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Abstract

Quantum neural networks (QNNs) have been a promising framework in pursuing
near-term quantum advantage in various fields, where many applications can be
viewed as learning a quantum state that encodes useful data. As a quantum analog
of probability distribution learning, quantum state learning is theoretically and
practically essential in quantum machine learning. In this paper, we develop a
no-go theorem for learning an unknown quantum state with QNNs even starting
from a high-fidelity initial state. We prove that when the loss value is lower than a
critical threshold, the probability of avoiding local minima vanishes exponentially
with the qubit count, while only grows polynomially with the circuit depth. The
curvature of local minima is concentrated to the quantum Fisher information times
a loss-dependent constant, which characterizes the sensibility of the output state
with respect to parameters in QNNs. These results hold for any circuit structures,
initialization strategies, and work for both fixed ansatzes and adaptive methods.
Extensive numerical simulations are performed to validate our theoretical results.
Our findings place generic limits on good initial guesses and adaptive methods for
improving the learnability and scalability of QNNs, and deepen the understanding
of prior information’s role in QNNs.

1 Introduction

Recent experimental progress towards realizing quantum information processors [1–3] has fostered
the thriving development of the emerging field of quantum machine learning (QML) [4–18], pursuing
quantum advantages in artificial intelligence. Different QML algorithms have been proposed for
various topics, e.g., quantum simulations [19–23], chemistry [24–28], quantum data compression [29,
30], generative learning [31, 32] and reinforcement learning [33], where quantum neural networks
(QNNs) become a leading framework due to the hardware restriction from noisy intermediate scale
quantum (NISQ) [34] devices. As quantum analogs of artificial neural networks, QNNs typically
refer to parameterized quantum circuits which are trainable based on quantum measurement results.

However, QNNs face a severe scalability barrier which might prevent the realization of potential
quantum advantages. A notorious example is the barren plateau phenomenon [35] which shows that
the gradient of the loss function vanishes exponentially in the system size with a high probability
for randomly initialized deep QNNs, giving rise to an exponential training cost. To address this
issue, a variety of training strategies has been proposed, such as local loss functions [36], correlated
parameters [37], structured architectures [38–40], good initial guesses [41, 42], initialization heuristics
near the identity [43–46], adaptive methods [27] and layerwise training [47], etc. Nevertheless, there
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Figure 1: Sketches of our work characterizing the statistical performance of QNNs on quantum state
learning tasks. (a) indicates the existence of a critical loss value Lc = 1− 2−N below which the local
minima start to become severe to trap the training process. (b) depicts the setup of quantum state
learning tasks where a QNN is used to learn an unknown target state encoding practical data. All
target states with a constant distance to the output state |ψ∗⟩ form our ensemble T, depicted by the
contour on the Bloch sphere. (c) shows typical loss curves for different qubit counts of N = 2, 6, 10
and circuit depths of D = 1, 3, 5. The intensity of the background colors represents the magnitude of
our theoretical bound on the probability of encountering a local minimum, which hence signifies the
hardness of optimization. One can find that the theoretical bound appropriately reflects the hardness
encountered by the practical loss curves.

is a lack of scalability analyses for these strategies to guarantee their effectiveness. Especially,
since the identity initialization and adaptive or layerwise training methods do not require uniformly
random initialization of deep QNNs, they are out of the scope of barren plateaus and urgently need a
comprehensive theoretical analysis to ascertain their performance under general conditions.

In this work, we analyze the learnability of QNNs from a statistical perspective considering the
information of loss values. Specifically, given a certain loss value during the training process, we
investigate the statistical properties of surrounding training landscapes. Here we mainly focus
on quantum state learning tasks [48, 49], which can be seen as a quantum analog of probability
distribution learning and play a central role in QML. To summarize, our contributions include:

• We prove a no-go theorem stating that during the process of learning an unknown quantum
state with QNNs, the probability of avoiding local minima is of order O(N22−ND2/ϵ2)
as long as the loss value is lower than a critical threshold (cf. Fig. 1). The bound vanishes
exponentially in the qubit count N while only increases polynomially with the circuit depth
D. The curvature of local minima is concentrated to the quantum Fisher information times
a loss-dependent constant. The proof is mainly based on the technique of “subspace Haar
integration” we developed in Appendix A.1. A generalized version for the local loss function
is provided in Appendix C.

• We conduct extensive numerical experiments to verify our theoretical findings. We first
compare our bound with practical loss curves to show the prediction ability on the statistical
behavior of the actual training process. Then we sample landscape profiles to visualize the
existence of asymptotic local minima. Finally, we compute the gradients and diagonalize
the Hessian matrices to directly verify the correctness of our bound.

• Our results place general limits on the learnability of QNNs, especially for the training
strategies beyond the scope of barren plateaus, including high-fidelity initial guesses, initial-
ization heuristics near the identity, and adaptive and layerwise training methods. Moreover,
our results provide a theoretical basis for the necessity of introducing prior information into
QNN designs and hence draw a guideline for future QNN developments.
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1.1 Related works

The barren plateau phenomenon was first discovered by [35], which proves that the variance of
the gradient vanishes exponentially with the system size if the randomly initialized QNN forms a
unitary 2-design. Thereafter, [36] finds the dependence of barren plateaus on the circuit depth for
loss functions with local observables. [50] proves that training QNNs is in general NP-hard. [51]
introduces barren plateaus from uncertainty which precludes learning scramblers. [51, 52] establish
connections among the expressibility, generalizability and trainability of QNNs. [53] and [54] show
that apart from barren plateaus, QNNs also suffer from local minima in certain cases.

On the other hand, many training strategies have been proposed to address barren plateaus. Here we
only list a small part relevant to our work. [43–46] suggest that initializing the QNN near the identity
could reduce the randomness and hence escape from barren plateaus. [27] and [47] propose adaptive
and layerwise training methods which avoid using randomly initialized QNNs in order to avoid
barren plateaus, whereas [55] finds counterexamples where the circuit training terminates close to the
identity and remains near to the identity for subsequently added layers without effective progress.

2 Quantum computing basics and notations

We use ∥ · ∥p to denote the lp-norm for vectors and the Schatten-p norm for matrices. A† is the
conjugate transpose of matrix A. trA represent the trace of A. The µ-th component of the vector θ
is denoted as θµ and the derivative with respect to θµ is simply denoted as ∂µ = ∂

∂θµ
. We employ O

as the asymptotic notation of upper bounds.

In quantum computing, the basic unit of quantum information is a quantum bit or qubit. A single-qubit
pure state is described by a unit vector in the Hilbert space C2, which is commonly written in Dirac
notation |ψ⟩ = α|0⟩+ β|1⟩, with |0⟩ = (1, 0)T , |1⟩ = (0, 1)T , α, β ∈ C subject to |α|2 + |β|2 = 1.
The complex conjugate of |ψ⟩ is denoted as ⟨ψ| = |ψ⟩†. The Hilbert space of N qubits is formed by
the tensor product “⊗” ofN single-qubit spaces with dimension d = 2N . We denote the inner product
of two states |ϕ⟩ and |ψ⟩ as ⟨ϕ|ψ⟩ and the overlap is defined as |⟨ϕ|ψ⟩|. General mixed quantum states
are represented by the density matrix, which is a positive semidefinite matrix ρ ∈ Cd×d subject to
tr ρ = 1. Quantum gates are unitary matrices, which transform quantum states via the matrix-vector
multiplication. Common single-qubit rotation gates include Rx(θ) = e−iθX/2, Ry(θ) = e−iθY/2,
Rz(θ) = e−iθZ/2, which are in the matrix exponential form of Pauli matrices

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
. (1)

Common two-qubit gates include controlled-X gate CNOT = I ⊕ X (⊕ is the direct sum) and
controlled-Z gate CZ = I ⊕ Z, which can generate quantum entanglement among qubits.

2.1 Framework of Quantum Neural Networks

Quantum neural networks (QNNs) typically refer to parameterized quantum circuits U(θ) where the
parameters θ are trainable based on the feedback from quantum measurement results using a classical
optimizer. By assigning some loss function L(θ), QNNs can be used to accomplish various tasks
just like artificial neural networks. A general form of QNNs reads U(θ) =

∏M
µ=1 Uµ(θµ)Wµ, where

Uµ(θµ) = e−iΩµθµ is a parameterized gate such as single-qubit rotations with Ωµ being a Hermitian
generator. Wµ is a non-parameterized gate such as CNOT and CZ. The product

∏M
µ=1 is by default

in the increasing order from the right to the left. M denotes the number of trainable parameters.
Note that QNNs with intermediate classical controls [56] can also be included in this general form
theoretically. Commonly used templates of QNNs include the hardware efficient ansatz [26], the
alternating-layered ansatz (ALT) [57] and the tensor-network-based ansatz [36, 58], which are usually
composed of repeated layers. The number of repeated layers is called the depth of the QNN, denoted
as D. Fig. 2 depicts an example of the ALT circuit. The gradients of loss functions of certain QNNs
are evaluated by the parameter-shift rule [59–61] on real quantum devices. Hence we can train QNNs
efficiently with gradient-based optimizers [62].

Here we focus on quantum state learning tasks, the objective of which is to learn a given target state
|ϕ⟩ encoding practical data via minimizing the distance between the target state |ϕ⟩ and the output
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×D
Ry(θ1) Rz(θ5) • Ry(θ9) Rz(θ13)

Ry(θ2) Rz(θ6) • Ry(θ10) Rz(θ14) • Ry(θ17) Rz(θ19)

Ry(θ3) Rz(θ7) • Ry(θ11) Rz(θ15) • Ry(θ18) Rz(θ20)

Ry(θ4) Rz(θ8) • Ry(θ12) Rz(θ16)

Figure 2: The quantum circuit of the alternating-layered ansatz on 4 qubits. The circuit starts with
a Ry layer and a Rx layer, followed by D repeated layers, where each layer contains alternating
2-qubit unit blocks of a CZ gate, two Ry gates and two Rz gates.

state from the QNN |ψ(θ)⟩ = U(θ)|0⟩⊗N . The corresponding loss function is usually chosen as the
fidelity distance

L(θ) = 1− |⟨ϕ|ψ(θ)⟩|2 . (2)
which can be efficiently calculated on quantum computers using the swap test [63]. An important
quantity we used below characterizing the sensitivity of the QNN output state |ψ(θ)⟩ regarding
its parameters θ, the quantum Fisher information (QFI) matrix Fµν [64], which is defined as the
Riemannian metric induced from the fidelity distance (cf. Appendix A.4)

Fµν(θ) = 2Re [⟨∂µψ|∂νψ⟩ − ⟨∂µψ|ψ⟩⟨ψ|∂νψ⟩] . (3)

If the QFI is not full-rank, we say |ψ(θ)⟩ is over-parameterized [65, 66] meaning that there are
redundant degrees of freedom in the parameters over the manifold dimension of the state.

3 Statistical characterization of quantum state learning in QNNs

In this section, we develop a no-go theorem characterizing the limitation of quantum neural networks
in state learning tasks from a statistical perspective. In short, we prove that the probability of avoiding
local minima during the process of learning an unknown quantum state with a QNN is of order
O(2−NM2/ϵ2), where N is the number of qubits, M is the number of trainable parameters and ϵ
represents the typical precision of measurements. The detailed upper bound also depends on the
overlap between the value of the loss function and the QFI of the QNN. Our bounds significantly
improve existing results of the trainability analysis of QNNs, which mainly focus on the randomness
from the initialization and neglect the information of the loss function value. We will first introduce
our ensemble setting in Section 3.1, then present our main theorem on local minima in Section 3.2
and finally show some results beyond local minima in Section 3.4.

