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Abstract

We obtain essentially tight upper bounds for a strengthened notion of regret in
the stochastic linear bandits framework. The strengthening—referred to as Nash
regret—is defined as the difference between the (a priori unknown) optimum and
the geometric mean of expected rewards accumulated by the linear bandit algorithm.
Since the geometric mean corresponds to the well-studied Nash social welfare
(NSW) function, this formulation quantifies the performance of a bandit algorithm
as the collective welfare it generates across rounds. NSW is known to satisfy
fairness axioms and, hence, an upper bound on Nash regret provides a principled
fairness guarantee.
We consider the stochastic linear bandits problem over a horizon of T rounds and
with set of arms X in ambient dimension d. Furthermore, we focus on settings in
which the stochastic reward—associated with each arm in X—is a non-negative,
ν-sub-Poisson random variable. For this setting, we develop an algorithm that

achieves a Nash regret of O
(√

dν
T log(T|X |)

)
. In addition, addressing linear

bandit instances in which the set of arms X is not necessarily finite, we obtain a

Nash regret upper bound of O
(

d
5
4 ν

1
2√

T
log(T)

)
. Since bounded random variables

are sub-Poisson, these results hold for bounded, positive rewards. Our linear bandit
algorithm is built upon the successive elimination method with novel technical
insights, including tailored concentration bounds and the use of sampling via John
ellipsoid in conjunction with the Kiefer-Wolfowitz optimal design.

1 Introduction

Bandit optimization is a prominent framework for sequential decision making and has several
applications across multiple domains, such as healthcare [26, 23, 27] and advertising [22]. In this
framework, we have a set of arms (possible actions) with unknown means and a time horizon. The
goal is to sequentially pull the arms such that the regret—which is a notion of loss defined over the
bandit instance—is minimized.

We consider settings wherein the stochastic rewards generated by a sequential algorithm induces
welfare across a population of agents. Specifically, there are T agents, arriving one per round; in
particular, the reward accrued at each round t ∈ [T] corresponds to the value accrued by the tth

agent. Indeed, such a welfarist connection exists in various applications of the bandit framework.
Consider, for instance, the classic context of drug trials [24]: Suppose there are T patients and several
available drugs. In each round t ∈ [T], one of the available drugs is administered to the tth patient.
Subsequently, the reward accrued at the tth round corresponds to the efficacy of the administered
drug to the tth patient. In such a setting, fairness is a fundamental consideration. That is, in addition
to cumulative efficacy, individual effectiveness of the drugs is quite important.
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A central notion in the bandit literature is that of average regret, defined as the difference between
the (a priori unknown) optimum and the arithmetic mean of the expected rewards (accumulated by
the algorithm) [4]. However, average regret fails to capture the fairness criterion that the rewards
should be balanced (across the agents) and not just cumulatively high. From a welfarist viewpoint,
the standard notion of (average) regret equates the algorithm’s performance to the social welfare it
induces. Social welfare is defined as the sum of agent’s rewards [19] and can be high among a set of
agents even if a fraction of them receive indiscriminately low rewards. For instance, in the drug-trials
example provided above, high average efficacy (i.e., high social welfare) does not rule out a severely
ineffective outcome for a subset of agents.

Given that average regret is defined using the sum of expected rewards, this notion inherits this
utilitarian limitation of social welfare. In summary, in welfare-inducing contexts, a bandit algorithm
with low average regret is not guaranteed to induce fair outcomes across rounds.

Addressing this issue and with the overarching aim of achieving fairness across rounds (i.e., across
agents that receive rewards from a bandit algorithm), the current work considers a strengthened
notion of regret. The strengthening—referred to as Nash regret—is defined as the difference between
the (a priori unknown) optimum and the geometric mean of expected rewards induced by the bandit
algorithm. It is relevant to note that the geometric mean (of rewards) corresponds to the Nash social
welfare (NSW) function [19]. This welfare function has been extensively studied in mathematical
economics (see, e.g., [19]) and is known to satisfy fundamental fairness axioms, including the Pigou-
Dalton transfer principle, scale invariance, and independence of unconcerned agents. Hence, by
definition, Nash regret quantifies the performance of a bandit algorithm as the NSW it generates.

Quantitatively speaking, in order for the geometric mean (i.e., the NSW) to be large, the expected
reward at every round should be large enough. The AM-GM inequality also highlights that Nash
regret is a more demanding objective that average regret.

We obtain novel results for Nash regret in the stochastic linear bandits framework. In this well-studied
bandit setup each arm corresponds to a d-dimensional vector x (an arm-specific context) and the
unknown arm means are modelled to be a linear function of x. With a focus on average regret,
stochastic linear bandits have been extensively studied in the past decade [1, 9, 21]. The current paper
extends the line of work on linear bandits with fairness and welfare considerations.

Note that an ostensible approach for minimizing Nash regret is to take the logarithm of the observed
rewards and, then, solve the average regret problem. However, this approach has the following
shortcomings: (i) Taking log implies the modified rewards can have a very large range possibly
making the regret vacuous, and (ii) This approach leads to a multiplicative guarantee and not an
additive one. In a recent work of [5], the authors study Nash regret in the context of stochastic
multi-armed bandits (with bounded rewards) and provide optimal guarantees. The current work
notably generalizes this prior work to linear bandits.

1.1 Our Contributions and Techniques

We consider the stochastic linear bandits setting with a set of arms X over a finite horizon of T
rounds. Since we consider the welfarist viewpoint, we assume that the rewards across all the rounds
are positive and, in particular, model the distribution of the arm rewards to be ν-sub-Poisson, for
parameter ν ∈ R+. Our goal is to minimize the Nash regret NRT.

We develop a novel algorithm LINNASH that obtains essentially optimal Nash regret guarantees for
this setting. Specifically, for a finite set of arms X ⊂ Rd, our algorithm LINNASH achieves Nash

regret NRT = O

(√
dν
T log(T|X |)

)
. For infinite sets of arms, a modified version of LINNASH

achieves Nash regret NRT = O

(
d

5
4 ν

1
2√

T
log(T)

)
.

Recall that Nash regret is a strengthening of the average regret; the AM-GM inequality implies that,
for any bandit algorithm, the Nash regret is at least as much as its average regret. Hence, in the linear
bandits context, the known Ω

(
d/

√
T
)

lower bound on average regret (see [17], Chapter 24) holds
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for Nash regret as well.1 This observation implies that, up to a logarithmic factor, our upper bound on
Nash regret is tight with respect to the number of rounds T. We also note that for instances in which
the number of arms |X | = ω(2d), the Nash-regret dependence on d has a slight gap. Tightening this
gap is an interesting direction of future work.

We note that bounded, positive random variables are sub-Poisson (Lemma 1). Hence, our results
hold for linear bandit instances wherein the stochastic rewards are bounded and positive. This
observation also highlights the fact that the current work is a generalization of the result obtained
in [5]. In addition, notice that, by definition, Poisson distributions are 1-sub-Poisson. Hence, our
guarantees further hold of rewards that are not necessarily sub-Gaussian. Given the recent interest in
obtaining regret guarantees beyond sub-Gaussian rewards [18, 3], our study of sub-Poisson rewards
is interesting in its own right.2

Our linear bandit algorithm, LINNASH, has two parts. In the first part, we develop a novel approach
of sampling arms such that in expectation the reward obtained is a linear function of the center of
John Ellipsoid [13]. Such a strategy ensures that the expected reward in any round of the first part is
sufficiently large. The second part of LINNASH runs in phases of exponentially increasing length. In
each phase, we sample arms according to a distribution that is obtained as a solution of a concave
optimization problem, known as D-optimal design. We construct confidence intervals at each phase
and eliminate sub-optimal arms. A key novelty in our algorithm and analysis is the use of confidence
widths that are estimate dependent. We define these widths considering multiplicative forms of
concentration bounds and crucially utilize the sub-Poisson property of the rewards. The tail bounds
we develop might be of independent interest.

1.2 Other Related Work

There has been a recent surge in interest to achieve fairness guarantees in the context of multi-armed
bandits; see, e.g., [14, 7, 20, 6, 12]. However, these works mostly consider fairness across arms and,
in particular, impose fairness constraints that require each arm to be pulled a pre-specified fraction of
times. By contrast, our work considers fairness across rounds.

Alternative Regret Formulations. In the current work, for the welfare computation, each agent t’s
value is considered as the expected reward in round t. One can formulate stronger notions of regret by,
say, considering the expectation of the geometric mean of the rewards, rather than the geometric mean
of the expectations. However, as discussed in [5], it is not possible to obtain non-trivial guarantees
for such reformulations in general: every arm must be pulled at least once. Hence, if one considers
the realized rewards (and not their expectations), even a single pull of a zero-reward arm will render
the geometric mean zero.

2 Problem Formulation and Preliminaries

We will write [m] to denote the set {1, 2, . . . ,m}. For a matrix X, let Det(X) to denote the
determinant of X. For any discrete probability distribution λ with sample space Ω, write Supp(λ) ≜
{x ∈ Ω : PrX∼λ {X = x} > 0} to denote the points for which the probability mass assigned by
λ is positive. For a vector a ∈ Rd and a positive definite matrix V ∈ Rd×d, we will denote
||a||V :=

√
aTVa. Finally, let B := {x ∈ Rd | ||x||2 = 1} be the d-dimensional unit ball.

We address the problem of stochastic linear bandits with a time horizon of T ∈ Z+ rounds. Here,
an online algorithm (decision maker) is given a set of arms X ⊂ Rd. Each arm corresponds to a
d-dimensional vector. Furthermore, associated with each arm x ∈ X , we have a stochastic reward
rx ∈ R+. In the linear bandits framework, the expected value of the reward rx is modeled to be a
linear function of x ∈ Rd. In particular, there exists an unknown parameter vector θ∗ ∈ Rd such that,
for each x ∈ X , the associated reward’s expected value E[rx] = ⟨x, θ∗⟩. Given the focus on welfare
contexts, we will, throughout, assume that the rewards are positive, rx > 0, for all x ∈ X .

The online algorithm (possibly randomized) must sequentially select an arm Xt in each round t ∈ [T]
and, then, it observes the corresponding (stochastic) reward rXt

> 0.3 For notational convenience,

1This lower bound on average regret is obtained for instances in which the set of arms X are the corners of a
hypercube [17].

2An intersection between sub-Gaussian and sub-Poisson distribution classes is identified in Lemma 2.
3Note that, for a randomized online algorithm, the selected arm Xt is a random variable.
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we will write rt to denote rXt . In particular, if in round t the selected arm Xt = x, then the expected
reward is ⟨x, θ∗⟩, i.e., E[rt | Xt = x] = ⟨x, θ∗⟩. We will, throughout, use x∗ to denote the optimal
arm, x∗ = argmaxx∈X ⟨x, θ∗⟩ and θ̂ to denote estimator of θ∗.

In the stochastic linear bandits framework, our overarching objective is to minimize the Nash regret,
defined as follows:

NRT := max
x∈X

⟨x, θ∗⟩ −

(
T∏

t=1

E[⟨Xt, θ
∗⟩]

)1/T

(1)

Note that the definition of Nash regret is obtained by applying the Nash social welfare (geometric
mean) onto ex ante rewards, E [⟨Xt, θ

∗⟩],4 accrued across the T rounds.

2.1 Sub-Poisson Rewards

In order to model the environment with positive rewards (rx > 0), we assume that the rewards rx
associated with the arms x ∈ X are ν-sub Poisson, for some parameter ν > 0. Formally, their
moment-generating function satisfies the following bound

E
[
eλ rx

]
≤ exp

(
ν−1E[rx]

(
eνλ − 1

))
= exp

(
ν−1⟨x, θ∗⟩

(
eνλ − 1

))
for all λ ∈ R. (2)

Note that a Poisson random variable is 1-sub Poisson. To highlight the generality of ν-sub-Poisson
distributions, we note that bounded, non-negative random variables are sub-Poisson (Lemma 1).
Further, in Lemma 2, we establish a connection between non-negative sub-Gaussian and sub-Poisson
random variables.
Lemma 1. Any non-negative random variable X ∈ [0,B] is B-sub-Poisson, i.e., if mean E[X] = µ,
then for all λ ∈ R, we have E[eλX ] ≤ exp

(
B−1µ

(
eBλ − 1

))
.

