{T}\left|\mathcal{C}_{\varepsilon}\right|\right)$.
Lemma 20. If the optimal arm satisfies $\left\langle x^{*}, \theta^{*}\right\rangle \geq 196 \sqrt{\frac{d^{2.5}}{\mathrm{~T}}} \log T$

$$
\mathbb{P}\left\{G_{1}\right\} \geq 1-\frac{3}{\mathrm{~T}}
$$

and

$$
\mathbb{P}\left\{G_{2}\right\} \geq 1-\frac{\log \mathrm{T}}{\mathrm{~T}}
$$

Proof. Recall, from 28, that we aim to get a bound on $\left\langle y_{\varepsilon} \mathbf{V}^{\frac{1}{2}}, \widehat{\theta}-\theta^{*}\right\rangle$ for all possible values of y_{ε}. The total number of arm pulls in Part I is equal to \widetilde{T}. We will now apply Lemma 18 First, from Lemma 12 we have that the arms from the solution of the D -optimal design problem are selected (with probability greater than $1-\frac{1}{\mathrm{~T}}$) at least $\widetilde{\mathrm{T}} / 3$ times, that is, $\tau=\widetilde{\mathrm{T}} / 3$. Let us consider the case where $\left\langle y_{\varepsilon} \mathbf{V}^{\frac{1}{2}}, \theta^{*}\right\rangle \geq 6 \sqrt{\frac{3 d}{\bar{T}}} \log \left(\mathrm{~T}\left|\mathcal{C}_{\varepsilon}\right|\right)$. Taking union bound over $\mathcal{C}_{\varepsilon}$ we get that the following holds with probability greater than $1-\frac{1}{\top}$

$$
\begin{array}{rlr}
\left\|\hat{\theta}-\theta^{*}\right\|_{\mathbf{V}} & \leq \frac{1}{1-\varepsilon}\left\langle y_{\varepsilon} \mathbf{V}^{\frac{1}{2}}, \widehat{\theta}-\theta^{*}\right\rangle \\
& \leq \frac{1}{1-\varepsilon}\left(3 \sqrt{\frac{\widetilde{\mathrm{~T}} d}{\frac{\mathrm{~T}}{3}}} \log \left(\mathrm{~T}\left|\mathcal{C}_{\varepsilon}\right|\right)\left\langle x^{*}, \theta^{*}\right\rangle\right)^{\frac{1}{2}} \quad \text { (From (28)) } \\
& \leq \frac{1}{1-\varepsilon}\left(3 \sqrt{3 d} \log \left(\mathrm{~T}\left|\mathcal{C}_{\varepsilon}\right|\right)\left\langle x^{*}, \theta^{*}\right\rangle\right)^{\frac{1}{2}}
\end{array}
$$

Since $\left|\mathcal{C}_{\varepsilon}\right| \leq\left(\frac{3}{\varepsilon}\right)^{d}$, choosing $\epsilon=1 / 2$ gives us

$$
\left\|\widehat{\theta}-\theta^{*}\right\|_{\mathbf{V}} \leq 7\left(d^{\frac{3}{2}} \log (\mathrm{~T})\left\langle x^{*}, \theta^{*}\right\rangle\right)^{\frac{1}{2}}
$$

Now substituting $\tau=\mathrm{T}^{\prime} / 3$ in Lemma 19 . if $\left\langle y_{\varepsilon} \mathbf{V}^{\frac{1}{2}}, \theta^{*}\right\rangle \leq 6 \sqrt{\frac{3 d}{T}} \log \left(\mathrm{~T}\left|\mathcal{C}_{\varepsilon}\right|\right)$, we have

$$
\begin{aligned}
\left\|\widehat{\theta}-\theta^{*}\right\|_{\mathbf{V}} & \leq \frac{1}{1-\varepsilon}\left\langle y_{\varepsilon} \mathbf{V}^{\frac{1}{2}}, \widehat{\theta}-\theta^{*}\right\rangle \\
& \leq 24 \sqrt{\frac{d^{3}}{\mathrm{~T}^{\prime}} \log (\mathrm{T}) \quad \quad(\text { From Lemma } 19 \text { and substituting } \varepsilon=0.5)} \begin{aligned}
& \leq 7\left(d^{\frac{3}{2}} \log (\mathrm{~T})\left\langle x^{*}, \theta^{*}\right\rangle\right)^{\frac{1}{2}}
\end{aligned}
\end{aligned}
$$

