
Hierarchically Gated Recurrent Neural Network for
Sequence Modeling

1Zhen Qin⋆, 2Songlin Yang⋆, 1Yiran Zhong�
1OpenNLPLab, Shanghai Artificial Intelligence Laboratory, 2MIT CSAIL

https://github.com/OpenNLPLab/HGRN

Abstract

Transformers have surpassed RNNs in popularity due to their superior abilities in
parallel training and long-term dependency modeling. Recently, there has been
a renewed interest in using linear RNNs for efficient sequence modeling. These
linear RNNs often employ gating mechanisms in the output of the linear recurrence
layer while ignoring the significance of using forget gates within the recurrence.
In this paper, we propose a gated linear RNN model dubbed Hierarchically Gated
Recurrent Neural Network (HGRN), which includes forget gates that are lower
bounded by a learnable value. The lower bound increases monotonically when
moving up layers. This allows the upper layers to model long-term dependencies
and the lower layers to model more local, short-term dependencies. Experiments
on language modeling, image classification, and long-range arena benchmarks
showcase the efficiency and effectiveness of our proposed model. The source code
is available at https://github.com/OpenNLPLab/HGRN.

1 Introduction

Sequence modeling is a fundamental problem in various domains such as natural language pro-
cessing [12, 43, 44, 61, 64], time series analysis [84], computer vision [3, 13, 45, 74], and audio
processing [1, 18, 73]. Prior to the invention of Transformers [81], RNN and its variants were the
primary selections of architectures for sequence modeling, and have been widely used in machine
translation [6], stock price prediction [68], weather forecasting [65], speech recognition [51], and etc.

RNNs have two main drawbacks: slow sequential training and limited capability in modeling long-
term dependencies. With the swift development of deep learning and the pervasive use of GPUs,
these drawbacks prevent it from flourishing in modern long-sequence modeling tasks. Meanwhile,
Transformers [81] have rapidly gained popularity and now dominate various research areas in
sequence modeling due to their better abilities in parallel training and long-term dependency modeling.
However, Transformer’s quadratic time complexity makes long sequence modeling expensive. On the
other hand, RNN offers linear complexity and serves as an ideal choice for long sequence modeling.
This works aim to addressing these RNN drawbacks, revitalizing their applicability in long-sequence
modeling tasks.

To address the training inefficiency problem, we turn to more efficient RNN variants that employ
element-wise linear recurrence (ELR) relations [48]. ELR provides two main advantages: (i)
By removing nonlinearities in the recurrence, it enables parallelized training. (ii) By assuming
independence between distinct hidden states, it enables efficient hidden state updates (through
element-wise product instead of matrix multiplication) [20, 40]. Notably, ELR has been used in many
modern linear RNN models, including the diagonalized versions of structured state-space models
[21] (S4) [20, 26, 71] and RWKV [55]. In recent advancements, numerous studies have incorporated

⋆Equal contribution. � Indicates corresponding author (Email address: zhongyiran@gmail.com).

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/OpenNLPLab/HGRN

gating mechanisms into the outputs of linear recurrence layers [11, 46, 49, 55, 82], similar to the
output gates in LSTMs and leading to considerable performance gains. However, most current studies
overlook the significance of the forget gate, which is often regarded as the most important gate in
LSTMs [19, 80]. In this work, we underscore the importance of employing forget gates in linear
RNNs and adopt gated linear RNNs for both efficiency and high performance.

To effectively capture long-term dependencies in gated RNNs, it is crucial to maintain high forget
gate values close to one [23]. However, gates in saturated regimes (i.e., close to zero or one) suffer
from the gradient vanishing issue [23]. Moreover, if all forget gate values are close to one, RNNs
will not be able to effectively forget irrelevant information, compromising their ability to model
short-term dependencies. To address these challenges, we introduce Hierarchically Gated Recurrent
Units(HGRU). In HGRU, we add an additive learnable value, referred to as the lower bound, to
the original forget gate value, effectively mitigating the issue of saturated gates [23] by pushing
gate activations away from the saturated regimes. Furthermore, we design the lower bounds to
increase monotonically as we move up the layers of the RNN. This ensures that the forget gate values
in the lower layers remain relatively small, enabling the necessary forgetting of past information
for modeling short-term dependencies. In contrast, in the uppermost layer, the forget gate values
approach one, facilitating the effective modeling of long-term dependencies. Our proposed model
has proven to be highly efficient and effective, as demonstrated by its outstanding performance in
language modeling, image classification, and long-range arena benchmarks.

2 Related work

Efficient token mixing for sequence modeling. [83] abstracts self-attention (SA) as token mixing,
thereby transforming the Transformer architecture into MetaFormer. MetaFormer comprises essential
components such as token mixer, channel mixer, residual connections, and LayerNorm. This
abstraction highlights that the success of Transformers does not solely rely on SA but rather on
the holistic integration of these components. Notably, token mixers can be replaced with simpler
alternatives like pooling layers without compromising the model’s performance in the context of
vision transformer. For sequence modeling tasks, [29] provides a comprehensive analysis and
discussion of different token mixing strategies. Two prominent contenders, long convolution and
linear recurrence, show promise as replacements for SA modules in long sequence modeling due
to their superior asymptotic time complexity and competitive performances. In long convolution
models [14, 41, 57, 59], the kernel size matches the input sequence length, enabling a broader context
compared to traditional convolutions. Training is accomplished using the efficient O(n log n) fast
Fourier transforms (FFT) algorithm. However, long convolutions face challenges such as the need
for causal convolution inference, which requires caching all historical computations similar to the
key-value (KV) cache in SA. This can lead to memory limitations when processing long sequences.
Moreover, the inference complexity of long convolutions remains higher than that of RNNs. These
factors make linear RNNs a more suitable alternative to replace SA in long-sequence modeling.
TransNormerLLM [61] scales efficient token mixing in large language models to achieve competitive
performance and superior training and inference efficiency compared to transformer-based models.

Element-wise linear recurrence. The slower training speeds of traditional RNNs can be attributed
to two main factors: (i) The updating of the hidden state involves full matrix multiplication. (ii)
The presence of nonlinearity within the recurrence prevents parallel computation. To tackle the first
issue, [40] introduced a simplified interaction between hidden states. This allowed the hidden state
update to be performed using an element-wise product instead of full matrix multiplication. They
demonstrated that this approach is notably fast when the (nonlinear) recurrence for each dimension
is fused within a single CUDA kernel. Likewise, for the linear case, diagonalized versions of S4
[20, 26] have also exhibited speed improvements over S4 by leveraging element-wise recurrence.
Regarding the second challenge, the ability to capture nonlinear dependencies on past data can be
achieved by stacking multiple linear recurrence layers interleaved with nonlinear MLP blocks. This
indicates the potential to eliminate nonlinearity, as suggested by [4, 25, 48]. Empirical support for
this strategy’s effectiveness came later, as demonstrated by [11, 20, 24, 53, 55, 71]. [52] further
highlighted that such an architecture still possesses Universal Approximator properties, thus justifying
the employment of linear recurrence. By excluding nonlinearity, [48, 71] showed that the parallel
scan algorithm can be used for parallel training.

2

Linear recurrence can be broadly categorized into exponential moving averages (EMA) and gating
schemes, as noted by [48]. The key difference is whether the decay rate is data-dependent. Models
such as S4 [21], S4D [20], MEGA [46], RWKV [55], and LRU [53] utilize the EMA approach,
where the decay rate is static for all time steps (i.e., data-independent), while our model uses a data-
dependent dynamic decay rate through the use of the forget gate. We remark on the importance of
incorporating a data-dependent decay rate, which is largely ignored by current works in linear RNNs.
Although liquid S4 [28] uses a dynamic transition matrix (which amounts to a data-dependent decay
rate), it employs a limited form for FFT-based training. Our model does not have the convolutional
view and thus cannot use FFT for training but allows the use of parallel scan.