Lemma 2. Let X be a non-negative sub-Gaussian random variable X with mean µ = E[X] and

sub-Gaussian norm σ. Then, X is also
(

σ2

µ

)
-sub-Poisson.

The proofs of Lemmas 1 and 2 appear in Appendix A. Lemma 2 has useful instantiations. In
particular, the lemma implies that the half-normal random variable, with variance of σ, is also a
(Cσ)-sub-Poisson, where C is a constant (independent of distribution parameters). Similarly, for
other well-studied, positive sub-Gaussian random variables (including truncated and folded normal
distributions), the sub-Poisson parameter is small.

Next, we discuss the necessary preliminaries for our algorithm and analysis.

2.2 Optimal Design.

Write ∆(X ) to denote the probability simplex associated with the set of arms X . Let λ ∈ ∆(X ) be
such a probability distribution over the arms, with λx denoting the probability of selecting arm x.
The following optimization problem, defined over the set of arms X , is well-known and is referred to
as the G-optimal design problem.

Minimize g(λ) ≜ max
x∈X

||x||2U(λ)−1 , where λ ∈ ∆(X ) and U(λ) =
∑
x∈X

λxxx
T (3)

The solution to (3) provides the optimal sequence of arm pulls (for a given budget of rounds) to
minimize the confidence width of the estimated rewards for all arms x ∈ X . The G-optimal design
problem connects to the following optimization problem (known as D-optimal design problem):

Maximize f(λ) ≜ logDet(U(λ)), where λ ∈ ∆(X ) and U(λ) =
∑
x∈X

λxxx
T (4)

The lemma below provides an important result of Kiefer and Wolfowitz [15].
Lemma 3 (Kiefer-Wolfowitz). If the set X is compact and X spans Rd, then there exists λ∗ ∈ ∆(X )
supported over at most d(d+ 1)/2 arms such that λ∗ minimizes the objective in equation (3) with
g(λ∗) = d. Furthermore, λ∗ is also a maximizer of the D-optimal design objective, i.e., λ∗ maximizes
the function f(λ) = logDet(U(λ)) subject to λ ∈ ∆(X ).

4Here, the expectation is with respect to the random variable Xt.
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Algorithm 1 GenerateArmSequence (Subroutine to generate Arm Sequence)

Input: Arm set X and sequence length T̃ ∈ Z+.
1: Find the probability distribution λ ∈ ∆(X ) by maximizing the following objective

logDet(U(λ0)) subject to λ0 ∈ ∆(X ) and Supp(λ0) ≤ d(d+ 1)/2 (5)

2: Initialize multiset S = ∅ and set A = Supp(λ). Also, initialize count cz = 0, for each arm z ∈ A.
3: Compute distribution U as described in Section 3.1.
4: for i = 1 to T̃ do
5: With probability 1/2 set flag = SAMPLE-U, otherwise, set flag = D/G-OPT.
6: if flag = SAMPLE-U or A = ∅ then
7: Sample an arm x̂ from the distribution U , and update multiset S ← S ∪ {x̂}.
8: else if flag = D/G-OPT then
9: Pick the next arm z in A (round robin).

10: Update multiset S ← S ∪ {z} and increment count cz ← cz + 1.
11: If cz ≥ ⌈λz T̃/3⌉, then update A ← A \ {z}.
12: end if
13: end for
14: return multiset S

At several places in our algorithm, our goal is to find a probability distribution that minimizes the
non-convex optimization problem (3). However, instead we will maximize the concave function
f(λ) = logDet(U(λ)) over λ ∈ ∆(X ). The Frank-Wolfe algorithm, for instance, can be used to
solve the D-optimal design problem (4) and compute λ∗ efficiently ([17], Chapter 21). Lemma 3
ensures that this approach works, since the G-optimal and the D-optimal design problems have the
same optimal solution λ∗ ∈ ∆(X ), which satisfies Supp(λ∗) ≤ d(d+ 1)/2.5

2.3 John Ellipsoid.

For any convex body K ⊂ Rd, a John ellipsoid is an ellipsoid with maximal volume that can be
inscribed within K. It is known that K itself is contained within the John Ellipsoid dilated by a factor
of d. Formally,6

Lemma 4 ([11]). Let K ⊂ Rd be a convex body (i.e., a compact, convex set with a nonempty interior).
Then, there exists an ellipsoid E (called the John ellipsoid) that satisfies E ⊆ K ⊆ c+d(E−c). Here,
c ∈ Rd denotes the center of E and c+ d(E − c) refers to the (dialated) set {c+ d(x− c) : x ∈ E}.

3 Our Algorithm LINNASH and Main Results

In this section, we detail our algorithm LINNASH (Algorithm 2), and establish an upper bound on
the Nash regret achieved by this algorithm. Subsection 3.1 details Part I of LINNASH and related
analysis. Then, Subsection 3.2 presents and analyzes Part II of the algorithm. Using the lemmas from
these two subsections, the regret bound for the algorithm is established in Subsection 3.3.

3.1 Part I: Sampling via John Ellipsoid and Kiefer-Wolfowitz Optimal Design

As mentioned previously, Nash regret is a more challenging objective than average regret: if in
any round t ∈ [T], the expected7 reward E[rt] is zero (or very close to zero), then geometric mean
(
∏T

t=1 E[rXt
])1/T goes to zero, even if the expected rewards in the remaining rounds are large.

Hence, we need to ensure that in every round t ∈ [T], specifically the rounds in the beginning of
the algorithm, the expected rewards are bounded from below. In [5], this problem was tackled for
stochastic multi-armed bandits (MAB) by directly sampling each arm uniformly at random in the
initial rounds. Such a sampling ensured that, in each of those initial rounds, the expected reward
is bounded from below by the average of the expected rewards. While such a uniform sampling

5Even though the two optimization problems (3) and (4) share the optimal solution, the optimal objective
function values can be different.

6The ellipsoid E considered in Lemma 4 is also the ellipsoid of maximal volume contained in K [11].
7Here, the expectation is over randomness in algorithm and the reward noise.
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Algorithm 2 LINNASH (Nash Regret Algorithm for Finite Set of Arms)
Input: Arm set X and horizon of play T .
1: Initialize matrix V← [0]d,d and number of rounds T̃ = 3

√
Tdν log(T|X |).

Part I
2: Generate arm sequence S for the first T̃ rounds using Algorithm 1.
3: for t = 1 to T̃ do
4: Pull the next arm Xt from the sequence S , observe corresponding reward rt, and update V← V+XtX

T
t

5: end for
6: Set estimate θ̂ := V−1

(∑T̃
t=1 rtXt

)
7: Compute confidence bounds LNCB(x, θ̂, T̃/3) and UNCB(x, θ̂, T̃/3), for all x ∈ X (see equation (7))

8: Set X̃ =
{
x ∈ X : UNCB(x, θ̂, T̃/3) ≥ maxz∈X LNCB(z, θ̂, T̃/3)

}
and initialize T′ = 2

3
T̃

Part II
9: while end of time horizon T is reached do

10: Initialize V = [0]d,d to be an all zeros d× d matrix and s = [0]d to be an all-zeros vector.
// Beginning of new phase.

11: Find the probability distribution λ ∈ ∆(X̃ ) by maximizing the following objective

logDet(U(λ0)) subject to λ0 ∈ ∆(X̃ ) and Supp(λ0) ≤ d(d+ 1)/2. (6)

12: for each arm a in Supp(λ) do
13: Pull arm a for the next ⌈λa T′⌉ rounds. Update V← V + ⌈λaT

′⌉ · aaT .
14: Observe ⌈λa T′⌉ corresponding rewards z1, z2, . . . and update s← s+ (

∑
j zj)a.

15: end for
16: Set estimate θ̂ = V−1s and compute LNCB(x, θ̂,T′) and UNCB(x, θ̂,T′), for all x ∈ X (see

equation (7))
17: Set X̃ =

{
x ∈ X̃ : UNCB(x, θ̂,T′) ≥ maxz∈X LNCB(z, θ̂,T′)

}
. // End of phase.

18: Update T′ ← 2 T′.
19: end while

strategy is reasonable for the MAB setting, it can be quite unsatisfactory in the current context of
linear bandits. To see this, consider a linear bandit instance in which, all—except for one—arms
in X are orthogonal to θ∗. Here, a uniform sampling strategy will lead to an expected reward of
⟨x∗, θ∗⟩/|X |, which can be arbitrarily small for large cardinality X .

To resolve this issue we propose a novel approach in the initial T̃ := 3
√
Tdν log(T|X |) rounds. In

particular, we consider the convex hull of the set of arms X—denoted as cvh(X )— and find the
center c ∈ Rd of the John ellipsoid E for the convex hull cvh(X ). Since E ⊆ cvh(X ), the center c
of the John ellipsoid is contained within cvh(X ) as well. Furthermore, via Carathéodory’s theorem
[10], we can conclude that the center c can be expressed as a convex combination of at most (d+ 1)
points in X . Specifically, there exists a size-(d+ 1) subset Y := {y1, . . . , yd+1} ⊆ X and convex
coefficients α1, . . . , αd+1 ∈ [0, 1] such that c =

∑d+1
i=1 αiyi with

∑d+1
i=1 αi = 1. Therefore, the

convex coefficients induce a distribution U ∈ ∆(X ) of support size d+ 1 and with Ex∼U [x] = c.

Lemma 5 below asserts that sampling according to the distribution U leads to an expected reward
that is sufficiently large. Hence, U is used in the subroutine GenerateArmSequence (Algorithm 1).

In particular, the purpose of the subroutine is to carefully construct a sequence (multiset) of arms S ,
with size |S| = T̃ and to be pulled in the initial T̃ rounds. The sequence S is constructed such that
(i) upon pulling arms from S, we have a sufficiently large expected reward in each pull, and (ii) we
obtain an initial estimate of the inner product of the unknown parameter vector θ∗ with all arms in X .
Here, objective (i) is achieved by considering the above-mentioned distribution U . Now, towards the
objective (ii), we compute distribution λ ∈ ∆(X ) by solving the optimization problem (also known
as the D-optimal design problem) stated in equation (5).

We initialize sequence S = ∅ and run the subroutine GenerateArmSequence for T̃ iterations. In
each iteration (of the for-loop in Line 4), with probability 1/2, we sample an arm according to the
distribution U (Line 7) and include it in S. Also, in each iteration, with remaining probability 1/2,
we consider the computed distribution λ and, in particular, pick arms z from the support of λ in a
round-robin manner. We include such arms z in S while ensuring that, at the end of the subroutine,
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each such arm z ∈ Supp(λ) is included at least ⌈λzT̃/3⌉ times. We return the curated sequence of
arms S at the end of the subroutine.

Our main algorithm LINNASH (Algorithm 2) first calls subroutine GenerateArmSequence to gen-
erated the sequence S. Then, the algorithm LINNASH sequentially pulls the arms Xt from S, for
1 ≤ t ≤ T̃ rounds. For these initial T̃ = |S| rounds, let rt denote the noisy, observed rewards. Using
these T̃ observed rewards, the algorithm computes the ordinary least squares (OLS) estimate θ̂ (see

Line 6 in Algorithm 2); in particular, θ̂ := (
∑T̃

t=1 XtX
T
t )

−1(
∑T̃

t=1 rtXt). The algorithm uses the
OLS estimate θ̂ to eliminate several low rewarding arms (in Lines 7 and 8 in Algorithm 2). This
concludes Part I of the algorithm LINNASH.

Before detailing Part II (in Subsection 3.2), we provide a lemma to be used in the analysis of Part I of
LINNASH.
Lemma 5. Let c ∈ Rd denote the center of a John ellipsoid for the convex hull cvh(X ) and let
U ∈ ∆(X ) be a distribution that satisfies Ex∼U x = c. Then, it holds that

Ex∼U [⟨x, θ∗⟩] ≥
⟨x∗, θ∗⟩
(d+ 1)

.

Proof. Lemma 4 ensures that there exists a positive definite matrix H with the property that{
x ∈ Rd :

√
(x− c)TH(x− c) ≤ 1

}
⊆ cvh(X ) ⊆

{
x ∈ Rd :

√
(x− c)TH(x− c) ≤ d

}
.

