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Abstract

Transformers have surpassed RNNs in popularity due to their superior abilities in
parallel training and long-term dependency modeling. Recently, there has been
a renewed interest in using linear RNNs for efficient sequence modeling. These
linear RNNs often employ gating mechanisms in the output of the linear recurrence
layer while ignoring the significance of using forget gates within the recurrence.
In this paper, we propose a gated linear RNN model dubbed Hierarchically Gated
Recurrent Neural Network (HGRN), which includes forget gates that are lower
bounded by a learnable value. The lower bound increases monotonically when
moving up layers. This allows the upper layers to model long-term dependencies
and the lower layers to model more local, short-term dependencies. Experiments
on language modeling, image classification, and long-range arena benchmarks
showcase the efficiency and effectiveness of our proposed model. The source code
is available at https://github.com/OpenNLPLab/HGRN.

1 Introduction

Sequence modeling is a fundamental problem in various domains such as natural language pro-
cessing [12, 43, 44, 61, 64], time series analysis [84], computer vision [3, 13, 45, 74], and audio
processing [1, 18, 73]. Prior to the invention of Transformers [81], RNN and its variants were the
primary selections of architectures for sequence modeling, and have been widely used in machine
translation [6], stock price prediction [68], weather forecasting [65], speech recognition [51], and etc.

RNNs have two main drawbacks: slow sequential training and limited capability in modeling long-
term dependencies. With the swift development of deep learning and the pervasive use of GPUs,
these drawbacks prevent it from flourishing in modern long-sequence modeling tasks. Meanwhile,
Transformers [81] have rapidly gained popularity and now dominate various research areas in
sequence modeling due to their better abilities in parallel training and long-term dependency modeling.
However, Transformer’s quadratic time complexity makes long sequence modeling expensive. On the
other hand, RNN offers linear complexity and serves as an ideal choice for long sequence modeling.
This works aim to addressing these RNN drawbacks, revitalizing their applicability in long-sequence
modeling tasks.

To address the training inefficiency problem, we turn to more efficient RNN variants that employ
element-wise linear recurrence (ELR) relations [48]. ELR provides two main advantages: (i)
By removing nonlinearities in the recurrence, it enables parallelized training. (ii) By assuming
independence between distinct hidden states, it enables efficient hidden state updates (through
element-wise product instead of matrix multiplication) [20, 40]. Notably, ELR has been used in many
modern linear RNN models, including the diagonalized versions of structured state-space models
[21] (S4) [20, 26, 71] and RWKV [55]. In recent advancements, numerous studies have incorporated
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gating mechanisms into the outputs of linear recurrence layers [11, 46, 49, 55, 82], similar to the
output gates in LSTMs and leading to considerable performance gains. However, most current studies
overlook the significance of the forget gate, which is often regarded as the most important gate in
LSTMs [19, 80]. In this work, we underscore the importance of employing forget gates in linear
RNNs and adopt gated linear RNNs for both efficiency and high performance.

To effectively capture long-term dependencies in gated RNNs, it is crucial to maintain high forget
gate values close to one [23]. However, gates in saturated regimes (i.e., close to zero or one) suffer
from the gradient vanishing issue [23]. Moreover, if all forget gate values are close to one, RNNs
will not be able to effectively forget irrelevant information, compromising their ability to model
short-term dependencies. To address these challenges, we introduce Hierarchically Gated Recurrent
Units(HGRU). In HGRU, we add an additive learnable value, referred to as the lower bound, to
the original forget gate value, effectively mitigating the issue of saturated gates [23] by pushing
gate activations away from the saturated regimes. Furthermore, we design the lower bounds to
increase monotonically as we move up the layers of the RNN. This ensures that the forget gate values
in the lower layers remain relatively small, enabling the necessary forgetting of past information
for modeling short-term dependencies. In contrast, in the uppermost layer, the forget gate values
approach one, facilitating the effective modeling of long-term dependencies. Our proposed model
has proven to be highly efficient and effective, as demonstrated by its outstanding performance in
language modeling, image classification, and long-range arena benchmarks.

