
Limitations: The main contributions of our works are theoretical. From a theoretical point of view,381

the limitations of our paper are discussed in Section 5. In particular, we believe that tightening the382

gap between the upper and lower bounds in Nash regret for an infinite set of arms will require novel383

and non-trivial algorithmic ideas - we leave this as an important direction of future work.384

Broader Impact: Due to the theoretical nature of this work, we do not foresee any adverse societal385

impact of this work.386

A Proof of Concentration Bounds387

Lemma 1. Any non-negative random variable X 2 [0,B] is B-sub Poisson, i.e., if mean E[X] = µ,388

then for all � 2 R, we have E[e�X ]  exp
�
B

�1
µ
�
e
B� � 1

��
.389

Proof. For random variable X we have390
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⇤
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Lemma 5. Let x1, x2, . . . , xs 2 Rd be a fixed set of vectors and let r1, r2, . . . , rs be independent392

⌫�sub Poisson random variables satisfying Ers = hxs, ✓
⇤i for some unknown ✓

⇤. In that case, let393

matrix V =
Ps

j=1 xjx
T
j and b✓ = V

�1
⇣P

j rjxj

⌘
be the least squares estimator of ✓⇤. Consider394

any z 2 Rd that satisfies zTV�1
xj  � for all j 2 [s]. Then, for any � 2 [0, 1] we have395

P
n
hz, b✓i � (1 + �)hz, ✓⇤i

o
 exp

✓
��

2hz, ✓⇤i
3⌫�

◆
and (8)

P
n
hz, b✓i  (1� �)hz, ✓⇤i

o
 exp

✓
��

2hz, ✓⇤i
2⌫�

◆
(9)

Proof. We use X to denote a matrix with arm pulls x1, x2, . . . , xs stacked as rows. We use the396

Chernoff method to get an upper bound on the desired probabilities, as shown below397

P
n
hz, b✓i � (1 + �)hz, ✓⇤i

o
= P

⇣
exp(c hz, b✓i) � exp(c(1 + �)hz, ✓⇤i)

⌘
(for some constant c)

 E[exp(c zTV�1
X

T
R)]

exp(c (1 + �)hz, ✓⇤i)

=

Qs
t=1 E[exp

�
c rtV

�1
xt

�
]

exp(c (1 + �)hz, ✓⇤i) (rt’s are independent)



Qs
t=1 exp

⇣
E[rt]
⌫

⇣
e
c⌫zT

V
�1xt � 1

⌘⌘

exp(c (1 + �)hz, ✓⇤i) (rt is sub-poisson)

= exp

 
�chz, ✓⇤i(1 + �) +

sX

t=1

hx, ✓⇤i
⌫

⇣
e
c ⌫zT

V
�1xt � 1

⌘!
.
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Substituting c = log(1+�)
⌫� , we get398

P
n
hz, b✓i � (1 + �)hz, ✓⇤i

o
 exp

 
�hz, ✓⇤i

⌫�
(1 + �) log (1 + �) +

sX

t=1

hxt, ✓
⇤i

⌫

⇣
(1 + �)

1
� zT

V
�1xt � 1

⌘!
.

(12)

Since 1
� z

T
V

�1
xt  1 we have (1 + �)

1
� zT

V
�1xt  1 + � · 1

� z
T
V

�1
xt. Substituting in (12) we get399

P
n
hz, b✓i � (1 + �)hz, ✓⇤i

o

 exp

 
� 1

⌫�
hz, ✓⇤i(1 + �) log (1 + �) +

sX

t=1

hxt, ✓
⇤i · �

⌫�
z
T
V

�1
xt

!

= exp

 
� 1

⌫�
hz, ✓⇤i(1 + �) log (1 + �) +

�

⌫�

sX

t=1

✓
⇤T

xtx
T
t V

�1
z

!
(Rearranging terms)

= exp

✓
� 1

⌫�
hz, ✓⇤i(1 + �) log (1 + �) +

�

⌫�
hz, ✓⇤i

◆
. (

Ps
t=1 xtx

T
t = V)

Using log inequality log(1 + �) � 2�
2+� we get400

P
n
hz, b✓i � (1 + �)hz, ✓⇤i

o
 exp

✓
�hz, ✓⇤i

⌫�
((1 + �) log (1 + �)� �)

◆

 exp

✓
��

2hz, ✓⇤i
(2 + �) ⌫�

◆

 exp

✓
��

2
nhz, ✓⇤i
3⌫�

◆
. (since � 2 [0, 1])

We follow similar steps for the lower tail (inequality (9)) to get the following expression -401

P
n
hz, b✓i  (1� �)hz, ✓⇤i

o
 exp

✓
� 1

⌫�
hz, ✓⇤i(1� �) log (1� �)� �

⌫�
hz, ✓⇤i

◆
.

Now using inequality (1� �) log(1� �) � �� + �2

2 , we get402

P
n
hz, b✓i  (1� �)hz, ✓⇤i

o
 exp

✓
��

2hz, ✓⇤i
2⌫�

◆

403

Combining (9) and (8) we get the following Corollary.404

Corollary 8. Using notations as in Lemma 5, we have405

P
n
|hz, b✓i � hz, ✓⇤i| � �hz, ✓⇤i

o
 2 exp

✓
��

2hz, ✓⇤i
3�

◆
(13)

The next two lemmas are variants of 5 where we bound the error in terms of ↵ where ↵ � hx, ✓⇤i.406

Lemma 9. Let x1, x2, . . . , xs 2 Rd be a fixed set of vectors and let r1, r2, . . . , rs be independent407