3.1 Ensemble of the unknown target state

We first introduce the probability measure used in this work. The randomness studied by most of
the previous work on the trainability analyzes of QNNs originates from the random initialization of
trainable parameters [35], which usually depends on the circuit depth, specific choices of the QNN
architecture and initialization strategies [44]. Meanwhile, the randomness can also come from the
lack of prior information, such as learning an unknown quantum state or an unknown scrambler like
a black hole [67]. We focus on the latter in the present work.

The usage of adaptive methods is usually not covered by common trainability analyses, however, the
training process often tends to stagnate. With the aim of investigating the trainability at a specific
loss function value, the ensemble is constructed by a uniform measure of overall pure states that have
the same overlap with the current output state of the QNN. Specifically, suppose θ∗ is the current
value of the trainable parameters. The overlap, or fidelity, between the output state |ψ∗⟩ = |ψ(θ∗)⟩
and the target state |ϕ⟩ equals to |⟨ϕ|ψ∗⟩| = p. Thus, the target state can be decomposed as

|ϕ⟩ = p|ψ∗⟩+
√

1− p2|ψ⊥⟩, (4)

where |ψ⊥⟩ represents the unknown component in the target state |ϕ⟩ orthogonal to the learnt
component |ψ∗⟩. If no more prior information is known about the target state |ϕ⟩ except for the overlap
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p, in the spirit of Bayesian statistics, |ψ⊥⟩ is supposed to be a random state uniformly distributed in the
orthogonal complement of |ψ∗⟩, denoted as H⊥. Such a Haar-random state can induce an ensemble
of the unknown target state via Eq. (4), which we denote as T = {|ϕ⟩ | |ψ⊥⟩ is Haar-random in H⊥}.
Graphically, T can be understood as a contour on the Bloch sphere of an N -qubit system with a
constant distance to |ψ∗⟩ as shown in Fig. 1(b). We remark that θ∗ can be interpreted as either an
initial guess or an intermediate value during the training process so that our following results can be
applied to the entire process of learning a quantum state. See Appendix A.1 for more details on the
ensemble setting.

3.2 Exponentially likely local minima

We now investigate the statistical properties of the gradient ∇L and the Hessian matrix HL of the loss
function L(θ∗) at the parameter point θ = θ∗ regarding the ensemble T, and hence derive an upper
bound of the probability that θ∗ is not a local minimum. For simplicity of notation, we represent
the value of a certain function at θ = θ∗ by appending the superscript “∗”, e.g., ∇L|θ=θ∗ as ∇L∗

and HL|θ=θ∗ as H∗
L. We define that θ∗ is a local minimum up to a fixed precision ϵ = (ϵ1, ϵ2) if

and only if each of the gradient components is not larger than ϵ1 and the minimal eigenvalue of the
Hessian matrix is not smaller than −ϵ2, i.e.,

LocalMin(θ∗, ϵ) =

M⋂
µ=1

{|∂µL∗| ≤ ϵ1} ∩ {H∗
L ≻ −ϵ2I} . (5)

If ϵ1 and ϵ2 both take zero, Eq. (5) is reduced back to the common exact definition of the local
minimum. However, noises and uncertainties from measurements on real quantum devices give rise
to a non-zero ϵ, where the estimation cost scales as O(1/ϵα) for some power α [68]. Specially, if
|ψ(θ∗)⟩ approaches the true target state |ϕ⟩ such that L∗ → 0, we say θ∗ is a global minimum. That
is to say, here “local minima” are claimed with respect to the entire Hilbert space instead of training
landscapes created by different ansatzes. The expectation and variance of the first and second-order
derivatives of the loss function are calculated and summarized in Lemma 1, with the detailed proof in
Appendix B utilizing the technique we dubbed “subspace Haar integration” in Appendix A.1.

Lemma 1 The expectation and variance of the gradient ∇L and Hessian matrix HL of the fidelity
loss function L(θ) = 1− |⟨ϕ|ψ(θ)⟩|2 at θ = θ∗ with respect to the target state ensemble T satisfy

ET [∇L∗] = 0, VarT[∂µL∗] = f1(p, d)F∗
µµ. (6)

ET [H
∗
L] =

dp2 − 1

d− 1
F∗, VarT[∂µ∂νL∗] ≤ f2(p, d)∥Ωµ∥2∞∥Ων∥2∞. (7)

where F denote the QFI matrix in Eq. (3) and Ωµ is the generator of the gate Uµ(θµ). f1 and f2 are
functions of the overlap p and the Hilbert space dimension d, i.e.,

f1(p, d) =
p2(1− p2)

d− 1
, f2(p, d) =

32(1− p2)

d− 1

[
p2 +

2(1− p2)

d

]
. (8)

The exponentially vanishing variances in Lemma 1 imply that the gradient and Hessian matrix
concentrate to their expectations exponentially in the number of qubits N due to d = 2N for
a N -qubit system. Thus the gradient concentrates to zero and the Hessian matrix concentrates
to the QFI F∗ times a non-vanishing coefficient proportional to (p2 − 1/d). Since the QFI is
always positive semidefinite, the expectation of the Hessian matrix is either positive semidefinite
L∗ = 1− p2 < 1− 1/d, or negative semidefinite if L∗ > 1− 1/d, as illustrated in Fig. 1(a). The
critical point Lc = 1 − 1/d coincides with the average fidelity distance of two Haar-random pure
states, which means that as long as |ψ∗⟩ has a higher fidelity than the average level of all states, the
expectation of the Hessian matrix would be positive semidefinite.

Using Lemma 1, we establish an exponentially small upper bound on the probability that θ∗ is not
a local minimum in the following Theorem 2, where the generator norm vector ω is defined as
ω = (∥Ω1∥∞, ∥Ω2∥∞, . . . , ∥ΩM∥∞).
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Theorem 2 If the fidelity loss function satisfies L(θ∗) < 1 − 1/d, the probability that θ∗ is not a
local minimum of L up to a fixed precision ϵ = (ϵ1, ϵ2) with respect to the target state ensemble T is
upper bounded by

PrT [¬LocalMin(θ∗, ϵ)] ≤ 2f1(p, d)∥ω∥22
ϵ21

+
f2(p, d)∥ω∥42(
dp2−1
d−1 e∗ + ϵ2

)2 , (9)

where e∗ denotes the minimal eigenvalue of the QFI matrix at θ = θ∗. f1 and f2 are defined in
Eq. (8) which vanish at least of order 1/d.

A sketch version of the proof is as follows, with the details in Appendix B. By definition in Eq. (5),
the left-hand side of Eq. (9) can be upper bounded by the sum of two terms: the probability that
one gradient component is larger than ϵ1, and the probability that the Hessian matrix is not positive
definite up to ϵ2. The first term can be bounded by Lemma 1 and Chebyshev’s inequality, i.e.,

PrT

[
M⋃
µ=1

{|∂µL∗| > ϵ1}
]
≤

M∑
µ=1

VarT[∂µL∗]

ϵ21
=
f1(p, d)

ϵ21
trF∗, (10)

where the QFI diagonal element is bounded as Fµµ ≤ 2∥Ωµ∥2∞ by definition and thus trF∗ ≤ 2∥ω∥22.
After assuming p2 > 1/d, the second term can be upper bounded by perturbing ET[H

∗
L] to obtain a

sufficient condition of positive definiteness (see Appendix A.2), and then utilizing Lemma 1 with the
generalized Chebyshev’s inequality for matrices (see Appendix A.3), i.e.,

PrT [H
∗
L ⊁ −ϵ2I] ≤

M∑
µ,ν=1

VarT [∂µ∂νL∗](
dp2−1
d−1 e∗ + ϵ2

)2 ≤ f2(p, d)∥ω∥42(
dp2−1
d−1 e∗ + ϵ2

)2 . (11)

Combining the bounds regarding the gradient and hessian matrix, one arrives at Eq. (9). ■

Theorem 2 directly points out that if the loss function takes a value lower than the critical threshold
Lc = 1− 1/d, then the surrounding landscape would be a local minimum for almost all of the target
states, the proportion of which is exponentially close to 1 as the qubit count N = log2 d grows.
Note that ∥ω∥22 =

∑M
µ=1 ∥Ωµ∥2∞ scales linearly with the number of parameters M and at most

polynomially with the qubit count N . Because practically the operator norm ∥Ωµ∥∞ is constant such
as the generators of Pauli rotations ∥X∥∞ = ∥Y ∥∞ = ∥Z∥∞ = 1, or grows polynomially with the
system size such as the layer with globally correlated parameters [56] and the global evolution in
analog quantum computing [69]. Here we focus on the former and conclude that the upper bound in
Theorem 2 is of order O(2−NM2/ϵ2), implying the exponential training cost. The conclusion also
holds for noisy quantum states (see Appendix B). A similar result for the so-called local loss function,
like the energy expectation used in variational quantum eigensolvers, is provided in Appendix C.

In principle, if one could explore the whole Hilbert space with exponentially many parameters, θ∗ was
a saddle point at most instead of a local minimum since there must exist a unitary connecting the learnt
state |ψ∗⟩ and the target state |ϕ⟩. This is also consistent with our bound by taking M ∈ Ω(2N/2)
to cancel the 2−N factor such that the bound is no more exponentially small. However, the number
of parameters one can control always scales polynomially with the qubit count due to the memory
constraint. This fact indicates that if the QNN is not designed specially for the target state using some
prior knowledge so that the “correct” direction towards the target state is contained in the accessible
tangent space, the QNN will have the same complexity as the normal quantum state tomography.

Dependence on the loss value L∗. The dependence of the bound in Theorem 2 on the overlap
p =

√
1− L∗ shows that, as the loss function value becomes lower, the local minima becomes denser

so that the training proceeds harder. This agrees with the experience that the loss curves usually
decay fast at the beginning of a training process and slow down till the convergence. If e∗ ̸= 0, the
second term in Eq. (9) becomes larger as p2 → 1/d, suggesting that the local minima away from the
critical point Lc is more severe than that near Lc. Moreover, if ϵ2 = 0, the bound diverges as the QFI
minimal eigenvalue e∗ vanishes, which reflects the fact that over-parameterized QNNs have many
equivalent local minima connected by the redundant degrees of freedom of parameters.

By contrast, if L∗ > Lc, the results could be established similarly by slightly modifying the proof yet
with respect to local maxima, as depicted in Fig. 1(a). However, the critical point Lc = 1 − 2−N
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moves to 1 exponentially fast as N increases, i.e., the range of L∗ without severe local minima shrink
exponentially. Hence for large-scale systems, even with a polynomially small fidelity, one would
encounter a local minimum almost definitely if no more prior knowledge can be used.

3.3 Implication on the learnability of QNNs

In practical cases, if the QNN is composed of D repeated layers with z trainable parameters for each
layer and each qubit, then the total number of trainable parameters becomes M = NDz, and hence
the probability of avoiding local minima is of order O(N22−ND2/ϵ2), which increases quadratically
as the QNN becomes deeper. This seems contrary to the conclusion from barren plateaus [35] where
deep QNNs lead to poor trainability. But in fact, they are complementary to each other. The reason is
that the ensemble here originates from the unknown target state instead of the random initialization.
Similar to classical neural networks, a deeper QNN has stronger expressibility, which creates a larger
accessible manifold to approach the unknown state and may turn a local minimum into a saddle
point with the increased dimensions. But on the other hand, a deeper QNN with randomly initialized
parameters leads to barren plateaus [36]. In short, the local minima here arise due to the limited
expressibility together with a non-vanishing fidelity while barren plateaus stem from the strong
expressibility together with the random initialization.