2 Related work

Efficient token mixing for sequence modeling. [83] abstracts self-attention (SA) as token mixing,
thereby transforming the Transformer architecture into MetaFormer. MetaFormer comprises essential
components such as token mixer, channel mixer, residual connections, and LayerNorm. This
abstraction highlights that the success of Transformers does not solely rely on SA but rather on
the holistic integration of these components. Notably, token mixers can be replaced with simpler
alternatives like pooling layers without compromising the model’s performance in the context of
vision transformer. For sequence modeling tasks, [29] provides a comprehensive analysis and
discussion of different token mixing strategies. Two prominent contenders, long convolution and
linear recurrence, show promise as replacements for SA modules in long sequence modeling due
to their superior asymptotic time complexity and competitive performances. In long convolution
models [14, 41, 57, 59], the kernel size matches the input sequence length, enabling a broader context
compared to traditional convolutions. Training is accomplished using the efficient O(n log n) fast
Fourier transforms (FFT) algorithm. However, long convolutions face challenges such as the need
for causal convolution inference, which requires caching all historical computations similar to the
key-value (KV) cache in SA. This can lead to memory limitations when processing long sequences.
Moreover, the inference complexity of long convolutions remains higher than that of RNNs. These
factors make linear RNNs a more suitable alternative to replace SA in long-sequence modeling.
TransNormerLLM [61] scales efficient token mixing in large language models to achieve competitive
performance and superior training and inference efficiency compared to transformer-based models.

Element-wise linear recurrence. The slower training speeds of traditional RNNs can be attributed
to two main factors: (i) The updating of the hidden state involves full matrix multiplication. (ii)
The presence of nonlinearity within the recurrence prevents parallel computation. To tackle the first
issue, [40] introduced a simplified interaction between hidden states. This allowed the hidden state
update to be performed using an element-wise product instead of full matrix multiplication. They
demonstrated that this approach is notably fast when the (nonlinear) recurrence for each dimension
is fused within a single CUDA kernel. Likewise, for the linear case, diagonalized versions of S4
[20, 26] have also exhibited speed improvements over S4 by leveraging element-wise recurrence.
Regarding the second challenge, the ability to capture nonlinear dependencies on past data can be
achieved by stacking multiple linear recurrence layers interleaved with nonlinear MLP blocks. This
indicates the potential to eliminate nonlinearity, as suggested by [4, 25, 48]. Empirical support for
this strategy’s effectiveness came later, as demonstrated by [11, 20, 24, 53, 55, 71]. [52] further
highlighted that such an architecture still possesses Universal Approximator properties, thus justifying
the employment of linear recurrence. By excluding nonlinearity, [48, 71] showed that the parallel
scan algorithm can be used for parallel training.
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Linear recurrence can be broadly categorized into exponential moving averages (EMA) and gating
schemes, as noted by [48]. The key difference is whether the decay rate is data-dependent. Models
such as S4 [21], S4D [20], MEGA [46], RWKV [55], and LRU [53] utilize the EMA approach,
where the decay rate is static for all time steps (i.e., data-independent), while our model uses a data-
dependent dynamic decay rate through the use of the forget gate. We remark on the importance of
incorporating a data-dependent decay rate, which is largely ignored by current works in linear RNNs.
Although liquid S4 [28] uses a dynamic transition matrix (which amounts to a data-dependent decay
rate), it employs a limited form for FFT-based training. Our model does not have the convolutional
view and thus cannot use FFT for training but allows the use of parallel scan.

The field of linear Transformers and linear RNNs exhibits a close relationship. [34] shows that linear
Transformers can be reformulated as RNNs during auto-regressive decoding, revealing similarities
to the update rules observed in fast weight additive outer products [66, 67]. These updates can be
seen as a special case of element-wise linear recurrence, where forget gate values are consistently
set to one across time and hidden states are two-dimensional. However, this formulation in linear
Transformers lacks the ability to forget irrelevant information, resulting in the attention dilution issue
[60]. To address this limitation, [66] introduced the delta rule to forget values associated with the
current write key by removing the corresponding value before adding the new value. Alternatively,
[47, 56] proposed gating mechanisms similar to those in gated RNNs to facilitate the forgetting of
irrelevant information.

Long-term dependencies in RNNs. RNNs fall short in long-term dependency modeling, which is
commonly attributed to the gradient vanishing issue. Three methods are typically applied to mitigate
this issue. (i) Gating mechanisms [9, 17, 23, 30, 70], which are believed to be crucial to the success of
LSTMs, use additive (instead of multiplicative) hidden state update rules to improve gradient flow. (ii)
Regularizing or initializing the eigenvalues of the recurrent weight matrix (close) to one via identity
matrices [38] or unitary matrices [2]. In the diagonal linear RNN case, the eigenvalues coincide with
the element-wise decay rates, and LRU [53] uses randomized linear algebra techniques to initialize
eigenvalues to be close to one. [53] also interestingly points out that many modern state-space models
use a very small time step value on initialization for discretization, resulting in eigenvalues or decay
rates close to one. (iii) Adding skip connections between distant time steps to allow shortcuts for
gradient flow [5, 8, 37].Our approach combines (i) and (ii), which improves gating mechanisms with
a regularized dynamic decay rate that approaches one in the upper layer.