The last inequality is due to the fact that $\left\langle x^{*}, \theta^{*}\right\rangle \geq 196 \sqrt{\frac{d^{2.5}}{\mathrm{~T}}} \log \mathrm{~T}$ and $\mathrm{T}^{\prime}=\widetilde{\mathrm{T}} / 3 \geq \sqrt{T d^{2.5} \log \mathrm{~T}}$. Similarly, for the event G_{2}, an identical use of Lemma 19 and Lemma 18 with $\tau=\mathrm{T}^{\prime}$ shows that, for any fixed phase, the following holds with probability greater than $1-\frac{1}{\mathrm{~T}}$

$$
\left\|\widehat{\theta}-\theta^{*}\right\|_{\mathbf{V}} \leq 7\left(d^{\frac{3}{2}} \log (\mathbf{T})\left\langle x^{*}, \theta^{*}\right\rangle\right)^{\frac{1}{2}}
$$

Corollary 21. If G_{1} holds, the for all $x \in \mathcal{X}, \widehat{\theta}$ calculated at the end of Part I satisfies

$$
\left|\langle x, \widehat{\theta}\rangle-\left\langle x, \theta^{*}\right\rangle\right| \leq 7 \sqrt{\frac{3\left\langle x^{*}, \theta^{*}\right\rangle d^{2.5} \log \mathrm{~T}}{\widetilde{\mathrm{~T}}}}
$$

We have

$$
\begin{aligned}
\max _{z \in \mathcal{X}}\langle z, \widehat{\theta}\rangle & \geq\left\langle x^{*}, \widehat{\theta}\right\rangle \\
& \geq\left\langle x^{*}, \theta^{*}\right\rangle-7 \sqrt{\frac{\left\langle x^{*}, \theta^{*}\right\rangle d^{2.5} \log \mathrm{~T}}{\widetilde{\mathrm{~T}}}} \\
& \geq\left\langle x^{*}, \theta^{*}\right\rangle\left(1-7 \sqrt{\frac{d^{2.5} \log \mathrm{~T}}{\left\langle x^{*}, \theta^{*}\right\rangle \widetilde{\mathrm{T}}}}\right) \\
& \geq \frac{7\left\langle x^{*}, \theta^{*}\right\rangle}{10} \quad\left(\text { since }\left\langle x^{*}, \theta^{*}\right\rangle \geq 196 \sqrt{\frac{d^{2.5}}{\mathrm{~T}}} \log \mathrm{~T} \text { and } \widetilde{\mathrm{T}}=3 \sqrt{\mathrm{~T} d^{2.5} \nu \log (\mathrm{~T})}\right)
\end{aligned}
$$

$$
\begin{aligned}
\langle z, \widehat{\theta}\rangle & \leq\left\langle z, \theta^{*}\right\rangle+7 \sqrt{\frac{\left\langle x^{*}, \theta^{*}\right\rangle d^{2.5} \log \mathrm{~T}}{\tau}} \\
& \leq\left\langle x^{*}, \theta^{*}\right\rangle\left(1+7 \sqrt{\frac{d^{2.5} \log \mathrm{~T}}{\left\langle x^{*}, \theta^{*}\right\rangle \tau}}\right) \\
& \leq \frac{13}{10}\left\langle x^{*}, \theta^{*}\right\rangle
\end{aligned}
$$

Proof. Since $\mathrm{T}^{\prime} \geq 2 \widetilde{\mathrm{~T}} / 3$, via Lemma 21 any $\widehat{\theta}$ calculated in Part I or during any phase of Part II satisfies

$$
\left|\langle x, \widehat{\theta}\rangle-\left\langle x, \theta^{*}\right\rangle\right| \leq 7 \sqrt{\frac{3\left\langle x^{*}, \theta^{*}\right\rangle d^{2.5} \log \mathrm{~T}}{\widetilde{\mathrm{~T}}}}
$$

Lemma 23. If events G_{1} and G_{2} hold then the optimal arm x^{*} always exists in the surviving set \widetilde{X} in every phase in Step II of Alg. 3

