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A Related Work1

Transferability Estimation. Model selection is an important task in transfer learning. To perform2

model selection efficiently, methods based on designing transferability metrics have been extensively3

investigated. LEEP [1] pioneers to evaluate the transferability of source models by empirically4

estimating the joint distribution of pseudo-source labels and the target labels. But it can only handle5

classification tasks with supervised pre-trained models because the modeling of LEEP relies on the6

classifier of source models. Recent works propose several improvements over LEEP to overcome the7

limitation. For example, NLEEP [2] replaces pseudo-source labels with clustering indexes. Moreover,8

LogME [3], TransRate [4], and PACTran [5] directly measure the compatibility between model9

features and task labels. Although fast, these metrics can only be used on limited tasks such as10

classification and regression. This work deals with model selection in multi-task scenarios. We11

propose EMMS to evaluate the transferability of pre-trained models on various tasks.12

Label Embedding. Label embedding represents a feature vector of task labels, which can be13

generated in various ways. The classical approach is to use one-hot encoding to represent the14

labels as sparse vectors, which is widely used in image classification. Another way is to transform15

labels into vectors by embedding layers. For example, an RNN module is employed to generate16

label representation in [6], which is encouraged to be compatible with input data vectors in text17

classification tasks. In addition, it is also common to treat the labels as words and use techniques18

such as word2vec [7] or GloVe [8] to learn vector representations of the labels. The main obstacle in19

the multi-task scenario is how to deal with diverse label formats. In this work, we follow the idea20

of word embedding and treat task labels as texts, which are then transformed into embeddings by21

publicly available foundation models [9, 10].22

Foundation Models. CLIP [9] is the first known foundation model which learns good semantic23

matching between image and text. The text encoder of CLIP can perform zero-shot label prediction24

because it encodes rich text concepts of various image objects. By tokenizing multi-modal inputs into25

homogeneous tokens, recent work on foundation models such as OFA [11] and Uni-Perceiver [12] use26

a single encoder to learn multi-modal representations. In this work, we utilize the great capacity of27

foundation models in representing image-text concepts to generate label embedding. It is noteworthy28

that although foundation models can achieve good performance in various downstream tasks, they29

may not achieve good zero-shot performance on many tasks[13] and it is still computationally30

expensive to transfer a large model to the target task [14, 15]. On the contrary, a multi-task model31

selector can quickly select an optimal moderate-size pre-trained model that can generalize well in32

target tasks. In this sense, a multi-task model selector is complementary to foundation models.33

B Method34

Here we derive in detail the regression with Unified Noisy Label Embeddings that appear in the35

method section of the text in Sec.B.1 and give complete proof of the convergence of the method in36

Sec.B.2.37
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B.1 Regression with Unified Noisy Label Embeddings38

Setup. we assume that label embedding z is a linear mapping of the model feature with additive39

Gaussian noise with a variance of σ2
0 , as given by z = z0 + ϵ = wT x̂+ ϵ and ϵ ∼ N(0, σ2

0IL) where40

z0 = wT x̂ is the regression prediction, w ∈ RD×L and ϵ are regression weights and regression error,41

respectively, and IL is a L-by-L identity matrix.42

We assume that F-labels {zk}Kk=1 obtained from different foundation models are oracles that indepen-43

dently provide noisy estimates of the label embedding z. Formally, we have P (zk|z) = N(z, σ2
kIL).44

Without loss of generality, we assume that L = 145

Then the joint probability over noisy labels for a fixed n, That is, for given xn, we have:46

P (zn1 , · · · , znK |xn, w) =

∫
P (zn1 , · · · , znK |z, xn, w)P (z|xn, w)dz (1)

Due to the independence between zk and x, using the real label z, we can rewrite it as:47

P (zn1 , · · · , znK |xn, w) =

∫
P (zn1 , · · · , znK |z, w)P (z|xn, w)dz (2)

And using the independencies among zk, we have:48

P (zn1 , · · · , znK |z, w) =
K∏

k=1

P (znK |z, σ2
1 , · · · , σ2
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Due to P (zk|z) = N(z, σ2
kIL), we can rewrite it as :49