To solve this dilemma, our results suggest that a well-designed QNN structure taking advantage of
prior knowledge of the target state is vitally necessary. Otherwise, a good initial guess (i.e., an initial
state with high fidelity) solely is hard to play its role. An example of prior knowledge from quantum
many-body physics is the tensor network states [70] satisfying the entanglement area law, which
lives only in a polynomially large space but generally can not be solved in two and higher spatial
dimensions by classical computers. Other examples include the UCCSD ansatz [71] in quantum
chemistry and the QAOA ansatz [72] in combinatorial optimization, which all attempt to utilize the
prior knowledge of the target states.

Finally, we remark that our results also place general theoretical limits for adaptive [27] or layer-
wise training methods [47]. Relevant phenomena are observed previously in special examples [55].
Adaptive methods append new training layers incrementally during the optimization instead of placing
a randomly initialized determinate ansatz at the beginning, which is hence beyond the scope of barren
plateaus [35]. Nevertheless, our results imply that for moderately large systems with L∗ < Lc, every
time a new training layer is appended, the learnt state |ψ∗⟩ would be a local minimum of the newly
created landscape so that the training process starting near |ψ∗⟩ would go back to the original state
|ψ∗⟩ without any effective progress more than applying an identity. Note that in adaptive methods, one
usually initializes the new appended layer near the identity to preserve the historical learnt outcomes.
Similar phenomena are also expected to occur in the initialization strategies where the circuit begins
near the identity [43, 44, 46]. We emphasize that our results do not imply the ineffectiveness of all
adaptive methods. Instead, they only suggest that simplistic brute-force adaptive methods provide no
significant benefit in terms of enhancing learnability on average.

3.4 Concentration of training landscapes

Theorem 2 analyses the statistical properties of the vicinity of a certain point θ∗, i.e., the probability
distributions of the gradient and Hessian matrix of θ∗. To characterize the training landscape beyond
the vicinity, a pointwise result is established in Proposition 3 with the proof in Appendix B.

Proposition 3 The expectation and variance of the fidelity loss function L with respect to the target
state ensemble T can be exactly calculated as

ET [L(θ)] = 1− p2 +
dp2 − 1

d− 1
g(θ),

VarT [L(θ)] =
1− p2

d− 1
g(θ)

[
4p2 −

(
2p2 − (d− 2)(1− p2)

d(d− 1)

)
g(θ)

]
,

(12)

where g(θ) = 1− |⟨ψ∗|ψ(θ)⟩|2.

Since the factor g(θ) takes its global minimum at θ∗ by definition, the exponentially small variance
in Proposition 3 implies that the entire landscape concentrates exponentially in the qubit count to
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Figure 3: Samples of training landscapes along randomly chosen directions as a function of the
distance ∥θ − θ∗∥ for random target states from T with the sample size 200, the qubit count N = 4
and N = 10 and the overlap (a) p = 0.2 and (b) p = 0.8, respectively. The setup in (c) is the same as
in (b) but fixes the target state and only samples the directions. A clear convex shape is present in the
samples from N = 10 but absent in the samples from N = 4. This phenomenon intuitively shows
that the training landscapes from the ensemble T are concentrated to a local minimum around θ∗ as
the qubit count increases.

the expectation ET [L(θ)] with a pointwise convergence (not necessarily a uniform convergence),
which takes its global minimum at θ∗ with respect to the training landscape as long as p2 > 1/d. For
QNNs satisfying the parameter-shift rule, the factor g(θ) along the Cartesian axis corresponding to
θµ passing through θ∗ will take the form of a trigonometric function 1

2F∗
µµ sin

2(θµ − θ∗µ), which is
elaborated in Appendix B. Other points apart from θ∗ is allowed to have a non-vanishing gradient
expectation in our setup, which leads to prominent local minima instead of plateaus [35].

4 Numerical experiments

Previous sections theoretically characterize the limitation of QNNs in state learning tasks considering
the information of the loss value L∗. In this section, we verify these results by conducting numerical
experiments on the platform Paddle Quantum [73] and Tensorcircuit [74] from the following three
perspectives. The codes for numerical experiments can be found in [75].

Comparison with loss curves. Firstly, we show the prediction ability of Theorem 2 by direct
comparison with experimental loss curves in Fig. 1(c). We create 9 ALT circuits for qubit counts
of 2, 6, 10 and circuit depth of 1, 3, 5 with randomly initialized parameters, denoted as θ∗. For
each circuit, we sample 10 target states from the ensemble T with p = 0.2 and then generate 10
corresponding loss curves using the Adam optimizer with a learning rate 0.01. We exploit the
background color intensity to represent the corresponding bounds from Theorem 2 by assigning
e∗ = 0.1 and ϵ1 = ϵ2 = 0.05. One can find that the loss curves decay fast at the beginning and then
slow down till convergence, in accordance with the conclusion that the probability of encountering
local minima is larger near the bottom. The convergent loss value becomes higher as the qubit count
grows and can be partially reduced by increasing the circuit depth, which is also consistent with
Theorem 2.

Landscape profile sampling. We visualize the existence of asymptotic local minima by sampling
training landscape profiles in Fig. 3. Similar to the setup above, we create an ALT circuit with
randomly initialized parameters θ∗, sample 200 target states from the ensemble T and compute
the loss values near θ∗. Figs. 3(a) and (b) are obtained by randomly choosing a direction for each
landscape sample, while Fig. 3(c) is obtained by randomly sampling 200 directions for one fixed
landscape sample. There is no indication of local minimum in the case of few qubits and small
fidelity as shown by the blue curves in Fig. 3(a). However, as the qubit number grows, the landscape
profiles concentrate into a clear convex shape centered at θ∗ for both p = 0.2 and p = 0.8, where the
curvature for p = 0.8 is larger due to the factor (p2 − 1/d) in Eq. (7). Fig. 3(c) further demonstrates
that beyond the convexity along a specific direction, θ∗ is a highly probable local minimum in the
case of large qubit counts.

Probability evaluation. Finally, we compute the gradients and diagonalize the Hessian matrices to
directly verify the exponentially likely local minima proposed by Theorem 2 in Fig. 4. Similar to
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Figure 4: Numerical evaluation for the probability that θ is a local minimum up to a fixed precision
ϵ, i.e., PrT [LocalMin(θ∗, ϵ)] for different qubit count, the number of trainable parameters and the
overlap p, with the error bar representing the statistical uncertainty in experiments. (a) shows that
the probability converges to 1 rapidly with the increasing qubit count. (b) shows that the probability
is reduced by increasing the number of parameters, implying the local minimum phenomenon is
mitigated. (c) illustrates that the probability of encountering local minima always converges to 1 for
any fixed overlap p. p = 0.8 for both (a) and (b) and the number of parameters in (c) is 6.

the setup above, we create ALT circuits for qubit count from N = 1 to 11 with depth D = 5 and
sample 200 target states from T for each circuit. After specifying a certain subset of parameters to be
differentiated, we estimate the probability that θ is a local minimum by the proportion of samples
satisfying the condition LocalMin(θ∗, ϵ), where we assign ϵ1 = ϵ2 = 0.05. One can find that the
probability of encountering local minima saturates to 1 very fast as the qubit count increases for
arbitrary given values of p, and at the same time, it can be reduced by increasing the number of
trainable parameters, which is consistent with the theoretical findings in Theorem 2.

5 Conclusion and outlook

In this paper, we prove that during the process of learning an unknown quantum state with QNNs,
the probability of avoiding local minima is of order O(N22−ND2/ϵ2) which is exponentially small
in the qubit count N while increases polynomially with the circuit depth D. The curvature of local
minima is concentrated to the QFI matrix times a fidelity-dependent constant which is positive
at p2 > 1/d. In practice, our results can be regarded as a quantum version of the no-free-lunch
(NFL) theorem suggesting that no single QNN is universally the best-performing model for learning
all target quantum states. We remark that compared to previous works, our findings first establish
quantitative limits on good initial guesses and adaptive training methods for improving the learnability
and scalability of QNNs.

In the technical part of our work, our ensemble arises from the unknown target state. Alternatively, if
the QNN is sufficiently deep to form a subspace 2-design (cf. Appendix A.1) replacing the ensemble
we used here, a different interpretation could be established with the same calculations: there are
exponentially large proportion of local minima on some cross sections of the training landscape
with a constant loss function value. However, it remains an open question what the scaling of the
QNN depth is to constitute such a subspace 2-design, given that a local random quantum circuit of
polynomially depth forms an approximate unitary t-design [76]. We would like to note that the case
where the output and target states are mixed states is not covered due to the quantum nature of the
hard-to-defining orthogonal ensemble of mixed states, which may be left for future research.

Future progress will necessitate more structured QNN architectures and optimization tools, where
insights from the field of deep learning may prove beneficial. Our findings suggest that the unique
characteristics and prior information of quantum systems must be thoughtfully encoded in the QNN
in order to learn the state successfully, such as the low entanglement structure in the ground state [70],
the local interactions in Hamiltonians [71, 77] and the adiabatic evolution from product states [72].
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Appendix for “Statistical Analysis of Quantum State Learning Process in
Quantum Neural Networks”

A Preliminaries

A.1 Subspace Haar integration

The central technique used in our work is the subspace Haar integration, i.e., a series of formulas
on calculating Haar integrals over a certain subspace of the given Hilbert space. In this section, we
give a brief introduction to the common Haar integrals and then the basic formulas on subspace Haar
integrals used in our work together with the proofs.

Haar integrals refer to the matrix integrals over the d-degree unitary group U(d) with the Haar
measure dµ, which is the unique uniform measure on U(d) such that∫

U(d)

dµ(V )f(V ) =

∫
U(d)

dµ(V )f(V U) =

∫
U(d)

dµ(V )f(UV ), (S1)

for any integrand f and group element U ∈ U(d). If an ensemble V of unitaries V matches the Haar
measure up to the t-degree moment, i.e.,

EV ∈V[pt,t(V )] =

∫
U(d)

dµ(V )pt,t(V ), (S2)

then V is called a unitary t-design [78]. pt,t(V ) denotes an arbitrary polynomial of degree at most t
in the entries of V and at most t in those of V †. EV ∈V[·] denotes the expectation over the ensemble
V. The Haar integrals over polynomials can be analytically solved and expressed into closed forms
according to the following lemma.

Lemma S1 Let φ : U(d) → GL(Cd′
) be an arbitrary representation of unitary group U(d). Suppose

that the direct sum decomposition of φ to irreducible representations is φ =
⊕

j,k ϕ
(j)
k , where ϕ(j)k

denotes the kth copy of the irreducible representation ϕ(j). A set of orthonormal basis in the
representation space of ϕ(j)k is denoted as {|vj,k,l⟩}. For an arbitrary linear operator A : Cd′ → Cd′

,
the following equality holds [79]∫

U(d)

φ(U)Aφ(U)†dµ(U) =
∑
j,k,k′

tr(Q†
j,k,k′A)

tr(Q†
j,k,k′Qj,k,k′)

Qj,k,k′ , (S3)

whereQj,k,k′ =
∑

l |vj,k,l⟩⟨vj,k′,l| is the transfer operator from the representation subspace of ϕ(j)k′ to
that of ϕ(j)k . The denominator on the right hand side of (S3) can be simplified as tr(Q†

j,k,k′Qj,k,k′) =

tr(Pj,k′) = dj , where Pj,k =
∑

l |vj,k,l⟩⟨vj,k,l| = Qj,k,k is the projector to the representation
subspace of ϕ(j)k and dj is the dimension of the representation space of ϕ(j).