Now, write y := c− x∗−c
d and note that√

(y − c)TH(y − c) =

√
(x∗ − c)TH(x∗ − c)

d2
≤ 1 (since x∗ ∈ cvh(X ))

Therefore, y ∈ cvh(X ). Recall that, for all arms x ∈ X , the associated reward (rx) is non-
negative and, hence, the rewards’ expected value satisfies ⟨x, θ∗⟩ ≥ 0. This inequality and the
containment y ∈ cvh(X ) give us ⟨y, θ∗⟩ ≥ 0. Substituting y = c − x∗−c

d in the last inequality
leads to ⟨c, θ∗⟩ ≥ ⟨x∗, θ∗⟩/(d + 1). Given that Ex∼U [x] = c, we obtain the desired inequality
Ex∼U ⟨x, θ∗⟩ = ⟨c, θ∗⟩ ≥ ⟨x∗,θ∗⟩

(d+1) .

Note that at each iteration of the subroutine GenerateArmSequence, with probability 1/2, we insert
an arm into S that is sampled according to U . Using this observation and Lemma 5, we obtain that,
for any round t ∈ [T̃] and for the random arm Xt pulled from the sequence S according to our
procedure, the observed reward rXt must satisfy E[rXt ] ≥

⟨x∗,θ∗⟩
2(d+1) .8

Further, recall that in the subroutine GenerateArmSequence, we insert arms x ∈ Supp(λ) at least
⌈λxT̃/3⌉ times, where λ corresponds to the solution of D-optimal design problem defined in equation
(5). Therefore, we can characterize the confidence widths of the estimated rewards for each arm in X
computed using the least squares estimate θ̂ computed in Line 7 in Algorithm 2.

Broadly speaking, we can show that all arms with low expected reward (less than a threshold) also
have an estimated reward at most twice the true reward. On the other hand, high rewarding arms must
have an estimated reward to be within a factor of 2 of the true reward. Thus, based on certain high
probability confidence bounds (equation (7)), we can eliminate arms in X with true expected reward
less than some threshold, with high probability.

3.2 Part II: Phased Elimination via Estimate Dependent Confidence Widths

Note that while analyzing average regret via confidence bound algorithms, it is quite common to use,
for each arm x, a confidence width (interval) that does not depend on x’s estimated reward. This
is a reasonable design choice for bounding average regret, since the regret incurred at each round
is the sum of confidence intervals that grow smaller with the round index and, hence, this choice

8Here, the expectation is over both the randomness in including arm Xt in S and the noise in the reward.
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leads to a small average regret. However, for the analysis of the Nash regret, a confidence width
that is independent of the estimated reward can be highly unsatisfactory: the confidence width might
be larger than the optimal ⟨x∗, θ∗⟩. This can in turn allow an arm with extremely low reward to be
pulled leading to the geometric mean going to zero. In order to alleviate this issue, it is vital that our
confidence intervals are reward dependent. This in turn, requires one to instantiate concentration
bounds similar to the multiplicative version of the standard Chernoff bound. In general, multiplicative
forms of concentration bounds are much stronger than the additive analogues [16]. In prior work [5]
on Nash regret for the stochastic multi-armed bandits setting, such concentration bounds were readily
available through the multiplicative version of the Chernoff bound. However, in our context of linear
bandits, the derivation of analogous concentration bounds (and the associated confidence widths) is
quite novel and requires a careful use of the sub-Poisson property.

In particular, we use the following confidence bounds (with estimate dependent confidence widths) in
our algorithm. We define the lower and upper confidence bounds considering any arm x, any least
squares estimator ϕ (of θ∗), and t the number of observations used to compute the estimator ϕ. That
is, for any triple (x, ϕ, t) ∈ X × Rd × [T], we define Lower Nash Confidence Bound (LNCB) and
Upper Nash Confidence Bound (UNCB) as follows:

LNCB(x, ϕ, t) :=⟨x, ϕ⟩−6

√
⟨x, ϕ⟩νd log(T|X |)

t

UNCB(x, ϕ, t) :=⟨x, ϕ⟩+6

√
⟨x, ϕ⟩νd log(T|X |)

t
. (7)

As mentioned previously, the confidence widths in equation (7) are estimate dependent.

Next, we provide a high level overview of Part II in Algorithm 2. This part is inspired from the
phased elimination algorithm for the average regret ([17], Chapter 21); a key distinction here is to use
the Nash confidence bounds defined in (7). Part II in Algorithm 2 begins with the set of arms X̃ ⊆ X
obtained after an initial elimination of low rewarding arms in Part I . Subsequently, Part II runs in
phases of exponentially increasing length and eliminates sub-optimal arms in every phase.

Suppose at the beginning of the ℓth phase, X̃ is the updated set of arms. We solve the D-optimal
design problem (see (6)) corresponding to X̃ to obtain a distribution λ ∈ ∆(X̃ ). For the next
O(d2 + 2ℓT̃) rounds, we pull arms a in the support of λ (Line 13): each arm a ∈ Supp(λ) is pulled
⌈λaT

′⌉ times where T′ = O(2ℓT̃). Using the data covariance matrix and the observed noisy rewards,
we recompute: (1) an improved estimate θ̂ (of θ∗) and (2) improved confidence bounds for every
surviving arm. Then, we eliminate arms based on the confidence bounds and update the set of
surviving arms (Lines 16 and 17).

The following lemma provides the key concentration bound for the least squares estimate.
Lemma 6. Let x1, x2, . . . , xs ∈ Rd be a fixed set of vectors and let r1, r2, . . . , rs be independent
ν-sub-Poisson random variables satisfying Ers = ⟨xs, θ

∗⟩ for some unknown θ∗. Further, let matrix

V =
∑s

j=1 xjx
T
j and θ̂ = V−1

(∑
j rjxj

)
be the least squares estimator of θ∗. Consider any

z ∈ Rd with the property that zTV−1xj ≤ γ for all j ∈ [s]. Then, for any δ ∈ [0, 1] we have

P
{
⟨z, θ̂⟩ ≥ (1 + δ)⟨z, θ∗⟩

}
≤ exp

(
−δ2⟨z, θ∗⟩

3νγ

)
and (8)

P
{
⟨z, θ̂⟩ ≤ (1− δ)⟨z, θ∗⟩

}
≤ exp

(
−δ2⟨z, θ∗⟩

2νγ

)
. (9)

Lemma 6 is established in Appendix B. Using this lemma, we can show that the optimal arm x∗ is
never eliminated with high probability.
Lemma 7. Consider any bandit instance in which for the optimal arm x∗ ∈ X we have ⟨x∗, θ∗⟩ ≥
192
√

d ν
T log(T|X |). Then, with probability at least

(
1− 4 logT

T

)
, the optimal arm x∗ always exists

in the surviving set X̃ in Part I and in every phase in Part II of Algorithm 2.

Finally, using Lemmas 6 and 7, we show that, with high probability, in every phase of Part II all the
surviving arms x ∈ X̃ have sufficiently high reward means.
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Lemma 8. Consider any phase ℓ in Part II of Algorithm 2 and let X̃ be the surviving set of arms at
the beginning of that phase. Then, with T̃ =

√
dνT log(T |X |), we have

Pr

{
⟨x, θ∗⟩ ≥ ⟨x∗, θ∗⟩ − 25

√
3dν⟨x∗, θ∗⟩ log (T|X |)

2ℓ · T̃
for all x ∈ X̃

}
≥ 1− 4 logT

T
(10)

Here, ν is the sub-Poisson parameter of the stochastic rewards.

The proofs of the Lemmas 7 and 8 are deferred to Appendix C.

3.3 Main Result

This section states and provides a proof sketch of the main theorem.9

Theorem 1. For any given stochastic linear bandits problem with (finite) set of arms X ⊂ Rd, time
horizon T ∈ Z+, and ν-sub-Poisson rewards, Algorithm 2 achieves Nash regret

NRT = O

(
β

√
d ν

T
log(T|X |)

)
.

Here, β = max {1, ⟨x∗, θ∗⟩ log d}, with x∗ ∈ X denoting the optimal arm and θ∗ the (unknown)
parameter vector.

Note that, in Theorem 1, lower the value of the optimal expected reward, ⟨x∗, θ∗⟩, stronger is the
Nash regret guarantee. In particular, with a standard normalization assumption that ⟨x∗, θ∗⟩ ≤ 1 and

for 1-sub Poisson rewards, we obtain a Nash regret of O
(√

d
T log(T|X |)

)
. Also, observe that the

regret guarantee provided in Theorem 1 depends logarithmically on the size of X . Hence, the Nash
regret is small even when |X | is polynomially large in d.

Proof Sketch of Theorem 1: We condition on the event E defined as the intersection of the (high
probability) events defined in Lemmas 7 and 8, respectively. Union bound implies that event Ec holds
with probability at most O(T−1). For Part I, in the first T̃ = 3

√
Tdν log(T|X |) rounds, we bound

from below the product of the expected rewards, using Lemma 5, as follows

T̃∏
t=1

E[⟨Xt, θ
∗⟩ | E ] 1T ≥

(
⟨x∗, θ∗⟩
2(d+ 1)

) T̃
T

≥ ⟨x∗, θ∗⟩ T̃
T

(
1− T̃ log(2(d+ 1))

T

)
.

For remaining rounds, we invoke Lemma 8 (specifically, equation (10)) to obtain

T∏
t=T̃+1

E[⟨Xt, θ
∗⟩ | E ] 1T ≥ ⟨x∗, θ∗⟩

T−T̃
T

logT∏
ℓ=1

(
1− 50

|T̃ · (2ℓ/3) + 2d2|
T

√
3dν log (T|X |)
⟨x∗, θ∗⟩2ℓ · T̃

)
.

The above equations reduce to the following bound on the geometric mean of the expected rewards
(across the T rounds):

T∏
t=1

E[⟨Xt, θ
∗⟩] 1T ≥

T∏
t=1

(
E[⟨Xt, θ

∗⟩ | E ]
) 1

T

Pr(E) ≥ ⟨x⋆, θ∗⟩

(
1− 100

√
dν

T⟨x∗, θ∗⟩
log (T|X |)

)
.

Therefore, the Nash regret of LINNASH satisfies

NRT = ⟨x∗, θ∗⟩ −

(
T∏

t=1

E[⟨Xt, θ
∗⟩]

)1/T

= O

(√
dν⟨x⋆, θ∗⟩

T
log(T|X |)

)
.

This completes the proof sketch.

9Due to space restrictions, the complete analysis is deferred to Appendix C
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Computational Efficiency of LINNASH. We note that Algorithm 2 (LINNASH) executes in
polynomial time. In particular, the algorithm calls the subroutine GENERATEARMSEQUENCE in Part
I for computing the John Ellipsoid. Given a set of arm vectors as input, this ellipsoid computation can
be performed efficiently (see Chapter 3 in [25]). In fact, for our purposes an approximate version of
the John Ellipsoid suffices, and such an approximation can be found much faster [8]; specifically, in
time O(|X |2d). Furthermore, the algorithm solves the D-optimal design problem, once in Part I and
at most O(logT) times in Part II. The D-optimal design is a concave maximization problem, which
can be efficiently solved using, say, the Frank-Wolfe algorithm with rank-1 updates. Each iteration
takes O(|X |2) time, and the total number of iterations is at most O(d) (see, e.g., Chapter 21 of [17]
and Chapter 3 in [25]). Overall, we get that LINNASH is a polynomial-time algorithm.

4 Extension of Algorithm LINNASH for Infinite Arms

The regret guarantee in Theorem 1 depends logarithmically on |X |. Such a dependence makes
the guarantee vacuous when the set of arms X is infinitely large (or even |X | = Ω(2

√
Td−1

)). To
resolve this limitation, we extend LINNASH with a modified confidence width that depends only on
the largest estimated reward γ := maxx∈X ⟨x, θ̂⟩. Specifically, we consider the confidence width

16

√
γ d

5
2 ν log (T)

T′ , for all the arms, and select the set of surviving arms in each phase (of Part II of
the algorithm for infinite arms) as follows:

X̃ =

x ∈ X : ⟨x, θ̂⟩ ≥ γ − 16

√
γ d

5
2 ν log (T)

T′

 (11)

See Algorithm 3 in Appendix D for details. The theorem below is the main result of this section.

Theorem 2. For any given stochastic linear bandits problem with set of arms X ⊂ Rd, time horizon
T ∈ Z+, and ν-sub-Poisson rewards, Algorithm 2 achieves Nash regret

NRT = O

(
β
d

5
4
√
ν√

T
log(T)

)
,

Here, β = max {1, ⟨x∗, θ∗⟩ log d}, with x∗ ∈ X denoting the optimal arm and θ∗ the (unknown)
parameter vector.