3 Method

3.1 Architecture overview

Our proposed Hierarchically Gated Recurrent Network (HGRN) is depicted in Figure 1. It has
multiple stacked layers, each of which consists of a token mixing module HGRU and a channel
mixing module GLU (Gated Linear Unit [69]).

3.2 HGRU exploration

Algorithm 1 Recurrent Computing

1: Input: ct ∈ C1×d, µt, θ, γ
k ∈

R1×d, t = 1, . . . , n, k = 1, . . . ,H.
2: Init: h = 0 ∈ C1×d,H ∈ Cn×d.
3: for t = 1 to n do
4: begin
5: λt = γk + (1− γk)⊙ µt.
6: h = λt exp(iθ)h+ (1− λt)ct.
7: [H]t = h.
8: end
9: return H.

We begin with a simple gated linear recurrent layer, which
is defined as:

ft = Sigmoid (xtWf + bf ) ∈ R1×d,

it = Sigmoid (xtWi + bi) ∈ R1×d,

ct = SiLU (xtWt + bz) ∈ R1×d,

ht = ft ⊙ ht−1 + it ⊙ ct ∈ R1×d,

h0 = 0 ∈ R1×d,

(1)

where ⊙ denotes the element-wise product. Following the
terminology used in the RNN literature, we refer to ft and
it as the forget and input gates, respectively. It is worth
noting that ft and it depend only on xt and not on ht−1.
This characteristic enables the use of the parallel scan algorithm [48, 71], otherwise it is infeasible.
We then make the following changes toward our final HGRU step by step.
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Figure 1: Illustration of the neural architecture. Each HGRN layer consists of a token mixer
HGRU and a channel mixer GLU. HGRU employs linear recurrence in the complex domain:
ht = λt ⊙ exp(iθ)⊙ ht−1 + (1− λt)⊙ ct. Here ct is the input vector, θ is the rotation angle, µt is
the output of the original forget gate, γk is the lower bound of the kth layer, λ is the resulting data
dependent decay rate: λt = γk + (1− γk)⊙ µt.

Complex-valued recurrence. For linear RNNs with static decay rates, it is common to perform
eigendecompositions on the recurrent weight matrix to achieve element-wise linear recurrence.
However, if only real-valued eigenvalues are allowed, it restricts the range of the recurrent weight
matrix to be symmetric, limiting the model’s expressiveness. To overcome this limitation, linear
RNNs often employ complex-valued eigenvalues to enhance the model’s expressive power [20, 26,
27, 32, 53]. Motivated by this, we extend our model to consider ht, it, ct ∈ C1×d as complex values.
For the input ct, we parameterize its real and imaginary parts separately as follows:

Re(ct) = SiLU (xtWcr + bcr) ∈ R1×d,

Im(ct) = SiLU (xtWci + bci) ∈ R1×d.

Regarding the forget gate values, we find it convenient to use the exponential representation of
complex numbers and parameterize ft as follows: ft = λt ⊙ exp(iθt). Here, i2 = −1, λt, θt ∈ Rd

and exp(iθt) = cos θt+sin θti. The magnitude argument λt determines the intensity of remembering
historical information, while the phase argument θt determines the oscillation frequencies. We find
that parameterizing θt in a data-independent manner is preferable, as it allows for a clear interpretation
of encoding relative position information (see next subsection for more discussions) , which is
reminiscent of Rotary Positional Embedding (RoPE) [72]. We shared θ arcoss times steps, i.e.,
ft = λt ⊙ exp(iθ), initialize θ as RoPE does, but make it learnable like LRPE [63].

Lower bound on forget gate values. Since the intensity of remembering information is only related
to the magnitude argument λt, we focus on how to add a lower bound to λt. As mentioned earlier, we
want to set a monotonically increasing lower bound on the forget gate (magnitude) values. Inspired by
ON-LSTM [70], we employ the cummax activation function to achieve this. Concretely, we allocate
Γ ∈ RH×d to parameterize lower bounds independently for all hidden states, where H is the number
of layer. Assuming the layer index is k, we have the following calculations:

P = (Softmax(Γ,dim = 0) ∈ RH×d,

γk = [Cumsum(P,dim = 0)]k ∈ R1×d.

Here we define [Cumsum(x)]k = (
∑k

i=1 xi)− x1 to prevent the highest layer’s lower bound from
being one as we still want the ability to forget irrelevant information.

We remark that there is a difference in the use of cummax between our model and ON-LSTM. In
ON-LSTM, cummax is applied to the hidden state dimension within a single layer, while in our case,
we apply cummax on the layer dimension across different layers to enable upper layers to model
long-range dependencies.
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Finally, λt in the k-th layer is parameterized as follows:

µt = Sigmoid (xtWµ + bµ) ∈ R1×d,

λt = γk + (1− γk)⊙ µt ∈ R1×d.