By choosing different representations of the unitary group U(d), some commonly used equalities can
be derived, such as ∫

U(d)

V AV †dµ(V ) =
tr(A)

d
I, (S4)

∫
U(d)

V †AV BV †CV dµ(V ) =
tr(AC) trB

d2
I +

d trA trC − tr(AC)

d(d2 − 1)

(
B − trB

d
I

)
, (S5)
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where I is the identity operator on the d-dimensional Hilbert space H. A,B and C are arbitrary
linear operators on H. According to the linearity of the integrals, the following equalities can be
further derived ∫

U(d)

tr(V A) tr(V †B)dµ(V ) =
tr(AB)

d
, (S6)∫

U(d)

tr(V †AV B) tr(V †CV D)dµ(V ) =
trA trB trC trD + tr(AC) tr(BD)

d2 − 1

− tr(AC) trB trD + trA trC tr(BD)

d(d2 − 1)
,

(S7)

where A,B,C and D are arbitrary linear operators on H.

The subspace Haar integration can be regarded as a simple generalization of the formulas above.
Suppose that Hsub is a subspace with dimension dsub of the Hilbert space H. U is an ensemble
whose elements are unitaries in H with a block-diagonal structure U = P̄ +PUP . P is the projector
from H to Hsub and PUP is a random unitary with the Haar measure on Hsub. P̄ = I − P is the
projector from H to the orthogonal complement of Hsub. Integrals with respect to such an ensemble
U are dubbed as “subspace Haar integrals”, which can be reduced back to the common Haar integrals
by taking Hsub = H. The corresponding formulas of subspace Haar integrals are developed in the
following lemmas, where EU∈U[·] = EU[·] denotes the expectation with respect to the ensemble U.

Lemma S2 The expectation of a single element U ∈ U with respect to the ensemble U equals to the
projector to the orthogonal complement, i.e.,

EU [U ] = I − P. (S8)

Proof The fact that Haar integrals of inhomogenous polynomials pt,t′ with t ̸= t′ over the whole
space equals to zero leads to the vanishment of the block in Hsub, i.e.,

EU [U ] = EU
[
P̄ + PUP

]
= P̄ , (S9)

which is just the projector to the orthogonal complement Hsub. ■

Similarly, we know all the subspace Haar integrals involving only U or U† will leave a projector after
integration. For example, it holds that EU [UAU ] = P̄AP̄ for an arbitrary linear operator A.

Lemma S3 For an arbitrary linear operator A on H, the expectation of U†AU with respect to the
random variable U ∈ U is

EU
[
U†AU

]
=

tr(PA)

dsub
P + (I − P )A(I − P ). (S10)

Proof Eq. (S10) can be seen as a special case of Lemma S1 since U can be seen as the complete
reducible representation of U(dsub) composed of (d − dsub) trivial representations ϕ(1)k with k =

1, ..., (d− dsub) and one natural representation ϕ(2). This gives rise to∑
k,k′

tr(Q†
1,k,k′A)

tr(Q†
1,k,k′Q1,k,k′)

Q1,k,k′ = P̄AP̄ ,

tr(Q†
2A)

tr(Q†
2Q2)

Q2 =
tr(PA)

dsub
P.

(S11)

Alternatively, Eq. (S10) can just be seen as a result of the block matrix multiplication, i.e.,

EU[U
†AU ] = EU[(P̄ + PU†P )A(P̄ + PUP )]

= EU[P̄AP̄ + P̄APUP + PU†PAP̄ + PU†PAPUP ]

= P̄AP̄ +
tr(PAP )

dsub
P,

(S12)

where tr(PAP ) = tr(P 2A) = tr(PA). ■
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Corollary S4 Suppose |φ⟩ is a Haar-random pure state in Hsub. For arbitrary linear operators A
on H, the following equality holds

Eφ [⟨φ|A|φ⟩] = tr(PA)

dsub
, (S13)

where Eφ[·] is the expectation with respect to the random state |φ⟩.

Proof Suppose |φ0⟩ is an arbitrary fixed state in Hsub. The random state |φ⟩ can be written in terms
of U ∈ U as |φ⟩ = U |φ0⟩ such that

Eφ [⟨φ|A|φ⟩] = EU∈U
[
⟨φ0|U†AU |φ0⟩

]
. (S14)

Eq. (S13) is naturally obtained from Lemma S3 by taking the expectation over |φ0⟩ which satisfies
P |φ0⟩ = |φ0⟩ and P̄ |φ0⟩ = 0. ■

Lemma S5 For arbitrary linear operators A,B,C on H and U ∈ U, the following equality holds

EU
[
U†AUBU†CU

]
= P̄AP̄BP̄CP̄ +

tr (PB)

dsub
P̄APCP̄ +

tr (PC)

dsub
P̄AP̄BP +

tr (PA)

dsub
PBP̄CP̄

+
tr
(
PAP̄BP̄C

)
dsub

P +
tr(PAPC) tr(PB)

d2sub
P

+
dsub tr(PA) tr(PC)− tr(PAPC)

dsub(d2sub − 1)

(
PBP − tr(PB)

dsub
P

)
.

(S15)

Proof Here we simply employ the block matrix multiplication to prove this equality. We denote

the 2× 2 blocks with indices
(
11 12
21 22

)
respectively where the index 2 corresponds to Hsub. Thus

the random unitary U can be written as U =

(
I11 0
0 U22

)
where I11 is the identity matrix on the

orthogonal complement of Hsub and U22 is a Haar-random unitary on Hsub. The integrand becomes

U†AUBU†CU =

(
A11 A12U22

U†
22A21 U†

22A22U22

)(
B11 B12

B21 B22

)(
C11 C12U22

U†
22C21 U†

22C22U22

)
. (S16)

The four matrix elements of the multiplication results are

11 : A11B11C11 +A12U22B21C11 +A11B12U
†
22C11 +A12U22B22U

†
22C21,

12 : A11B11C12U22 +A12U22B21C12U22 +A11B12U
†
22C22U22 +A12U22B22U

†
22C22U22,

21 : U†
22A21B11C11 + U†

22A22U22B21C11 + U†
22A21B12U

†
22C21 + U†

22A22U22B22U
†
22C21,

22 : U†
22A21B11C12U22 + U†

22A22U22B21C12U22 + U†
22A21B12U

†
22C22U22

+ U†
22A22U22B22U

†
22C22U22.

(S17)
Since inhomogeneous Haar integrals always vanish on Hsub, the elements above can be reduced to

11 : A11B11C11 +A12U22B22U
†
22C21,

12 : A11B12U
†
22C22U22, 21 : U†

22A22U22B21C11,

22 : U†
22A21B11C12U22 + U†

22A22U22B22U
†
22C22U22.

(S18)
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Let d2 = dsub = dimHsub and I22 be the identity matrix in Hsub. Utilizing Eqs. (S4) and (S5), the
expectation of each block becomes

11 : A11B11C11 +
trB22

d2
A12C21,

12 :
trC22

d2
A11B12, 21 :

trA22

d2
B21C11,

22 :
tr (A21B11C12)

d2
I22 +

tr(A22C22) tr(B22)

d22
I22

+
d2 tr(A22) tr(C22)− tr(A22C22)

d2(d22 − 1)

(
B22 −

tr(B22)

d2
I22

)
.

(S19)

Written in terms of subspace projectors P and P̄ , the results become exactly as Eq. (S15). ■

Corollary S6 Suppose |φ⟩ is a Haar-random pure state in Hsub. For arbitrary linear operators A
on H, the following equality holds

Eφ

[
⟨φ|A|φ⟩2

]
=

tr((PA)2) + (tr(PA))2

dsub(dsub + 1)
, (S20)

where Eφ[·] is the expectation with respect to the random state |φ⟩.

Proof Suppose |φ0⟩ is an arbitrary fixed state in Hsub. The random state |φ⟩ can be written in terms
of U ∈ U as |φ⟩ = U |φ0⟩ such that

Eφ

[
(⟨φ|A|φ⟩)2

]
= EU∈U

[
⟨φ0|U†AU |φ0⟩⟨φ0|U†AU |φ0⟩

]
. (S21)

Eq. (S20) is naturally obtained from Lemma S5 by taking C = A and B = |φ0⟩⟨φ0| which satisfies
P̄B = BP̄ = 0, PBP = B and trB = 1. ■

Lemma S7 For arbitrary linear operatorsA,B,C,D on H and U ∈ U, the following equality holds

EU
[
tr(U†AUB) tr(U†CUD)

]
= tr(P̄AP̄B) tr(P̄CP̄D)

+
tr(P̄AP̄B) tr(PC) tr(PD)

dsub
+

tr(P̄CP̄D) tr(PA) tr(PB)

dsub

+
tr(PBP̄APCP̄D)

dsub
+

tr(PAP̄BPDP̄C)

dsub

+
tr(PA) tr(PB) tr(PC) tr(PD) + tr(PAPC) tr(PBPD)

d2sub − 1

− tr(PAPC) tr(PB) tr(PD) + tr(PA) tr(PC) tr(PBPD)

dsub(d2sub − 1)
.

(S22)

Proof Similarly with the proof of Lemma S5, the block matrix multiplication gives

tr(U†AUB) = tr

[(
A11 A12U22

U†
22A21 U†

22A22U22

)(
B11 B12

B21 B22

)]
= tr(A11B11) + tr(A12U22B21) + tr(U†

22A21B12) + tr(U†
22A22U22B22).

(S23)

Hence we have

EU
[
tr(U†AUB) tr(U†CUD)

]
= EU

[
tr(A11B11) tr(C11D11)

+ tr(A11B11) tr(U
†
22C22U22D22) + tr(C11D11) tr(U

†
22A22U22B22)

+ tr(A12U22B21) tr(U
†
22C21D12) + tr(U†

22A21B12) tr(C12U22D21)

+ tr(U†
22A22U22B22) tr(U

†
22C22U22D22)

]
.

(S24)
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where all inhomogeneous terms have been ignored. Utilizing Eqs. (S4), (S6) and (S7), the expectation
becomes

EU
[
tr(U†AUB) tr(U†CUD)

]
= tr(A11B11) tr(C11D11)

+
tr(A11B11) tr(C22) tr(D22)

d2
+

tr(C11D11) tr(A22) tr(B22)

d2

+
tr(B21A12C21D12)

d2
+

tr(A21B12D21C12)

d2

+
1

d22 − 1
(tr(A22) tr(B22) tr(C22) tr(D22) + tr(A22C22) tr(B22D22))

− 1

d2(d22 − 1)
(tr(A22C22) tr(B22) tr(D22) + tr(A22) tr(C22) tr(B22D22))

(S25)

Written in terms of subspace projectors P and P̄ , the results become exactly as Eq. (S22). ■

Finally, similar to the unitary t-design, we introduce the concept of “subspace t-design”. If an
ensemble W of unitaries V matches the ensemble U rotating the subspace Hsub up to the t-degree
moment, then W is called a subspace unitary t-design with respect to Hsub. In the main text, the
ensemble comes from the unknown target state. Alternatively, if a random QNN U(θ) with some
constraints such as keeping the loss function constant L(θ) = L0, i.e.,

W = U(Θ), Θ = {θ | L(θ) = L0}, (S26)

forms a approximate subspace 2-design, then similar results as in the main text can be established
yet with a different interpretation: there is an exponentially large proportion of local minima on a
constant-loss-section of the training landscape.