P (zn1 , . . . , z
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1
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which can be calculated as :50
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Consider the joint probability over all N instances, we have:52

P (zn1 , . . . , z
n
K |X,w) =
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where X ∈ RN×D denotes the feature matrix, N is the number of data points and D is the number53

of features.54

Then given N data points, the negative log-likelihood is given by55

−L = −N logA1 +
N

2
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where L1 and L2 are given by56
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Since L1 is independent of input data, we focus on L2. To simplify the notation, we re-denote57

γk = 1/σ2
k and Γ =

∑K
k=1 γk. Using this notation, L2 can be rearranged as:58

L2 =
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n
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Hence, the negative likelihood in Eqn.(7 can be written as59

−L =
Γγ0
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2
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∑K
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2. The computational intractability60

of Eqn.(13) comes from the regularization term R(γk). Note that the coefficient Γγ0

Γ+γ0
> 0 and61 ∑K

k=1
γk

Γ = 1. By removing regularizer R(γk) and positive scale parameter Γγ0

Γ+γ0
, the minimization62

of negative log-likelihood can be approximately treated as a weighted linear square regression, as63

given by64

min
w∈RD×1,t∈△K−1

s(w, t) =
1

2
∥Xw − Zt∥22 (14)

In Eqn.(14), X ∈ RN×D is the data matrix whose n-th row is model feature (x̂n)T , w ∈ RD×1 are65

weight parameters, Z ∈ RN×K is F-Label matrix whose k-th column is the label embedding zk, and66

t ∈ RK×1 satisfies that 1TKt = 1, t ≥ 0 which is a (K − 1)-D simplex denoted as △K−1.67

B.2 Convergence Analysis and Proof Outline68

We will prove the convergence property of the function value. Indeed, we demonstrate a stronger69

condition that the function value decreases after each round of iterations on w and t. From the70

monotone convergence theorem, the convergence can thus be derived. For other convergence71

properties of alternating minimization, readers can refer to the literature [16], which can be of72

independent interest.73

In the proof, we exploit the smoothness of the function and design a projection gradient descent74

method with sufficient decrease for the constraint optimization problem. The sufficient decrease in75

the unconstrained problem is a direct corollary.76

Definition 1. A function f(x) : Rd → R is said to be β-smooth with constant β if

|∇f(x)−∇f(y)| ≤ β∥x− y∥,∀x, y ∈ Rd.

Lemma 1. Suppose X is the simplex constraint, and y ∈ Rd, Π denotes the projection operator.
Then the inequality holds:

(ΠX(y)− x)T (ΠX(y)− y) ≤ 0.

Proof. For the projection ΠX(y), it is a convex optimization problem and can be formulated to

min
x

f(x) = ∥x− y∥22,

where xT 1 = 1 and x > 0. We denote x⋆ as the optimal solution to the problem. For the convex
optimization problem, it holds for all x ∈ Rd that

∇f(x⋆)T (x⋆ − x) ≤ 0.
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Therefore we can derive
2(x⋆ − y)T (x⋆ − x) ≤ 0.

Then this lemma is proved.77

Lemma 2. Let f be the β-smooth function. For any x, y ∈ dom(f)∣∣∣f(x)− f(y)−∇f(y)
T
(x− y)

∣∣∣ ≤ ∥x− y∥2.

Proof.∣∣∣f(x)− f(y)−∇f(y)
T
(x− y)

∣∣∣ = ∣∣∣∣∫ 1

0

∇f(y + t(x− y))
T
(x− y)dt−∇f(y)

T
(x− y)

∣∣∣∣
≤

∫ 1

0

∥∇f(y + t(x− y))−∇f(y)∥∥x− y∥dt

≤
∫ 1

0

βt∥x− y∥2dt = β

2
∥x− y∥2.

The last inequality holds because f is a β-smooth function.78

Lemma 3. Suppose the function f is the β-smooth function, and X is the simplex constraint. For
any x, y ∈ X , let x+ = ΠX(x− 1

β∇f(x)) and gX(x) = β(x− x+). Then the inequality holds

f(x+)− f(y) ≤ gX(x)T (x− y)− 1

2β
∥gX(x)∥2.