Proof of Theorem 2 and a detailed regret analysis of Algorithm 3 can be found in Appendix D.

5 Conclusion and Future Work

Fairness and welfare considerations have emerged as a central design objectives in online decision-
making contexts. Motivated, broadly, by such considerations, the current work addresses the notion
of Nash regret in the linear bandits framework. We develop essentially tight Nash regret bounds for
linear bandit instances with a finite number of arms.

In addition, we extend this guarantee to settings wherein the number of arms is infinite. Here,
our regret bound scales as d5/4, where d is the ambient dimension. Note that, for linear bandits
with infinite arms, [1] obtains a bound of d/

√
T for average regret. We conjecture that a similar

dependence should be possible for Nash regret as well and pose this strengthening as a relevant
direction of future work. Another important direction would be to study Nash regret for more other
bandit frameworks (such as contextual bandits and combinatorial bandits) and Markov Decision
Processes (MDPs).
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Limitations: The main contributions of our works are theoretical. From a theoretical point of view,
the limitations of our paper are discussed in Section 5. In particular, we believe that tightening the
gap between the upper and lower bounds in Nash regret for an infinite set of arms will require novel
and non-trivial algorithmic ideas - we leave this as an important direction of future work.

Broader Impact: Due to the theoretical nature of this work, we do not foresee any adverse societal
impact of this work.

A Proof of Lemmas 1 and 2

Lemma 1. Any non-negative random variable X ∈ [0,B] is B-sub-Poisson, i.e., if mean E[X] = µ,
then for all λ ∈ R, we have E[eλX ] ≤ exp

(
B−1µ

(
eBλ − 1

))
.

Proof. For random variable X we have

E [exp (λX)] = E
[
exp

(
λB

X

B
+ (1− X

B
)0

)]
≤ E

[
X

B
e(λB) +

(
1− X

B

)
e0
]

(due to convexity of ex)

= 1 +
E [X]

B

(
eλB − 1

)
≤ 1 +

µ

B

(
eλB − 1

)
≤ exp

(µ
B

(
eλB − 1

))
.

Lemma 2. Let X be a non-negative sub-Gaussian random variable X with mean µ = E[X] and

sub-Gaussian norm σ. Then, X is also
(

σ2

µ

)
-sub-Poisson.

Proof. Since X is a σ-sub-Gaussian random variable, for any non-negative scalar s ≥ 0, we have

E[esX ] ≤ exp

(
sµ+

(sσ)2

2

)
= exp

(
µ2

σ2

(
sσ2

µ
+

1

2

(
sσ2

µ

)2
))

(12)

The fact that X is a positive random variable implies that the mean µ > 0. Also, the considered
scalar s ≥ 0 and, hence, the term sσ2

µ > 0. Also, recall that ex ≥ 1 + x+ x2

2 , for any non-negative
x. Using these observations and equation (12), we obtain

E[esX ] ≤ exp

(
µ2

σ2

(
e

sσ2

µ − 1
))

(13)

For random variable X , inequality (13) ensures that the required mgf bound (equation (2)) holds for
all non-negative s and with sub-Poisson parameter equal to σ2

µ .

We next complete the proof by showing that the mgf bound holds for negative s as well. Towards
this, write B := σ2

µ and define random variable Y := 1{X≤B} X + 1{X>B} B. Note that Y is a
positive, bounded random variable. Furthermore, for any negative s, we have exp (sY ) ≥ exp (sX).
Therefore, for a negative s, it holds that E [exp(sX)] ≤ E [exp (sY )]. Since positive random variable
Y ∈ [0, B], the mgf bound obtained in Lemma 1 gives us

E[esX ] ≤ E
[
esY
]
≤ exp

(µ
B

(
esB − 1

))
.

Since B := σ2

µ , the mgf bound (equation (2)) on X holds for negative s as well. This, overall, shows

that X is a
(

σ2

µ

)
-sub-Poission random variable. The lemma stands proved.
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B Proof of Concentration Bounds

Lemma 6. Let x1, x2, . . . , xs ∈ Rd be a fixed set of vectors and let r1, r2, . . . , rs be independent
ν-sub-Poisson random variables satisfying Ers = ⟨xs, θ

∗⟩ for some unknown θ∗. Further, let matrix

V =
∑s

j=1 xjx
T
j and θ̂ = V−1

(∑
j rjxj

)
be the least squares estimator of θ∗. Consider any

z ∈ Rd with the property that zTV−1xj ≤ γ for all j ∈ [s]. Then, for any δ ∈ [0, 1] we have

P
{
⟨z, θ̂⟩ ≥ (1 + δ)⟨z, θ∗⟩

}
≤ exp

(
−δ2⟨z, θ∗⟩

3νγ

)
and (8)

P
{
⟨z, θ̂⟩ ≤ (1− δ)⟨z, θ∗⟩

}
≤ exp

(
−δ2⟨z, θ∗⟩

2νγ

)
. (9)

Proof. We use the Chernoff method to get an upper bound on the desired probabilities, as shown
below

P
{
⟨z, θ̂⟩ ≥ (1 + δ)⟨z, θ∗⟩

}
= P

(
exp(c ⟨z, θ̂⟩) ≥ exp(c(1 + δ)⟨z, θ∗⟩)

)
(for some constant c)

≤
E[exp

(
c zTV−1 (

∑
t rtxt)

)
]

exp(c (1 + δ)⟨z, θ∗⟩)

=

∏s
t=1 E[exp

(
c rtV

−1xt

)
]

exp(c (1 + δ)⟨z, θ∗⟩)
(rt’s are independent)

≤

∏s
t=1 exp

(
E[rt]
ν

(
ecνz

TV−1xt − 1
))

exp(c (1 + δ)⟨z, θ∗⟩)
(rt is sub Poisson)

= exp

(
−c⟨z, θ∗⟩(1 + δ) +

s∑
t=1

⟨x, θ∗⟩
ν

(
ec νzTV−1xt − 1

))
.

Substituting c = log(1+δ)
νγ , we get

P
{
⟨z, θ̂⟩ ≥ (1 + δ)⟨z, θ∗⟩

}
≤ exp

(
−⟨z, θ∗⟩

νγ
(1 + δ) log (1 + δ) +

s∑
t=1

⟨xt, θ
∗⟩

ν

(
(1 + δ)

1
γ zTV−1xt − 1

))
.

(14)

Since 1
γ z

TV−1xt ≤ 1 we have (1 + δ)
1
γ zTV−1xt ≤ 1 + δ · 1

γ z
TV−1xt. Substituting in (14) we get

P
{
⟨z, θ̂⟩ ≥ (1 + δ)⟨z, θ∗⟩

}
≤ exp

(
− 1

νγ
⟨z, θ∗⟩(1 + δ) log (1 + δ) +

s∑
t=1

⟨xt, θ
∗⟩ · δ

νγ
zTV−1xt

)

= exp

(
− 1

νγ
⟨z, θ∗⟩(1 + δ) log (1 + δ) +

δ

νγ

s∑
t=1

θ∗Txtx
T
t V

−1z

)
(rearranging terms)

= exp

(
− 1

νγ
⟨z, θ∗⟩(1 + δ) log (1 + δ) +

δ

νγ
⟨z, θ∗⟩

)
. (

∑s
t=1 xtx

T
t = V)

Using the logarithmic inequality log(1 + δ) ≥ 2δ
2+δ , we further simplify as

P
{
⟨z, θ̂⟩ ≥ (1 + δ)⟨z, θ∗⟩

}
≤ exp

(
−⟨z, θ∗⟩

νγ
((1 + δ) log (1 + δ)− δ)

)
≤ exp

(
−δ2⟨z, θ∗⟩
(2 + δ) νγ

)
≤ exp

(
−δ2⟨z, θ∗⟩

3νγ

)
. (since δ ∈ [0, 1])
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Following similar steps and substituting c = log(1−δ)
νγ , we obtain a bound on the lower tail (inequality

9):

P
{
⟨z, θ̂⟩ ≤ (1− δ)⟨z, θ∗⟩

}
≤ exp

(
− 1

νγ
⟨z, θ∗⟩(1− δ) log (1− δ)− δ

νγ
⟨z, θ∗⟩

)
.

Now, using the logarithmic inequality (1− δ) log(1− δ) ≥ −δ + δ2

2 , we get

P
{
⟨z, θ̂⟩ ≤ (1− δ)⟨z, θ∗⟩

}
≤ exp

(
−δ2⟨z, θ∗⟩

2νγ

)

Combining (9) and (8) we get the following Corollary.
Corollary 9. Using the notations as in Lemma 6, we have

P
{
|⟨z, θ̂⟩ − ⟨z, θ∗⟩| ≥ δ⟨z, θ∗⟩

}
≤ 2 exp

(
−δ2⟨z, θ∗⟩

3γ

)
. (15)

The next two lemmas are variants of Lemma 6 where we bound the error in terms of an upper bound
on ⟨z, θ∗⟩.
Lemma 10. Let x1, x2, . . . , xs ∈ Rd be a fixed set of vectors and let r1, r2, . . . , rs be independent
ν−sub Poisson random variables satisfying Ers = ⟨xs, θ

∗⟩ for some unknown θ∗. In that case, let

matrix V =
∑s

j=1 xjx
T
j and θ̂ = V−1

(∑
j rjxj

)
be the least squares estimator of θ∗. Consider

any z ∈ Rd that satisfies zTV−1xj ≤ γ for all j ∈ [s] and ⟨z, θ∗⟩ ≤ α. Then for any δ ∈ [0, 1] we
have

P
{
⟨z, θ̂⟩ ≥ (1 + δ)α

}
≤ e−

δ2α
3γν . (16)

Proof. Following the same approach as in the proof of Lemma 6, we have

P
{
⟨z, θ̂⟩ ≥ (1 + δ)α

}
≤

E[exp(c zTV−1 (
∑

t rtxt))]

exp(c (1 + δ)α)

≤ exp

(
−cα(1 + δ) +

s∑
t=1

⟨xt, θ
∗⟩

ν

(
ecνz

TV−1xt − 1
))

(rt are sub-poisson and independent)

Now, substituting c = 1
νγ log (1 + δ)) and using (1 + δ)

1
γ zTV−1xt ≤ 1 + δ · 1

γ z
TV−1xt we have

P
{
⟨z, θ̂⟩ ≥ (1 + δ)α

}
≤ exp

(
− 1

γν
α(1 + δ) log (1 + δ) +

s∑
t=1

⟨xt, θ
∗⟩

ν
θ∗
(
(1 + δ)

1
γ zTV−1xt − 1

))

≤ exp

(
− 1

νγ
α(1 + δ) log (1 + δ) +

δ

νγ

s∑
t=1

θ∗Txtx
T
t V

−1Z

)

= exp

(
− 1

νγ
α(1 + δ) log (1 + δ) +

δ

νγ
⟨z, θ∗⟩

)
≤ exp

(
− 1

νγ
α(1 + δ) log (1 + δ) +

δ

νγ
α

)
(α ≥ ⟨z, θ∗⟩)

≤ exp

(
−δ2α

(2 + δ) νγ

)
(using log(1 + δ) ≥ 2δ

2+δ )

Since δ ∈ [0, 1], we have the desired result.

Lemma 11. Using the same notations as in Lemma 10, for any δ ∈ [0, 1], the following holds

P
{
⟨z, θ̂⟩ ≤ ⟨z, θ∗⟩ − δα

}
≤ exp

(
− δ2α

2γν

)
(17)
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Proof. Using steps similar to the previous lemmas, we obtain

P
{
⟨z, θ̂⟩ ≤ ⟨z, θ∗⟩ − δα

}
≤

E[exp(c zTV−1 (
∑

t rtxt))]

exp(c (⟨z, θ∗⟩ − δα))

≤ exp

(
cαδ + c⟨z, θ∗⟩+

s∑
t=1

⟨xt, θ
∗⟩

ν

(
ecνz

TV−1xt − 1
))

(rt are sub-poisson and independent)

Substituting c = log(1−δ)
νγ and simplifing we get

P
{
⟨z, θ̂⟩ ≤ ⟨z, θ∗⟩ − δα

}
≤ exp

(
−⟨z, θ∗⟩

νγ
(log (1− δ) + δ) +

α

νγ
δ log (1− δ)

)
Note that since log(1− δ) + δ is negative, we can upper bound the above expression by replacing
⟨z, θ∗⟩ with α.