A.2 Perturbation on positive definite matrices

To identify whether a parameter point is a local minimum, we need to check whether the Hessian
matrix is positive definite, where the following sufficient condition is used in the proof of our main
theorem in the next section.

Lemma S8 Suppose X is a positive definite matrix and Y is a Hermitian matrix. If the distance
between Y and X is smaller than the minimal eigenvalue of X , i.e., ∥Y −X∥∞ < ∥X−1∥−1

∞ , then
Y is positive definite. Here ∥ · ∥∞ denotes the Schatten-∞ norm.

Proof For an arbitrary vector |v⟩, we have

⟨v|Y |v⟩ = ⟨v|X|v⟩+ ⟨v|Y −X|v⟩ ≥ ∥X−1∥−1
∞ − ∥Y −X∥∞ > 0. (S27)

Note that ∥X−1∥−1
∞ just represents the minimal eigenvalue of the positive matrix X . Thus, Y is

positive definite. ■

A.3 Tail inequalities

In order to bound the probability of avoiding local minima, we need to use some “tail inequalities”
in probability theory, especially the generalized Chebyshev’s inequality for matrices, which we
summarize below for clarity.

Lemma S9 (Markov’s inequality) For a non-negative random variable X and a > 0, the probability
that X is at least a is upper bounded by the expectation of X divided by a, i.e.,

Pr[X ≥ a] ≤ E[X]

a
. (S28)

Proof The expectation can be rewritten and bounded as

E[X] = Pr[X < a] · E[X | X < a] + Pr[X ≥ a] · E[X | X ≥ a]

≥ Pr[X ≥ a] · E[X | X ≥ a] ≥ Pr[X ≥ a] · a. (S29)

Thus we have Pr[X ≥ a] ≤ E[X]/a. ■
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Lemma S10 (Chebyshev’s inequality) For a real random variable X and ε > 0, the probability that
X deviates from the expectation E[X] by ε is upper bounded by the variance of X divided by ε2, i.e.,

Pr[|X − E[X]| ≥ ε] ≤ Var[X]

ε2
. (S30)

Proof Applying Markov’s inequality in Lemma S9 to the random variable (X − E[X])2 gives

Pr[|X − E[X]| ≥ ε] = Pr[(X − E[X])2 ≥ ε2] ≤ E[(X − E[X])2]

ε2
=

Var[X]

ε2
. (S31)

Alternatively, the proof can be carried out similarly as in Eq. (S29) with respect to (X − E[X])2. ■

Lemma S11 (Chebyshev’s inequality for matrices) For a random matrix X and ε > 0, the probabil-
ity that X deviates from the expectation E[X] by ε in terms of the norm ∥ · ∥α satisfies

Pr [∥X − E[X]∥α ≥ ε] ≤ σ2
α

ε2
(S32)

where σ2
α = E[∥X − E[X]∥2α] denotes the variance of X in terms of the norm ∥ · ∥α.

Proof Applying Markov’s inequality in Lemma S9 to the random variable ∥X − E[X]∥2α gives

Pr[∥X − E[X]∥α ≥ ε] = Pr[∥X − E[X]∥2α ≥ ε2] ≤ E[∥X − E[X]∥2α]
ε2

=
σ2
α

ε2
. (S33)

Note that here the expectation E[X] is still a matrix while the “variance” σ2
α is a real number. ■

A.4 Quantum Fisher information matrix

Given a parameterized pure quantum state |ψ(θ)⟩, the quantum Fisher information (QFI) matrix
Fµν [64] is defined as the Riemannian metric induced from the Bures fidelity distance df(θ,θ′) =
1− |⟨ψ(θ)|ψ(θ′)⟩|2 (up to a factor 2 depending on convention), i.e.,

Fµν(θ) =
∂2

∂δµ∂δν
df(θ,θ + δ)

∣∣∣∣
δ=0

= −2Re [⟨∂µ∂νψ|ψ⟩+ ⟨∂µψ|ψ⟩⟨ψ|∂νψ⟩] . (S34)

Note that |∂µψ⟩ actually refers to ∂
∂θµ

|ψ(θ)⟩. Using the normalization condition

⟨ψ|ψ⟩ = 1,

∂µ(⟨ψ|ψ⟩) = ⟨∂µψ|ψ⟩+ ⟨ψ|∂µψ⟩ = 2Re [⟨∂µψ|ψ⟩] = 0,

∂µ∂ν(⟨ψ|ψ⟩) = 2Re [⟨∂µ∂νψ|ψ⟩+ ⟨∂µψ|∂νψ⟩] = 0,

(S35)

the QFI can be rewritten as

Fµν = 2Re [⟨∂µψ|∂νψ⟩ − ⟨∂µψ|ψ⟩⟨ψ|∂νψ⟩] . (S36)

The QFI characterizes the sensibility of a parameterized quantum state to a small change of parameters,
and can be viewed as the real part of the quantum geometric tensor.

B Detailed proofs

In this section, we provide the detailed proofs of Lemma 1, Theorem 2 and Proposition 3 in the main
text. Here we use d to denote the dimension of the Hilbert space. For a qubit system with N qubits,
we have d = 2N . As in the main text, we represent the value of a certain function at θ = θ∗ by
appending the superscript “∗” for simplicity of notation, e.g., ∇L|θ=θ∗ as ∇L∗ and HL|θ=θ∗ as
H∗

L. In addition, for a parameterized quantum circuit U(θ) =
∏M

µ=1 Uµ(θµ)Wµ, we introduce the

notation Vα→β =
∏β

µ=α UµWµ if α ≤ β and Vα→β = I if α > β. Note that the product
∏

µ is by
default in the increasing order from the right to the left. The derivative with respect to the parameter
θµ is simply denoted as ∂µ = ∂

∂θµ
. We remark that our results hold for all kinds of input states into

QNNs in spite that we use |0⟩⊗N in the definition of |ψ(θ)⟩ for simplicity.
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Lemma 1 The expectation and variance of the gradient ∇L and Hessian matrix HL of the fidelity
loss function L(θ) = 1− |⟨ϕ|ψ(θ)⟩|2 at θ = θ∗ with respect to the target state ensemble T satisfy

ET [∇L∗] = 0, VarT[∂µL∗] = f1(p, d)F∗
µµ. (S37)

ET [H
∗
L] =

dp2 − 1

d− 1
F∗, VarT[∂µ∂νL∗] ≤ f2(p, d)∥Ωµ∥2∞∥Ων∥2∞. (S38)

where F denote the QFI matrix. f1 and f2 are functions of the overlap p and the Hilbert space
dimension d, i.e.,

f1(p, d) =
p2(1− p2)

d− 1
, f2(p, d) =

32(1− p2)

d− 1

[
p2 +

2(1− p2)

d

]
. (S39)

Proof Using the decomposition in Eq. (4), the loss function can be expressed by

L = 1−⟨ϕ|ϱ|ϕ⟩ = 1−p2⟨ψ∗|ϱ|ψ∗⟩− (1−p2)⟨ψ⊥|ϱ|ψ⊥⟩−2p
√
1− p2 Re

(
⟨ψ⊥|ϱ|ψ∗⟩

)
, (S40)

where ϱ(θ) = |ψ(θ)⟩⟨ψ(θ)| denotes the density matrix of the output state from the QNN. According
to Lemma S2 and Corollary S4, the expectation of the loss function with respect to the ensemble T
can be calculated as

ET [L(θ)] = 1− p2⟨ψ∗|ϱ|ψ∗⟩ − (1− p2)
tr[(I − |ψ∗⟩⟨ψ∗|)ϱ]

d− 1

= 1− p2 +
dp2 − 1

d− 1
g(θ),

(S41)

where g(θ) = 1− ⟨ψ∗|ϱ(θ)|ψ∗⟩ denotes the fidelity distance between the output states at θ and θ∗.
By definition, g(θ) takes the global minimum at θ = θ∗, i.e., at ϱ = |ψ∗⟩⟨ψ∗|. Thus the commutation
between the expectation and differentiation gives

ET [∇L∗] = ∇ (ET [C])|θ=θ∗ =
dp2 − 1

d− 1
∇g(θ)|θ=θ∗ = 0,

ET [H
∗
L] =

dp2 − 1

d− 1
Hg(θ)|θ=θ∗ =

dp2 − 1

d− 1
Hg(θ)|θ=θ∗ =

dp2 − 1

d− 1
F∗.

(S42)

Note that Hg(θ)|θ=θ∗ is actually the QFI matrix F of |ψ(θ)⟩ at θ = θ∗ (see Appendix A.4), which
is always positive semidefinite. To estimate the variance, we need to calculate the expression of
derivatives first due to the non-linearity of the variance, unlike the case of Eq. (S42) where the
operations of taking the expectation and derivative is exchanged. The first order derivative can be
expressed by

∂µL = −⟨ϕ|Dµ|ϕ⟩ = −p2⟨ψ∗|Dµ|ψ∗⟩ − q2⟨ψ⊥|Dµ|ψ⊥⟩ − 2pqRe
(
⟨ψ⊥|Dµ|ψ∗⟩

)
. (S43)

where q =
√
1− p2 and Dµ = ∂µϱ is a traceless Hermitian operator since trDµ = ∂µ(tr ϱ) = 0.

At θ = θ∗, the operator Dµ is reduced to D∗
µ which satisfies several useful properties

D∗
µ = [∂µ(|ψ⟩⟨ψ|)]∗ = |∂µψ∗⟩⟨ψ∗|+ |ψ∗⟩⟨∂µψ∗|,

⟨ψ∗|D∗
µ|ψ∗⟩ = ⟨ψ∗|∂µψ∗⟩+ ⟨∂µψ∗|ψ∗⟩ = ∂µ(⟨ψ|ψ⟩)∗ = 0,

⟨ψ⊥|D∗
µ|ψ⊥⟩ = ⟨ψ⊥|∂µψ∗⟩⟨ψ∗|ψ⊥⟩+ ⟨ψ⊥|ψ∗⟩⟨∂µψ∗|ψ⊥⟩ = 0,

⟨ψ⊥|D∗
µ|ψ∗⟩ = ⟨ψ⊥|∂µψ∗⟩⟨ψ∗|ψ∗⟩+ ⟨ψ⊥|ψ∗⟩⟨∂µψ∗|ψ∗⟩ = ⟨ψ⊥|∂µψ∗⟩,

(S44)

where we have used the facts of ⟨ψ|ψ⟩ = 1 and ⟨ψ∗|ψ⊥⟩ = 0. Note that |∂µψ∗⟩ actually refers to
(∂µ|ψ⟩)∗. Thus the variance of the first order derivative at θ = θ∗ becomes

VarT[∂µL∗] = ET

[
(∂µL∗ − ET[∂µL∗])

2
]
= ET

[
(∂µL∗)

2
]

= 4p2q2 ET

[(
Re⟨ψ⊥|∂µψ∗⟩

)2]
.