The field of linear Transformers and linear RNNs exhibits a close relationship. [34] shows that linear
Transformers can be reformulated as RNNs during auto-regressive decoding, revealing similarities
to the update rules observed in fast weight additive outer products [66, 67]. These updates can be
seen as a special case of element-wise linear recurrence, where forget gate values are consistently
set to one across time and hidden states are two-dimensional. However, this formulation in linear
Transformers lacks the ability to forget irrelevant information, resulting in the attention dilution issue
[60]. To address this limitation, [66] introduced the delta rule to forget values associated with the
current write key by removing the corresponding value before adding the new value. Alternatively,
[47, 56] proposed gating mechanisms similar to those in gated RNNs to facilitate the forgetting of
irrelevant information.

Long-term dependencies in RNNs. RNNs fall short in long-term dependency modeling, which is
commonly attributed to the gradient vanishing issue. Three methods are typically applied to mitigate
this issue. (i) Gating mechanisms [9, 17, 23, 30, 70], which are believed to be crucial to the success of
LSTMs, use additive (instead of multiplicative) hidden state update rules to improve gradient flow. (ii)
Regularizing or initializing the eigenvalues of the recurrent weight matrix (close) to one via identity
matrices [38] or unitary matrices [2]. In the diagonal linear RNN case, the eigenvalues coincide with
the element-wise decay rates, and LRU [53] uses randomized linear algebra techniques to initialize
eigenvalues to be close to one. [53] also interestingly points out that many modern state-space models
use a very small time step value on initialization for discretization, resulting in eigenvalues or decay
rates close to one. (iii) Adding skip connections between distant time steps to allow shortcuts for
gradient flow [5, 8, 37].Our approach combines (i) and (ii), which improves gating mechanisms with
a regularized dynamic decay rate that approaches one in the upper layer.

3 Method

3.1 Architecture overview

Our proposed Hierarchically Gated Recurrent Network (HGRN) is depicted in Figure 1. It has
multiple stacked layers, each of which consists of a token mixing module HGRU and a channel
mixing module GLU (Gated Linear Unit [69]).

3.2 HGRU exploration

Algorithm 1 Recurrent Computing

1: Input: ct ∈ C1×d, µt, θ, γ
k ∈

R1×d, t = 1, . . . , n, k = 1, . . . ,H.
2: Init: h = 0 ∈ C1×d,H ∈ Cn×d.
3: for t = 1 to n do
4: begin
5: λt = γk + (1− γk)⊙ µt.
6: h = λt exp(iθ)h+ (1− λt)ct.
7: [H]t = h.
8: end
9: return H.

We begin with a simple gated linear recurrent layer, which
is defined as:

ft = Sigmoid (xtWf + bf) ∈ R1×d,

it = Sigmoid (xtWi + bi) ∈ R1×d,

ct = SiLU (xtWt + bz) ∈ R1×d,

ht = ft ⊙ ht−1 + it ⊙ ct ∈ R1×d,

h0 = 0 ∈ R1×d,

(1)

where ⊙ denotes the element-wise product. Following the
terminology used in the RNN literature, we refer to ft and
it as the forget and input gates, respectively. It is worth
noting that ft and it depend only on xt and not on ht−1.
This characteristic enables the use of the parallel scan algorithm [48, 71], otherwise it is infeasible.
We then make the following changes toward our final HGRU step by step.

3

Input

Linear

*

Output

N ×

LinearHGRU

GLU

HGRN

Output

HGRU

Input

Linear Linear

Recurrent Computing

Output

LayerNorm

HRU

SiLU Sigmoid𝜃SiLU

𝑐𝑡

𝜇𝑡

𝛾𝑘
𝜆𝑡

Input

HRU

Figure 1: Illustration of the neural architecture. Each HGRN layer consists of a token mixer
HGRU and a channel mixer GLU. HGRU employs linear recurrence in the complex domain:
ht = λt ⊙ exp(iθ)⊙ ht−1 + (1− λt)⊙ ct. Here ct is the input vector, θ is the rotation angle, µt is
the output of the original forget gate, γk is the lower bound of the kth layer, λ is the resulting data
dependent decay rate: λt = γk + (1− γk)⊙ µt.

Complex-valued recurrence. For linear RNNs with static decay rates, it is common to perform
eigendecompositions on the recurrent weight matrix to achieve element-wise linear recurrence.
However, if only real-valued eigenvalues are allowed, it restricts the range of the recurrent weight
matrix to be symmetric, limiting the model’s expressiveness. To overcome this limitation, linear
RNNs often employ complex-valued eigenvalues to enhance the model’s expressive power [20, 26,
27, 32, 53]. Motivated by this, we extend our model to consider ht, it, ct ∈ C1×d as complex values.
For the input ct, we parameterize its real and imaginary parts separately as follows:

Re(ct) = SiLU (xtWcr + bcr) ∈ R1×d,

Im(ct) = SiLU (xtWci + bci) ∈ R1×d.

Regarding the forget gate values, we find it convenient to use the exponential representation of
complex numbers and parameterize ft as follows: ft = λt ⊙ exp(iθt). Here, i2 = −1, λt, θt ∈ Rd

and exp(iθt) = cos θt+sin θti. The magnitude argument λt determines the intensity of remembering
historical information, while the phase argument θt determines the oscillation frequencies. We find
that parameterizing θt in a data-independent manner is preferable, as it allows for a clear interpretation
of encoding relative position information (see next subsection for more discussions) , which is
reminiscent of Rotary Positional Embedding (RoPE) [72]. We shared θ arcoss times steps, i.e.,
ft = λt ⊙ exp(iθ), initialize θ as RoPE does, but make it learnable like LRPE [63].

Lower bound on forget gate values. Since the intensity of remembering information is only related
to the magnitude argument λt, we focus on how to add a lower bound to λt. As mentioned earlier, we
want to set a monotonically increasing lower bound on the forget gate (magnitude) values. Inspired by
ON-LSTM [70], we employ the cummax activation function to achieve this. Concretely, we allocate
Γ ∈ RH×d to parameterize lower bounds independently for all hidden states, where H is the number
of layer. Assuming the layer index is k, we have the following calculations:

P = (Softmax(Γ,dim = 0) ∈ RH×d,

γk = [Cumsum(P,dim = 0)]k ∈ R1×d.

Here we define [Cumsum(x)]k = (
∑k

i=1 xi)− x1 to prevent the highest layer’s lower bound from
being one as we still want the ability to forget irrelevant information.

We remark that there is a difference in the use of cummax between our model and ON-LSTM. In
ON-LSTM, cummax is applied to the hidden state dimension within a single layer, while in our case,
we apply cummax on the layer dimension across different layers to enable upper layers to model
long-range dependencies.

4

Finally, λt in the k-th layer is parameterized as follows:

µt = Sigmoid (xtWµ + bµ) ∈ R1×d,

λt = γk + (1− γk)⊙ µt ∈ R1×d.

Comparing to before (i.e., without lower bounds), to achieve the same forget rate value γ̄ closed to
one, µt will be pushed away from the Sigmoid activation function’s saturated regions (i.e., near one),

µt =
γ̄ − γk

1− γk
< γ̄,

thereby mitigating the gradient vanishing issue [23] and making gradient-based optimization easier.

Tying input and forget gates. To reduce the number of parameters, it is common to use leaky units,
i.e., tying the input gate with the forget gate using it = 1− ft, which has a close relationship to the
discretization of continuous-time system [75] and exponential moving average [33], and has been
proven effective empirically [9, 19]. To allows for a clear interpretation of encoding relative position
information, we only apply this strategy on the magnitude argument:

ht = λt ⊙ exp(iθ)⊙ ht−1 + (1− λt)⊙ ct ∈ C1×d. (2)

Output gates and projection. The addition of gates to the output of the recurrence layer has been
shown to be effective in state-space models [11, 46, 49, 82]. Motivated by this, we incorporate an
output gate before performing the output projection as follows and get HGRU:

gt = Sigmoid(Wgxt + bg) ∈ R1×2d,

o′
t = LayerNorm(gt ⊙ [Re(ht), Im(ht)]) ∈ R1×2d,

ot = o′
tWo + bo ∈ R1×d.