⌫�sub Poisson random variables satisfying Ers = hxs, ✓
⇤i for some unknown ✓

⇤. In that case, let408

matrix V =
Ps

j=1 xjx
T
j and b✓ = V

�1
⇣P

j rjxj

⌘
be the least squares estimator of ✓⇤. Consider409

any z 2 Rd that satisfies zTV�1
xj  � for all j 2 [s] and hz, ✓⇤i  ↵. Then for any � 2 [0, 1] we410

have411

P
n
hz, b✓i � (1 + �)↵

o
 e

� �2↵
3�⌫ (14)
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Proof. Following similar steps as in the proof of Lemma 5412

P
n
hz, b✓i � (1 + �)↵

o
 E[exp(c zTV�1

X
T
R)]

exp(c (1 + �)↵)

 exp

 
�c↵(1 + �) +

sX

t=1

hX, ✓
⇤i

⌫

⇣
e
c⌫zT

V
�1xt � 1

⌘!

(rt are sub-poisson and conditionally independent)

Now, substituting c = 1
⌫� log (1 + �)) and using (1 + �)

1
� zT

V
�1xt  1 + � · 1

� z
T
V

�1
xt we have413

P
n
hz, b✓i � (1 + �)↵

o
 exp

 
� 1

�⌫
↵(1 + �) log (1 + �) +

sX

t=1

hX, i
⌫

✓
⇤
⇣
(1 + �)

1
� zT

V
�1xt � 1

⌘!
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� 1

⌫�
↵(1 + �) log (1 + �) +

�

⌫�

sX

t=1

✓
⇤T
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T
t V

�1
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!

= exp

✓
� 1

⌫�
↵(1 + �) log (1 + �) +

�

⌫�
hz, ✓⇤i

◆

 exp

✓
� 1

⌫�
↵(1 + �) log (1 + �) +

�

⌫�
↵

◆
(↵ � hz, ✓⇤i)

 exp

✓
��

2
↵

(2 + �) ⌫�

◆
(Using log(1 + �) � 2�

2+� )

Since � 2 [0, 1], we have the desired result.414

Lemma 10. Let x1, x2, . . . , xs 2 Rd be a fixed set of vectors and let r1, r2, . . . , rs be independent415

⌫�sub Poisson random variables satisfying Ers = hxs, ✓
⇤i for some unknown ✓

⇤. In that case, let416

matrix V =
Ps

j=1 xjx
T
j and b✓ = V

�1
⇣P

j rjxj

⌘
be the least squares estimator of ✓⇤. Consider417

any z 2 Rd that satisfies zTV�1
xj  � for all j 2 [s] and hz, ✓⇤i  ↵. Then for any � 2 [0, 1] we418

have419

P
n
hz, b✓i  hz, ✓⇤i � �↵

o
 exp

✓
� �

2
↵

2�⌫

◆
(15)

Proof. Using the steps as in the previous lemmas, we arrive at420

P
n
hz, b✓i  hz, ✓⇤i � �↵

o
 exp

✓
�hz, ✓⇤i

⌫�
(log (1� �) + �) +

↵

⌫�
� log (1� �)

◆

Note that since log(1� �) + � is negative, we can upper bound the above expression by replacing421

hz, ✓⇤i with ↵.422

P
n
hz, b✓i  hz, ✓⇤i � �↵

o
 exp

✓
� ↵

⌫�
(log (1� �) + � � � log (1� �))

◆

 exp

✓
� �

2
↵

2⌫�

◆
(since (1� �) log(1� �) � �� + �2

2 )

423

B Regret Analysis of Algorithm 2424

Let us define events E1 and E2 for each phase of the algorithm and show that they hold with high425

probability. We will use the events in the missing proofs from Section 3.3.426

E1 At the end of Part I, let b✓ be the unbiased estimator of ✓⇤. All arms x 2 X with hx, ✓⇤i <

10
q

d log (T|X |)
T satisfy

hx, b✓i  20

r
d log (T|X |)

T
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and arms x with hx, ✓⇤i � 10
q

d log (T|X |)
T satisfy427

|hx, ✓⇤i � hx, b✓i|  3

s
dhx, ✓⇤i log (T|X |)

eT
1

2
hx, ✓⇤i hx, b✓i  4

3
hx, ✓⇤i.

E2: Let eX denote the candidate set at the start of a phase in Part II, and T0 be as defined in Algorithm428

2. For all phases and for all z 2 eX such that hx, ✓⇤i � 10
p

d log (T|X |)p
T

, the estimator b✓429

(calculated at the end of the phase) satisfies430

|hx, ✓⇤i � hx, b✓i|  3

r
dhx, ✓⇤i log (T|X |)

T0

1

2
hx, ✓⇤i hx, b✓i  4

3
hx, ✓⇤i.

Lemma 11 (Chernoff Bound). Let Z1, . . . , Zn be independent Bernoulli random variables. Consider431

the sum S =
Pn

r=1 Zr and let ⌫ = E[S] be its expected value. Then, for any " 2 [0, 1], we have432

P {S  (1� ")⌫}  exp

✓
�⌫"

2

2

◆

Lemma 12. During Part I, arms from D-optimal design are added to S at least eT/3 times with433

probability greater than 1� 1
T434

Proof. We use Lemma 11 with Zi as indicator random variables, that take value one when an arm for435

A (the support of � in the optimal design) is chosen. Taking ✏ = 1
3 and ⌫ =

eT
2 we get the required436

probability bound.437

Lemma 13. Using the notation in Algorithm 1, for z 2 X we have

z
T
V

�1
Xt 

3d
eT

Proof. Let U(�) and � be the optimal design matrix (as defined in (4)) and the solution to the438