Proof. Using Lemma. 1, we have

(x+ − (x− 1

β
∇f(x)))T (x+ − y) ≤ 0.

which is equivalent to
∇f(x)

T
(x+ − y) ≤ gX(x)T (x+ − y).

By using Lemma. 2 and the fact f(x+)− f(y) = f(x+)− f(x) + f(x)− f(y), we have79

f(x+)− f(y) ≤ ∇f(x)
T
(x+ − x) +

β

2
∥x+ − x∥2 +∇f(x)

T
(x− y)

= ∇f(x)
T
(x+ − y) +

1

2β
∥gX(x)∥2

≤ gX(x)T (x+ − y) +
1

2β
∥gX(x)∥2

= gX(x)T (x+ − x+ x− y) +
1

2β
∥gX(x)∥2

= gX(x)T (x+ − x) + gX(x)T (x− y) +
1

2β
∥gX(x)∥2

= gX(x)T (x− y)− 1

β
∥gX(x)∥2 + 1

2β
∥gX(x)∥2

= gX(x)T (x− y)− 1

2β
∥gX(x)∥2.

80

Theorem 1. Suppose s(w, t) = 1
2∥Xw − Zt∥2F where X ∈ RN×D, Z ∈ RN×K , w ∈ RD×1 and81

t ∈ △K−1, the inner loop of t in Algorithm lines 7 - 10 decreases after each iteration. Specifically,82

denote β = 1/∥2ZTZ∥ and t+ = Π△K−1(t−β∇s(w, t)). For any t ∈ △K−1, s(w, t+)−s(w, t) ≤83

− 1
2β ∥t− t+∥2 ≤ 0.84
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Proof. Since we fix w to optimize t at this point, we define s(t) = s(w, t), thus, ∇s(t) =
−2ZT (Xw⋆ − Zt). For any t1, t2 ∈ dom(s)

∥∇s(t1)−∇s(t2)∥ = ∥2ZTZt1 − 2ZTZt2∥ ≤ ∥2ZTZ∥∥t1 − t2∥.

According to the definition 1, it shows that the f(t) is β-smooth, where β = ∥2ZTZ∥. We
denote t ∈ △K−1 to be the initial point and t+ to be the result of one iteration of t, where t+ =
Π△K−1(t− 1

β∇f(t)). From Lemma 3, we can replace x+, y and x with t+, t, and t, repsectively. In
this way, the inequality holds

0 ≤ s(t+) ≤ s(t)− 1

2β
∥β(t− t+)∥2 ≤ s(t)

85

Therefore, according to Monotone convergence theorem, the iterative optimization in the algorithm86

for t is convergent87

Theorem 2. Suppose s(w, t) = 1
2∥Xw − Zt∥22 where X ∈ RN×D, Z ∈ RN×K , w ∈ RD×1 and88

t ∈ △K−1, the function value in Algorithm will be convergent. Specifically, denote w⋆, t⋆ as the89

result after one iteration of w, t respectively, we have 0 ≤ s(w⋆, t⋆) ≤ s(w⋆, t) ≤ s(w, t).90

Proof. In the first step, we denote t ∈ △K−1 is the initial point, then use gradient descent algorithm91

to calculate w⋆. Since the optimization problem for w is a convex optimization problem and use92

lemma 2, the decreasing property for the gradient part can be derived. That is, for each w ∈ RD×1,93

we have s(w⋆, t) ≤ s(w, t). In the second step, we fix w as w⋆, from Theorem 1, we have94

s(w⋆, t⋆) ≤ s(w⋆, t). Therefore, the value of s(w, t) satisfies: 0 ≤ s(w⋆, t⋆) ≤ s(w⋆, t) ≤ s(w, t),95

from Monotone convergence theorem, s(w, t) converges to the limiting point. As shown above, the96

overall convergence of our algorithm is guaranteed.97

C Experiment98

In this section, we present more experimental results in Sec. C.1, detailed descriptions of datasets99

in Sec. C.2, pre-trained models and baselines in Sec. C.3, and ground-truth scores in Sec. C.4 in100

various target tasks. More ablation studies can be found in Sec. D.101

Foundation Models. On image classification, image captioning, referring expression comprehension,102

and visual question answering, we use foundation models CLIP [9], BERT [17] and GPT-2 [10]. On103

text question answering, we use foundation models GPT-2 [10], BART [18], and ELECTRA [19].104