(3)

3.3 Token mixing perspective of HGRU

We provide the token mixing perspective of HGRU similar to [32]. Expanding Equation 2, we have:

ht =

t∑
s=1

(1− λs)

[
t∏

k=s+1

λk exp(iθ)

]
cs =

t∑
s=1

(1− λs)

[
t∏

k=s+1

λk

]
exp(i(t− s)θ)cs (4)

Written in matrix form, we have:

H =

h1

...

...
hn

 ,A =

1− λ1 0 · · · 0

(1− λ1)λ2 exp(iθ) 1− λ2

...
...

...
. . . 0

(1− λ1) [
∏n

s=2 λk] exp(i(n− 1)θ) 1− λn

 ,C =

c1
...
...
cn

(5)

So the token mixing module can be formed as follows:
H = AC. (6)

Note that the token mixing matrix A can be decomposed into two parts A = Λ⊙Θ:

Λ =

1− λ1 0 · · · 0

(1− λ1)λ2 1− λ2

...
...

...
. . . 0

(1− λ1) [
∏n

s=2 λk] 1− λn

 ,Θ =

1 0 · · · 0

exp(iθ) 1
...

...
...

. . . 0
exp(i(n− 1)θ) 1

 (7)

This decomposition means that the Token mixing matrix Λ can be decoupled into two independent
modules, where Λ models the long-distance dependency and Θ, a Toeplitz matrix, models the relative
positional relationship and enhanced expressiveness. Note that if Θ depends on the input, then the
matrix Λ will no longer be a Toeplitz matrix, thus unable to capture relative position information. It
can be also viewed as a RoPE-enhanced attention mechanism: Λ corresponds to the attention matrix
but the attention score here is the cumulative product of data-dependent decay rates; Θ directly
corresponds to RoPE.

5

Table 1: Results on Wikitext-103 (TNN[59]’s setting). ↓ means lower is better.

Model PPL
(val)↓

PPL
(test)↓

Params
(M)

Attn-based
Transformer [81] 24.40 24.78 44.65
FLASH [10] 25.92 26.70 42.17
1+elu [35] 27.44 28.05 44.65
Performer [7] 62.50 63.16 44.65
cosFormer [62] 26.53 27.06 44.65
MLP-based
Syn(D) [76] 31.31 32.43 46.75
Syn(R) [76] 33.68 34.78 44.65
gMLP[42] 28.08 29.13 47.83
RNN-based
S4 [22] 38.34 39.66 45.69
DSS [26] 39.39 41.07 45.73
GSS [49] 29.61 30.74 43.84
RWKV [55] 24.31 25.07 46.23
LRU [53] 29.86 31.12 46.24
FFT-based
TNN [59] 23.98 24.67 48.68
Ours
HGRN 24.14 24.82 46.25

4 Experiments

We conduct a comparative analysis between our proposed HGRN and four widely adopted sequence
modeling structures, i.e., attention-based, MLP-based, FFT-based, and state-space-based. We evaluate
HGRN on the WikiText-103 dataset [50] and the Pile [15] dataset for autoregressive language
modeling, as well as the length extrapolation ability. To assess the accuracy and efficiency of our
model in handling long-term dependencies, we utilize the LRA benchmark [78]. Additionally, we
showcase the robustness of HGRN in computer vision task on the ImageNet-1k dataset.

4.1 Setting

We implement our models in Pytorch [54] and train them on 8 Nvidia A100 GPUs. For HGRN,
we found that fusing element-wise recurrence into a single CUDA kernel results in fast running
speed in practice. [48] also found that unless the sequence length is sufficiently large, the parallel
scan’s implementation is not necessarily faster than the sequential scan. As such, we use a CUDA-
based sequential scan for implementation; however, our model has the potential to model very long
sequences through the use of a parallel scan.

We adopt the same training configuration for all competitors, including batch size, learning rate,
training epochs or iterations, etc. We list detailed hyper-parameters in the Appendix. For the
autoregressive language modeling, we conducted three sets of experiments. Firstly, we validated
the performance of two different-scale models on the Wikitext-103 dataset. We used the TNN
configuration to verify the performance of the model at around 44m, and the Hyena configuration to
verify the performance of the model at around 125m. To evaluate the performance of larger-scale
models, we trained a 1b Transformer and HGRN on the Pile dataset using 10b tokens. To assess the
performance in downstream tasks, we trained HGRN models of 150m, 350m, and 1b on the Pile
dataset using 100b tokens and conducted zero-shot evaluations on downstream tasks.

For the LRA benchmark, We report results on all 6 tasks. For the image classification on the
ImageNet-1k dataset, We integrate HGRN into the DeiT [79] structure, we replace the transformer
layers with our HGRN modules. It is compared to the performance of the vanilla DeiT on the
ImageNet-1K dataset for image classification.

4.2 Results

6

Table 4: Performance Comparison on Commonsense Reasoning.. PS: parameter size (billion). T:
tokens (billion). HS: HellaSwag. WG: WinoGrande.

Model Params Token BOOLQ PIQA HS WG ARC-e ARC-c OBQA AVG
GPT-Neo 0.13 300 61.71 63.06 30.40 50.43 43.73 23.12 26.20 42.66
OPT 0.16 300 55.47 62.95 31.35 50.43 43.52 22.70 28.00 42.06
Pythia 0.16 300 55.08 61.32 30.16 51.93 43.18 23.12 26.80 41.66
RWKV 0.17 - - 65.07 32.26 50.83 47.47 24.15 29.60 41.56
HGRN 0.15 100 59.91 65.02 33.33 50.20 46.68 23.81 28.60 43.94
OPT 0.35 300 57.74 64.58 36.69 52.49 44.02 23.89 28.20 43.94
Pythia 0.4 300 60.40 67.08 40.52 53.59 51.81 24.15 29.40 46.71
BLOOM 0.56 350 55.14 64.09 36.97 52.80 47.35 23.98 28.20 44.08
RWKV 0.43 - - 67.52 40.90 51.14 52.86 25.17 32.40 45.00
HGRN 0.35 100 59.05 66.70 38.12 51.70 49.20 25.26 30.60 45.80
GPT-Neo 1.3 300 61.99 71.11 48.93 54.93 56.19 25.85 33.60 50.37
OPT 1.3 300 57.77 71.71 53.70 59.35 57.24 29.69 33.20 51.81
Pythia 1.4 300 60.73 70.67 47.18 53.51 56.99 26.88 31.40 49.62
BLOOM 1.1 350 59.08 67.14 42.98 54.93 51.47 25.68 29.40 47.24
RWKV 1.5 - - 72.36 52.48 54.62 60.48 29.44 34.00 50.56
HGRN 1 100 58.69 70.89 48.02 51.62 55.64 27.90 31.60 49.19

Table 2: Results on Wikitext-103 (Hyena[57]’s
setting). All models are in GPT-2 small size
(125M). ↓ means lower is better

Model PPL↓
Transformer [57] 18.6
Hybrid H3 [57] 18.5
Performer [57] 26.8
Reformer [57] 25.6
AFT-conv [57] 28.2
Linear Attention [57] 25.6
Hyena [57] 18.6
Hyena-slim [57] 18.5
HGRN 18.6

Autoregressive Language Modeling Autore-
gressive language modeling stands as a promi-
nent task within the field of natural language
processing, as it serves as a measure of a lan-
guage model’s causal inference capability. This
task requires the model to estimate the probabil-
ity distribution of the subsequent token based on
the previously seen tokens.

We show the performances of the autoregressive
language modeling in table 1 and table 2. Com-
pared to transformer-based methods, HGRN
performs favourably than most efficient variants
of the vanilla transformer such as FLASH [31],
1+elu [35], Performer [7] and cosFormer [62].
Also, HGRN achieves better results than the MLP-based methods with a notable margin. Never-
theless, HGRN performs similarly to the original transformer [81]. Finally, HGRN shares similar
concepts with RNN-based such as S4 [22], DSS [26], GSS [49], RWKV [55], and LRU [53], our
HGRN also achieves superior performance to all RNN-based methods. This provide evidence HRGN
may be an effective method in LM We also report the extrapolation ability of HGRN compared to
previous methods in Table 14.

Table 3: Results on the Pile. All the model size is
1b. The lower the better.