(S45)

According to Lemma S2 and Corollary S4, it holds that

ET

[(
Re⟨ψ⊥|∂µψ∗⟩

)2]
=

1

2
ET
[
⟨ψ⊥|∂µψ∗⟩⟨∂µψ∗|ψ⊥⟩

]
=

⟨∂µψ∗|∂µψ∗⟩ − ⟨ψ∗|∂µψ∗⟩⟨∂µψ∗|ψ∗⟩
2(d− 1)

=
F∗

µµ

4(d− 1)
,

(S46)
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where Fµµ is the QFI diagonal element. Using the generators in the PQC, Fµµ could be expressed as

Fµµ = 2
(
⟨ψ|Ω̃2

µ|ψ⟩ − ⟨ψ|Ω̃µ|ψ⟩2
)
, (S47)

where Ω̃µ = Vµ→MΩµV
†
µ→M . Finally, the variance of ∂µL at θ = θ∗ equals to

VarT[∂µL∗] = 4p2q2 · F∗
µµ

4(d− 1)
=
p2(1− p2)

d− 1
F∗

µµ. (S48)

The second order derivative can be expressed by

(HL)µν =
∂2L

∂θµ∂θν
= ∂µ∂νL = −⟨ϕ|Dµν |ϕ⟩

= −p2⟨ψ∗|Dµν |ψ∗⟩ − q2⟨ψ⊥|Dµν |ψ⊥⟩ − 2pqRe
(
⟨ψ⊥|Dµν |ψ∗⟩

)
,

(S49)

where Dµν = ∂µ∂νϱ is a traceless Hermitian operator since trDµν = ∂µ∂ν(tr ϱ) = 0. Please do not
confuse Dµν with Dµ above. At θ = θ∗, the Dµν is reduced to D∗

µν which satisfies the following
properties

D∗
µν = ∂µ∂ν(|ψ⟩⟨ψ|)∗ = 2Re [|∂µ∂νψ∗⟩⟨ψ∗|+ |∂µψ∗⟩⟨∂νψ∗|] , (S50)

⟨ψ∗|D∗
µν |ψ∗⟩ = 2Re [⟨ψ∗|∂µ∂νψ∗⟩+ ⟨ψ∗|∂µψ∗⟩⟨∂νψ∗|ψ∗⟩] = −Fµν , (S51)

⟨ψ⊥|D∗
µν |ψ⊥⟩ = 2Re

[
⟨ψ⊥|∂νψ∗⟩⟨∂µψ∗|ψ⊥⟩

]
. (S52)

Here the notation 2Re[·] of square matrix A actually means the sum of the matrix and its Hermitian
conjugate, i.e., 2Re[A] = A + A†. From Eq. (S50) we know that the rank of Dµν is at most 4.
Substituting the expectation in Eq. (S42), the variance of the second order derivative at θ = θ∗

becomes
VarT[∂µ∂νL∗] = ET

[
(∂µ∂νL∗ − ET [∂µ∂νL∗])

2
]

=

(
q2

d− 1
F∗

µν

)2

+ q4ET
[
⟨ψ⊥|D∗

µν |ψ⊥⟩2
]

− 2q4

d− 1
F∗

µνET
[
⟨ψ⊥|D∗

µν |ψ⊥⟩
]
+ 4p2q2ET

[
(Re⟨ψ⊥|D∗

µν |ψ∗⟩)2
]
.

(S53)

where the inhomogeneous cross terms vanish after taking the expectation according to Lemma S2 and
have been omitted. Using Corollaries S4 and S6, the expectations in Eq. (S53) can be calculated as

ET
[
⟨ψ⊥|D∗

µν |ψ⊥⟩2
]
=

tr((D∗
µν)

2)− 2
(
⟨ψ∗|(D∗

µν)
2|ψ∗⟩ − ⟨ψ∗|D∗

µν |ψ∗⟩2
)

d(d− 1)
,

ET
[
⟨ψ⊥|D∗

µν |ψ⊥⟩
]
= −⟨ψ∗|D∗

µν |ψ∗⟩
d− 1

=
F∗

µν

d− 1
,

ET
[
(Re⟨ψ⊥|D∗

µν |ψ∗⟩)2
]
=

1

2
ET
[
⟨ψ⊥|D∗

µν |ψ∗⟩⟨ψ∗|D∗
µν |ψ⊥⟩

]
=

⟨ψ∗|(D∗
µν)

2|ψ∗⟩ − ⟨ψ∗|D∗
µν |ψ∗⟩2

2(d− 1)
.

(S54)

Thus the variance of the second order derivative at θ = θ∗ can be written as

VarT[∂µ∂νL∗] =q4
∥D∗

µν∥22 − 2
(
⟨ψ∗|(D∗

µν)
2|ψ∗⟩ − ⟨ψ∗|D∗

µν |ψ∗⟩2
)

d(d− 1)

+ 2p2q2
⟨ψ∗|(D∗

µν)
2|ψ∗⟩ − ⟨ψ∗|D∗

µν |ψ∗⟩2
d− 1

−
(

q2

d− 1
F∗

µν

)2

.

(S55)

Note that the factor

⟨ψ∗|(D∗
µν)

2|ψ∗⟩ − ⟨ψ∗|D∗
µν |ψ∗⟩2 = ⟨ψ∗|D∗

µν(I − |ψ∗⟩⟨ψ∗|)D∗
µν |ψ∗⟩, (S56)
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is non-negative because the operator (I − |ψ∗⟩⟨ψ∗|) is positive semidefinite. Hence the variance can
be upper bounded by

VarT[∂µ∂νL∗] ≤ q4

d(d− 1)
∥D∗

µν∥22 +
2p2q2

d− 1
⟨ψ∗|(D∗

µν)
2|ψ∗⟩

≤ q4

d(d− 1)
∥D∗

µν∥22 +
2p2q2

d− 1
∥(D∗

µν)
2∥∞ −

(
q2

d− 1
F∗

µν

)2

≤ 2q2

d− 1

(
p2 +

2q2

d

)
∥D∗

µν∥2∞,

(S57)

where we have used the properties

∥D∗
µν∥2 ≤

√
rank(D∗

µν)∥D∗
µν∥∞ ≤ 2∥D∗

µν∥∞, ∥(D∗
µν)

2∥∞ = ∥D∗
µν∥2∞. (S58)

Utilizing the quantum gates in the QNN, the operator Dµν can be written as

Dµν = Vν+1→M [Vµ+1→ν [V1→µ|0⟩⟨0|V †
1→µ, iΩµ]V

†
µ+1→ν , iΩν ]V

†
ν+1→M , (S59)

where we assume µ ≤ ν without loss of generality. Thus ∥Dµν∥∞ can be upper bounded by

∥Dµν∥∞ ≤ 4∥ΩµΩν∥∞ ≤ 4∥Ωµ∥∞∥Ων∥∞. (S60)

Finally, the variance of the second order derivative at θ = θ∗ can be bounded as

VarT[∂µ∂νL∗] ≤ f2(p, d)∥Ωµ∥2∞∥Ων∥2∞. (S61)

The factor f2(p, d) reads

f2(p, d) =
32(1− p2)

d− 1

[
p2 +

2(1− p2)

d

]
, (S62)

which vanishes at least of order 1/d. ■

Note that when p ∈ {0, 1}, f1, f2 and hence the variances of the first and second order derivatives
become exactly zero, indicating L∗ takes the optimum in all cases. This is nothing but the fact that
the range of the loss function is [0, 1], which reflects that the bound of VarT[∂µ∂νL∗] is tight in p.

We remark that the vanishing gradient here is both conceptually and technically distinct from barren
plateaus [35]. Firstly, here we focus on a fixed parameter point θ∗ instead of a randomly chosen point
on the training landscape. Other points apart from θ∗ is allowed to have a non-vanishing gradient
expectation, which leads to prominent local minima instead of plateaus. Moreover, the ensemble T
used here originates from the unknown target state instead of the random initialization. The latter
typically demands a polynomially deep circuit to form a 2-design. Technically, a constant overlap p
is assumed to construct the ensemble T instead of completely random over the entire Hilbert space.
Thus our results apply to adaptive methods, while barren plateaus from the random initialization are
not.

Theorem 2 If the fidelity loss function satisfies L(θ∗) < 1 − 1/d, the probability that θ∗ is not a
local minimum of L up to a fixed precision ϵ = (ϵ1, ϵ2) with respect to the target state ensemble T is
upper bounded by

PrT [¬LocalMin(θ∗, ϵ)] ≤ 2f1(p, d)∥ω∥22
ϵ21

+
f2(p, d)∥ω∥42(
dp2−1
d−1 e∗ + ϵ2

)2 , (S63)

where e∗ denotes the minimal eigenvalue of the QFI matrix at θ = θ∗. f1 and f2 are defined in
Lemma 1 which vanish at least of order 1/d.

Proof By definition in Eq. (5) in the main text, the probability PrT [¬LocalMin(θ∗, ϵ)] can be upper
bounded by the sum of two terms: the probability that one of the gradient component is larger than
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ϵ1, and the probability that the Hessian matrix is not positive definite up to the error ϵ2, i.e.,

PrT [¬LocalMin(θ∗, ϵ)] = PrT

[
M⋃
µ=1

{|∂µL∗| > ϵ1} ∪ {H∗
L ⊁ −ϵ2I}

]

≤ PrT

[
M⋃
µ=1

{|∂µL∗| > ϵ1}
]
+ PrT [H

∗
L ⊁ −ϵ2I] .

(S64)

The first term can be easily upper bounded by combining Lemma 1 and Chebyshev’s inequality, i.e.,

PrT

[
M⋃
µ=1

{|∂µL∗| > ϵ1}
]
≤

M∑
µ=1

PrT [|∂µL∗| > ϵ1] ≤
M∑
µ=1

VarT[∂µL∗]

ϵ21
=
f1(p, d)

ϵ21
trF∗, (S65)

where the diagonal element of the QFI matrix is upper bounded as Fµµ ≤ 2∥Ωµ∥2∞ by definition and
thus trF∗ ≤ 2∥ω∥22. Here the generator norm vector ω is defined as

ω = (∥Ω1∥∞, ∥Ω2∥∞, . . . , ∥ΩM∥∞), (S66)

so that the squared vector 2-norm of ω equals to ∥ω∥22 =
∑M

µ=1 ∥Ωµ∥2∞. Thus we obtain the upper
bound of the first term, i.e.,

PrT

[
M⋃
µ=1

{|∂µL∗| > ϵ1}
]
≤ 2f1(p, d)∥ω∥22

ϵ21
, (S67)

It takes extra efforts to bound the second term. After assuming p2 > 1/d to ensure that ET[H
∗
L] is

positive semidefinite, a sufficient condition of the positive definiteness can be obtained by perturbing
ET[H

∗
L] using Lemma S8, i.e.,

∥H∗
L − ET[H

∗
L]∥∞ < ∥ET[H

∗
L + ϵ2I]

−1∥−1
∞ ⇒ H∗

L + ϵ2I ≻ 0, (S68)

Note that ∥ET[H
∗
L + ϵ2I]

−1∥−1
∞ = dp2−1

d−1 e∗ + ϵ2, where e∗ denotes the minimal eigenvalue of the
QFI F∗. A necessary condition for H∗

L + ϵ2I ⊁ 0 is hence obtained by the contrapositive, i.e.,

H∗
L ⊁ −ϵ2I ⇒ ∥H∗

L − ET[H
∗
L]∥∞ ≥ dp2 − 1

d− 1
e∗ + ϵ2. (S69)

Thus the probability that H∗
L is not positive definite can be upper bounded by

PrT [H
∗
L ⊁ −ϵ2I] ≤ PrT

[
∥H∗

L − ET[H
∗
L]∥∞ ≥ dp2 − 1

d− 1
e∗ + ϵ2

]
. (S70)

The generalized Chebyshev’s inequality in Lemma S11 regarding H∗
L and the Schatten-∞ norm gives

PrT [∥H∗
L − ET[H

∗
L]∥∞ ≥ ε] ≤ σ2

∞
ε2
, (S71)

where the “norm variance” is defined as σ2
∞ = ET[∥H∗

L −ET[H
∗
L]∥2∞]. By taking ε = dp2−1

d−1 e∗ + ϵ2,
we obtain

PrT [H
∗
L ⪰̸ −ϵ2I] ≤

σ2
∞(

dp2−1
d−1 e∗ + ϵ2

)2 . (S72)

Utilizing Lemma 1, σ2
∞ can be further bounded by

σ2
∞ ≤ σ2

2 = ET[∥H∗
L − ET[H

∗
L]∥22] =

∑
µν

ET

[
((H∗

L)µν − (ET[H
∗
L])µν)

2
]

=

M∑
µ,ν=1

VarT [∂µ∂νL∗] ≤ f2(p, d)

M∑
µ,ν=1

∥Ωµ∥2∞∥Ων∥2∞

= f2(p, d)

(
M∑
µ=1

∥Ωµ∥2∞

)2

= f2(p, d)∥ω∥42.