Comparing to before (i.e., without lower bounds), to achieve the same forget rate value γ̄ closed to
one, µt will be pushed away from the Sigmoid activation function’s saturated regions (i.e., near one),

µt =
γ̄ − γk

1− γk
< γ̄,

thereby mitigating the gradient vanishing issue [23] and making gradient-based optimization easier.

Tying input and forget gates. To reduce the number of parameters, it is common to use leaky units,
i.e., tying the input gate with the forget gate using it = 1− ft, which has a close relationship to the
discretization of continuous-time system [75] and exponential moving average [33], and has been
proven effective empirically [9, 19]. To allows for a clear interpretation of encoding relative position
information, we only apply this strategy on the magnitude argument:

ht = λt ⊙ exp(iθ)⊙ ht−1 + (1− λt)⊙ ct ∈ C1×d. (2)

Output gates and projection. The addition of gates to the output of the recurrence layer has been
shown to be effective in state-space models [11, 46, 49, 82]. Motivated by this, we incorporate an
output gate before performing the output projection as follows and get HGRU:

gt = Sigmoid(Wgxt + bg) ∈ R1×2d,

o′
t = LayerNorm(gt ⊙ [Re(ht), Im(ht)]) ∈ R1×2d,

ot = o′
tWo + bo ∈ R1×d.

(3)

3.3 Token mixing perspective of HGRU

We provide the token mixing perspective of HGRU similar to [32]. Expanding Equation 2, we have:

ht =

t∑
s=1

(1− λs)

[
t∏

k=s+1

λk exp(iθ)

]
cs =

t∑
s=1

(1− λs)

[
t∏

k=s+1

λk

]
exp(i(t− s)θ)cs (4)

Written in matrix form, we have:

H =


h1

...

...
hn

 ,A =


1− λ1 0 · · · 0

(1− λ1)λ2 exp(iθ) 1− λ2

...
...

...
. . . 0

(1− λ1) [
∏n

s=2 λk] exp(i(n− 1)θ) . . . . . . 1− λn

 ,C =


c1
...
...
cn


(5)

So the token mixing module can be formed as follows:
H = AC. (6)

Note that the token mixing matrix A can be decomposed into two parts A = Λ⊙Θ:

Λ =


1− λ1 0 · · · 0

(1− λ1)λ2 1− λ2

...
...

...
. . . 0

(1− λ1) [
∏n

s=2 λk] . . . . . . 1− λn

 ,Θ =


1 0 · · · 0

exp(iθ) 1
...

...
...

. . . 0
exp(i(n− 1)θ) . . . . . . 1

 (7)

This decomposition means that the Token mixing matrix Λ can be decoupled into two independent
modules, where Λ models the long-distance dependency and Θ, a Toeplitz matrix, models the relative
positional relationship and enhanced expressiveness. Note that if Θ depends on the input, then the
matrix Λ will no longer be a Toeplitz matrix, thus unable to capture relative position information. It
can be also viewed as a RoPE-enhanced attention mechanism: Λ corresponds to the attention matrix
but the attention score here is the cumulative product of data-dependent decay rates; Θ directly
corresponds to RoPE.
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Table 1: Results on Wikitext-103 (TNN[59]’s setting). ↓ means lower is better.

Model PPL
(val)↓

PPL
(test)↓

Params
(M)

Attn-based
Transformer [81] 24.40 24.78 44.65
FLASH [10] 25.92 26.70 42.17
1+elu [35] 27.44 28.05 44.65
Performer [7] 62.50 63.16 44.65
cosFormer [62] 26.53 27.06 44.65
MLP-based
Syn(D) [76] 31.31 32.43 46.75
Syn(R) [76] 33.68 34.78 44.65
gMLP[42] 28.08 29.13 47.83
RNN-based
S4 [22] 38.34 39.66 45.69
DSS [26] 39.39 41.07 45.73
GSS [49] 29.61 30.74 43.84
RWKV [55] 24.31 25.07 46.23
LRU [53] 29.86 31.12 46.24
FFT-based
TNN [59] 23.98 24.67 48.68
Ours
HGRN 24.14 24.82 46.25

4 Experiments

We conduct a comparative analysis between our proposed HGRN and four widely adopted sequence
modeling structures, i.e., attention-based, MLP-based, FFT-based, and state-space-based. We evaluate
HGRN on the WikiText-103 dataset [50] and the Pile [15] dataset for autoregressive language
modeling, as well as the length extrapolation ability. To assess the accuracy and efficiency of our
model in handling long-term dependencies, we utilize the LRA benchmark [78]. Additionally, we
showcase the robustness of HGRN in computer vision task on the ImageNet-1k dataset.