Proof. Let $\tau=\widetilde{\mathrm{T}} / 3$ for Part I and $\tau=\mathrm{T}^{\prime}$ for every phase of Part II. From Lemma 21 we have for $x \in \widetilde{\mathcal{X}}$

$$
\begin{aligned}
\left\langle x^{*}, \widehat{\theta}\right\rangle & \geq\left\langle x^{*}, \theta^{*}\right\rangle-7 \sqrt{\frac{\left\langle x^{*}, \theta^{*}\right\rangle d^{2.5} \log \mathrm{~T}}{\tau}} \\
& \geq\left\langle x, \theta^{*}\right\rangle-7 \sqrt{\frac{\left\langle x^{*}, \theta^{*}\right\rangle d^{2.5} \log \mathrm{~T}}{\tau}} \\
& \geq\langle x, \widehat{\theta}\rangle-14 \sqrt{\frac{\left\langle x^{*}, \theta^{*}\right\rangle d^{2.5} \log \mathrm{~T}}{\tau}} \\
& \geq\langle x, \widehat{\theta}\rangle-16 \sqrt{\frac{\max _{z \in \tilde{\mathcal{X}}}\left\langle z, \theta^{*}\right\rangle d^{2.5} \log \mathrm{~T}}{\tau}}
\end{aligned}
$$

(Using Lemma 22)
Hence, the best arm will never satisfy the elimination criteria in Alg. 3.
Lemma 24. Given that events G_{1} and G_{2} hold, fix any phase index ℓ in Step II of Alg. 3. For the surviving set of arms $\widetilde{\mathcal{X}}$ at the beginning of that phase, we will have for $\widetilde{\mathrm{T}}=\sqrt{d^{2.5} \mathrm{~T} \log (\mathrm{~T})}$

$$
\begin{equation*}
\left\langle x, \theta^{*}\right\rangle \geq\left\langle x^{*}, \theta^{*}\right\rangle-26 \sqrt{\frac{3 d^{2.5} \nu\left\langle x^{*}, \theta^{*}\right\rangle}{2^{\ell} \cdot \widetilde{T}}} \text { for all } x \in \widetilde{\mathcal{X}} \tag{30}
\end{equation*}
$$

Proof. From the second phase onwards, if an arm is pulled in a phase with phase length parameter T^{\prime}, then it was not eliminated in the previous phase with phase length parameter $\frac{\mathrm{T}^{\prime}}{2}$. Additionally, since the best arm is always present in the surviving arm set $\widetilde{\mathcal{X}}$ (via Lemma 23, we have

$$
\begin{aligned}
\langle x, \widehat{\theta}\rangle & \geq\left\langle x^{*}, \widehat{\theta}\right\rangle-16 \sqrt{\frac{\max _{z \in \tilde{\mathcal{X}}}\langle z, \widehat{\theta}\rangle d^{2.5} \nu \log (\mathrm{~T})}{\frac{\mathrm{T}^{\prime}}{2}}} \\
& \geq\left\langle x^{*}, \widehat{\theta}\right\rangle-26 \sqrt{\frac{\left\langle x^{*}, \theta^{*}\right\rangle d^{2.5} \nu \log (\mathrm{~T})}{\mathrm{T}^{\prime}}}
\end{aligned}
$$

(via Lemma 22)
Substituting $\mathrm{T}^{\prime}=2^{l \widetilde{\top}} / 3$ in the above inequality proves the Lemma.
Theorem 2. Consider the stochastic linear bandits problem over a horizon of T rounds such that at every round $t \in[\mathrm{~T}]$, an arm $X_{t} \in \mathcal{X} \subset \mathbb{R}^{d}$ is selected and the corresponding reward r_{t} is obtained satisfying equation (2). In this setting, Algorithm 3 achieves a Nash regret of

$$
\mathrm{NR}_{\mathrm{T}}=O\left(\frac{d^{\frac{5}{4}}\left(\nu\left\langle x^{*}, \theta^{*}\right\rangle\right)^{\frac{1}{2}}}{\sqrt{\mathrm{~T}}} \log (\mathrm{~T})\right) .
$$

Proof. WLOG we assume that $\left\langle x^{*}, \theta^{*}\right\rangle \geq 192 \sqrt{\frac{d \nu}{T}} \log \mathrm{~T}$, otherwise the Nash Regret bound is trivially true. For Part I, the product of expected rewards satisfies

$$
\begin{aligned}
\prod_{t=1}^{\widetilde{\mathrm{T}}} \mathbb{E}\left[\left\langle X_{t}, \theta^{*}\right\rangle \mid G_{1} \cap G_{2}\right]^{\frac{1}{T}} & \geq\left(\frac{\left\langle x^{*}, \theta^{*}\right\rangle}{2(d+1)}\right)^{\frac{\tilde{\mathrm{T}}}{T}} \\
& =\left\langle x^{*}, \theta^{*}\right\rangle^{\frac{\tilde{\mathrm{T}}}{T}}\left(1-\frac{1}{2}\right)^{\frac{\log (2(d+1)) \tilde{\mathrm{T}}}{T}} \\
& \geq\left\langle x^{*}, \theta^{*}\right\rangle^{\frac{\tilde{\mathrm{T}}}{T}}\left(1-\frac{\log (2(d+1)) \tilde{\mathrm{T}}}{T}\right)
\end{aligned}
$$