D-optimal design problem in Algorithm ?? i.e. if � is the solution of the objective function in439

equation (5) then, U(�) =
P

x2X �xxx
T . Clearly, from Lemma 2, we must have that for any z 2 X ,440

||z||
U(�)�1  d. By construction of the sequence S in Step 1 (Subroutine GenerateArmSequence),441

we have V � eT
3U(�). Hence442

z
T
V

�1
Xt  kzk

V�1

��V�1
Xt

��
V

(By Hölder’s inequality)
= kzk

V�1 kXtkV�1

 kzk⇣ eT
3U(�)

⌘�1 kXtk⇣ eT
3U(�)

⌘�1 (since V � eT
3U(�))

=

r
3
eT
kZk

U(�)�1

r
3
eT
kXtkU(�)�1



s
3d
eT

s
3d
eT

(by Lemma 2)

=
3d
eT
.

443

Lemma 14. Let b✓ be the estimate computed at the end of Part I of Algorithm 2. Following holds with444

probability greater than 1� 4
T -445
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• All arms x 2 X with hx, ✓⇤i  10
p
d ⌫T�1 log (T|X |) satisfy446

hx, b✓i  20
p

d ⌫T�1 log (T|X |). (16)

• All arms x 2 X with hx, ✓⇤i � 10
p
d ⌫T�1 log (T|X |) satisfy447

|hx, ✓⇤i � hx, b✓i|  3

r
dhx, ✓⇤i log (T|X |)

T0 and (17)

1

2
hx, ✓⇤i hx, b✓i  4

3
hx, ✓⇤i. (18)

Proof. First, consider the set Xlow. We use Lemma 9 for the proof. We set � = 3d
eT

(from Lemma 13),448

↵ = 10
q

d⌫ log (T⌫|X |)
T and � = 1,449

P
(
hx, b✓i  20

r
d⌫ log (T|X |)

T

)
 e

� �2↵
3�⌫

 exp

0

@�
3
q

d⌫ log (T|X |)
T 3

p
Td⌫ log(T|X |)

3⌫d

1

A

 1

T|X | .

Next, we make use of Lemma 5 for (17). We set � = 3d
eT

and � = 3
q

d⌫ log (T|X |)
hx,✓⇤ieT

. Note that since450

hx, ✓⇤i � 10
p
d ⌫T�1 log (T|X |) and eT = 3

p
Td⌫ log(T|X |), � always lies in [0, 1]. Hence we451

can apply Lemma 5 as follows452

P
(
|hX, ✓

⇤i � hX, b✓i| � 3

s
⌫dhx, ✓⇤i log (T|X |)

eT

)

 2 exp

0

@�
9d⌫ log (T|X |)

hx,✓⇤ieT
· hx, ✓⇤i

3⌫ 3d
eT

1

A

=
2

T|X | .

Next, we prove (18). The upper tail is obtained by setting � = 3d
eT

, � = 1
3 in expression (8) of Lemma453

5, we get454

P
⇢
hX, b✓i � 4

3
hx, ✓⇤i

�
 exp

0

@�
3
p

T⌫d log(T|X |) · 10
q

d⌫ log (T|X |)
T

27⌫d

1

A

(Since hx, ✓⇤i � 10
q

d⌫ log (T|X |)
T )

 1

T|X | .

Similarly substituting � = 1/2 in expression (9) of Lemma 5 we get455

P
⇢
hX, b✓i  1

2
hx, ✓⇤i

�
 1

T|X | .

Union bound over all arms in X gives us the required probability bound.456

Next, we look at Part II of Algorithm 2 and show that the event E2 holds with high probability. Note457

that since we find a sparse � (with support size almost d(d+1)
2 ) in every phase, the phase length is458

upper bounded as T0 + d(d+1)
2 .459
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Lemma 15. Using the notation in Algorithm 2. For all arms x 2 eX with hx, ✓⇤i � 10
p

d⌫ log (T|X |)p
T

,460

the following holds (for every phase) with probability greater than 1� 3 logT
T461

|hx, ✓⇤i � hx, b✓i|  3

r
d⌫hx, ✓⇤i log (T|X |)

T0 (19)

1

2
hx, ✓⇤i hx, b✓i  4

3
hx, ✓⇤i (20)

Proof. The proof follows the same structure as the proof of Lemma 14. Consider any Phase in Part462

II andet U(�) be the optimal design matrix obtained after solving the D-optimal design problem at463

the start of the phase. Since each arm a in the support of � (denoted by A) is pulled at least d�aT0e464

times, we have V � T0

3 U(�). Thus by Theorem 2, for x 2 A and all z 2 eX we have465

z
T
V

�1
x  kzk

V�1

��V�1
x
��
V

(By Hölder’s inequality)
 kzk

V�1 kxkV�1 (21)


r

d

T0

r
d

T0 =
d

T0 (22)

Now we use Lemma 5 with � = 3
q

d⌫ log (T|X |)
hx,✓⇤iT0 and � = d

T0 . Note that given the lower bound on466

hx, ✓⇤i and T0 � 2
p
Td⌫ log(T|X |) in every phase, � always lies in [0, 1]. Substituting in Lemma 5,467

we get468

P
(
|hX, ✓

⇤i � hX, b✓i| � 3

r
d⌫hx, ✓⇤i log (T|X |)

T0

)
 2 exp

0

@�
9d log (T|X |)

hx,✓⇤iT0 · hx, ✓⇤i
3 d
T0

1

A

 2

(T|X |)3

Similar to the proof of Lemma 14, we use Lemma 5 with � = 1
3 and � = 1

2 to bound the upper and469

lower tails of (20) respectively. Furthermore, a union bound across arms in X and all – at most log T470

– phases gives us the desired probability bound of 1� 3 logT
T .471

Corollary 16.