4.1 Setting

We implement our models in Pytorch [54] and train them on 8 Nvidia A100 GPUs. For HGRN,
we found that fusing element-wise recurrence into a single CUDA kernel results in fast running
speed in practice. [48] also found that unless the sequence length is sufficiently large, the parallel
scan’s implementation is not necessarily faster than the sequential scan. As such, we use a CUDA-
based sequential scan for implementation; however, our model has the potential to model very long
sequences through the use of a parallel scan.

We adopt the same training configuration for all competitors, including batch size, learning rate,
training epochs or iterations, etc. We list detailed hyper-parameters in the Appendix. For the
autoregressive language modeling, we conducted three sets of experiments. Firstly, we validated
the performance of two different-scale models on the Wikitext-103 dataset. We used the TNN
configuration to verify the performance of the model at around 44m, and the Hyena configuration to
verify the performance of the model at around 125m. To evaluate the performance of larger-scale
models, we trained a 1b Transformer and HGRN on the Pile dataset using 10b tokens. To assess the
performance in downstream tasks, we trained HGRN models of 150m, 350m, and 1b on the Pile
dataset using 100b tokens and conducted zero-shot evaluations on downstream tasks.

For the LRA benchmark, We report results on all 6 tasks. For the image classification on the
ImageNet-1k dataset, We integrate HGRN into the DeiT [79] structure, we replace the transformer
layers with our HGRN modules. It is compared to the performance of the vanilla DeiT on the
ImageNet-1K dataset for image classification.

4.2 Results
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Table 4: Performance Comparison on Commonsense Reasoning.. PS: parameter size (billion). T:
tokens (billion). HS: HellaSwag. WG: WinoGrande.

Model Params Token BOOLQ PIQA HS WG ARC-e ARC-c OBQA AVG
GPT-Neo 0.13 300 61.71 63.06 30.40 50.43 43.73 23.12 26.20 42.66
OPT 0.16 300 55.47 62.95 31.35 50.43 43.52 22.70 28.00 42.06
Pythia 0.16 300 55.08 61.32 30.16 51.93 43.18 23.12 26.80 41.66
RWKV 0.17 - - 65.07 32.26 50.83 47.47 24.15 29.60 41.56
HGRN 0.15 100 59.91 65.02 33.33 50.20 46.68 23.81 28.60 43.94
OPT 0.35 300 57.74 64.58 36.69 52.49 44.02 23.89 28.20 43.94
Pythia 0.4 300 60.40 67.08 40.52 53.59 51.81 24.15 29.40 46.71
BLOOM 0.56 350 55.14 64.09 36.97 52.80 47.35 23.98 28.20 44.08
RWKV 0.43 - - 67.52 40.90 51.14 52.86 25.17 32.40 45.00
HGRN 0.35 100 59.05 66.70 38.12 51.70 49.20 25.26 30.60 45.80
GPT-Neo 1.3 300 61.99 71.11 48.93 54.93 56.19 25.85 33.60 50.37
OPT 1.3 300 57.77 71.71 53.70 59.35 57.24 29.69 33.20 51.81
Pythia 1.4 300 60.73 70.67 47.18 53.51 56.99 26.88 31.40 49.62
BLOOM 1.1 350 59.08 67.14 42.98 54.93 51.47 25.68 29.40 47.24
RWKV 1.5 - - 72.36 52.48 54.62 60.48 29.44 34.00 50.56
HGRN 1 100 58.69 70.89 48.02 51.62 55.64 27.90 31.60 49.19

Table 2: Results on Wikitext-103 (Hyena[57]’s
setting). All models are in GPT-2 small size
(125M). ↓ means lower is better

Model PPL↓
Transformer [57] 18.6
Hybrid H3 [57] 18.5
Performer [57] 26.8
Reformer [57] 25.6
AFT-conv [57] 28.2
Linear Attention [57] 25.6
Hyena [57] 18.6
Hyena-slim [57] 18.5
HGRN 18.6

Autoregressive Language Modeling Autore-
gressive language modeling stands as a promi-
nent task within the field of natural language
processing, as it serves as a measure of a lan-
guage model’s causal inference capability. This
task requires the model to estimate the probabil-
ity distribution of the subsequent token based on
the previously seen tokens.

We show the performances of the autoregressive
language modeling in table 1 and table 2. Com-
pared to transformer-based methods, HGRN
performs favourably than most efficient variants
of the vanilla transformer such as FLASH [31],
1+elu [35], Performer [7] and cosFormer [62].
Also, HGRN achieves better results than the MLP-based methods with a notable margin. Never-
theless, HGRN performs similarly to the original transformer [81]. Finally, HGRN shares similar
concepts with RNN-based such as S4 [22], DSS [26], GSS [49], RWKV [55], and LRU [53], our
HGRN also achieves superior performance to all RNN-based methods. This provide evidence HRGN
may be an effective method in LM We also report the extrapolation ability of HGRN compared to
previous methods in Table 14.