(S73)
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Combining Eqs. (S72) and (S73), we obtain the upper bound of the second term, i.e.,

PrT [H
∗
L ⊁ −ϵ2I] ≤

f2(p, d)∥ω∥42(
dp2−1
d−1 e∗ + ϵ2

)2 . (S74)

Substituting the bounds for the first and second terms into Eq. (S64), one finally arrives at the desired
upper bound for the probability that θ∗ is not a local minimum up to a fixed precision ϵ = (ϵ1, ϵ2). ■

Note that the conclusion can be generalized to the scenario of mixed states or noisy states easily
using the mathematical tools we developed in Appendix A.1. For example, suppose that the output
state of the QNN is ρ(θ) and the target state is |ϕ⟩. The loss function can be defined as the fidelity
distance L(θ) = 1− ⟨ϕ|ρ(θ)|ϕ⟩. Utilizing Lemmas S3 and S7, similar results can be carried out by
calculating the subspace Haar integration.

Proposition 3 The expectation and variance of the fidelity loss function L with respect to the target
state ensemble T can be exactly calculated as

ET [L(θ)] = 1− p2 +
dp2 − 1

d− 1
g(θ),

VarT [L(θ)] =
1− p2

d− 1
g(θ)

[
4p2 −

(
2p2 − (d− 2)(1− p2)

d(d− 1)

)
g(θ)

]
,

(S75)

where g(θ) = 1− |⟨ψ∗|ψ(θ)⟩|2.

Proof The expression of the expectation ET [L] has already been calculated in Eq. (S41). Considering
Lemma S2, the variance of the loss function is

VarT[L] = ET

[
(L − ET[L])2

]
= ET

[(
1− p2

d− 1
(⟨ψ∗|ϱ|ψ∗⟩ − 1) + q2⟨ψ⊥|ϱ|ψ⊥⟩+ 2pqRe

(
⟨ψ⊥|ϱ|ψ∗⟩

))2
]

=
q4

(d− 1)2
(⟨ψ∗|ϱ|ψ∗⟩ − 1)2 +

2q4

d− 1
(⟨ψ∗|ϱ|ψ∗⟩ − 1) ET

[
⟨ψ⊥|ϱ|ψ⊥⟩

]
+ q4 ET

[
⟨ψ⊥|ϱ|ψ⊥⟩2

]
+ 4p2q2 ET

[
Re
(
⟨ψ⊥|ϱ|ψ∗⟩

)2]
,

(S76)

where q =
√
1− p2 and ϱ(θ) = |ψ(θ)⟩⟨ψ(θ)|. According to Corollaries S4 and S6, the terms above

can be calculated as

ET
[
⟨ψ⊥|ϱ|ψ⊥⟩

]
=

1− ⟨ψ∗|ϱ|ψ∗⟩
d− 1

,

ET
[
⟨ψ⊥|ϱ|ψ⊥⟩2

]
=

(
tr(ϱ2)− 2⟨ψ∗|ϱ2|ψ∗⟩+ ⟨ψ∗|ϱ|ψ∗⟩2

)
+ (1− ⟨ψ∗|ϱ|ψ∗⟩)2

d(d− 1)

=
2(1− ⟨ψ∗|ϱ|ψ∗⟩)2

d(d− 1)
,

ET

[
Re
(
⟨ψ⊥|ϱ|ψ∗⟩

)2]
=

1

2
ET
[
⟨ψ⊥|ϱ|ψ∗⟩⟨ψ∗|ϱ|ψ⊥⟩

]
=

1− ⟨ψ∗|ϱ|ψ∗⟩2
2(d− 1)

.

(S77)

Thus the variance of the loss function becomes

VarT[L] = −q
4(1− ⟨ψ∗|ϱ|ψ∗⟩)2

(d− 1)2
+

2q4(1− ⟨ψ∗|ϱ|ψ∗⟩)2
d(d− 1)

+
2p2q2(1− ⟨ψ∗|ϱ|ψ∗⟩2)

d− 1

=
q2 (1− ⟨ψ∗|ϱ|ψ∗⟩)

d− 1

[
q2(d− 2)(1− ⟨ψ∗|ϱ|ψ∗⟩)

d(d− 1)
+ 2p2(1 + ⟨ψ∗|ϱ|ψ∗⟩)

]
.

(S78)

Substituting the relation ⟨ψ∗|ϱ|ψ∗⟩ = 1− g(θ), the desired expression is obtained. ■

If the quantum gate Uµ in the QNN satisfies the parameter-shift rule, the explicit form of the factor
g(θ) could be known along the axis of θµ passing through θ∗, which is summarized in Corollary S12.
We use θµ̄ to represent the other components except for θµ, namely θµ̄ = {θν}ν ̸=µ.
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Corollary S12 For QNNs satisfying the parameter-shift rule by Ω2
µ = I , the expectation and

variance of the fidelity loss function L restricted by only varying the parameter θµ from θ∗ with
respect to the target state ensemble T can be exactly calculated as

ET

[
L|θµ̄=θ∗

µ̄

]
= 1− p2 +

dp2 − 1

d− 1
g(θµ),

VarT

[
L|θµ̄=θ∗

µ̄

]
=

1− p2

d− 1
g(θµ)

[
4p2 −

(
2p2 − (d− 2)(1− p2)

d(d− 1)

)
g(θµ)

]
,

(S79)

where g(θµ) = 1
2F∗

µµ sin
2
(
θµ − θ∗µ

)
.

Proof According to Proposition 3, we only need to calculate the factor g(θ)|θµ̄=θ∗
µ̄

. We simply
denote this factor as g(θµ), the explicit expression of which could be calculated by just substituting
the parameter-shift rule. Alternatively, the expression of g(θµ) can be directly written down by
considering the following facts. The parameter-shift rule ensures that g(θµ) must take the form of
linear combinations of 1, cos(2θµ) and sin(2θµ) since Uµ(θµ) = e−iΩµθµ = cos θµI − i sin θµΩµ

and g(θµ) takes the form of Uµ(·)U†
µ. Furthermore, g(θµ) takes its minimum at θ∗µ so that it is an

even function relative to θµ = θ∗µ. Combined with the fact that g(θµ) also takes zero at θ∗µ, we know
g(θµ) ∝ [1− cos(2(θµ − θ∗µ))]. The coefficient can be determined by considering that the second
order derivative of g(θµ) equals to the QFI matrix element F∗

µµ by definition, so that

g(θµ) = g(θ)|θµ̄=θ∗
µ̄
=

1

4
F∗

µµ[1− cos(2(θµ − θ∗µ))] =
1

2
F∗

µµ sin
2(θµ − θ∗µ). (S80)

The expressions of the expectation and variance of the loss function can be obtained by directly
substituting Eq. (S80) into Proposition 3. ■

C Generalization to the local loss function

In the main text, we focus on the fidelity loss function, also known as the “global” loss function [36],
where the ensemble construction and calculation are preformed in a clear and meaningful manner.
However, there is another type of loss function called “local” loss function [36], such as the energy
expectation in the variational quantum eigensolver (VQE) which aims to prepare the ground state of
a physical system. The local loss function takes the form of

L(θ) = ⟨ψ(θ)|H|ψ(θ)⟩, (S81)
where H is the Hamiltonian of the physical system as a summation of Pauli strings. Eq. (S81) can
formally reduce to the fidelity loss function by taking H = I − |ϕ⟩⟨ϕ|. In this section, we generalize
the results of the fidelity loss function to the local loss function and show that the conclusion keeps
the same, though the ensemble construction and calculation are more complicated.

The ensemble we used in the main text decomposes the unknown target state into the learnt component
|ψ∗⟩ and the unknown component |ψ⊥⟩, and regards |ψ⊥⟩ as a Haar random state in the orthogonal
complement of |ψ∗⟩. This way of thinking seems to be more subtle in the case of the local loss
function since the Hamiltonian is usually already known in the form of Pauli strings and hence it
is unnatural to assume an unknown Hamiltonian. However, a known Hamiltonian does not imply
a known target state, i.e., the ground state of the physical system. One needs to diagonalize the
Hamiltonian to find the ground state, which requires an exponential cost in classical computers. That
is to say, what one really does not know is the unitary used in the diagonalization, i.e., the relation
between the learnt state |ψ∗⟩ and the eigen-basis of the Hamiltonian. We represent this kind of
uncertainty by a unitary V from the ensemble V, where V comes from the ensemble U mentioned
in Appendix A.1 by specifying P̄ = |ψ∗⟩⟨ψ∗|. Such an ensemble V induces an ensemble of loss
functions via

L(θ) = ⟨ψ(θ)|V †HV |ψ(θ)⟩, (S82)
similar with the loss function ensemble induced by the unknown target state in the main text. V can
be interpreted as all of the possible diagonalizing unitaries that keeps the loss value L(θ∗) constant,
denoted as L∗. In the following, similar with those for the global loss function, we calculate the
expectation and variance of the derivatives of the local loss function in Lemma S13 and bound the
probability of avoiding local minima in Theorem S14. Hence, the results and relative discussions in
the main text could generalize to the case of local loss functions.
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Lemma S13 The expectation and variance of the gradient ∇L and Hessian matrix HL of the local
loss function L(θ) = ⟨ψ(θ)|H|ψ(θ)⟩ at θ = θ∗ with respect to the ensemble V satisfy

EV [∇L∗] = 0, VarV[∂µL∗] = f1(H, d)F∗
µµ,

EV [H∗
L] =

trH − dL∗

d− 1
F∗, VarV [∂µ∂νL∗] ≤ f2(H, d)∥Ωµ∥2∞∥Ων∥2∞,

(S83)

where F denotes the QFI matrix. f1 and f2 are functions of the Hamiltonian H and the Hilbert
space dimension d, i.e.,

f1(H, d) =
⟨H2⟩∗ − ⟨H⟩2∗

d− 1
, f2(H, d) = 32

( ⟨H2⟩∗ − ⟨H⟩2∗
d− 1

+
2∥H∥22
d(d− 2)

)
, (S84)

where we introduce the notation ⟨·⟩∗ = ⟨ψ∗| · |ψ∗⟩.