Model PPL↓
Transformer 4.56
LRU 5.07
HGRN 4.14

We also trained a 1b model on the Pile dataset
and compared it with LRU and Transformer.
Specifically, our training parameters included a
sequence length of 1024, batch size of 96, 100k
updates, and a learning rate of 5e-4. It can be
seen that HGRN still performs better at the 1b
scale. Additionally, we trained 100b tokens of
HGRN on the Pile dataset at 150m, 350m, and 1b sizes, and evaluated them against open-source
Transformer-based models in downstream tasks. We selected Comparison on Commonsense Rea-
soning and Super GLUE tasks, and all evaluations were done using the lm-evaluation-harness [16].
HGRN achieves comparable performance to Transformer-based models when consuming only 1/3 of
the tokens.

Long Range Arena LRA [77] is proposed as a comprehensive evaluation for assessing the perfor-
mances of models in processing long-term dependencies in various sequential modeling tasks. We
show a performance comparison between HGRN and existing methods in Table 6. HGRN achieves
comparable results with other SOTA methods.

7

Table 5: Performance Comparison on Super GLUE.. PS: parameter size (billion). T: tokens
(billion).
Model Params Token WSC WIC RTE CB MULTIRC BOOLQ COPA AVG
GPT-Neo 0.13 300 36.54 50.00 54.87 41.07 0.84 61.71 64.00 44.15
OPT 0.16 300 36.54 50.00 49.82 21.43 1.36 55.47 66.00 40.09
Pythia 0.16 300 36.54 50.16 52.71 41.07 2.52 55.08 65.00 43.30
HGRN 0.15 100 38.46 51.10 56.68 42.86 1.47 59.91 65.00 45.07
OPT 0.35 300 36.54 50.00 51.99 46.43 1.36 57.74 72.00 45.15
Pythia 0.4 300 57.69 50.31 52.71 35.71 1.68 60.40 70.00 46.93
BLOOM 0.56 350 40.38 50.00 52.71 41.07 1.05 55.14 61.00 43.05
HGRN 0.35 100 38.46 50.16 52.71 51.79 1.99 59.05 73.00 46.74
GPT-Neo 1.3 300 36.54 50.00 60.29 44.64 1.99 61.99 69.00 46.35
OPT 1.3 300 37.50 51.10 51.99 41.07 3.15 57.77 79.00 45.94
Pythia 1.4 300 36.54 50.00 53.07 35.71 0.94 60.73 72.00 44.14
BLOOM 1.1 350 36.54 50.00 52.71 41.07 0.73 59.08 68.00 44.02
HGRN 1 100 40.38 50.78 53.43 42.86 3.04 58.69 70.00 45.60

Table 6: Performances Comparison on the Long Range Arena benchmark. The proposed HGRN
achieves the best performances and outperforms all competing methods.

Model ListOps Text Retrieval Image Pathfinder Path-X AVG.
Transformer [81] 38.37 61.95 80.69 40.57 65.26 - 47.81
cosFormer [62] 36.50 67.70 83.15 51.23 71.96 - 51.76
FLASH [31] 38.70 64.10 86.10 47.40 70.25 - 51.09
S4 [22] 59.60 86.82 90.90 88.65 94.20 96.35 86.09
DSS_softmax [26] 60.60 84.80 87.80 85.70 84.60 87.80 81.88
DSSEXP [26] 59.70 84.60 87.60 84.90 84.70 85.60 81.18
DSSEXP-NO-SCALE [26] 59.30 82.40 86.00 81.20 81.30 - 65.03
TNN [59] 61.04 87.90 90.97 88.24 93.00 96.10 86.21
S5 [71] 62.15 89.31 91.4 88 95.33 98.56 87.46
Mega [46] 63.14 90.43 91.25 90.44 96.01 97.98 88.21
SGConv [41] 61.45 89.2 91.11 87.97 95.46 97.83 87.17
LRU [53] 60.20 89.40 89.90 89.00 95.10 94.20 86.30
HGRN 59.95 88.14 94.23 88.69 92.92 97.50 86.91

Image Classification The image classification results on the ImageNet-1K dataset are presented
in Table 7. Notably, with comparable parameter sizes, our proposed HGRN model demonstrates
superior performance compared to previous methods such as TNN and the vanilla transformer. It
demonstrates the capability of HGRN in modeling visual modalities.

Table 7: Performances comparison of image classification on ImageNet-1k. HGRN performs
favorably than competing methods with similar parameter sizes.

DeiT-Tiny DeiT-Small
Model Top1 Acc Param (M) Top1 Acc Parma (M)
Deit 72.20 5.7 79.90 22.0
TNN 72.29 6.4 79.20 23.4

HGRN 74.40 6.1 80.09 23.7

4.3 Ablation Study Table 8: Forget gate ablation on an autoregressive
language model. The only lower bound means
using a data-independent gate like LRU.

Model PPL↓
LRU w forget gate 4.92
LRU 5.07
HGRN only lower bound 4.84
HGRN w/o forget gate 57.42
HGRN 4.14

We conducted ablation studies in the smallest-
scaled setting (i.e., TNN[59]’s setting on Wiki-
Text103 dataset) to thoroughly verify the effec-
tiveness of each of our proposed components
in HGRN. Experiments were conducted on the
Pile dataset using a 1b model with 10b tokens
for the forget gate experiment.

8

Figure 2: Visualization of forget rates. We plot the forget rates of layers 5 and 6 on a model trained
on language modeling tasks.

(i) With lower bound

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Forget rate

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5

Pe
rc

en
t

Layer 5

(ii) Without lower bound

0.2 0.4 0.6 0.8 1.0
Forget rate

0

2

4

6

8

10

Pe
rc

en
t

Layer 5

(iii) LRU

0.6 0.7 0.8 0.9 1.0
Forget rate

0

2

4

6

8

Pe
rc

en
t

Layer 5

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Forget rate

0

10

20

30

40

50

Pe
rc

en
t

Layer 6

0.0 0.2 0.4 0.6 0.8 1.0
Forget rate

0
2
4
6
8

10
12
14
16

Pe
rc

en
t

Layer 6

0.6 0.7 0.8 0.9 1.0
Forget rate

0

2

4

6

8

Pe
rc

en
t

Layer 6

The influence of forget gate In table 8, we demonstrate the role of forget gate. From table 8,
we observe that removing the forget gate significantly decreases the performance of HGRN, while
adding a forget gate to LRU improves performance. On the other hand, using a data-independent
forget gate (only lower bound) leads to lower performance compared to a data-dependent forget gate.

Table 9: Ablations of gates on autoregressive lan-
guage modeling. w/o input gate means to remove
the 1− λt term. w/o out_gate means remove the
left branch of HGRU in figure 1.

Model PPL↓
w/o input gate 25.03
w/o output gate 25.50
HGRN 24.14

The influence of input gate and output gate
Table. 9 validates the effectiveness of using out-
put gates and tying input and forget gates. w/o
input gate means to remove the 1 − λt term.
w/o output gate means remove the left branch of
HGRN in figure 1. Our design achieves the best
performance.

The influence of lower bounds in forget gate
values We demonstrate the effectiveness of introducing a lower bound in Table 10 and Table 13.
From Table 10, we observe that gating (i.e., without lower bound) is more critical than the lower
bound (i.e., only lower bound). Combining gating and the lower bound consistently provides benefits,
but the most significant improvement arises from the monotonically increasing lower bound. This
aligns with the intuition that lower layers should primarily focus on nearby tokens, while upper layers
should attend more broadly to capture long-term dependencies [58].

Table 10: Lower bound ablation on autoregres-
sive language modeling. A random lower bound
means the lower bound in each layer is indepen-
dent. Decrease lower bound means the lower
bound is monotonically decreasing with respect
to layer k, only the lower bound means the forget
rate is independent of input.

Model PPL ↓
w/o lower bound 24.71
random lower bound 24.60
decrease lower bound 24.63
only lower bound 27.70
HGRN 24.14

Table 13 highlights the essential role of the
lower bound in long sequence processing tasks.
In these tasks, the model’s performance is no-
tably poor and sometimes fails to converge with-
out the lower bound. It is worth noting that lan-
guage modeling tasks do not require extensive
long-term dependencies, which explains why
the model performs well even without the lower
bound. However, in the task of LRA, the ability
to capture long-term dependencies is crucial for
achieving satisfactory performance.