Table 3: Results on the Pile. All the model size is
1b. The lower the better.

Model PPL↓
Transformer 4.56
LRU 5.07
HGRN 4.14

We also trained a 1b model on the Pile dataset
and compared it with LRU and Transformer.
Specifically, our training parameters included a
sequence length of 1024, batch size of 96, 100k
updates, and a learning rate of 5e-4. It can be
seen that HGRN still performs better at the 1b
scale. Additionally, we trained 100b tokens of
HGRN on the Pile dataset at 150m, 350m, and 1b sizes, and evaluated them against open-source
Transformer-based models in downstream tasks. We selected Comparison on Commonsense Rea-
soning and Super GLUE tasks, and all evaluations were done using the lm-evaluation-harness [16].
HGRN achieves comparable performance to Transformer-based models when consuming only 1/3 of
the tokens.

Long Range Arena LRA [77] is proposed as a comprehensive evaluation for assessing the perfor-
mances of models in processing long-term dependencies in various sequential modeling tasks. We
show a performance comparison between HGRN and existing methods in Table 6. HGRN achieves
comparable results with other SOTA methods.
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Table 5: Performance Comparison on Super GLUE.. PS: parameter size (billion). T: tokens
(billion).
Model Params Token WSC WIC RTE CB MULTIRC BOOLQ COPA AVG
GPT-Neo 0.13 300 36.54 50.00 54.87 41.07 0.84 61.71 64.00 44.15
OPT 0.16 300 36.54 50.00 49.82 21.43 1.36 55.47 66.00 40.09
Pythia 0.16 300 36.54 50.16 52.71 41.07 2.52 55.08 65.00 43.30
HGRN 0.15 100 38.46 51.10 56.68 42.86 1.47 59.91 65.00 45.07
OPT 0.35 300 36.54 50.00 51.99 46.43 1.36 57.74 72.00 45.15
Pythia 0.4 300 57.69 50.31 52.71 35.71 1.68 60.40 70.00 46.93
BLOOM 0.56 350 40.38 50.00 52.71 41.07 1.05 55.14 61.00 43.05
HGRN 0.35 100 38.46 50.16 52.71 51.79 1.99 59.05 73.00 46.74
GPT-Neo 1.3 300 36.54 50.00 60.29 44.64 1.99 61.99 69.00 46.35
OPT 1.3 300 37.50 51.10 51.99 41.07 3.15 57.77 79.00 45.94
Pythia 1.4 300 36.54 50.00 53.07 35.71 0.94 60.73 72.00 44.14
BLOOM 1.1 350 36.54 50.00 52.71 41.07 0.73 59.08 68.00 44.02
HGRN 1 100 40.38 50.78 53.43 42.86 3.04 58.69 70.00 45.60

Table 6: Performances Comparison on the Long Range Arena benchmark. The proposed HGRN
achieves the best performances and outperforms all competing methods.

Model ListOps Text Retrieval Image Pathfinder Path-X AVG.
Transformer [81] 38.37 61.95 80.69 40.57 65.26 - 47.81
cosFormer [62] 36.50 67.70 83.15 51.23 71.96 - 51.76
FLASH [31] 38.70 64.10 86.10 47.40 70.25 - 51.09
S4 [22] 59.60 86.82 90.90 88.65 94.20 96.35 86.09
DSS_softmax [26] 60.60 84.80 87.80 85.70 84.60 87.80 81.88
DSSEXP [26] 59.70 84.60 87.60 84.90 84.70 85.60 81.18
DSSEXP-NO-SCALE [26] 59.30 82.40 86.00 81.20 81.30 - 65.03
TNN [59] 61.04 87.90 90.97 88.24 93.00 96.10 86.21
S5 [71] 62.15 89.31 91.4 88 95.33 98.56 87.46
Mega [46] 63.14 90.43 91.25 90.44 96.01 97.98 88.21
SGConv [41] 61.45 89.2 91.11 87.97 95.46 97.83 87.17
LRU [53] 60.20 89.40 89.90 89.00 95.10 94.20 86.30
HGRN 59.95 88.14 94.23 88.69 92.92 97.50 86.91

Image Classification The image classification results on the ImageNet-1K dataset are presented
in Table 7. Notably, with comparable parameter sizes, our proposed HGRN model demonstrates
superior performance compared to previous methods such as TNN and the vanilla transformer. It
demonstrates the capability of HGRN in modeling visual modalities.