Proof Using Lemma S3, the expectation of the local loss function can be directly calculated as

EV [L(θ)] = L∗ +
trH − dL∗

d− 1
g(θ). (S85)

where g(θ) = 1 − ⟨ψ∗|ϱ(θ)|ψ∗⟩ denotes the fidelity distance between the output states at θ and
θ∗. By definition, g(θ) takes the global minimum at θ = θ∗. Thus the commutation between the
expectation and differentiation gives

EV [∇L∗] = ∇ (EV [L])|θ=θ∗ =
trH − dL∗

d− 1
∇g(θ)|θ=θ∗ = 0,

EV [H∗
L] =

trH − dL∗

d− 1
Hg(θ)|θ=θ∗ =

trH − dL∗

d− 1
F∗.

(S86)

By definition, Hg(θ)|θ=θ∗ is actually the QFI matrix F∗ of |ψ(θ)⟩ at θ = θ∗ (see Appendix A.4),
which is always positive semidefinite. To estimate the variance, we need to calculate the expression
of derivatives first due to the non-linearity of the variance. The first order derivative of the local loss
function can be expressed by

∂µL = tr[V †HVDµ] = 2Re⟨ψ|V †HV |∂µψ⟩, (S87)

where Dµ = ∂µϱ is a traceless Hermitian operator since trDµ = ∂µ(tr ϱ) = 0. By definition, we
know that |ψ⟩∗ is not changed by V , i.e., V |ψ∗⟩ = |ψ∗⟩, which leads to the reduction ∂µL∗ =
2Re(⟨ψ∗|HV |∂µψ∗⟩). Hence, the variance of the first order derivative at θ = θ∗ is

VarV[∂µL∗] = EV
[
(∂µL∗ − EV[∂µL∗])2

]
= EV

[
(∂µL∗)2

]
= EV

[
(2Re⟨ψ∗|HV |∂µψ∗⟩)2

]
= EV

[
⟨ψ∗|HV |∂µψ∗⟩2

]
+ EV

[
⟨∂µψ∗|V †H|ψ∗⟩2

]
+ 2EV

[
⟨ψ∗|HV |∂µψ∗⟩⟨∂µψ∗|V †H|ψ∗⟩

]
.

(S88)

Utilizing Lemmas S2 and S3, we obtain

EV
[
⟨ψ∗|HV |∂µψ∗⟩2

]
= ⟨H⟩2∗⟨ψ∗|∂µψ∗⟩2,

EV
[
⟨∂µψ∗|V †H|ψ∗⟩2

]
= ⟨H⟩2∗⟨∂µψ∗|ψ∗⟩2,

EV
[
⟨ψ∗|HV |∂µψ∗⟩⟨∂µψ∗|V †H|ψ∗⟩

]
=

⟨H2⟩∗ − ⟨H⟩2∗
2(d− 1)

F∗
µµ + ⟨H⟩2∗⟨ψ∗|∂µψ∗⟩⟨∂µψ∗|ψ∗⟩,

(S89)

where we introduce the notation ⟨·⟩∗ = ⟨ψ∗| · |ψ∗⟩ and hence L∗ = ⟨H⟩∗. The 1/2 factor in the third
line arises from the definition of the QFI matrix. Note that there are three terms above canceling each
other due to the fact

2Re [⟨∂µψ|ψ⟩] = ⟨∂µψ|ψ⟩+ ⟨ψ|∂µψ⟩ = ∂µ(⟨ψ|ψ⟩) = 0,

⟨ψ|∂µψ⟩2 + ⟨∂µψ|ψ⟩2 + 2⟨ψ|∂µψ⟩⟨∂µψ|ψ⟩ = (2Re [⟨∂µψ|ψ⟩])2 = 0.
(S90)

26



Therefore, the variance of the first order derivative at θ = θ∗ equals to

VarV [∂µL∗] = EV

[
(2Re⟨ψ∗|HV |∂µψ∗⟩)2

]
=

⟨H2⟩∗ − ⟨H⟩2∗
d− 1

F∗
µµ. (S91)

The second-order derivative can be expressed by

∂µ∂νL = (HL)µν = tr
[
V †HVDµν

]
, (S92)

where Dµν = ∂µ∂νϱ is a traceless Hermitian operator since trDµν = ∂µ∂ν(tr ϱ) = 0. By direct
expansion, the variance of the second order derivative at θ = θ∗ can be expressed as

VarV[∂µ∂νL∗] = EV
[
(∂µ∂νL∗)2

]
− (EV [∂µ∂νL∗])2, (S93)

where the second term is already obtained in Eq. (S86). Lemma S7 directly implies

EV
[
(∂µ∂νL)2

]
= EV

[
tr(V †HVDµν) tr(V

†HVDµν)
]

= ⟨H⟩2∗⟨Dµν⟩2∗ +
2⟨H⟩∗⟨Dµν⟩∗

d− 1
(trH − ⟨H⟩∗)(trDµν − ⟨Dµν⟩∗)

+
2

d− 1
(⟨H2⟩∗ − ⟨H⟩2∗)(⟨D2

µν⟩∗ − ⟨Dµν⟩2∗)

+
1

d(d− 2)
(trH − ⟨H⟩∗)2(trDµν − ⟨Dµν⟩∗)2

+
1

d(d− 2)
(tr(H2)− 2⟨H2⟩∗ + ⟨H⟩2∗)(tr(D2

µν)− 2⟨D2
µν⟩∗ + ⟨Dµν⟩2∗)

− 1

d(d− 1)(d− 2)

[
(tr(H2)− 2⟨H2⟩∗ + ⟨H⟩2∗)(trDµν − ⟨Dµν⟩∗)2

]
− 1

d(d− 1)(d− 2)

[
(trH − ⟨H⟩∗)2(tr(D2

µν)− 2⟨D2
µν⟩∗ + ⟨Dµν⟩2∗)

]
.

(S94)

According to Eq. (S86), ⟨D∗
µν⟩∗ = −F∗

µν in Eq. (S51) and L∗ = ⟨H⟩∗, we have

(EV[∂µ∂νL∗])
2
=

(
trH − dL∗

d− 1
F∗

µν

)2

=

(
trH − ⟨H⟩∗

d− 1
− ⟨H⟩∗

)2

⟨D∗
µν⟩2∗. (S95)

Combining Eqs. (S94) and (S95) together with the condition trDµν = 0, we obtain

VarV[∂µ∂νL∗] =
2

d− 1
(⟨H2⟩∗ − ⟨H⟩2∗)(⟨D2∗

µν⟩∗ − ⟨D∗
µν⟩2∗)

+
1

d(d− 2)
(tr(H2)− 2⟨H2⟩∗ + ⟨H⟩2∗)(tr(D2∗

µν)− 2⟨D2∗
µν⟩∗ + ⟨D∗

µν⟩2∗)

− 1

d(d− 1)(d− 2)

[
(tr(H2)− 2⟨H2⟩∗ + ⟨H⟩2∗)⟨D∗

µν⟩2∗
]

− 1

d(d− 1)(d− 2)

[
(trH − ⟨H⟩∗)2(tr(D2∗

µν)− 2⟨D2∗
µν⟩∗ +

d− 2

d− 1
⟨Dµν⟩2∗))

]
.

(S96)

Note that we always have d ≥ 2 in qubit systems. If rankH ≥ 2, then it holds that

tr(H2)− 2⟨H2⟩∗ + ⟨H⟩2∗ ≥ ∥H∥22 − 2∥H∥2∞ ≥ (rankH)∥H∥2∞ − 2∥H∥2∞ ≥ 0. (S97)

Otherwise if rankH = 1 (the case of rankH = 0 is trivial), then we assume H = λ|ϕ⟩⟨ϕ| and it
holds that

tr(H2)−2⟨H2⟩∗+ ⟨H⟩2∗ = λ2−2λ2|⟨ψ∗|ϕ⟩|2+λ2|⟨ψ∗|ϕ⟩|4 = λ2
(
1− |⟨ψ∗|ϕ⟩|2

)2 ≥ 0. (S98)

Hence we conclude that it always holds that

tr(H2)− 2⟨H2⟩∗ + ⟨H⟩2∗ ≥ 0. (S99)

Similarly, because trDµν = 0, we know rankDµν ≥ 2 and thus

tr(D2
µν)− 2⟨D2

µν⟩∗ ≥ (rankDµν)∥Dµν∥2∞ − 2∥Dµν∥2∞ ≥ 0. (S100)
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Therefore, we can upper bound the variance by just discarding the last two terms in Eq. (S96)

VarV[∂µ∂νL∗] ≤ 2

d− 1
(⟨H2⟩∗ − ⟨H⟩2∗)(⟨D2∗

µν⟩∗ − ⟨D∗
µν⟩2∗)

+
1

d(d− 2)
(tr(H2)− 2⟨H2⟩∗ + ⟨H⟩2∗)(tr(D2∗

µν)− 2⟨D2∗
µν⟩∗ + ⟨D∗

µν⟩2∗).
(S101)

On the other hand, we have

tr(H2)− 2⟨H2⟩∗ + ⟨H⟩2∗ = tr(H2)− ⟨H2⟩∗ − (⟨H2⟩∗ − ⟨H⟩2∗) ≤ tr(H2), (S102)

since ⟨H2⟩∗ − ⟨H⟩2∗ = ⟨H(I − |ψ∗⟩⟨ψ∗|)H⟩∗ ≥ 0. A similar inequality also holds for Dµν . Thus
the variance can be further bounded by

VarV[∂µ∂νL∗] ≤ 2

d− 1
(⟨H2⟩∗ − ⟨H⟩2∗)∥D∗

µν∥2∞ +
4∥H∥22∥D∗

µν∥2∞
d(d− 2)

, (S103)

where we have used the properties in Eq. (S58). Using the inequality in Eq. (S60) associated with
the gate generators, the variance of the second order derivative at θ = θ∗ can be ultimately upper
bounded by

VarV[∂µ∂νL∗] ≤ f2(H, d)∥Ωµ∥2∞∥Ων∥2∞, (S104)

The factor f2(H, d) reads

f2(H, d) = 32

( ⟨H2⟩∗ − ⟨H⟩2∗
d− 1

+
2∥H∥22
d(d− 2)

)
, (S105)

which vanishes at least of order O(poly(N)2−N ) with the qubit count N = log2 d if ∥H∥∞ ∈
O(poly(N)). ■

Theorem S14 If L∗ < trH
d , the probability that θ∗ is not a local minimum of the local cost function

L up to a fixed precision ϵ = (ϵ1, ϵ2) with respect to the ensemble V is upper bounded by

PrV [¬LocalMin(θ∗, ϵ)] ≤ 2f1(H, d)∥ω∥22
ϵ21

+
f2(H, d)∥ω∥42(

trH−dL∗

d−1 e∗ + ϵ2

)2 , (S106)

where e∗ denotes the minimal eigenvalue of the QFI matrix at θ = θ∗. f1 and f2 are defined
in Eq. (S84) which vanish at least of order O(poly(N)2−N ) with the qubit count N = log2 d if
∥H∥∞ ∈ O(poly(N)).

Proof Utilizing Lemma S13, the proof is exactly the same as that of Theorem 2 up to the different
hessian expectation EV[H

∗
L] and coefficient functions f1 and f2. ■
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