The influence of complex-valued recurrence
Table 11 validates the utility of incorporating

9

complex values in element-wise linear recurrence. Additionally, the experiments show that the phase
argument θ should not be data-dependent.

4.4 Analysis on forget gate values

Table 11: Ablations of complex-valued recur-
rence on autoregressive language modeling. w/o
complex means remove theta, data-dependent theta
means theta is dependent on the input, this makes
the matrix Λ not a Toeplitz matrix, which can not
capture relative information.

Model PPL↓
w/o complex 25.34
data dependent θ 28.74
HGRN 24.14

We present the distributions of forget gate values
across layers for different methods in Table 12
and visualize the histogram of each layer in Fig-
ure 2, trained on the autoregressive language
modeling task. The results demonstrate that the
addition of lower bounds effectively increases
the average forget gate values in higher layers
(5-6). Notably, the medium forget gate values in
the highest layer reach 0.98, enabling the mod-
eling of long-term dependencies.

It is interesting to note that the average forget
gate values of the LRU model consistently exceed those of our variant model without lower bounds,
as per their eigenvalues. However, despite this, the language modeling performance of LRU is lower
than that of our variant. Specifically, LRU scored 24.71, while our variant scored 31.12. This suggests
that using data-dependent gates to selectively retain relevant information is advantageous, rather than
relying on data-independent forget gate values across all time steps.

Table 12: Forget gate values of different methods on language modeling tasks. In each layer, we
counted the mean and median of forget gate values.

ours ours w/o lower bound w/o lower bound LRU LRU
Layer mean median mean median mean median
1 0.48 0.47 0.52 0.50 0.75 0.72
2 0.55 0.52 0.59 0.55 0.78 0.75
3 0.60 0.57 0.58 0.56 0.78 0.76
4 0.68 0.64 0.58 0.55 0.79 0.78
5 0.79 0.80 0.63 0.63 0.79 0.77
6 0.91 0.98 0.63 0.67 0.79 0.79

Table 13: Lower bound ablation on LRA. We verify the importance of lower bounds in long-
sequence modeling capabilities.

Model ListOps Text Retrieval Image Pathfinder Path-X AVG
w/o lower bound 51.41 87.79 88.71 80.17 - - 51.53
HGRN 59.95 88.14 94.23 88.69 92.92 97.50 86.91

5 Conclusion

In this work, we have shown that gated linear RNNs could obtain impressive performance across
different tasks and modalities without compromising efficiency. We highlighted the significance of
the forget gate for linear RNNs in language modeling and emphasized the importance of an additive
lower bound on forget gate values for modeling long-term dependencies.

Acknowledgement

This work is partially supported by the National Key R&D Program of China (NO.2022ZD0160100).

Limitations and broader impact

Our empirical evaluation of HGRN remains on a smaller scale compared to other large-scale models.
Potentially negative social consequences include the misuse of brain models for unsuitable purposes
or applications, which must be prohibited by appropriate rules. In the era of large language models,
the inference cost is the key limitation of transformer-based models. RNNs provide a solution with
their lower inference costs. This could potentially lead to a significant evolution in the field.

10

References

[1] Hassan Akbari, Liangzhe Yuan, Rui Qian, Wei-Hong Chuang, Shih-Fu Chang, Yin Cui, and
Boqing Gong. Vatt: Transformers for multimodal self-supervised learning from raw video,
audio and text. arXiv preprint arXiv:2104.11178, 2021.

[2] Martín Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural net-
works. In Maria-Florina Balcan and Kilian Q. Weinberger, editors, Proceedings of the 33nd
International Conference on Machine Learning, ICML 2016, New York City, NY, USA, June
19-24, 2016, volume 48 of JMLR Workshop and Conference Proceedings, pages 1120–1128.
JMLR.org, 2016.

[3] Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, and Cordelia
Schmid. Vivit: A video vision transformer. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 6836–6846, 2021.

[4] David Balduzzi and Muhammad Ghifary. Strongly-typed recurrent neural networks. In Maria-
Florina Balcan and Kilian Q. Weinberger, editors, Proceedings of the 33nd International
Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016,
volume 48 of JMLR Workshop and Conference Proceedings, pages 1292–1300. JMLR.org,
2016.

[5] Shiyu Chang, Yang Zhang, Wei Han, Mo Yu, Xiaoxiao Guo, Wei Tan, Xiaodong Cui, Michael
Witbrock, Mark A. Hasegawa-Johnson, and Thomas S. Huang. Dilated recurrent neural
networks. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob
Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors, Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA, pages 77–87, 2017.

[6] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder–
decoder for statistical machine translation. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 1724–1734, Doha, Qatar, Oct. 2014.
Association for Computational Linguistics.

[7] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane,
Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking
attention with performers. arXiv preprint arXiv:2009.14794, 2020.

[8] Junyoung Chung, Sungjin Ahn, and Yoshua Bengio. Hierarchical multiscale recurrent neural
networks. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

[9] Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation
of gated recurrent neural networks on sequence modeling. CoRR, abs/1412.3555, 2014.

[10] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast
and memory-efficient exact attention with IO-awareness. In Advances in Neural Information
Processing Systems, 2022.

[11] Tri Dao, Daniel Y. Fu, Khaled Kamal Saab, Armin W. Thomas, Atri Rudra, and Christopher
Ré. Hungry hungry hippos: Towards language modeling with state space models. CoRR,
abs/2212.14052, 2022.

[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis,
Minnesota, June 2019. Association for Computational Linguistics.

[13] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[14] Daniel Y. Fu, Elliot L. Epstein, Eric Nguyen, Armin W. Thomas, Michael Zhang, Tri Dao, Atri
Rudra, and Christopher Ré. Simple hardware-efficient long convolutions for sequence modeling.
CoRR, abs/2302.06646, 2023.

[15] Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The Pile:
An 800gb dataset of diverse text for language modeling. arXiv preprint arXiv:2101.00027,
2020.

[16] Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, Jason Phang, Laria Reynolds, Eric

11

Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot language
model evaluation. Zenodo, Sept. 2021.

[17] Felix A. Gers, Jürgen Schmidhuber, and Fred A. Cummins. Learning to forget: Continual
prediction with LSTM. Neural Comput., 12(10):2451–2471, 2000.

[18] Yuan Gong, Yu-An Chung, and James Glass. AST: Audio Spectrogram Transformer. In Proc.
Interspeech 2021, pages 571–575, 2021.

[19] Klaus Greff, Rupesh Kumar Srivastava, Jan Koutník, Bas R. Steunebrink, and Jürgen Schmid-
huber. Lstm: A search space odyssey. IEEE Transactions on Neural Networks and Learning
Systems, 28:2222–2232, 2015.

[20] Albert Gu, Karan Goel, Ankit Gupta, and Christopher Ré. On the parameterization and
initialization of diagonal state space models. In NeurIPS, 2022.

[21] Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. In The Tenth International Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net, 2022.

[22] Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. In The International Conference on Learning Representations (ICLR), 2022.

[23] Albert Gu, Çaglar Gülçehre, Thomas Paine, Matt Hoffman, and Razvan Pascanu. Improving
the gating mechanism of recurrent neural networks. In Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of
Proceedings of Machine Learning Research, pages 3800–3809. PMLR, 2020.

[24] Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher
Ré. Combining recurrent, convolutional, and continuous-time models with linear state space
layers. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and
Jennifer Wortman Vaughan, editors, Advances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December
6-14, 2021, virtual, pages 572–585, 2021.

[25] Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré.
Combining recurrent, convolutional, and continuous-time models with linear state-space layers,
2021.

[26] Ankit Gupta, Albert Gu, and Jonathan Berant. Diagonal state spaces are as effective as structured
state spaces, 2022.

[27] Ankit Gupta, Harsh Mehta, and Jonathan Berant. Simplifying and understanding state space
models with diagonal linear rnns. CoRR, abs/2212.00768, 2022.