Table 7: Performances comparison of image classification on ImageNet-1k. HGRN performs
favorably than competing methods with similar parameter sizes.

DeiT-Tiny DeiT-Small
Model Top1 Acc Param (M) Top1 Acc Parma (M)
Deit 72.20 5.7 79.90 22.0
TNN 72.29 6.4 79.20 23.4

HGRN 74.40 6.1 80.09 23.7

4.3 Ablation Study Table 8: Forget gate ablation on an autoregressive
language model. The only lower bound means
using a data-independent gate like LRU.

Model PPL↓
LRU w forget gate 4.92
LRU 5.07
HGRN only lower bound 4.84
HGRN w/o forget gate 57.42
HGRN 4.14

We conducted ablation studies in the smallest-
scaled setting (i.e., TNN[59]’s setting on Wiki-
Text103 dataset) to thoroughly verify the effec-
tiveness of each of our proposed components
in HGRN. Experiments were conducted on the
Pile dataset using a 1b model with 10b tokens
for the forget gate experiment.
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Figure 2: Visualization of forget rates. We plot the forget rates of layers 5 and 6 on a model trained
on language modeling tasks.
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The influence of forget gate In table 8, we demonstrate the role of forget gate. From table 8,
we observe that removing the forget gate significantly decreases the performance of HGRN, while
adding a forget gate to LRU improves performance. On the other hand, using a data-independent
forget gate (only lower bound) leads to lower performance compared to a data-dependent forget gate.

Table 9: Ablations of gates on autoregressive lan-
guage modeling. w/o input gate means to remove
the 1− λt term. w/o out_gate means remove the
left branch of HGRU in figure 1.

Model PPL↓
w/o input gate 25.03
w/o output gate 25.50
HGRN 24.14

The influence of input gate and output gate
Table. 9 validates the effectiveness of using out-
put gates and tying input and forget gates. w/o
input gate means to remove the 1 − λt term.
w/o output gate means remove the left branch of
HGRN in figure 1. Our design achieves the best
performance.

The influence of lower bounds in forget gate
values We demonstrate the effectiveness of introducing a lower bound in Table 10 and Table 13.
From Table 10, we observe that gating (i.e., without lower bound) is more critical than the lower
bound (i.e., only lower bound). Combining gating and the lower bound consistently provides benefits,
but the most significant improvement arises from the monotonically increasing lower bound. This
aligns with the intuition that lower layers should primarily focus on nearby tokens, while upper layers
should attend more broadly to capture long-term dependencies [58].

Table 10: Lower bound ablation on autoregres-
sive language modeling. A random lower bound
means the lower bound in each layer is indepen-
dent. Decrease lower bound means the lower
bound is monotonically decreasing with respect
to layer k, only the lower bound means the forget
rate is independent of input.

Model PPL ↓
w/o lower bound 24.71
random lower bound 24.60
decrease lower bound 24.63
only lower bound 27.70
HGRN 24.14

Table 13 highlights the essential role of the
lower bound in long sequence processing tasks.
In these tasks, the model’s performance is no-
tably poor and sometimes fails to converge with-
out the lower bound. It is worth noting that lan-
guage modeling tasks do not require extensive
long-term dependencies, which explains why
the model performs well even without the lower
bound. However, in the task of LRA, the ability
to capture long-term dependencies is crucial for
achieving satisfactory performance.

The influence of complex-valued recurrence
Table 11 validates the utility of incorporating
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complex values in element-wise linear recurrence. Additionally, the experiments show that the phase
argument θ should not be data-dependent.

4.4 Analysis on forget gate values

Table 11: Ablations of complex-valued recur-
rence on autoregressive language modeling. w/o
complex means remove theta, data-dependent theta
means theta is dependent on the input, this makes
the matrix Λ not a Toeplitz matrix, which can not
capture relative information.

Model PPL↓
w/o complex 25.34
data dependent θ 28.74
HGRN 24.14

We present the distributions of forget gate values
across layers for different methods in Table 12
and visualize the histogram of each layer in Fig-
ure 2, trained on the autoregressive language
modeling task. The results demonstrate that the
addition of lower bounds effectively increases
the average forget gate values in higher layers
(5-6). Notably, the medium forget gate values in
the highest layer reach 0.98, enabling the mod-
eling of long-term dependencies.

It is interesting to note that the average forget
gate values of the LRU model consistently exceed those of our variant model without lower bounds,
as per their eigenvalues. However, despite this, the language modeling performance of LRU is lower
than that of our variant. Specifically, LRU scored 24.71, while our variant scored 31.12. This suggests
that using data-dependent gates to selectively retain relevant information is advantageous, rather than
relying on data-independent forget gate values across all time steps.