P {E1 \ E2} � 1� 4 logT

T
.

Proof. From Lemma 14 we have P {E1} � 1� 4
T . Furthermore from Lemma 15 we have P {E2} �472

1� 3 logT
T . Taking union bound over the complements of the two events proves the corollary.473

Lemma 17. Consider an instance with hx⇤
, ✓

⇤i � 192
q

d⌫ log (T|X |)
T . If E1 holds, then any arm474

with mean hx, ✓⇤i  10
q

d⌫ log(T|X |)
T is eliminated after Part I of Algorithm 2.475
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Proof. From Lemma 14 for any arm with hx, ✓⇤i  10
q

d⌫ log(T|X |)
T we have,476

UNCB
⇣
x, b✓, eT/3

⌘
= hx, b✓i+ 6

s
3hx, b✓i d ⌫ log (T|X |)

eT

 20

r
d ⌫ log(T|X |)

T
+ 6

s
3hx, b✓i d ⌫ log (T|X |)

eT

 20

r
d⌫ log(T|X |)

T
+ 6

vuut3 · 20
q

d⌫ log(T|X |)
T d⌫ log (T|X |)

3
p

T⌫d log(T|X |)

(via Lemma 14 hx, b✓i  20
q

d⌫ log(T|X |)
T )

 47

r
d⌫ log(T|X |)

T
. (23)

For the optimal arm x
⇤ we have477

hx⇤
, b✓i  hx⇤

, ✓
⇤i+ 3

s
d⌫hx⇤, ✓⇤i log (T|X |)

eT
= hx⇤

, ✓
⇤i
 
1 + 3

s
d⌫ log (T|X |)

hx⇤, ✓⇤i3
p
Td ⌫ log(T|X |)

!

(Substituting the value of eT)

 hx⇤
, ✓

⇤i

0

B@1 + 3

vuut
d⌫ log (T|X |)

192
q

d⌫ log(T|X |)
T 3

p
T⌫d log(T|X |)

1

CA

=
17

16
hx⇤

, ✓
⇤i. (24)

This gives us a lower bound on the LNCB of x⇤478

LNCB
⇣
x
⇤
, b✓, eT/3

⌘
= hx⇤

, b✓i � 6

s
3hx⇤, b✓i d ⌫ log (T|X |)

eT

� hx⇤
, ✓

⇤i � 3

s
d ⌫ hx⇤, ✓⇤i log (T|X |)

eT
� 6

s
3hx⇤, b✓i d ⌫ log (T|X |)

eT
(via Lemma 14)

� hx⇤
, ✓

⇤i �
 
3 + 6

r
51

16

!s
d ⌫ hx⇤, ✓⇤i log (T|X |)

eT
(since hx⇤

, b✓i  17
16 hx

⇤
, ✓

⇤i)

� hx⇤
, ✓

⇤i
 
1� 14

s
d⌫ log (T|X |)
hx⇤, ✓⇤ieT

!

� hx⇤
, ✓

⇤i

0

B@1� 14

vuut
d⌫ log (T|X |)

192
q

d⌫ log(T|X |)
T 3

p
Td⌫ log(T|X |)

1

CA

� 5

12
hx⇤

, ✓
⇤i

� 80

r
d⌫ log(T|X |)

T
. (25)

From (25) and (23) we have479

UNCB
⇣
x, b✓, eT/3

⌘
 LNCB

⇣
x
⇤
, b✓, eT/3

⌘
. (26)

480
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Lemma 6. The optimal arm x
⇤ always exists in the surviving set eX in Part I and in every phase in481

Part II of Algorithm 2 with probability at least 1�O(T�1 logT).482

Proof. Let us assume that events E1 and E2 hold. For any arm x in X with hx, ✓⇤i �483

10
q

d⌫ log (T|X |)
T , we have484

LNCB(x, b✓,T0) = hx, b✓i � 6

s
hx, b✓i d ⌫ log (T|X |)

T0

 hx, ✓⇤i+ 3

r
d ⌫ hx, ✓⇤i log (T|X |)

T0 � 6

s
hx, b✓i d⌫ log (T|X |)

T0

 hx, ✓⇤i �
✓

6p
2
� 3

◆r
d⌫hx, ✓⇤i log (T|X |)

T0

 hx, ✓⇤i.
Similarly, we have485

UNCB(x⇤
, b✓,T0) = hx⇤

, b✓i+ 6

s
hx⇤, b✓i d ⌫ log (T|X |)

T0

� hx⇤
, ✓

⇤i � 3

s
d ⌫hx⇤, ✓⇤i log (T|X |)

eT
+ 6

s
hx⇤, b✓i d ⌫ log (T|X |)

T0

� hx⇤
, ✓

⇤i+
✓

6p
2
� 3

◆s
d ⌫ hx⇤, ✓⇤i log (T|X |)

eT
� hx⇤

, ✓
⇤i.