P
{
⟨z, θ̂⟩ ≤ ⟨z, θ∗⟩ − δα

}
≤ exp

(
− α

νγ
(log (1− δ) + δ − δ log (1− δ))

)
≤ exp

(
− δ2α

2νγ

)
. (since (1− δ) log(1− δ) ≥ −δ + δ2

2 )

Hence, the lemma stands proved.

C Regret Analysis of Algorithm 2

We will first define events E1 and E2 for each phase of the algorithm and show that they hold with
high probability. We will use the events in the regret analysis.

• Event E1: At the end of Part I, let θ̂ be the unbiased estimator of θ∗ and T̃ be as defined in

Algorithm 2. All arms x ∈ X with ⟨x, θ∗⟩ < 10
√

dν log (T|X |)
T satisfy

⟨x, θ̂⟩ ≤ 20

√
dν log (T|X |)

T
(18)

In addition, all arms x ∈ X with ⟨x, θ∗⟩ ≥ 10
√

dν log (T|X |)
T satisfy

|⟨x, θ∗⟩ − ⟨x, θ̂⟩| ≤ 3

√
dν⟨x, θ∗⟩ log (T|X |)

T̃
and (19)

1

2
⟨x, θ∗⟩ ≤⟨x, θ̂⟩ ≤ 4

3
⟨x, θ∗⟩. (20)

• Event E2: Let X̃ denote the surviving set of arms at the start of a phase in Part II, and
T′ be as defined in Algorithm 2. For all phases and for all x ∈ X̃ such that ⟨x, θ∗⟩ ≥
10
√

dν log (T|X |)
T , the estimator θ̂ (calculated at the end of a phase) satisfies

|⟨x, θ∗⟩ − ⟨x, θ̂⟩| ≤ 3

√
dν⟨x, θ∗⟩ log (T|X |)

T′ and (21)

1

2
⟨x, θ∗⟩ ≤⟨x, θ̂⟩ ≤ 4

3
⟨x, θ∗⟩. (22)

C.1 Supporting Lemmas

Lemma 12 (Chernoff Bound). Let Z1, . . . , Zn be independent Bernoulli random variables. Consider
the sum S =

∑n
r=1 Zr and let µ = E[S] be its expected value. Then, for any ε ∈ [0, 1], we have

P {S ≤ (1− ε)µ} ≤ exp

(
−µε2

2

)
.
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Lemma 13. During Part I, arms from D-optimal design are added to S at least T̃/3 times with
probability greater than 1− 1

T .

Proof. We use Lemma 12 with Zi as indicator random variables that take value one when an arm
from A (the support of λ in the optimal design) is chosen. By setting ε = 1

3 and µ = T̃
2 , we obtain

the required probability bound.

Lemma 14. Using the notations in Algorithm 1, if the event in Lemma 13 holds, then for each x ∈ X
and each round t in Part I of the algorithm, we have

xTV−1Xt ≤
3d

T̃
,

where Xt is the arm pulled in round t.

Proof. Let U(λ) and λ denote the optimal design matrix (as defined in (4)) and the solution to the
D-optimal design problem in Algorithm 1, respectively. That is, λ is the solution of the optimization
problem stated in equation (5) and U(λ) =

∑
x∈X λxxx

T . Lemma 3 implies that ||x||U(λ)−1 ≤
√
d

for all x ∈ X .

Next, note that the construction of the sequence S in Part I (Subroutine GenerateArmSequence)
and the event specified in Lemma 13 give us V ≻ T̃

3U(λ). Hence,

xTV−1Xt ≤ ∥x∥V−1

∥∥V−1Xt

∥∥
V

(via Hölder’s inequality)

= ∥x∥V−1 ∥Xt∥V−1

≤ ∥x∥(
T̃
3U(λ)

)−1 ∥Xt∥( T̃
3U(λ)

)−1 (since V ≻ T̃
3U(λ))

=

√
3

T̃
∥x∥U(λ)−1

√
3

T̃
∥Xt∥U(λ)−1

≤

√
3d

T̃

√
3d

T̃
(by Lemma 3)

=
3d

T̃
.

The next lemma lower bounds the probability of event E1 (see equations (18), (19), and (20)).

Lemma 15. Event E1 holds with probability at least 1− 6
T .

Proof. First, consider all arms x ∈ X for which ⟨x, θ∗⟩ < 10
√

dν log (T|X |)
T . Here, we invoke Lemma

10, with γ = 3d

T̃
(as derived in Lemma 14), α = 10

√
dν log (T|X |)

T , and δ = 1, to obtain

P

{
⟨x, θ̂⟩ ≤ 20

√
dν log (T|X |)

T

}
≤ exp

(
− δ2α

3γν

)

≤ exp

−
10
√

dν log (T|X |)
T 3

√
Tdν log(T|X |)

3νd


≤ 1

T|X |
(23)

Next, we consider arms x ∈ X such that ⟨x, θ∗⟩ ≥ 10
√

dν log (T|X |)
T and for such arms establish

equations (19) and (20). Towards this, we invoke Lemma 6, with parameters γ = 3d

T̃
and δ =

17



3
√

dν log (T|X |)
⟨x,θ∗⟩T̃

. It is relevant to note that here δ ∈ [0, 1] – this containment follows from the

condition ⟨x, θ∗⟩ ≥ 10
√

dν log (T|X |)
T and T̃ = 3

√
Tdν log(T|X |). Therefore,

P

{
|⟨x, θ∗⟩ − ⟨x, θ̂⟩| ≥ 3

√
dν⟨x, θ∗⟩ log (T|X |)

T̃

}
= P

{
|⟨x, θ∗⟩ − ⟨x, θ̂⟩| ≥ δ⟨x, θ∗⟩

}
(since δ = 3

√
dν log (T|X |)

⟨x,θ∗⟩T̃
)

≤ 2 exp

−
9dν log (T|X |)

⟨x,θ∗⟩T̃
⟨x, θ∗⟩

3ν 3d

T̃


(Lemma 6)

=
2

T|X |
(24)

For establishing equation (20), we invoke Lemma 6 again, now with γ = 3d

T̃
and δ = 1

3 :

P
{
⟨x, θ̂⟩ ≥ 4

3
⟨x, θ∗⟩

}
≤ exp

(
−
3
√

Tνd log(T|X |) ⟨x, θ∗⟩
27νd

)

≤ exp

−
3
√

Tνd log(T|X |) 10
√

dν log (T|X |)
T

27νd


≤ 1

T|X |
(25)

Similarly, with δ = 1
2 , Lemma 6 gives us

P
{
⟨x, θ̂⟩ ≤ 1

2
⟨x, θ∗⟩

}
≤ 1

T|X |
(26)

Finally, we combine (23), (24), (25) and (26), and apply a union bound over all arms in X . Then,
conditioning on the event in Lemma 13 leads to the stated probability bound. The lemma stands
proved.

The next lemma shows that event E2 (see equations (21) and (22)) holds with high probability

Lemma 16. Event E2 holds with probability at least 1− 3 logT
T .

Proof. Consider any phase in Part II and let U(λ) be the optimal design matrix obtained after solving
the D-optimal design problem at the start of the phase. By Lemma 3, for all x, z ∈ X̃ we have

zTV−1x ≤ ∥z∥V−1

∥∥V−1x
∥∥
V

(via Hölder’s inequality)

≤ ∥z∥V−1 ∥x∥V−1

≤
√

d

T′

√
d

T′ =
d

T′

First, we address equation (21). In particular, we instantiate Lemma 6 with δ = 3
√

dν log (T|X |)
⟨x,θ∗⟩T′ and

γ = d
T′ . Note that given the lower bound on ⟨x, θ∗⟩ and the inequality T′ ≥ 2

√
Tdν log(T|X |)

ensure that δ lies in [0, 1]. Hence, substituting these values of δ and γ in Lemma 6, we obtain

P

{
|⟨x, θ∗⟩ − ⟨x, θ̂⟩| ≥ 3

√
dν⟨x, θ∗⟩ log (T|X |)

T′

}
≤ 2 exp

−
9dν log (T|X |)

⟨x,θ∗⟩T′ · ⟨x, θ∗⟩
3dν
T′


≤ 2

(T|X |)3

18



Next, following a similar approach as in the proof of Lemma 15, we use Lemma 6 with δ = 1
3 and

δ = 1
2 to establish the upper and lower bounds of equation (22), respectively. Applying a union bound

across arms in X̃ and over all—at most logT—phases, we obtain the desired probability bound of
1− 3 logT

T .

Corollary 17.

P {E1 ∩ E2} ≥ 1− 4 logT

T
.

Proof. From Lemma 15 we have P {E1} ≥ 1− 6
T . Furthermore, from Lemma 16 we have P {E2} ≥

1 − 3 logT
T . Applying a union bound on the complements of these two events establishes the

corollary.

Lemma 18. Consider any bandit instance with ⟨x∗, θ∗⟩ ≥ 192
√

dν log (T|X |)
T . If event E1 holds,

then any arm with mean ⟨x, θ∗⟩ ≤ 10
√

dν log(T|X |)
T is eliminated after Part I of Algorithm 2.

Proof. We will show that in the given bandit instance and under the event E1, for each arm x ∈ X
with mean ⟨x, θ∗⟩ ≤ 10

√
dν log(T|X |)

T the upper Nash confidence bound (see equation (7)) is less
than the lower confidence bound of the optimal arm x∗. Hence, all such arms x are eliminated from
consideration in Line 8 of Algorithm 2. This will establish the lemma.

The upper Nash confidence bound of arm x at the end of Part I is defined as

UNCB
(
x, θ̂, T̃/3

)
= ⟨x, θ̂⟩+ 6

√
3⟨x, θ̂⟩ d ν log (T|X |)

T̃

≤ 20

√
d ν log(T|X |)

T
+ 6

√
3⟨x, θ̂⟩ d ν log (T|X |)

T̃
(via event E1)

≤ 20

√
dν log(T|X |)

T
+ 6

√√√√3 · 20
√

dν log(T|X |)
T dν log (T|X |)

3
√

Tνd log(T|X |)
(substituting T̃)

≤ 47

√
dν log(T|X |)

T
(27)

In the given bandit instance and under event E1, for the optimal arm x∗, we have

⟨x∗, θ̂⟩ ≤ ⟨x∗, θ∗⟩+ 3

√
dν⟨x∗, θ∗⟩ log (T|X |)

T̃

= ⟨x∗, θ∗⟩

(
1 + 3

√
dν log (T|X |)

⟨x∗, θ∗⟩3
√
Td ν log(T|X |)

)
(substituting T̃)

≤ ⟨x∗, θ∗⟩

1 + 3

√√√√ dν log (T|X |)

192
√

dν log(T|X |)
T 3

√
Tνd log(T|X |)


(using ⟨x∗, θ∗⟩ ≥ 192

√
dν log (T|X |)

T )

=
17

16
⟨x∗, θ∗⟩. (28)

Therefore, the lower Nash confidence bound of x∗ satisfies

LNCB
(
x∗, θ̂, T̃/3

)
= ⟨x∗, θ̂⟩ − 6

√
3⟨x∗, θ̂⟩ d ν log (T|X |)

T̃

19



≥ ⟨x∗, θ∗⟩ − 3

√
d ν ⟨x∗, θ∗⟩ log (T|X |)

T̃
− 6

√
3⟨x∗, θ̂⟩ d ν log (T|X |)

T̃
(via (19) in event E1)

≥ ⟨x∗, θ∗⟩ −

(
3 + 6

√
51

16

)√
d ν ⟨x∗, θ∗⟩ log (T|X |)

T̃

(since ⟨x∗, θ̂⟩ ≤ 17
16 ⟨x

∗, θ∗⟩ via (28))

≥ ⟨x∗, θ∗⟩

(
1− 14

√
dν log (T|X |)
⟨x∗, θ∗⟩T̃

)

≥ ⟨x∗, θ∗⟩

1− 14

√√√√ dν log (T|X |)

192
√

dν log(T|X |)
T 3

√
Tdν log(T|X |)


≥ 5

12
⟨x∗, θ∗⟩

≥ 80

√
dν log(T|X |)

T
(29)

Equations (29) and (27) imply

UNCB
(
x, θ̂, T̃/3

)
< LNCB

(
x∗, θ̂, T̃/3

)
(30)

As mentioned previously, Line 8 in Algorithm 2 eliminates all arms x that satisfy inequality (30).
Hence, the lemma stands proved

C.2 Proofs of Lemmas 7 and 8

Lemma 7. Consider any bandit instance in which for the optimal arm x∗ ∈ X we have ⟨x∗, θ∗⟩ ≥
192
√

d ν
T log(T|X |). Then, with probability at least

(
1− 4 logT

T

)
, the optimal arm x∗ always exists

in the surviving set X̃ in Part I and in every phase in Part II of Algorithm 2.