[28] Ramin Hasani, Mathias Lechner, Tsun-Hsuan Wang, Makram Chahine, Alexander Amini, and
Daniela Rus. Liquid structural state-space models. In The Eleventh International Conference
on Learning Representations, 2023.

[29] Hongyu He and Marko Kabic. A unified view of long-sequence models towards modeling
million-scale dependencies. CoRR, abs/2302.06218, 2023.

[30] Sepp Hochreiter and Yoshua Bengio. Gradient flow in recurrent nets: the difficulty of learning
long-term dependencies. 2001.

[31] Weizhe Hua, Zihang Dai, Hanxiao Liu, and Quoc V Le. Transformer quality in linear time.
arXiv preprint arXiv:2202.10447, 2022.

[32] Feiqing Huang, Kexin Lu, Yuxi CAI, Zhen Qin, Yanwen Fang, Guangjian Tian, and Guodong Li.
Encoding recurrence into transformers. In The Eleventh International Conference on Learning
Representations, 2023.

[33] J. Stuart Hunter. The exponentially weighted moving average. Journal of Quality Technology,
18:203–210, 1986.

[34] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers
are rnns: Fast autoregressive transformers with linear attention. In Proceedings of the 37th
International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event,
volume 119 of Proceedings of Machine Learning Research, pages 5156–5165. PMLR, 2020.

[35] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers
are rnns: Fast autoregressive transformers with linear attention. In International Conference on
Machine Learning, pages 5156–5165. PMLR, 2020.

[36] Guolin Ke, Di He, and Tie-Yan Liu. Rethinking positional encoding in language pre-training.
In International Conference on Learning Representations, 2021.

[37] Jan Koutník, Klaus Greff, Faustino J. Gomez, and Jürgen Schmidhuber. A clockwork RNN. In
Proceedings of the 31th International Conference on Machine Learning, ICML 2014, Beijing,
China, 21-26 June 2014, volume 32 of JMLR Workshop and Conference Proceedings, pages
1863–1871. JMLR.org, 2014.

12

[38] Quoc V. Le, Navdeep Jaitly, and Geoffrey E. Hinton. A simple way to initialize recurrent
networks of rectified linear units. ArXiv, abs/1504.00941, 2015.

[39] James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, and Santiago Ontanon. FNet: Mixing tokens
with Fourier transforms. In Proceedings of the 2022 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, pages
4296–4313, Seattle, United States, July 2022. Association for Computational Linguistics.

[40] Tao Lei, Yu Zhang, Sida I. Wang, Hui Dai, and Yoav Artzi. Simple recurrent units for highly
parallelizable recurrence. In Proceedings of the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 4470–4481, Brussels, Belgium, Oct.-Nov. 2018. Association
for Computational Linguistics.

[41] Yuhong Li, Tianle Cai, Yi Zhang, De huai Chen, and Debadeepta Dey. What makes convolu-
tional models great on long sequence modeling? ArXiv, abs/2210.09298, 2022.

[42] Hanxiao Liu, Zihang Dai, David So, and Quoc V Le. Pay attention to mlps. Advances in Neural
Information Processing Systems, 34:9204–9215, 2021.

[43] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

[44] Zexiang Liu, Dong Li, Kaiyue Lu, Zhen Qin, Weixuan Sun, Jiacheng Xu, and Yiran Zhong. Neu-
ral architecture search on efficient transformers and beyond. In arXiv preprint arXiv:2207.13955,
2022.

[45] Kaiyue Lu, Zexiang Liu, Jianyuan Wang, Weixuan Sun, Zhen Qin, Dong Li, Xuyang Shen, Hui
Deng, Xiaodong Han, Yuchao Dai, et al. Linear video transformer with feature fixation. arXiv
preprint arXiv:2210.08164, 2022.

[46] Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig, Jonathan
May, and Luke Zettlemoyer. Mega: Moving average equipped gated attention. CoRR,
abs/2209.10655, 2022.

[47] Huanru Henry Mao. Fine-tuning pre-trained transformers into decaying fast weights. In Pro-
ceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages
10236–10242, Abu Dhabi, United Arab Emirates, Dec. 2022. Association for Computational
Linguistics.

[48] Eric Martin and Chris Cundy. Parallelizing linear recurrent neural nets over sequence length. In
6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018.

[49] Harsh Mehta, Ankit Gupta, Ashok Cutkosky, and Behnam Neyshabur. Long range language
modeling via gated state spaces. CoRR, abs/2206.13947, 2022.

[50] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. 5th International Conference on Learning Representations, ICLR, Toulon, France,
2017.

[51] Yajie Miao, Mohammad Gowayyed, and Florian Metze. Eesen: End-to-end speech recognition
using deep rnn models and wfst-based decoding. In 2015 IEEE Workshop on Automatic Speech
Recognition and Understanding (ASRU), pages 167–174. IEEE, 2015.

[52] Antonio Orvieto, Soham De, Çaglar Gülçehre, Razvan Pascanu, and Samuel L. Smith. On the
universality of linear recurrences followed by nonlinear projections. CoRR, abs/2307.11888,
2023.

[53] Antonio Orvieto, Samuel L. Smith, Albert Gu, Anushan Fernando, Çaglar Gülçehre, Razvan
Pascanu, and Soham De. Resurrecting recurrent neural networks for long sequences. CoRR,
abs/2303.06349, 2023.

[54] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

[55] Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Huanqi Cao,
Xin Cheng, Michael Chung, Matteo Grella, Kranthi Kiran G. V., Xuzheng He, Haowen Hou,
Przemyslaw Kazienko, Jan Kocon, Jiaming Kong, Bartlomiej Koptyra, Hayden Lau, Krishna
Sri Ipsit Mantri, Ferdinand Mom, Atsushi Saito, Xiangru Tang, Bolun Wang, Johan S. Wind,
Stanislaw Wozniak, Ruichong Zhang, Zhenyuan Zhang, Qihang Zhao, Peng Zhou, Jian Zhu,
and Rui-Jie Zhu. RWKV: reinventing rnns for the transformer era. CoRR, abs/2305.13048,
2023.

[56] Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah A. Smith, and Lingpeng
Kong. Random feature attention. In 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

13

[57] Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y. Fu, Tri Dao, Stephen Baccus, Yoshua
Bengio, Stefano Ermon, and Christopher Ré. Hyena hierarchy: Towards larger convolutional
language models. CoRR, abs/2302.10866, 2023.

[58] Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y Fu, Tri Dao, Stephen Baccus, Yoshua
Bengio, Stefano Ermon, and Christopher Ré. Hyena hierarchy: Towards larger convolutional
language models. arXiv preprint arXiv:2302.10866, 2023.

[59] Zhen Qin, Xiaodong Han, Weixuan Sun, Bowen He, Dong Li, Dongxu Li, Yuchao Dai, Lingpeng
Kong, and Yiran Zhong. Toeplitz neural network for sequence modeling. In The Eleventh
International Conference on Learning Representations (ICLR), 2023.

[60] Zhen Qin, Xiaodong Han, Weixuan Sun, Dongxu Li, Lingpeng Kong, Nick Barnes, and Yiran
Zhong. The devil in linear transformer. In Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, pages 7025–7041, Abu Dhabi, United Arab Emirates,
Dec. 2022. Association for Computational Linguistics.

[61] Zhen Qin, Dong Li, Weigao Sun, Weixuan Sun, Xuyang Shen, Xiaodong Han, Yunshen Wei,
Baohong Lv, Fei Yuan, Xiao Luo, Yu Qiao, and Yiran Zhong. Scaling transnormer to 175
billion parameters. arXiv, 2023.

[62] Zhen Qin, Weixuan Sun, Hui Deng, Dongxu Li, Yunshen Wei, Baohong Lv, Junjie Yan,
Lingpeng Kong, and Yiran Zhong. cosformer: Rethinking softmax in attention. In ICLR, 2022.

[63] Zhen Qin, Weixuan Sun, Kaiyue Lu, Hui Deng, Dongxu Li, Xiaodong Han, Yuchao Dai,
Lingpeng Kong, and Yiran Zhong. Linearized relative positional encoding. Transactions on
Machine Learning Research, 2023.