CLIP was trained on a large dataset of images and their corresponding captions, which can understand105

the relationship between images and text. BERT is a pre-trained language model that can understand106

and generate natural language. GPT-2 was trained on a large corpus of text and can be fine-tuned for107

specific tasks such as text completion and text summarization. Bart is a sequence-to-sequence model,108

which is both auto-regressive and bidirectional. Electra is a different type of language model that key109

idea is to pre-train a generator model to produce fake data and shows promising results in various110

NLP tasks.111

Interpretation of weighted Kendall’s tau. The Kendall’s τ represents the ratio of concordant pairs112

minus discordant pairs when enumerating all pairs of {Tm}Mm=1 and {Gm}Mm=1 as given by113

τ =
2

M(M − 1)

∑
1≤i<j≤M

sgn(Gi −Gj)sgn(Ti − Tj) (15)

where sgn(x) returns −1 if x < 0 and 1 otherwise. In this work, a weighted version of Kendall’s114

τ , denoted as τw, is employed to assess transferability metrics considering that a top-performing115

model is always preferred for target tasks in transfer learning. In principle, a larger τw implies the116

transferability metric can rank pre-trained models better. And if a metric can rank top-performing117

models better, τw would be also larger. We also use other measurements to assess the performance of118

transferability metrics in Table 9 of Sec. D.119
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Table 1: Comparison of different transferability metrics on VQA models in rank correlation τw with
the ground truth and the wall-clock time. The LogME denotes using LogME with F-Label. Our
proposed EMMS performs better than PACTran head over 3 target tasks with much less time.

DAQUAR COCO-QA CLEVR DAQUAR COCO-QA CLEVR

Weighted Kendall’s tau τw Wall-Clock Time (s)
LogME 0.586 0.591 0.281 116.72 716.35 4665.06

PACTran(Dir) 0.671 0.296 0.347 633.16 1169.91 428.03
PACTran(Gam) 0.595 0.419 0.319 614.23 1061.72 428.49
PACTran(Gau) 0.478 0.378 0.415 637.39 1075.88 418.34

EMMS 0.712 0.812 0.804 50.54 263.72 274.56

Table 2: Comparison of different transferability metrics on CNN models regarding τw and the wall-
clock time where EMMS(One) denotes EMMS with the one-hot label. Our proposed EMMS achieves
the best transfer-ability assessment over 11 target tasks and exhibits higher efficiency than NLEEP.

Aircraft Caltech Cars CF-10 CF-100 DTD Flowers Food Pets SUN VOC Avg.

Weighted Kendall’s tau τw

LEEP -0.234 0.605 0.367 0.824 0.677 0.486 -0.243 0.491 0.389 0.722 0.371 0.409
LogME 0.506 0.435 0.576 0.852 0.677 0.647 0.111 0.385 0.411 0.487 0.669 0.509
NLEEP -0.41 0.614 0.265 0.818 0.805 0.796 0.122 0.214 0.753 0.925 0.687 0.611

TransRate 0.172 0.269 0.172 0.513 0.197 0.336 -0.176 -0.071 0.173 0.612 0.651 0.236
EMMS(One) 0.481 0.546 0.304 0.963 0.804 0.701 0.498 0.588 0.574 0.638 0.707 0.618

EMMS 0.556 0.562 0.565 0.963 0.840 0.720 0.498 0.608 0.604 0.667 0.735 0.664
Wall-Clock Time (s)