Proof. We will show that, under events E1 and E2, throughout the execution of Algorithm 2 the
UNCB of the optimal arm x∗ is never less than the LNCB of any arm x. Hence, then the optimal
arm x∗ never satisfies the elimination criterion in Algorithm 2 and, hence, x∗ always exists in the
surviving set of arms.

First, we consider arms x with the property that ⟨x, θ∗⟩ < 10
√

dν log (T|X |)
T . For any such arm x, at

the end of Part I of the algorithm we have

LNCB
(
x, θ̂, T̃/3

)
≤ UNCB

(
x, θ̂, T̃/3

)
<

via (30)
LNCB

(
x∗, θ̂, T̃/3

)
≤ UNCB

(
x∗, θ̂, T̃/3

)
.

Hence, at the end of Part I, arm x∗ is not eliminated via the LNCB of any x which satisfies

⟨x, θ∗⟩ < 10
√

dν log (T|X |)
T . Further, note that, under event E1, such arms are eliminated at the end of

Part I (Lemma 18). Hence, the LNCB of such arms are not even considered in the phases of Part II.

To complete the proof, we next show that the UNCB of the optimal arm x∗ is at least the LNCB

of all arms x which bear ⟨x, θ∗⟩ ≥ 10
√

dν log (T|X |)
T . Below, we will consider the Nash confidence

bounds for a general T′. Replacing T′ by T̃ gives us the desired confidence-bounds comparison for
the end of Part I – this repetition is omitted.
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Under events E1 and E2, for any arm x with ⟨x, θ∗⟩ ≥ 10
√

dν log (T|X |)
T , it holds that

LNCB(x, θ̂,T′) = ⟨x, θ̂⟩ − 6

√
⟨x, θ̂⟩ d ν log (T|X |)

T′

≤ ⟨x, θ∗⟩+ 3

√
d ν ⟨x, θ∗⟩ log (T|X |)

T′ − 6

√
⟨x, θ̂⟩ dν log (T|X |)

T′ (via (21))

≤ ⟨x, θ∗⟩ −
(

6√
2
− 3

)√
dν⟨x, θ∗⟩ log (T|X |)

T′ (⟨x, θ̂⟩ ≥ 1
2 ⟨x, θ

∗⟩ via (22))

≤ ⟨x, θ∗⟩. (31)
Complementarily, for optimal arm x∗ we have

UNCB(x∗, θ̂,T′) = ⟨x∗, θ̂⟩+ 6

√
⟨x∗, θ̂⟩ d ν log (T|X |)

T′

≥ ⟨x∗, θ∗⟩ − 3

√
dν⟨x∗, θ∗⟩ log (T|X |)

T′ + 6

√
⟨x∗, θ̂⟩ d ν log (T|X |)

T′

≥ ⟨x∗, θ∗⟩+
(

6√
2
− 3

)√
dν ⟨x∗, θ∗⟩ log (T|X |)

T′ (since ⟨x∗, θ̂⟩ ≥ ⟨x∗,θ∗⟩
2 )

≥ ⟨x∗, θ∗⟩ (32)
Since ⟨x∗, θ∗⟩ ≥ ⟨x, θ∗⟩ for all arms x, inequalities (31) and (32) lead to the confidence-bounds
comparison:

UNCB(x∗, θ̂,T′) ≥ LNCB(x, θ̂,T′).

Hence, if events E1 and E2 hold, then the optimal arm x∗ is never eliminated from Algorithm 2.
Further, Corollary 17 ensures that the events E1 and E2 hold with probability at least 1 − 4 logT

T .
Hence, the lemma stands proved.

Lemma 8. Consider any phase ℓ in Part II of Algorithm 2 and let X̃ be the surviving set of arms at
the beginning of that phase. Then, with T̃ =

√
dνT log(T |X |), we have

Pr

{
⟨x, θ∗⟩ ≥ ⟨x∗, θ∗⟩ − 25

√
3dν⟨x∗, θ∗⟩ log (T|X |)

2ℓ · T̃
for all x ∈ X̃

}
≥ 1− 4 logT

T
(10)

Here, ν is the sub-Poisson parameter of the stochastic rewards.

Proof. For the analysis, assume that events E1 and E2 hold. Lemma 7 ensures that the optimal arm
is contained in the surviving set of arms X̃ . Furthermore, if an arm x ∈ X̃ at the beginning of the ℓth

phase, then it must be the case that arm x was not eliminated in the previous phase (which executed
for T′/2 rounds); in particular, we have UNCB(x, θ̂,T′/2) ≥ LNCB(x∗, θ̂,T′/2). This inequality
reduces to

⟨x, θ̂⟩+ 6

√
⟨x, θ̂⟩ d ν log (T|X |)

T′

2

≥ ⟨x∗, θ̂⟩ − 6

√
⟨x∗, θ̂⟩ d ν log (T|X |)

T′

2

.

Rearranging the terms, we obtain

⟨x, θ̂⟩ ≥ ⟨x∗, θ̂⟩ − 6

√
⟨x∗, θ̂⟩ d ν log (T|X |)

T′

2

− 6

√
⟨x, θ̂⟩ d ν log (T|X |)

T′

2

≥ ⟨x∗, θ̂⟩ − 6

√
4⟨x∗, θ∗⟩ d ν log (T|X |)

3T′/2
− 6

√
4⟨x, θ∗⟩ d ν log (T|X |)

3T′/2

(⟨x, θ̂⟩ ≤ 4
3 ⟨x, θ

∗⟩ via (22))

≥ ⟨x∗, θ̂⟩ − 20

√
⟨x∗, θ∗⟩ d ν log (T|X |)

T′ .
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Further, invoking equation (21) for x∗ leads to

⟨x, θ∗⟩ ≥ ⟨x∗, θ∗⟩ − 20

√
⟨x∗, θ∗⟩ d ν log (T|X |)

T′ − 3

√
⟨x∗, θ∗⟩ d ν log (T|X |)

T′

2

≥ ⟨x∗, θ∗⟩ − 25

√
⟨x∗, θ∗⟩ d ν log (T|X |)

T′ .

Substituting T′ = 2ℓT̃/3, the above inequality reduces to the desired bound in (10). From Corollary
17, we have that the events E1 and E2 hold with probability at least 1− 4 logT

T . Hence, the lemma
stands proved.

C.3 Proof of Theorem 1

Theorem 1. For any given stochastic linear bandits problem with (finite) set of arms X ⊂ Rd, time
horizon T ∈ Z+, and ν-sub-Poisson rewards, Algorithm 2 achieves Nash regret

NRT = O

(
β

√
d ν

T
log(T|X |)

)
.

Here, β = max {1, ⟨x∗, θ∗⟩ log d}, with x∗ ∈ X denoting the optimal arm and θ∗ the (unknown)
parameter vector.

Proof. We will assume, without loss of generality, that ⟨x∗, θ∗⟩ ≥ 192
√

d ν
T log(T|X |), otherwise

the stated Nash Regret bound directly holds (see equation (1)). Write E to denote the ’good’ event
identified in Lemma 8; the lemma ensures that P{E} ≥ 1− 4 logT

T .

During Part I of Algorithm 2, the product of expected rewards, conditioned on E, satisfies
T̃∏

t=1

E[⟨Xt, θ
∗⟩ | E]

1
T ≥

(
⟨x∗, θ∗⟩
2(d+ 1)

) T̃
T

(via Lemma 5)

= ⟨x∗, θ∗⟩ T̃
T

(
1− 1

2

) log(2(d+1))T̃
T

≥ ⟨x∗, θ∗⟩ T̃
T

(
1− log(2(d+ 1))T̃

T

)
.

For analyzing Part II, we will utilize Lemma 8. Write Bℓ to denote all the rounds t that belong to ℓth

phase (in Part II). Also, let T′
ℓ denote the associated phase-length parameter, i.e., T′

ℓ = 2ℓ T̃/3. Note
that in each phase ℓ (i.e., in the for-loop at Line 12 of Algorithm 2), every arm a in Supp(λ) (the
support of D-optimal design) is pulled ⌈λaT

′
ℓ⌉ times. Given that |Supp(λ)| ≤ d(d+ 1)/2, we have

|Bℓ| ≤ T′
ℓ +

d(d+1)
2 . By construction T′

ℓ ≥
d(d+1)

2 and, hence, |Bℓ| ≤ 2T′
ℓ. Since the phase length

parameter, T′
ℓ, doubles after each phase, the algorithm would have at most logT phases. Hence, the

product of expected rewards in Part II satisfies
T∏

t=T̃+1

E[⟨Xt, θ
∗⟩ | E]

1
T =

∏
Bℓ

∏
t∈Bℓ

E[⟨Xt, θ
∗⟩ | E]

1
T

≥
∏
Bℓ

(
⟨x∗, θ∗⟩ − 25

√
d ν ⟨x∗, θ∗⟩ log (T|X |)

T′
ℓ

) |Bℓ|
T

(Lemma 8)

≥ ⟨x∗, θ∗⟩
T−T̃
T

logT∏
ℓ=1

(
1− 25

√
d ν log (T|X |)
⟨x∗, θ∗⟩T′

ℓ

) |Bℓ|
T

≥ ⟨x∗, θ∗⟩
T−T̃
T

logT∏
ℓ=1

(
1− 50

|Bℓ|
T

√
d ν log (T|X |)
⟨x∗, θ∗⟩T′

ℓ

)
.

22



The last inequality follows from the fact that (1 − x)r ≥ (1 − 2rx), for any r ∈ [0, 1] and x ∈
[0, 1/2]. Note that the term

√
dν log (T|X |)
⟨x∗,θ∗⟩T′

ℓ
≤ 1/2, since ⟨x∗, θ∗⟩ ≥ 192

√
dν
T log(T|X |) along with

T′
ℓ ≥ 2

√
Tdν logT|X | and T ≥ e4. We further simplify the expression as follows

logT∏
ℓ=1

(
1− 50

|Bℓ|
T

√
d ν log (T|X |)
⟨x∗, θ∗⟩T′

ℓ

)
≥

logT∏
ℓ=1

(
1− 100

√
T′
ℓ

T

√
d ν log (T|X |)

⟨x∗, θ∗⟩

)
(since |Bℓ| ≤ 2T′

ℓ)

≥ 1− 100

T

√
d ν log (T|X |)

⟨x∗, θ∗⟩

(
logT∑
ℓ=1

√
T′
ℓ

)
(since (1− a)(1− b) ≥ 1− a− b for a, b ≥ 0)

≥ 1− 100

T

√
d ν log (T|X |)

⟨x∗, θ∗⟩

(√
T logT

)
(via Cauchy-Schwarz inequality)

≥ 1− 100

√
dν

T⟨x∗, θ∗⟩
log (T|X |).

Combining the lower bound for the expected rewards in the two parts we get
T∏

t=1

E[⟨Xt, θ
∗⟩] 1T ≥

T∏
t=1

(
E[⟨Xt, θ

∗⟩ | E] P{E}
) 1

T

≥ ⟨x∗, θ∗⟩

(
1− log(2(d+ 1))T̃

T

)(
1− 100

√
dν

T⟨x∗, θ∗⟩
log (T|X |)

)
P{E}

≥ ⟨x∗, θ∗⟩

(
1− log(2(d+ 1))T̃

T
− 100

√
dν

T⟨x∗, θ∗⟩
log (T|X |)

)
P{E}

≥ ⟨x∗, θ∗⟩

(
1− log(2(d+ 1))T̃

T
− 100

√
dν

T⟨x∗, θ∗⟩
log (T|X |)

)(
1− 4 logT

T

)

≥ ⟨x∗, θ∗⟩

(
1−

log(2(d+ 1))3
√
Tdν log(T|X |)

T
− 100

√
dν

T⟨x∗, θ∗⟩
log (T|X |)− 4 logT

T

)

≥ ⟨x∗, θ∗⟩ − 100

√
⟨x∗, θ∗⟩d ν

T
log (T|X |)− 6⟨x∗, θ∗⟩

√
d ν log(T|X |)

T
log(2(d+ 1)).