Table 12: Forget gate values of different methods on language modeling tasks. In each layer, we
counted the mean and median of forget gate values.

ours ours w/o lower bound w/o lower bound LRU LRU
Layer mean median mean median mean median
1 0.48 0.47 0.52 0.50 0.75 0.72
2 0.55 0.52 0.59 0.55 0.78 0.75
3 0.60 0.57 0.58 0.56 0.78 0.76
4 0.68 0.64 0.58 0.55 0.79 0.78
5 0.79 0.80 0.63 0.63 0.79 0.77
6 0.91 0.98 0.63 0.67 0.79 0.79

Table 13: Lower bound ablation on LRA. We verify the importance of lower bounds in long-
sequence modeling capabilities.

Model ListOps Text Retrieval Image Pathfinder Path-X AVG
w/o lower bound 51.41 87.79 88.71 80.17 - - 51.53
HGRN 59.95 88.14 94.23 88.69 92.92 97.50 86.91

5 Conclusion

In this work, we have shown that gated linear RNNs could obtain impressive performance across
different tasks and modalities without compromising efficiency. We highlighted the significance of
the forget gate for linear RNNs in language modeling and emphasized the importance of an additive
lower bound on forget gate values for modeling long-term dependencies.
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Limitations and broader impact

Our empirical evaluation of HGRN remains on a smaller scale compared to other large-scale models.
Potentially negative social consequences include the misuse of brain models for unsuitable purposes
or applications, which must be prohibited by appropriate rules. In the era of large language models,
the inference cost is the key limitation of transformer-based models. RNNs provide a solution with
their lower inference costs. This could potentially lead to a significant evolution in the field.
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6 Appendix

In this appendix, we examine the extrapolation ability of HGRN and provide the training and
inference speed comparison of HGRN and existing efficient sequence modeling methods. We also
illustrate the forget rates of each layer on a trained language model of HGRN.

We also report the extrapolation ability of HGRN compared to previous methods in Table 14.

6.1 Extrapolation test

In this section, we tested HGRN ’s extrapolation ability by directly inferring the model with a variety
of sequence lengths. As shown in Table 14, our method has the ability to train short and test long.

6.2 Speed comparison

In this section, we benchmark the speed of our method on the LRA benchmark. Our method achieves
state-of-the-art training and inference speed.

6.3 Visualization

In this section, we visualize the forget rates of each layer on a model trained on language modeling
tasks.

6.4 Configurations

We list detailed hyper-parameters of our experiments here.
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Figure 3: Visualization forget rates in each layer.
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Figure 4: Visualization of token mixing matrix in each layer.
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Table 15: Speed comparison on LRA benchmark. The 1K,...,5K represent the input sequence length.
We mark it with - if a method is out of memory. The higher the better for all metrics.

Train Speed(steps per second)↑ Inference Speed(steps per second)↑
Method 1K 2K 3K 4K 5K 1K 2K 3K 4K 5K
Transformer [81] 13.58 4.84 - - - 23.67 8.22 - - -
Performer [36] 18.40 10.77 7.66 6.30 5.64 30.04 17.36 12.80 10.55 9.52
LS [85] 20.29 11.24 8.05 6.51 5.89 39.05 21.11 15.02 12.6 11.66
Fnet [39] 25.19 15.62 11.24 9.41 8.18 48.81 27.89 19.52 16.27 14.46
cosFormer [62] 22.00 12.80 9.47 7.93 7.13 39.05 22.31 16.62 13.95 12.60
S4 [21] 13.13 7.33 4.91 3.84 3.04 30.04 16.27 10.85 8.58 6.79
FLASH [31] 17.36 9.03 6.54 5.19 4.68 30.04 15.94 11.32 9.19 8.40
TNN [59] 17.55 9.89 6.79 5.68 4.54 33.96 17.75 12.40 10.28 8.22
HGRU 22.31 13.58 9.52 7.40 7.44 43.39 25.19 16.62 14.20 13.95

Table 16: Detailed training configurations used in our experiments. “Total batch size” means
batch_per_gpu× update_freq× num_gpus. “ALM” stands for Autoregressive Language Model.
“IM” stands for Image Modeling.

AML IM
Data WikiText-103 ImageNet-1k
Tokenizer method BPE -
Src Vocab size 50265 -
Sequence length 512 -
Total batch size 128 2048
Number of updates/epochs 50k updates 300 epochs
Warmup steps/epochs 4k steps 5 epochs
Peak learning rate 5e-4 2.5e-4
Learning rate scheduler Inverse sqrt cosine
Optimizer Adam Adamw
Adam ϵ 1e-8 1e-8
Adam (β1, β2) (0.9, 0.98) (0.9, 0.98)
Weight decay 0.2 0.1
Gradient clipping - 1.0
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