Since hx⇤
, ✓

⇤i � hx, ✓⇤i 8x 2 X , we have UNCB(x⇤
, b✓,T0) � LNCB(x, b✓,T0) 8X . From486

Corollary 16, we have that the events E1 and E2 hold with probability greater than 1� 4 logT
T . Hence,487

the lemma stands proven.488

Lemma 7. Consider any phase ` in Part II of Algorithm 2 and let eX be the surviving set of arms at489

the beginning of that phase. Then, with eT =
p
d⌫T log(T |X |), we have490

Pr

(
hx, ✓⇤i � hx⇤

, ✓
⇤i � 25

s
3d⌫hx⇤, ✓⇤i log (T|X |)

2` · eT
for all x 2 eX

)
 4T�1 logT (10)

Here, ⌫ is the sub-Poisson parameter of the stochastic rewards.491

Proof. Let us assume that events E1 and E2 hold. From the second phase onwards, if an arm is492

pulled in a phase with phase length parameter T0, then it was not eliminated in the previous phase493

with phase length parameter T0

2 . Additionally, since the best arm is always present in the surviving494

arm set eX (via Lemma 6), we have UNCB(x, b✓,T0
/2) � LNCB(x⇤

, b✓,T0
/2). That is495

hx, b✓i+ 6

s
hx, b✓i d ⌫ log (T|X |)

T0

2

� hx⇤
, b✓i � 6

s
hx⇤, b✓i d ⌫ log (T|X |)

T0

2

.

Rearranging terms, we get496

hx, b✓i � hx⇤
, b✓i � 6

s
hx⇤, b✓i d ⌫ log (T|X |)

T0

2

� 6

s
hx, b✓i d ⌫ log (T|X |)

T0

2

� hx⇤
, b✓i � 6

r
4hx⇤, ✓⇤i d ⌫ log (T|X |)

T0 � 6

r
4hx, ✓⇤i d ⌫ log (T|X |)

T0

(via Lemma 7 all surviving arms satisfy hx, b✓i  4
3 hx, ✓

⇤i)

� hx⇤
, b✓i � 20

r
hx⇤, ✓⇤i d ⌫ log (T|X |)

T0 .
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Now using the additive confidence intervals we have,497

hx, ✓⇤i � hx⇤
, ✓

⇤i � 20

r
hx⇤, ✓⇤i d ⌫ log (T|X |)

T0 � 3

s
hx⇤, ✓⇤i d ⌫ log (T|X |)

T0

2

� hx⇤
, ✓

⇤i � 25

r
hx⇤, ✓⇤i d ⌫ log (T|X |)

T0 .

Substituting T0 = 2leT/3 in the above inequality proves the Lemma. From Corollary 16, we have498

that the events E1 and E2 hold with probability greater than 1� 4 logT
T . Hence, the lemma stands499

proven.500

Theorem 1. Consider the stochastic linear bandits problem over a horizon of T rounds such that at501

every round t 2 [T], an arm Xt 2 X ⇢ Rd is selected and the corresponding reward rt is obtained502

satisfying equation (2). In the setting when X is finite, Algorithm 2 achieves a Nash regret of503

NRT = O

 r
d⌫hx?, ✓⇤i

T
log(T|X |)

!
.

Proof. WLOG we assume that hx⇤
, ✓

⇤i � 192
q

d ⌫
T log(T|X |), otherwise the Nash Regret bound is504

trivially true. During Part I of Algorithm 2, the product of expected rewards, conditioned on the event505

E1 \ E2, satisfies506

eTY

t=1

E[hXt, ✓
⇤i | E1 \ E2]

1
T �

✓
hx⇤

, ✓
⇤i

2(d+ 1)

◆ eT
T

(From Lemma 4)

= hx⇤
, ✓

⇤i
eT
T

✓
1� 1

2

◆ log(2(d+1))eT
T

� hx⇤
, ✓

⇤i
eT
T

 
1� log(2(d+ 1))eT

T

!
.

For Part II, we use Lemma 7. Let set Ei denote all t that belong to i
th phase and let T0

i be the phase507

length parameter in that phase. Since each arm x in A (the support of D-optimal design) is pulled508

d�xT0
ie times, we have |Ei|  T0

i +
d(d+1)

2 . Since the phase length parameter doubles after phase,509

the algorithm would have at most logT phases. Hence we have510

TY

t=eT+1

E[hXt, ✓
⇤i | E1 \ E2]

1
T =

Y

Ej

Y

t2Ej

E[hXt, ✓
⇤i | E1 \ E2]

1
T

=
Y

Ej

Y

t2Ej

E[hXt, ✓
⇤i | E1 \ E2]

1
T

�
Y

Ej

 
hx⇤

, ✓
⇤i � 25

s
d ⌫ hx⇤, ✓⇤i log (T|X |)

T0
j

! |Ej |
T

� hx⇤
, ✓

⇤i
T�eT
T

log TY

i=1

 
1� 25

s
d ⌫ log (T|X |)
hx⇤, ✓⇤iT0

j

! |Ej |
T

� hx⇤
, ✓

⇤i
T�eT
T

log TY

i=1

 
1� 50

|Ej |
T

s
d ⌫ log (T|X |)
hx⇤, ✓⇤iT0

j

!
.

The last inequality is due to the fact that (1 � x)r � (1 � 2rx) where r 2 [0, 1] and x 2 [0, 1/2].511

Note that the term
q

d log (T|X |)
hx⇤,✓⇤iT0

j
 1/2 for hx⇤

, ✓
⇤i � 192

q
d
T log(T|X |), T0 � 2

p
Td logT|X |512

and T � e
4. We now further simplify the expression as shown below513
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log TY

j=1

 
1� 50

|Ej |
T

s
d ⌫ log (T|X |)
hx⇤, ✓⇤iT0

j

!
�

log TY

j=1

 
1� 50

T0
j +

d(d+1)
2

T

s
d ⌫ log (T|X |)
hx⇤, ✓⇤iT0

j

!