Therefore, the Nash Regret can be bounded as

NRT = ⟨x∗, θ∗⟩ −

(
T∏

t=1

E[⟨Xt, θ
∗⟩]

)1/T

≤ 100

√
⟨x∗, θ∗⟩d ν

T
log (T|X |) + 6

√
d ν log(T|X |)

T
log(2(d+ 1))⟨x∗, θ∗⟩ (33)

≤
(
100
√

⟨x∗, θ∗⟩+ 6 log(2(d+ 1))⟨x∗, θ∗⟩
) √dν

T
log (T|X |) (34)

Hence, with β = max
{
1,
√
⟨x∗, θ∗⟩, ⟨x∗, θ∗⟩ log d

}
= max {1, ⟨x∗, θ∗⟩ log d}, from equation

(34) we obtain the desired bound on Nash regret NRT = O

(
β
√

d ν
T log(T|X |)

)
. The theorem

stands proved.

D Algorithm 3 and Regret Analysis
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Algorithm 3 LINNASH (Nash Confidence Bound Algorithm for Infinite Set of Arms)
Input: Arm set X and horizon of play T .
1: Initialize matrix V← [0]d,d and number of rounds T̃ = 3

√
Td2.5ν log(T).

Part I
2: Generate arm sequence S for the first T̃ rounds using Algorithm 1.
3: for t = 1 to T̃ do
4: Pull the next arm Xt from the sequence S.
5: Observe reward rt and update V← V +XtX

T
t

6: end for
7: Set estimate θ̂ := V−1

(∑T̃
t=1 rtXt

)
8: Find γ = maxz∈X ⟨z, θ̂⟩

9: Update X̃ ← {x ∈ X : ⟨x, θ̂⟩ ≥ γ − 16

√
3 γ d

5
2 ν log (T)

T̃
}

10: T′ ← 2
3
T̃

Part II
11: while end of time horizon T is reached do
12: Initialize V = [0]d,d to be an all zeros d× d matrix and s = [0]d to be an all-zeros vector.

// Beginning of new phase.
13: Find the probability distribution λ ∈ ∆(X̃ ) by maximizing the following objective

logDet(V(λ)) subject to λ ∈ ∆(X̃ ) and Supp(λ) ≤ d(d+ 1)/2. (35)

14: for each arm a in Supp(λ) do
15: Pull arm a for the next ⌈λa T′⌉ rounds.
16: Observe rewards and Update V← V + ⌈λaT

′⌉ · aaT

17: Observe ⌈λa T′⌉ corresponding rewards z1, z2, . . . and update s← s+ (
∑

j zj)a.
18: end for
19: Estimate θ̂ = V−1

(∑
t∈E rtXt

)
20: Find γ = maxz∈X ⟨z, θ̂⟩

21: X̃ ← {x ∈ X : ⟨x, θ̂⟩ ≥ γ − 16

√
γ d

5
2 log (T)
T′ }

22: T′ ← 2× T′ // End of phase.
23: end while

Instead of ensuring probability bounds on individual arms, we construct a confidence ellipsoid around
θ∗. In the context of Algorithm 3, we define the following events for the regret analysis:

G1 In Part I, arms from the D-optimal design are chosen at least T̃/3 times. If ⟨x∗, θ∗⟩ ≥
196
√

d2.5ν
T logT, then θ̂ calculated at the end of Part I satisfies

∥∥∥θ̂ − θ∗
∥∥∥
V

≤ 7

√
⟨x∗, θ∗⟩d 3

2 ν logT.

G2 In Part II, for every phase, if ⟨x∗, θ∗⟩ ≥ 196
√

d2.5ν
T logT, the estimators θ̂ satisfy:

∥∥∥θ̂ − θ∗
∥∥∥
V

≤ 7

√
⟨x∗, θ∗⟩d 3

2 ν logT.

Without loss of generality, we assume throughout that ⟨x∗, θ∗⟩ ≥ 196d1.25√ν√
T

logT. Otherwise, the
regret bound in Theorem 2 trivially holds. Let B denote the unit ball in Rd. We have∥∥∥θ̂ − θ∗

∥∥∥
V

=
∥∥∥V 1

2 (θ̂ − θ∗)
∥∥∥
2

= max
y∈B

⟨y,V 1
2 (θ̂ − θ∗)⟩.
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We construct an ε-net for the unit ball, denoted as Cε. For any y ∈ B, we define yε :=
argminb∈Cε

∥b− y∥2. We can now write∥∥∥θ̂ − θ∗
∥∥∥
V

= max
y∈B

⟨y − yε,V
1
2 (θ̂ − θ∗)⟩+ ⟨yε,V

1
2 (θ̂ − θ∗)⟩

≤ max
y∈B

∥y − yε∥2
∥∥∥V 1

2 (θ̂ − θ∗)
∥∥∥
2
+ |⟨yε,V

1
2 (θ̂ − θ∗)⟩|

≤ ε
∥∥∥(θ̂ − θ∗)

∥∥∥
V
+ |⟨yε,V

1
2 (θ̂ − θ∗)⟩|.

Rearranging, we obtain ∥∥∥θ̂ − θ∗
∥∥∥
V

≤ 1

1− ε
|⟨yεV

1
2 , θ̂ − θ∗⟩|. (36)

In the following lemmas, we show that |⟨yεV
1
2 , θ̂ − θ∗⟩| is small for all values of yε.

Lemma 19. Let x1, x2, . . . , xn be a sequence of fixed arm pulls (from a set X ) such that each arm x
in the support λ from D-optimal design (for X ) is pulled at least ⌈λxτ⌉ times. Consider the matrix

V =
∑n

j=1 xjx
T
j and let z be a vector such that ∥z∥2 ≤ 1 and ⟨zV 1

2 , θ∗⟩ ≥ 6ν
√

d
τ log (T|Cε|).

Then, with probability greater than 1− 2
T|Cε| , we have,

|⟨zV 1
2 , θ∗ − θ̂⟩| ≤

(
3ν

√
nd

τ
log (T|Cε|)⟨x∗, θ∗⟩

) 1
2

Proof. We begin by utilizing Lemma 6. First, we determine the γ parameter in the lemma as follows,
for any t ∈ [n] we have (

zV
1
2

)T
V−1xt ≤

∥∥∥zV 1
2

∥∥∥
V−1

∥∥V−1xt

∥∥
V

≤ ∥z∥2 ∥xt∥V−1

≤ ∥xt∥V−1 . (since ∥z∥2 ≤ 1)
Let Aλ be the optimal design matrix. Since V ≻ τAλ, we have

∥xt∥V−1 ≤ ∥xt∥ 1
τ A−1

λ

≤
√

d

τ
. (by Lemma 3)

Now, we use Corollary 9 with γ =
√

d
τ and δ =

(
3
√

d
τ
ν log (T|Cε|)
⟨zV

1
2 ,θ∗⟩

) 1
2

. Note that δ ∈ [0, 1] since

⟨zV 1
2 , θ∗⟩ ≥ 6

√
d
τ ν log (T|Cε|). We obtain the following probability bound

P

|⟨zV 1
2 , θ∗ − θ̂⟩| ≥

(
3ν

√
d

τ
log (T|Cε|)⟨zV

1
2 , θ∗⟩

) 1
2

 ≤ 2 exp

−
3
√

d
τ
ν log (T|Cε|)
⟨zV

1
2 ,θ∗⟩

⟨zV 1
2 , θ∗⟩

3ν
√

d
τ


≤ 2

T|Cε|
. (37)

Finally, we establish an upper bound on the term ⟨zV 1
2 , θ∗⟩ as follows

⟨zV 1
2 , θ∗⟩ ≤ ∥z∥2

∥∥∥V 1
2 θ∗
∥∥∥
2

≤
√
θ∗TVθ∗ (since ∥z∥2 ≤ 1)

=

√√√√√
∑

i∈[n]

θ∗TxixT
i θ

∗


=

√
n⟨x∗, θ∗⟩. (⟨xi, θ

∗⟩ ≤ ⟨x∗, θ∗⟩)
Substituting in (37) we get the lemma statement. This completes the proof of the lemma.
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Lemma 20. Consider the same notation as in Lemma 19. If ⟨zV 1
2 , θ∗⟩ ∈

[
0, 6ν

√
d
τ log (T|Cε|)

]
,

then with probability greater than 1− 2
T|X | we have

|⟨zV 1
2 , θ∗ − θ̂⟩| ≤ 12ν

√
d

τ
log (T|Cε|).

Proof. Utilizing Lemma 10, with δ = 1, α = 6ν
√

d
τ log (T|Cε|), and γ =

√
d
τ , we have ⟨zV 1

2 , θ̂⟩ ≤

12ν
√

d
τ log (T|Cε|). Since ⟨zV 1

2 , θ∗⟩ ≥ 0, it follows, with probability greater than 1− 1
T|X | , that

⟨zV 1
2 , θ̂ − θ∗⟩ ≤ 12ν

√
d

τ
log (T|Cε|).

Next, applying Lemma 11 with δ = 1 and α = 6ν
√

d
τ log (T|Cε|), we have, with probability greater

than 1− 1
T|X | ,

⟨zV 1
2 , θ∗ − θ̂⟩ ≤ 6ν

√
d

τ
log (T|Cε|) ≤ 12ν

√
d

τ
log (T|Cε|).

Hence, the lemma stands proved.

Lemma 21. If ⟨x∗, θ∗⟩ ≥ 196
√

d2.5ν
T logT, then

P {G1} ≥ 1− 3

T
(38)

Proof. First, we note (from Lemma 13) that arms from the solution of the D-optimal design problem
are selected (with probability greater than 1− 1

T ) at least T̃/3 times. Hence, we can use Lemmas 19
and 20 with τ = T̃/3.

Let us consider the case where ⟨yεV
1
2 , θ∗⟩ ≥ 6

√
3d

T̃
log (T|Cε|). We have that the following holds

with probability greater than 1− 1
T|Cε| :∥∥∥θ̂ − θ∗

∥∥∥
V

≤ 1

1− ε
⟨yεV

1
2 , θ̂ − θ∗⟩ (from (36))

≤ 1

1− ε

3ν

√√√√ T̃d
T̃
3

log (T|Cε|)⟨x∗, θ∗⟩


1
2

(using Lemma 19)

≤ 1

1− ε

(
3
√
3d ν log (T|Cε|)⟨x∗, θ∗⟩

) 1
2

.

Next, we note that |Cε| ≤
(
3
ε

)d
[17], and by choosing ε = 1/2 we get

∥∥∥θ̂ − θ∗
∥∥∥
V

≤ 7
(
νd

3
2 log (T)⟨x∗, θ∗⟩

) 1
2

Taking a union bound over all elements in Cε gives a probability bound of 1− 1
T .
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Now, for the case where ⟨yεV
1
2 , θ∗⟩ ∈

[
0, 6
√

3d

T̃
log (T|Cε|)

]
, substituting τ = T̃/3 in Lemma 20

we have, with probability greater than 1− 1
T|Cε| ,∥∥∥θ̂ − θ∗

∥∥∥
V

≤ 1

1− ε
⟨yεV

1
2 , θ̂ − θ∗⟩

≤ 12ν

1− ε

√
d

τ
log (T|Cε|) (using Lemma 20)

≤ 24ν

√
3d3

T̃
log (T) (substituting ε = 0.5)

≤ 7
(
d

3
2 ν log (T)⟨x∗, θ∗⟩

) 1
2

The last inequality is due to the fact that ⟨x∗, θ∗⟩ ≥ 196
√

d2.5ν
T logT and T̃ = 3

√
Tνd2.5 logT. We

again take a union bound over all elements in Cε to get a probability bound of 1− 1
T .

Finally, a union bound over the two cases and the event in Lemma 13 proves the lemma.

Lemma 22. If ⟨x∗, θ∗⟩ ≥ 196
√

d2.5ν
T logT, then

P {G2} ≥ 1− logT

T
. (39)

Proof. To prove Lemma 22, we follow the same steps as in the proof of Lemma 21. Utilizing Lemma
19 and Lemma 20 with τ = T′, we establish that for any fixed phase, the following inequality holds
with probability greater than 1− 1

T :∥∥∥θ̂ − θ∗
∥∥∥
V

≤ 7
(
d

3
2 ν logT⟨x∗, θ∗⟩

) 1
2

.