[64] Zhen Qin and Yiran Zhong. Accelerating toeplitz neural network with constant-time inference
complexity. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, Dec. 2023.

[65] Afan Galih Salman, Bayu Kanigoro, and Yaya Heryadi. Weather forecasting using deep learning
techniques. In 2015 international conference on advanced computer science and information
systems (ICACSIS), pages 281–285. Ieee, 2015.

[66] Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers are secretly fast
weight programmers. In International Conference on Machine Learning, 2021.

[67] Jürgen Schmidhuber. Learning to control fast-weight memories: An alternative to dynamic
recurrent networks. Neural Computation, 4:131–139, 1992.

[68] Sreelekshmy Selvin, R Vinayakumar, EA Gopalakrishnan, Vijay Krishna Menon, and KP
Soman. Stock price prediction using lstm, rnn and cnn-sliding window model. In 2017
international conference on advances in computing, communications and informatics (icacci),
pages 1643–1647. IEEE, 2017.

[69] Noam Shazeer. GLU variants improve transformer. CoRR, abs/2002.05202, 2020.
[70] Yikang Shen, Shawn Tan, Alessandro Sordoni, and Aaron C. Courville. Ordered neurons:

Integrating tree structures into recurrent neural networks. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net,
2019.

[71] Jimmy T. H. Smith, Andrew Warrington, and Scott W. Linderman. Simplified state space layers
for sequence modeling. CoRR, abs/2208.04933, 2022.

[72] Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng Liu. Roformer: Enhanced transformer
with rotary position embedding. CoRR, abs/2104.09864, 2021.

[73] Jingyu Sun, Guiping Zhong, Dinghao Zhou, Baoxiang Li, and Yiran Zhong. Locality mat-
ters: A locality-biased linear attention for automatic speech recognition. arXiv preprint
arXiv:2203.15609, 2022.

[74] Weixuan Sun, Zhen Qin, Hui Deng, Jianyuan Wang, Yi Zhang, Kaihao Zhang, Nick Barnes, Stan
Birchfield, Lingpeng Kong, and Yiran Zhong. Vicinity vision transformer. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 45(10):12635–12649, 2023.

[75] Corentin Tallec and Yann Ollivier. Can recurrent neural networks warp time? In 6th Interna-
tional Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 -
May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018.

[76] Yi Tay, Dara Bahri, Donald Metzler, Da-Cheng Juan, Zhe Zhao, and Che Zheng. Synthesizer:
Rethinking self-attention for transformer models. In International conference on machine
learning, pages 10183–10192. PMLR, 2021.

[77] Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena: A benchmark for efficient
transformers. In International Conference on Learning Representations, 2020.

[78] Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena : A benchmark for efficient

14

transformers. In 9th International Conference on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

[79] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Herve Jegou. Training data-efficient image transformers & distillation through attention.
In International Conference on Machine Learning, volume 139, pages 10347–10357, July 2021.

[80] Jos van der Westhuizen and Joan Lasenby. The unreasonable effectiveness of the forget gate.
CoRR, abs/1804.04849, 2018.

[81] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[82] Junxiong Wang, Jing Nathan Yan, Albert Gu, and Alexander M. Rush. Pretraining without
attention. CoRR, abs/2212.10544, 2022.

[83] Weihao Yu, Mi Luo, Pan Zhou, Chenyang Si, Yichen Zhou, Xinchao Wang, Jiashi Feng, and
Shuicheng Yan. Metaformer is actually what you need for vision. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24,
2022, pages 10809–10819. IEEE, 2022.

[84] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai
Zhang. Informer: Beyond efficient transformer for long sequence time-series forecasting. In
Proceedings of the AAAI conference on artificial intelligence, volume 35, pages 11106–11115,
2021.

[85] Chen Zhu, Wei Ping, Chaowei Xiao, Mohammad Shoeybi, Tom Goldstein, Anima Anandkumar,
and Bryan Catanzaro. Long-short transformer: Efficient transformers for language and vision.
In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural
Information Processing Systems, 2021.

15

6 Appendix

In this appendix, we examine the extrapolation ability of HGRN and provide the training and
inference speed comparison of HGRN and existing efficient sequence modeling methods. We also
illustrate the forget rates of each layer on a trained language model of HGRN.

We also report the extrapolation ability of HGRN compared to previous methods in Table 14.

6.1 Extrapolation test

In this section, we tested HGRN ’s extrapolation ability by directly inferring the model with a variety
of sequence lengths. As shown in Table 14, our method has the ability to train short and test long.

6.2 Speed comparison

In this section, we benchmark the speed of our method on the LRA benchmark. Our method achieves
state-of-the-art training and inference speed.

6.3 Visualization

In this section, we visualize the forget rates of each layer on a model trained on language modeling
tasks.

6.4 Configurations

We list detailed hyper-parameters of our experiments here.

16

Figure 3: Visualization forget rates in each layer.

(i) With lower bound

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Forget rate

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

Pe
rc

en
t

Layer 1

(ii) Without lower bound

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Forget rate

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5

Pe
rc

en
t

Layer 1

(iii) LRU

0.6 0.7 0.8 0.9 1.0
Forget rate

0

2

4

6

8

10

Pe
rc

en
t

Layer 1

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Forget rate

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5

Pe
rc

en
t

Layer 2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Forget rate

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5

Pe
rc

en
t

Layer 2

0.650.700.750.800.850.900.951.00
Forget rate

0

2

4

6

8

Pe
rc

en
t

Layer 2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Forget rate

0
2
4
6
8

10
12
14
16

Pe
rc

en
t

Layer 3

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Forget rate

0
2
4
6
8

10
12
14
16

Pe
rc

en
t

Layer 3

0.600.650.700.750.800.850.900.951.00
Forget rate

0

2

4

6

8

10

Pe
rc

en
t

Layer 3

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Forget rate

0
2
4
6
8

10
12

Pe
rc

en
t

Layer 4

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Forget rate

0
2
4
6
8

10
12
14
16

Pe
rc

en
t

Layer 4

0.6 0.7 0.8 0.9 1.0
Forget rate

0
1
2
3
4
5
6
7
8

Pe
rc

en
t

Layer 4

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Forget rate

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5

Pe
rc

en
t

Layer 5

0.2 0.4 0.6 0.8 1.0
Forget rate

0

2

4

6

8

10

Pe
rc

en
t

Layer 5

0.6 0.7 0.8 0.9 1.0
Forget rate

0

2

4

6

8

Pe
rc

en
t

Layer 5

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Forget rate

0

10

20

30

40

50

Pe
rc

en
t

Layer 6

0.0 0.2 0.4 0.6 0.8 1.0
Forget rate

0
2
4
6
8

10
12
14
16

Pe
rc

en
t

Layer 6

0.6 0.7 0.8 0.9 1.0
Forget rate

0

2

4

6

8

Pe
rc

en
t

Layer 6

17

Figure 4: Visualization of token mixing matrix in each layer.

(i) Layer 1 (ii) Layer 1 (iii) Layer 2

(iv) Layer 4 (v) Layer 5 (vi) Layer 6

18

Ta
bl

e
14

:T
he

ex
tr

ap
ol

at
io

n
pe

rf
or

m
an

ce
of

co
m

pe
tin

g
m

et
ho

ds
.T

he
be

st
re

su
lt

is
hi

gh
lig

ht
ed

in
bo

ld
an

d
th

e
se

co
nd

in
un

de
rl

in
e.
↓

m
ea

ns
lo

w
er

is
be

tte
r.

Se
ql

en
Tr

an
sf

or
m

er
PP

L
↓

L
S

PP
L
↓

FL
A

SH
PP

L
↓

1+
el

u
PP

L
↓

Pe
rf

or
m

er
PP

L
↓

co
sF

or
m

er
PP

L
↓

gM
L

P
PP

L
↓

S4 PP
L
↓

D
SS

PP
L
↓

G
SS

PP
L
↓

A
L

iB
i

PP
L
↓

T
N

N
PP

L
↓

L
R

U
PP

L
↓

H
G

R
U

PP
L
↓

51
2

24
.7

8
24

.0
5

24
.6

9
28

.0
5

63
.1

6
27

.0
6

29
.1

3
30

.7
4

41
.0

7
39

.6
6

24
.1

5
24

.6
7

31
.1

2
24

.8
5

76
8

41
.3

6
23

.4
9

16
95

0.
45

47
.3

5
15

9.
74

32
.9

0
1.