�
log TY

j=1

0

@1� 75

q
T0
j

T

s
d ⌫ log (T|X |)

hx⇤, ✓⇤i

1

A

(assuming T0
j � d(d+ 1))

� 1� 75

T

s
d ⌫ log (T|X |)

hx⇤, ✓⇤i

0

@
logTX

j=1

q
T0
j

1

A

(since (1� a)(1� b) � 1� a� b 8a, b � 0)

� 1� 75

T

s
d ⌫ log (T|X |)

hx⇤, ✓⇤i

⇣p
T logT

⌘

(using Cauchy Schwarz)

� 1� 75

s
d⌫

Thx⇤, ✓⇤i log (T|X |).

Combining the lower bound for rewards in the two phases, we get514

TY

t=1

E[hXt, ✓
⇤i] 1T �

TY

t=1

✓
E[hXt, ✓

⇤i | E1 \ E2] · P{E1 \ E2}
◆ 1

T

� hx⇤
, ✓

⇤i
 
1� log(2(d+ 1))eT

T

! 
1� 75

s
d

T hx⇤, ✓⇤i log (T|X |)
!
P{E1 \ E2}

� hx⇤
, ✓

⇤i
 
1� log(2(d+ 1))eT

T
� 75

s
d

T hx⇤, ✓⇤i log (T|X |)
!
P{E1 \ E2}

� hx⇤
, ✓

⇤i
 
1� log(2(d+ 1))eT

T
� 75

s
d

T hx⇤, ✓⇤i log (T|X |)
!✓

1� 2 log T

T

◆

� hx⇤
, ✓

⇤i
 
1�

log(2(d+ 1))3
p

Td log(T|X |)
T

� 75

s
d

T hx⇤, ✓⇤i log (T|X |)� 2 log T

T

!

� hx⇤
, ✓

⇤i � 75

r
hx⇤, ✓⇤id ⌫

T
log (T|X |)� 6

r
d ⌫ log(T|X |)

T
log(2(d+ 1))hx⇤

, ✓
⇤i.

Hence the Nash Regret can be bounded as515

NRT = hx⇤
, ✓

⇤i �
 

TY

t=1

E[hXt, ✓
⇤i]
!1/T

 75

r
hx⇤, ✓⇤id ⌫

T
log (T|X |) + 6

r
d ⌫ log(T|X |)

T
log(2(d+ 1))hx⇤

, ✓
⇤i.

516

C X independent Nash regret517

Instead of working with probability bounds on individual arms, we construct a confidence ellipsoid518

around ✓
⇤. Using the notations in Algorithm 3, we first define a new set of events for the regret519

analysis520
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Algorithm 3 LINNASH (Nash Confidence Bound Algorithm for Infinite Set of Arms)
Input: Arm set X and horizon of play T .
1: Initialize matrix V [0]d,d and number of rounds eT = 3

p
Td2.5⌫ log(T).

Part I
2: Generate arm sequence S for the first eT rounds using Algorithm 1.
3: for t = 1 to eT do
4: Pull the next arm Xt from the sequence S.
5: Observe reward rt and update V V +XtX

T
t

6: end for
7: Set estimate b✓ := V�1

⇣PeT
t=1 rtXt

⌘

8: Find ⌘ = maxz2X hz, b✓i

9: Update eX  {x 2 X : hx, b✓i � ⌘ � 16

r
3 ⌘ d

5
2 ⌫ log (T)

eT
}

10: T0  2
3
eT

Part II
11: while end of time horizon T is reached do
12: Initialize V = [0]d,d to be an all zeros d⇥ d matrix and s = [0]d to be an all-zeros vector.

// Beginning of new phase.
13: Find the probability distribution � 2 �( eX ) by maximizing the following objective

logDet(V(�)) subject to � 2 �( eX ) and Supp(�)  d(d+ 1)/2. (27)

14: for a in Supp(�) do
15: Pull a for the next d�a T0e rounds.
16: Observe rewards and Update V V + d�AT0e · aaT

17: Observe d�a T0e corresponding rewards z1, z2, . . . and update s s+ (
P

j zj)a.
18: end for
19: Estimate b✓ = V�1

�P
t2E rtXt

�

20: Find ⌘ = maxz2X hz, b✓i

21: eX  {x 2 X : hx, b✓i � ⌘ � 16

r
⌘ d

5
2 log (T)
T0 }

22: T0  2⇥ T0 // End of phase.
23: end while

G1 During Part I arms from the D-optimal design are chosen at least eT/3 times. If hx⇤
, ✓

⇤i �521

196
q

d2.5

T logT, then b✓ calculated at the end of Part I satisfies,522

���b✓ � ✓
⇤
���
V

 7
q

hx⇤, ✓⇤id 3
2 ⌫ logT

G2 During Part II, for every phase, if hx⇤
, ✓

⇤i � 196
q

d2.5

T logT the estimators b✓ satisfy the523

following524

���b✓ � ✓
⇤
���
V

 7
q

hx⇤, ✓⇤id 3
2 ⌫ logT

C.1 Regret Analysis525

WLOG let us assume that hx⇤
, ✓

⇤i � 196d1.25
p
T

logT, otherwise the regret bound is trivially satisfied.526

Let B denote the unit ball in Rd, we have527

���b✓ � ✓
⇤
���
V

=
���V

1
2 (b✓ � ✓

⇤)
���
2

= max
y2B

hy,V 1
2 (b✓ � ✓

⇤)i
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We construct an "-net for the unit ball, which we will refer to as C". We define y" =528

argminb2B kb� yk2529 ���b✓ � ✓
⇤
���
V

= max
y2B

hy � y",V
1
2 (b✓ � ✓

⇤)i+ hy",V
1
2 (b✓ � ✓

⇤)i

 max
y2B

ky � y"k2
���V

1
2 (b✓ � ✓

⇤)
���
2
+ hy",V

1
2 (b✓ � ✓

⇤)i

 "