Taking a union bound over all – at most logT – phases in Part II of Algorithm 3 gives us the desired
lower bound on P {G2}.

Corollary 23. If G1 holds, then for all x ∈ X , θ̂ calculated at the end of Part I satisfies

|⟨x, θ̂⟩ − ⟨x, θ∗⟩| ≤ 7

√
3⟨x∗, θ∗⟩d2.5ν logT

T̃

Consider any phase ℓ in Part II. If G2 holds, then for every arm in the surviving arm set X̃ , θ̂
calculated at the end of the phase satisfies

|⟨x, θ̂⟩ − ⟨x, θ∗⟩| ≤ 7

√
3⟨x∗, θ∗⟩d2.5ν logT

2ℓ T̃
.

Proof. First we use Hölder’s inequality

|⟨x, θ∗ − θ̂⟩| ≤ ∥x∥V−1

∥∥∥θ∗ − θ̂
∥∥∥
V
. (40)

Since G1 holds, arms from the optimal design matrix are selected at least T̃/3 times; we have by
Lemma 3

∥x∥V−1 ≤

√
3d

T̃
.

Similarly, for every phase in Part II with T′ = 2ℓT̃/3 we have

∥x∥V−1 ≤
√

d

T′ .

Finally, using bounds on
∥∥∥θ∗ − θ̂

∥∥∥
V

from events G1 and G2, and substituting in (40), we get the
desired bound.
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Corollary 24. If ⟨x∗, θ∗⟩ ≥ 196
√

d2.5ν
T logT

7

10
⟨x∗, θ∗⟩ ≤ max

x∈X
⟨x, θ̂⟩ ≤ 13

10
⟨x∗, θ∗⟩

Proof. Since T′ ≥ 2T̃/3, via Corollary 23 any θ̂ calculated in Part I or during any phase of Part II
satisfies

|⟨x, θ̂⟩ − ⟨x, θ∗⟩| ≤ 7

√
3⟨x∗, θ∗⟩d2.5ν logT

T̃

We have

max
x∈X

⟨x, θ̂⟩ ≥ ⟨x∗, θ̂⟩

≥ ⟨x∗, θ∗⟩ − 7

√
⟨x∗, θ∗⟩d2.5ν logT

T̃

≥ ⟨x∗, θ∗⟩

(
1− 7

√
d2.5ν logT

⟨x∗, θ∗⟩T̃

)

≥ 7

10
⟨x∗, θ∗⟩ (since ⟨x∗, θ∗⟩ ≥ 196

√
d2.5ν
T logT and T̃ = 3

√
Td2.5ν log(T))

Now, for any x ∈ X ,

⟨x, θ̂⟩ ≤ ⟨x, θ∗⟩+ 7

√
⟨x∗, θ∗⟩d2.5ν logT

τ

≤ ⟨x∗, θ∗⟩

(
1 + 7

√
d2.5ν logT

⟨x∗, θ∗⟩τ

)

≤ 13

10
⟨x∗, θ∗⟩

Hence, the lemma stands proved.

Lemma 25. If events G1 and G2 hold then the optimal arm x∗ always exists in the surviving set X̃
in every phase in Part II of Algorithm 3

Proof. Let τ = T̃/3 for Part I and τ = T′ for every phase of Part II. From Corollary 23 we have

⟨x∗, θ̂⟩ ≥ ⟨x∗, θ∗⟩ − 7

√
⟨x∗, θ∗⟩d2.5ν logT

τ

≥ ⟨x, θ∗⟩ − 7

√
⟨x∗, θ∗⟩d2.5ν logT

τ
(since ⟨x∗, θ∗⟩ ≥ ⟨x, θ∗⟩)

≥ ⟨x, θ̂⟩ − 14

√
⟨x∗, θ∗⟩d2.5ν logT

τ
(using Corollary 23)

≥ ⟨x, θ̂⟩ − 16

√
maxx∈X̃ ⟨x, θ∗⟩d2.5ν logT

τ
. (using Corollary 24)

Hence, the best arm will never satisfy the elimination criteria in Algorithm 3.

Lemma 26. Given that events G1 and G2 hold, consider any phase index ℓ in Part II of Alg. 3.
For the surviving set of arms X̃ at the beginning of that phase, and for T̃ =

√
d2.5νT log(T), the

following inequality holds for all x ∈ X̃

⟨x, θ∗⟩ ≥ ⟨x∗, θ∗⟩ − 26

√
3d2.5ν⟨x∗, θ∗⟩

2ℓ · T̃
. (41)
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Proof. Lemma 25 ensures that the optimal arm is contained in the surviving set of arms X̃ . Fur-
thermore, if an arm x ∈ X̃ is pulled in the ℓth phase, then it must be the case that arm x was not
eliminated in the previous phase (with a phase length parameter T′

2 ); in particular the arms x does not
satisfy the inequality on Line 21 of Algorithm 3. This inequality reduces to

⟨x, θ̂⟩ ≥ ⟨x∗, θ̂⟩ − 16

√√√√ maxx∈X̃ ⟨x, θ̂⟩ d2.5 ν log (T)
T′

2

≥ ⟨x∗, θ̂⟩ − 26

√
⟨x∗, θ∗⟩ d2.5 ν log (T)

T′

(via Corollary 24)

Substituting T′ = 2lT̃/3 in the above inequality proves the Lemma.

Theorem 2. For any given stochastic linear bandits problem with set of arms X ⊂ Rd, time horizon
T ∈ Z+, and ν-sub-Poisson rewards, Algorithm 2 achieves Nash regret

NRT = O

(
β
d

5
4
√
ν√

T
log(T)

)
,

Here, β = max {1, ⟨x∗, θ∗⟩ log d}, with x∗ ∈ X denoting the optimal arm and θ∗ the (unknown)
parameter vector.

Proof. Without loss of generality, we assume that ⟨x∗, θ∗⟩ ≥ 196
√

d2.5ν
T logT. Otherwise, the Nash

Regret bound is trivially true. For Part I, the product of expected rewards satisfies

T̃∏
t=1

E[⟨Xt, θ
∗⟩ | G1 ∩G2]

1
T ≥

(
⟨x∗, θ∗⟩
2(d+ 1)

) T̃
T

(From Lemma 5)

= ⟨x∗, θ∗⟩ T̃
T

(
1− 1

2

) log(2(d+1))T̃
T

≥ ⟨x∗, θ∗⟩ T̃
T

(
1− log(2(d+ 1))T̃

T

)
.

For Part II, we use Lemma 8. Let Ei denote the time interval of the ith phase, and let T′
i be the phase

length parameter in that phase. Recall that |Ei| ≤ T′
i +

d(d+1)
2 . Also, the algorithm runs for at most

logT phases. Hence, we have

T∏
t=T̃+1

E[⟨Xt, θ
∗⟩ | G1 ∩G2]

1
T =

∏
Ej

∏
t∈Ej

E[⟨Xt, θ
∗⟩ | G1 ∩G2]

1
T

≥
∏
Ej

(
⟨x∗, θ∗⟩ − 26

√
d2.5 ν ⟨x∗, θ∗⟩ log (T)

T′
j

) |Ej |
T

≥ ⟨x∗, θ∗⟩
T−T̃
T

logT∏
i=1

(
1− 26

√
d2.5 ν log (T)

⟨x∗, θ∗⟩T′
j

) |Ej |
T

≥ ⟨x∗, θ∗⟩
T−T̃
T

logT∏
i=1

(
1− 52

|Ej |
T

√
d2.5 ν log (T)

⟨x∗, θ∗⟩T′
j

)
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The last inequality is due to the fact that (1 − x)r ≥ (1 − 2rx) where r ∈ [0, 1] and x ∈ [0, 1/2].

Note that the term
√

d2.5ν log (T)
⟨x∗,θ∗⟩T′

j
≤ 1/2 for ⟨x∗, θ∗⟩ ≥ 196

√
d2.5ν
T logT, T′ ≥ 2

√
Td2.5ν logT,

and T ≥ e6. We can further simplify the expression as follows
logT∏
j=1

(
1− 52

|Ej |
T

√
d2.5 ν log (T)

⟨x∗, θ∗⟩T′
j

)
≥

logT∏
j=1

(
1− 52

T′
j +

d(d+1)
2

T

√
d2.5 ν log (T)

⟨x∗, θ∗⟩T′
j

)

≥
logT∏
j=1

1− 78

√
T′
j

T

√
d2.5 ν log (T)

⟨x∗, θ∗⟩


(assuming T′

j ≥ d(d+ 1))

≥ 1− 78
1

T

√
d2.5 ν log (T)

⟨x∗, θ∗⟩

logT∑
j=1

√
T′
j


≥ 1− 78

1

T

√
d2.5 ν log (T)

⟨x∗, θ∗⟩

(√
T logT

)
(using Cauchy Schwarz)

≥ 1− 78

√
d2.5ν

T⟨x∗, θ∗⟩
log (T).

Combining the lower bound for rewards in Part I and Part II of the algorithm, we obtain

T∏
t=1

E[⟨Xt, θ
∗⟩] 1T ≥

T∏
t=1

(
E[⟨Xt, θ

∗⟩ | G1 ∩G2] · P{G1 ∩G2}
) 1

T

≥ ⟨x∗, θ∗⟩

(
1− log(2(d+ 1))T̃

T

)(
1− 78

√
d2.5ν

T⟨x∗, θ∗⟩
log (T)

)
P{G1 ∩G2}

≥ ⟨x∗, θ∗⟩

(
1− log(2(d+ 1))T̃

T
− 78

√
d2.5ν

T⟨x∗, θ∗⟩
log (T)

)
P{G1 ∩G2}

≥ ⟨x∗, θ∗⟩

(
1− log(2(d+ 1))T̃

T
− 78

√
d2.5ν

T⟨x∗, θ∗⟩
log (T)

)(
1− 2 logT

T

)

≥ ⟨x∗, θ∗⟩

(
1−

log(2(d+ 1))3
√
Tdν log(T)

T
− 78

√
d2.5ν

T⟨x∗, θ∗⟩
log (T)− 2 logT

T

)

≥ ⟨x∗, θ∗⟩ − 78

√
⟨x∗, θ∗⟩d2.5ν

T
log (T)− 2

⟨x∗, θ∗⟩ log(2(d+ 1))3
√

d log(T)√
T

.

Hence, the Nash Regret can be bounded as

NRT = ⟨x∗, θ∗⟩ −

(
T∏

t=1

E[⟨Xt, θ
∗⟩]

)1/T

≤ 78

√
⟨x∗, θ∗⟩d2.5ν

T
log (T) + 2

⟨x∗, θ∗⟩ log(2(d+ 1))3
√
dν log(T)√

T
.

The theorem stands proved.

E Experiments

We conduct experiments to compare the performance of our algorithm LINNASH with Thompson
Sampling on synthetic data. For a comparison, we select Thompson Sampling (Algorithm 1 in
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Figure 1: Nash Regret comparison of LINNASH and Thompson Sampling
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Figure 2: Round-wise reward for LINNASH
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Figure 3: Round-wise reward for Thompson Sam-
pling

[2]), instead of UCB/OFUL, since randomization is essential to achieve meaningful Nash Regret
guarantees.

We fine-tune the parameters of both algorithms and evaluate their performance in the following
experimental setup: We fix the ambient dimension d = 80, the number of arms |X | = 10000, and the
number of rounds T = 50000. Both the unknown parameter vector, θ∗, and the arm embeddings are
sampled from a multivariate Gaussian distribution. Subsequently, the arm embeddings are shifted
and normalized to ensure that all mean rewards are non-negative, with the maximum reward mean
being set to 0.5. Upon pulling an arm, we observe a Bernoulli random variable with a probability
corresponding to its mean reward.

In this experimental setting, we observe a significant performance advantage of LINNASH over
Thompson Sampling. We plot our results in Figure 1, which shows that the Nash regret of LINNASH
decreases notably faster than that of Thompson Sampling.

Another notable advantage of LINNASH evident from the experiments is due to successive elimination.
The variance in the quality of arms pulled decreases as the number of rounds progresses – see Figures
2 and 3. This is due to the bulk elimination of suboptimal arms at regular intervals. In contrast,
Thompson Sampling incurs a large variance in quality of arms being pulled even after several rounds,
since no arms are being eliminated at any point.
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