LEEP 5.1 4.9 8.3 22.3 23.8 3.5 3.8 37.1 3.9 21.1 4.8 10.4
LogME 30.36 31.24 56.26 90.34 188.3 15.16 22.27 334.53 17.55 180.01 20.05 289.64
NLEEP 253.8 488.7 973.8 1.1e4 1.7e4 146.0 294.0 2.0e4 580.8 8.6e3 678.8 5455.9

TransRate 147.90 163.41 300.29 65.25 193.64 75.48 166.24 195.92 60.53 430.33 18.72 165.24
EMMS(One) 17.43 20.53 35.22 70.01 78.24 12.75 18.04 116.23 15.04 70.98 18.42 42.99

EMMS 65.85 63.49 79.79 245.49 295.37 46.38 63.52 417.80 59.64 173.59 64.60 143.2

C.1 More Experiments120

C.1.1 Performance on Visual Question Answering121

To further demonstrate the generality of EMMS in multi-model tasks, we show how EMMS can work122

for VQA. We follow previous practice ( [5]) which treats VQA as a classification task (vocab-based123

VQA). That is, we construct a vocabulary based on the top answers in the training sets and classify124

them into some of those labels. The models to be selected and the architecture is the same as in the125

image captioning .126

Performance and wall-clock time comparison. As shown in Table.1, EMMS is clearly ahead127

of PACTran in terms of results and time, proving that EMMS has the ability to handle multi-modal128

tasks very well. We can find that EMMS outperforms PACTran on all datasets. In particular,129

EMMS achieves 93.8% and 93.7% gain over PACTran on the COCO-QA and CLEVR datasets with130

rank correlation τw while reducing time consumption by 75.1% and 34.3% respectively compared131

to Pactran. This indicates that EMMS performs well on both ordinary VQA datasets(DAQUAR,132

COCO-QA) as well as VQA datasets(CLEVR) that focus on inference capabilities.133

C.1.2 Performance on Image Classification with CNN Models134

Performance and wall-clock time comparison. We compare EMMS with previous LEEP, NLEEP,135

LogME, and TransRate. As shown in Table.2, our EMMS achieve the best average τw on 11 target136

datasets and the best τw on 6 target datasets. Compared to NLEEP, which is the most effective other137

than EMMS, we have almost 1/40 of the time of NLEEP.138
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C.2 Descriptions of Datasets139

C.2.1 Image Classification140

For image classification, we adopt 11 classification benchmarks , including FGVC Aircraft [20],141

Caltech-101 [21], Stanford Cars [22], CIFAR-10 [23], CIFAR-100 [23], DTD [24], Oxford 102142

Flowers [25], Food-101 [26], Oxford-IIIT Pets [27], SUN397 [28], and VOC2007 [29]. These143

datasets cover a broad range of classification tasks, which include scene, texture, and coarse/fine-144

grained image classification, which are widely used in transfer learning. In particular, CF10 and145

VOC2007 are typical coarse-grained classification datasets, Aircraft, and Cars are typical fine-grained146

classification datasets, and CF100 contains both coarse- and fine-grained classifications.147

C.2.2 Image Captioning148

For image captioning, We use Flickr8k [30], Flickr30k [31], FlickrStyle10K-Humor [32],149

FlickrStyle10K-Romantic [32] and RSICD [33]. Among them, Flickr8k and Flickr30k have com-150

monly used image captioning datasets for natural images and have no emotional color; RSICD is151

a commonly used image captioning dataset in remote sensing; Flickr10k-H and Flickr10k-R are152

also image captioning datasets for natural images, but their images are depicted with humorous and153

romantic emotional colors, respectively.154

C.2.3 Visual Question Answering155

For visual question answering, we apply COCOQA [34], DAQUAR [35] and CLEVR [36].Among156

them, DAQUAR is an early VQA dataset on real images; CLEVR is a synthetic dataset, which is a157

visual scene composed of some simple geometric shapes, focusing on evaluating the inference ability158

of VQA models; the questions and answers of COCO-QA are generated by NLP algorithms, and the159

images are from the COCO dataset, which is also a commonly used VQA dataset.160

C.2.4 Text Question Answering161

For text question answering, we separately use SQuAD1.1 [37] ,SQuAD2.0 [38], which are collections162

of question-answer pairs derived from Wikipedia articles and are widely used in text question answer.163