���(b✓ � ✓
⇤)
���
V

+ hy",V
1
2 (b✓ � ✓

⇤)i
Rearranging we get530

���b✓ � ✓
⇤
���
V

 1

1� "
hy"V

1
2 , b✓ � ✓

⇤i (28)

In the following lemmas we show show that hy"V
1
2 , b✓ � ✓

⇤i is small for all values of y".531

Lemma 18. Let x1, x2, . . . , xn be a sequence of fixed arm pulls (from a set X ) such that each arm x

in the support � from D-optimal design is pulled at least d�x⌧e times. Consider V =
Ps

j=1 xjx
T
j and

let w be a vector such that kwk2  1 and hwV 1
2 , ✓

⇤i � 6
q

d
⌧ log (T|C"|). Then, with probability

greater than 1� 2
T|C"| , we have,

|hwV 1
2 , ✓

⇤ � b✓i| 
 
3

r
nd

⌧
log (T|C"|)hx⇤

, ✓
⇤i
! 1

2

Proof. We will make use of Lemma 5. We find the � parameter used in the lemma. We have532
⇣
wV

1
2

⌘T
V

�1
Xt 

���wV
1
2

���
V�1

��V�1
Xt

��
V

 kwk2 kXtkV�1

 kXtkV�1 (since kwk  1)
Let A� be the optimal design matrix then we have V � ⌧A�. This gives us the following533

⇣
wV

1
2

⌘T
V

�1
Xt  kXtkV�1

 kXtk 1
⌧ A�1

�


r

d

⌧
(By Theorem 2)

We use Corollary 8 with � =
q

d
⌧ and � =

✓
6
q

d
⌧
⌫ log (T|C"|)
hwV

1
2 ,✓⇤i

◆ 1
2

. Note that � 2 [0, 1] since534

hwV 1
2 , ✓

⇤i � 6
q

d
⌧ log (T|C"|). We have the following probability bound535

P

8
<

:|hwV 1
2 , ✓

⇤ � b✓i| �
 
6

r
d

⌧
⌫ log (T|C"|)hwV

1
2 , ✓

⇤i
! 1

2

9
=

;  2 exp

0

B@�
6
q

d
⌧

log (T|C"|)
hwV

1
2 ,✓⇤i

hwV 1
2 , ✓

⇤i

3
q

d
⌧

1

CA

 2

T|C"|
We can get an upper bound on the term hwV 1

2 , ✓
⇤i as follows536

hwV 1
2 , ✓

⇤i  kwk2
���V

1
2 ✓

⇤
���
2


p
✓⇤TV✓⇤ (since kwk  1)

=

vuuut

0

@
X

i2[n]

✓⇤Txix
T
i ✓

⇤

1

A (hxi, ✓
⇤i  hx⇤

, ✓
⇤i)

=
p
nhx⇤, ✓⇤i

This proves the lemma.537
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Lemma 19. Using the same notation as Lemma 18. If hwV 1
2 , ✓

⇤i  6
q

d
⌧ log (T|C"|)

|hwV 1
2 , ✓

⇤ � b✓i|  12

r
d

⌧
log (T|C"|)

Proof. We first use Lemma 9 to show hwV 1
2 , b✓i  12

q
d
T0 by substituting � = 1, ↵ =538

6
q

d
T0 log (T|C"|) and � =

q
d
T0 . This trivially gives us hwV 1

2 , ✓
⇤ � b✓i|  12

q
d
T0 log (T|C"|).539

Next we Lemma 10 with � = 1 and ↵ = 6
q

d
T0 log (T|C"|) which gives hwV 1

2 , ✓
⇤ � b✓i| 540

6
q

d
T0 log (T|C"|).541

Lemma 20. If the optimal arm satisfies hx⇤
, ✓

⇤i � 196
q

d2.5

T logT

P {G1} � 1� 3

T
and

P {G2} � 1� logT

T

Proof. Recall, from (28) that we aim to get a bound on hy"V
1
2 , b✓ � ✓

⇤i for all possible values of542

y". The total number of arm pulls in Part I is equal to eT. We will now apply Lemma 18. First, from543

Lemma 12 we have that the arms from the solution of the D-optimal design problem are selected544

(with probability greater than 1� 1
T ) at least eT/3 times, that is, ⌧ = eT/3. Let us consider the case545

where hy"V
1
2 , ✓

⇤i � 6
q

3d
eT

log (T|C"|). Taking union bound over C" we get that the following holds546

with probability greater than 1� 1
T547

���b✓ � ✓
⇤
���
V

 1

1� "
hy"V

1
2 , b✓ � ✓

⇤i (From (28))

 1

1� "

0

@3

vuuteTd
eT
3

log (T|C"|)hx⇤
, ✓

⇤i

1

A

1
2

(Using Lemma 18)

 1

1� "

⇣
3
p
3d log (T|C"|)hx⇤

, ✓
⇤i
⌘ 1

2

Since |C"| 
�
3
"

�d, choosing ✏ = 1/2 gives us548

���b✓ � ✓
⇤
���
V

 7
⇣
d

3
2 log (T)hx⇤

, ✓
⇤i
⌘ 1

2

Now substituting ⌧ = T0
/3 in Lemma 19, if hy"V

1
2 , ✓

⇤i  6
q

3d
eT

log (T|C"|), we have549

���b✓ � ✓
⇤
���
V

 1

1� "
hy"V

1
2 , b✓ � ✓

⇤i

 24

r
d3

T0 log (T) (From Lemma 19 and substituting " = 0.5)