34
E

+9
30

.4
1

40
.5

0
39

.7
6

23
.3

8
24

.2
5

30
.7

2
24

.4
10

24
62

.3
5

23
.2

1
17

41
65

.4
7

70
.4

7
50

4.
30

55
.2

8
8.

93
E

+1
2

30
.2

4
40

.2
2

39
.9

1
22

.9
8

24
.0

5
30

.5
24

.1
6

12
80

82
.5

2
23

.0
7

34
65

02
.8

8
91

.8
8

10
20

.2
8

10
2.

88
1.

58
E

+1
5

30
.1

5
40

.0
3

40
.8

2
22

.7
4

23
.9

1
30

.3
8

24
.0

3
15

36
10

0.
17

22
.9

7
64

77
88

.1
2

11
1.

56
15

68
.8

3
17

5.
26

4.
96

E
+1

6
30

.0
8

39
.9

4
41

.0
4

22
.5

7
23

.8
3

30
.3

23
.9

4
17

92
11

8.
42

22
.9

7
17

19
87

3.
5

12
9.

92
21

38
.5

0
26

7.
65

5.
67

E
+1

7
30

.0
4

39
.8

5
41

.0
8

22
.5

2
23

.7
9

30
.2

4
23

.8
8

20
48

13
3.

44
22

.9
9

6.
25

E
+6

14
7.

09
26

93
.8

9
36

8.
02

3.
59

E
+1

8
30

.0
0

39
.7

9
41

.5
3

22
.4

3
23

.7
3

30
.1

9
23

.8
2

30
72

18
8.

95
23

.2
5

4.
17

E
+1

0
20

6.
88

49
45

.8
2

82
0.

77
2.

19
E

+2
0

29
.9

1
39

.6
4

44
.0

8
22

.2
4

23
.6

3
30

.0
9

23
.7

1
40

96
24

6.
06

23
.8

3
2.

67
E

+1
3

26
7.

87
71

70
.9

1
13

35
.5

1
1.

61
E

+2
1

29
.8

8
39

.5
9

48
.2

7
22

.1
7

23
.5

8
30

.0
4

23
.6

6
51

20
27

0.
93

24
.5

6
1.

26
E

+1
5

29
9.

31
84

43
.1

5
17

35
.5

0
5.

08
E

+2
1

29
.8

5
39

.5
4

53
.3

2
22

.1
1

23
.5

4
30

.0
1

23
.6

2
61

44
31

1.
65

25
.4

5
1.

58
E

+1
6

35
2.

62
10

23
4.

07
21

46
.1

9
1.

16
E

+2
2

29
.8

3
39

.5
1

57
.7

3
22

.0
8

23
.5

3
29

.9
9

23
.6

71
68

34
6.

58
26

.4
2

8.
11

E
+1

6
38

9.
02

11
42

0.
56

24
94

.7
9

1.
98

E
+2

2
29

.8
2

39
.4

9
60

.2
5

22
.0

7
23

.5
1

29
.9

7
23

.5
8

81
92

37
2.

18
27

.1
1

3.
40

E
+1

7
41

1.
50

12
55

7.
09

29
02

.2
4

2.
78

E
+2

2
29

.8
2

39
.4

9
63

.3
6

22
.0

5
23

.5
1

29
.9

7
23

.5
8

92
16

38
7.

29
28

.7
8

1.
22

E
+1

8
45

3.
27

14
84

7.
66

30
28

.7
2

3.
93

E
+2

2
29

.8
0

39
.4

6
74

.9
2

22
.0

3
23

.4
9

29
.9

6
23

.5
6

10
24

0
39

5.
94

30
.1

3
4.

03
E

+1
8

45
7.

06
13

62
3.

83
32

47
.8

3
4.

93
E

+2
2

29
.7

9
39

.4
5

81
.8

7
22

.0
2

23
.4

8
29

.9
4

23
.5

5
11

26
4

42
6.

54
31

.1
4

1.
07

E
+1

9
50

4.
19

14
66

1.
77

33
41

.9
1

5.
70

E
+2

2
29

.7
9

39
.4

6
87

.6
7

22
.0

0
23

.4
8

29
.9

4
23

.5
5

12
28

8
46

3.
50

33
.2

1
2.

52
E

+1
9

55
5.

38
17

95
9.

85
36

44
.8

1
7.

18
E

+2
2

29
.7

9
39

.4
4

92
.1

1
22

.0
0

23
.4

8
29

.9
4

23
.5

5
13

31
2

50
6.

35
34

.7
2

4.
96

E
+1

9
58

4.
01

20
02

6.
35

38
51

.7
0

8.
04

E
+2

2
29

.7
8

39
.4

3
96

.0
0

22
.0

0
23

.4
7

29
.9

3
23

.5
4

14
33

6
48

6.
86

36
.0

5
1.

28
E

+2
0

58
9.

83
20

97
1.

31
39

51
.2

6
9.

41
E

+2
2

29
.7

8
39

.4
3

10
1.

47
21

.9
9

23
.4

6
29

.9
2

23
.5

3
A

vg
26

1.
36

26
.7

1
1.

16
E

+1
9

29
9.

86
86

84
.7

9
17

64
.7

5
2.

41
E

+2
2

29
.9

7
39

.7
5

60
.2

6
22

.4
0

23
.7

0
30

.1
7

23
.8

0

19

Table 15: Speed comparison on LRA benchmark. The 1K,...,5K represent the input sequence length.
We mark it with - if a method is out of memory. The higher the better for all metrics.

Train Speed(steps per second)↑ Inference Speed(steps per second)↑
Method 1K 2K 3K 4K 5K 1K 2K 3K 4K 5K
Transformer [81] 13.58 4.84 - - - 23.67 8.22 - - -
Performer [36] 18.40 10.77 7.66 6.30 5.64 30.04 17.36 12.80 10.55 9.52
LS [85] 20.29 11.24 8.05 6.51 5.89 39.05 21.11 15.02 12.6 11.66
Fnet [39] 25.19 15.62 11.24 9.41 8.18 48.81 27.89 19.52 16.27 14.46
cosFormer [62] 22.00 12.80 9.47 7.93 7.13 39.05 22.31 16.62 13.95 12.60
S4 [21] 13.13 7.33 4.91 3.84 3.04 30.04 16.27 10.85 8.58 6.79
FLASH [31] 17.36 9.03 6.54 5.19 4.68 30.04 15.94 11.32 9.19 8.40
TNN [59] 17.55 9.89 6.79 5.68 4.54 33.96 17.75 12.40 10.28 8.22
HGRU 22.31 13.58 9.52 7.40 7.44 43.39 25.19 16.62 14.20 13.95

Table 16: Detailed training configurations used in our experiments. “Total batch size” means
batch_per_gpu× update_freq× num_gpus. “ALM” stands for Autoregressive Language Model.
“IM” stands for Image Modeling.

AML IM
Data WikiText-103 ImageNet-1k
Tokenizer method BPE -
Src Vocab size 50265 -
Sequence length 512 -
Total batch size 128 2048
Number of updates/epochs 50k updates 300 epochs
Warmup steps/epochs 4k steps 5 epochs
Peak learning rate 5e-4 2.5e-4
Learning rate scheduler Inverse sqrt cosine
Optimizer Adam Adamw
Adam ϵ 1e-8 1e-8
Adam (β1, β2) (0.9, 0.98) (0.9, 0.98)
Weight decay 0.2 0.1
Gradient clipping - 1.0

20

	Introduction
	Related work
	Method
	Architecture overview
	HGRU exploration
	Token mixing perspective of HGRU

	Experiments
	Setting
	Results
	Ablation Study
	Analysis on forget gate values

	Conclusion
	Appendix
	Extrapolation test
	Speed comparison
	Visualization
	Configurations