For Part II, we use Lemma 7 . Let \mathcal{E}_{i} denote the time interval of $i^{t h}$ phase and let T_{i}^{\prime} be the phase length parameter in that phase. Recall that $\left|\mathcal{E}_{i}\right| \leq \mathrm{T}_{i}^{\prime}+\frac{d(d+1)}{2}$. Also, the algorithm runs for at most $\log \mathrm{T}$ phases. Hence, we have

$$
\begin{aligned}
\prod_{t=\widetilde{\mathrm{T}}+1}^{\mathrm{T}} \mathbb{E}\left[\left\langle X_{t}, \theta^{*}\right\rangle \mid G_{1} \cap G_{2}\right]^{\frac{1}{\top}} & =\prod_{\mathcal{E}_{j}} \prod_{t \in \mathcal{E}_{j}} \mathbb{E}\left[\left\langle X_{t}, \theta^{*}\right\rangle \mid G_{1} \cap G_{2}\right]^{\frac{1}{\top}} \\
& \geq \prod_{\mathcal{E}_{j}}\left(\left\langle x^{*}, \theta^{*}\right\rangle-26 \sqrt{\frac{d^{2.5} \nu\left\langle x^{*}, \theta^{*}\right\rangle \log (\mathrm{T})}{\mathrm{T}_{j}^{\prime}}}\right)^{\frac{\left|\mathcal{E}_{j}\right|}{\mathrm{T}}} \\
& \geq\left\langle x^{*}, \theta^{*}\right\rangle^{\frac{\mathrm{T}-\tilde{\mathrm{T}}}{\mathrm{~T}}} \prod_{i=1}^{\log \mathrm{T}}\left(1-26 \sqrt{\frac{d^{2.5 \nu \log (\mathrm{~T})}}{\left\langle x^{*}, \theta^{*}\right\rangle \mathrm{T}_{j}^{\prime}}}\right)^{\frac{\left|\mathcal{E}_{j}\right|}{\mathrm{T}}} \\
& \geq\left\langle x^{*}, \theta^{*}\right\rangle^{\frac{\mathrm{T}-\tilde{\mathrm{T}}}{\mathrm{~T}}} \prod_{i=1}^{\log \mathrm{T}}\left(1-52 \frac{\left|\mathcal{E}_{j}\right|}{\mathrm{T}} \sqrt{\frac{d^{2.5 \nu \log (\mathrm{~T})}}{\left\langle x^{*}, \theta^{*}\right\rangle \mathrm{T}_{j}^{\prime}}}\right)
\end{aligned}
$$

The last inequality is due to the fact that $(1-x)^{r} \geq(1-2 r x)$ where $r \in[0,1]$ and $x \in[0,1 / 2]$. Note that the term $\sqrt{\frac{d^{2.5} \log (\mathrm{~T})}{\left\langle x^{*}, \theta^{*}\right\rangle \mathrm{T}_{j}^{\prime}}} \leq 1 / 2$ for $\left\langle x^{*}, \theta^{*}\right\rangle \geq 192 \sqrt{\frac{d^{2.5}}{T}} \log \mathrm{~T}, \mathrm{~T}^{\prime} \geq 2 \sqrt{\mathrm{~T} d^{2.5} \log \mathrm{~T}}$ and $\mathrm{T} \geq e^{6}$. We now further simplify the expression as shown below