 7
⇣
d

3
2 log (T)hx⇤

, ✓
⇤i
⌘ 1

2

The last inequality is due to the fact that hx⇤
, ✓

⇤i � 196
q

d2.5

T logT and T0 = eT/3 �
p
Td2.5 logT.550

Similarly, for the event G2, an identical use of Lemma 19 and Lemma 18 with ⌧ = T0 shows that, for551

any fixed phase, the following holds with probability greater than 1� 1
T552

���b✓ � ✓
⇤
���
V

 7
⇣
d

3
2 log (T)hx⇤

, ✓
⇤i
⌘ 1

2

Taking a union bound over all phases (almost logT) of Part II gives us the required bound on G2.553
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Corollary 21. If G1 holds, the for all x 2 X , b✓ calculated at the end of Part I satisfies554

|hx, b✓i � hx, ✓⇤i|  7

s
3hx⇤, ✓⇤id2.5 logT

eT

Consider any phase ` in Part II. If G2 holds, then for every arm in the surviving arm set eX , b✓555

calculated at the end of the phase satisfies556

|hx, b✓i � hx, ✓⇤i|  7

s
3hx⇤, ✓⇤id2.5 logT

2` eT
.

Proof. First we use Hölder’s inequality557

|hx, ✓⇤ � b✓i|  kxk
V�1

���✓⇤ � b✓
���
V

. (29)

Since G1 holds, arms from the optimal design matrix are selected at least eT/3 times; we have by558

Lemma 2559

kxk
V�1 

s
3d
eT
.

Similarly, for every Phase in Part II with T0 = 2`eT/3 we have560

kxk
V�1 

r
d

T0 .

Finally, using bound on
���✓⇤ � b✓

���
V

from events G1 and G2, we get the desired result.561

Corollary 22. If hx⇤
, ✓

⇤i � 196
q

d2.5

T logT

7

10
hx⇤

, ✓
⇤i  max

z2X
hz, b✓i  13

10
hx⇤

, ✓
⇤i

Proof. Since T0 � 2eT/3, via Lemma 21 any b✓ calculated in Part I or during any phase of Part II562

satisfies563

|hx, b✓i � hx, ✓⇤i|  7

s
3hx⇤, ✓⇤id2.5 logT

eT
We have564

max
z2X

hz, b✓i � hx⇤
, b✓i

� hx⇤
, ✓

⇤i � 7

s
hx⇤, ✓⇤id2.5 logT

eT

� hx⇤
, ✓

⇤i
 
1� 7

s
d2.5 logT

hx⇤, ✓⇤ieT

!

� 7hx⇤
, ✓

⇤i
10

(since hx⇤
, ✓

⇤i � 196
q

d2.5

T logT and eT = 3
p
Td2.5⌫ log(T))

Similarly for any z 2 X ,565

hz, b✓i  hz, ✓⇤i+ 7

r
hx⇤, ✓⇤id2.5 logT

⌧

 hx⇤
, ✓

⇤i
 
1 + 7

s
d2.5 logT

hx⇤, ✓⇤i⌧

!

 13

10
hx⇤

, ✓
⇤i

566
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Lemma 23. If events G1 and G2 hold then the optimal arm x
⇤ always exists in the surviving set eX567

in every phase in Step II of Alg. 3568

Proof. Let ⌧ = eT/3 for Part I and ⌧ = T0 for every phase of Part II. From Lemma 21 we have for569

x 2 eX570

hx⇤
, b✓i � hx⇤

, ✓
⇤i � 7

r
hx⇤, ✓⇤id2.5 logT

⌧

� hx, ✓⇤i � 7

r
hx⇤, ✓⇤id2.5 logT

⌧

� hx, b✓i � 14

r
hx⇤, ✓⇤id2.5 logT

⌧

� hx, b✓i � 16

s
maxz2 eX hz, ✓⇤id2.5 logT

⌧
(Using Lemma 22)

Hence, the best arm will never satisfy the elimination criteria in Alg. 3.571

Lemma 24. Given that events G1 and G2 hold, fix any phase index ` in Step II of Alg. 3. For the572

surviving set of arms eX at the beginning of that phase, we will have for eT =
p

d2.5T log(T)573

hx, ✓⇤i � hx⇤
, ✓

⇤i � 26

s
3d2.5⌫hx⇤, ✓⇤i

2` · eT
for all x 2 eX (30)

Proof. From the second phase onwards, if an arm is pulled in a phase with phase length parameter574

T0, then it was not eliminated in the previous phase with phase length parameter T0

2 . Additionally,575

since the best arm is always present in the surviving arm set eX (via Lemma 23), we have576

hx, b✓i � hx⇤
, b✓i � 16
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Substituting T0 = 2leT/3 in the above inequality proves the Lemma.577

Theorem 2. Consider the stochastic linear bandits problem over a horizon of T rounds such that at578

every round t 2 [T], an arm Xt 2 X ⇢ Rd is selected and the corresponding reward rt is obtained579

satisfying equation (2). In this setting, Algorithm 3 achieves a Nash regret of580
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trivially true. For Part I, the product of expected rewards satisfies582
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For Part II, we use Lemma 7. Let Ei denote the time interval of ith phase and let T0
i be the phase583

length parameter in that phase. Recall that |Ei|  T0
i +

d(d+1)
2 . Also, the algorithm runs for at most584

logT phases. Hence, we have585
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The last inequality is due to the fact that (1 � x)r � (1 � 2rx) where r 2 [0, 1] and x 2 [0, 1/2].586
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T � e
6. We now further simplify the expression as shown below588
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Combining the lower bound for rewards in the two phases, we get589
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Hence the Nash Regret can be bounded as590
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