$$
\begin{aligned}
& \prod_{j=1}^{\log \mathrm{T}}\left(1-52 \frac{\left|\mathcal{E}_{j}\right|}{T} \sqrt{\frac{d^{2.5} \nu \log (\mathrm{~T})}{\left\langle x^{*}, \theta^{*}\right\rangle \mathrm{T}_{j}^{\prime}}}\right) \geq \prod_{j=1}^{\log \mathrm{T}}\left(1-52 \frac{\mathrm{~T}_{j}^{\prime}+\frac{d(d+1)}{2}}{T} \sqrt{\frac{d^{2.5} \nu \log (\mathrm{~T})}{\left\langle x^{*}, \theta^{*}\right\rangle \mathrm{T}_{j}^{\prime}}}\right) \\
& \geq \prod_{j=1}^{\log \mathrm{T}}\left(1-78 \frac{\sqrt{\mathrm{~T}_{j}^{\prime}}}{T} \sqrt{\frac{d^{2.5} \nu \log (\mathrm{~T})}{\left\langle x^{*}, \theta^{*}\right\rangle}}\right) \\
&\left(\operatorname{assuming} \mathrm{T}_{j}^{\prime} \geq d(d+1)\right) \\
& \geq 1-78 \frac{1}{\mathrm{~T}} \sqrt{\frac{d^{2.5} \nu \log (\mathrm{~T})}{\left\langle x^{*}, \theta^{*}\right\rangle}}\left(\sum_{j=1}^{\log \mathrm{T}} \sqrt{\mathrm{~T}_{j}^{\prime}}\right) \\
& \geq 1-78 \frac{1}{\mathrm{~T}} \sqrt{\frac{d^{2.5} \nu \log (\mathrm{~T})}{\left\langle x^{*}, \theta^{*}\right\rangle}}(\sqrt{T \log \mathrm{~T}}) \\
& \geq 1-78 \sqrt{\frac{d^{2.5} \nu}{T\left\langle x^{*}, \theta^{*}\right\rangle}} \log (T) .
\end{aligned}
$$

589 Combining the lower bound for rewards in the two phases, we get

$$
\left.\begin{array}{rl}
\prod_{t=1}^{\mathrm{T}} \mathbb{E}\left[\left\langle X_{t}, \theta^{*}\right\rangle\right]^{\frac{1}{\top}} & \geq \prod_{t=1}^{\mathrm{T}}\left(\mathbb{E}\left[\left\langle X_{t}, \theta^{*}\right\rangle \mid G_{1} \cap G_{2}\right] \cdot \mathbb{P}\left\{G_{1} \cap G_{2}\right\}\right)^{\frac{1}{\top}} \\
& \geq\left\langle x^{*}, \theta^{*}\right\rangle\left(1-\frac{\log (2(d+1) \tilde{\mathrm{T}}}{\mathrm{T}}\right)\left(1-78 \sqrt{\frac{d^{2.5}}{T\left\langle x^{*}, \theta^{*}\right\rangle}} \log (\mathrm{T})\right) \mathbb{P}\left\{G_{1} \cap G_{2}\right\} \\
& \geq\left\langle x^{*}, \theta^{*}\right\rangle\left(1-\frac{\log (2(d+1) \widetilde{\mathrm{T}}}{\mathrm{T}}-78 \sqrt{\frac{d^{2.5}}{T\left\langle x^{*}, \theta^{*}\right\rangle}} \log (\mathrm{T})\right) \mathbb{P}\left\{G_{1} \cap G_{2}\right\} \\
& \geq\left\langle x^{*}, \theta^{*}\right\rangle\left(1-\frac{\log (2(d+1) \widetilde{\mathrm{T}}}{\mathrm{T}}-78 \sqrt{\frac{d^{2.5}}{T\left\langle x^{*}, \theta^{*}\right\rangle}} \log (\mathrm{T})\right)\left(1-\frac{2 \log \mathrm{~T}}{\mathrm{~T}}\right) \\
& \geq\left\langle x^{*}, \theta^{*}\right\rangle\left(1-\frac{\log (2(d+1)) 3 \sqrt{T d \log (\mathrm{~T})}}{\mathrm{T}}-78 \sqrt{\frac{d^{2.5}}{T\left\langle x^{*}, \theta^{*}\right\rangle}} \log (\mathrm{T})-\frac{2 \log \mathrm{~T}}{\mathrm{~T}}\right.
\end{array}\right) .
$$

Hence the Nash Regret can be bounded as

$$
\begin{aligned}
\mathrm{NR}_{T} & =\left\langle x^{*}, \theta^{*}\right\rangle-\left(\prod_{t=1}^{T} \mathbb{E}\left[\left\langle X_{t}, \theta^{*}\right\rangle\right]\right)^{1 / T} \\
& \leq 78 \sqrt{\frac{\left\langle x^{*}, \theta^{*}\right\rangle d^{2.5}}{\mathrm{~T}}} \log (\mathrm{~T})+2 \frac{\left\langle x^{*}, \theta^{*}\right\rangle \log (2(d+1)) 3 \sqrt{d \log (\mathrm{~T})}}{\sqrt{\mathrm{T}}}
\end{aligned}
$$

591