C.2.5 Referring Expression Comprehension164

For referring expression comprehension, we separately use RefCOCO [39], RefCOCO+ [39] and165

RefCOCOg [40].Specifically, RefCOCO includes instances where there is only one object of its kind166

in the image, while RefCOCO+ includes instances where multiple objects of the same kind exist in167

the image.168

C.3 Pre-trained Models and Baselines169

C.3.1 Image Classification170

Pre-trained Models. For CNN-based models, We select 11 widely-used CNN models includ-171

ing ResNet-34 [41], ResNet-50 [41], ResNet-101 [41], ResNet-152 [41], DenseNet-121 [42],172

DenseNet-169 [42], DenseNet-201 [42], MNet-A1 [43], MobileNetV2 [44], GoogleNet [45], and173

InceptionV3 [46]. All these models are trained on ImageNet dataset [47], which are widely used174

within the field of migration learning. For ViT-based models, we collect 10 ViT models including175

ViT-T [48], ViT-S [48], ViT-B [48], DINO-S [49], MoCov3-S [50] , PVTv2-B2 [51], PVT-T [51],176

PVT-S [51], PVT-M [51], and Swin-T [52], which are widely used in various vision tasks. Besides,177

we append EMMS with one-hot label, which degenerates to a linear regression whose label is the178

one-hot vector. We fine-tune these models on the 11 target datasets to obtain the ground truth.179

Comparison Baselines. Here we use some of the latest methods as baselines, including LEEP [1],180

NLEEP [2], LogME [3], and TransRate [4], which have been experimented with model selection on181

image classification tasks.182
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C.3.2 Image Captioning183

Pre-trained Models. We use a classic and effective image captioning model architecture, which184

contains an image encoder and a language encoder to extract the features of the image and the185

corresponding caption, then fuses the image feature and the text feature and input it to the classifier.186

We aim to choose the best combination of image encoder and language encoder. Besides, We finetune187

each model in COCO Caption [53] and use these as the pre-trained models.188

Specifically, We separately use ViT-B [48],Swin-B [52], Swinv2-B [54] as image encoder and189

Bert [17], Roberta [55], Bart [18] as language encoder, and use VisionEncoderDecoderModel from190

HuggingFace as the model architecture. Following the setting in PACTran [5], We finetune the model191

in COCO Caption [53] and use these as the pre-trained models. Following common practice( [56])192

, we treat image captioning as a vocab-based classification task. That is we use a vocabulary and193

classify the caption into the index of some words in the vocabulary. Afterward, training is done194

according to the classification task criteria.195

Comparison Baselines. In this common setup, each caption is converted to a matrix Y ∈ RL×N ,196

where L denotes the length of the caption after padding or truncation and N denotes the size of the197

vocabulary, and each row in the matrix is a one-hot vector. Since N is generally very large, Existing198

model selection metrics do not scale to this case due to the huge amount of time spent. The only199

baseline we use is to model the fused feature with F-label using LogME since only LogME can200

handle the regression task. Here we calculate the average τw and time of it with K single F-label201

from K foundation models we use respectively.202

C.3.3 Visual Question Answering203

Pre-trained Models. The model architecture and the model selection settings are the same as in204

the image captioning, Following the setting in PACTran [5], here we use the model after finetune205

on VQA-v2 [56] as the pre-trained model waiting for selection and treat VQA as a vocab-based206

classification task.207

Comparison Baselines. Here we calculate the average τw and time of it with K single F-label from208

K foundation models we use respectively. And in addition to that, the three methods proposed in209

PACTran [5] are added here, which are the only methods currently applied to VQA tasks.210

C.3.4 Text Question Answering211

Pre-trained Models. The selected models include BERT-Large [17], RoBERTa-Large [55], XLNet-212

Large [57], DeBERTa [58] (XLarge), DeBERTa-V2 [58] (XLarge and XXLarge), DeBERTa-V3 [59]213

(Base, Small, XSmall). More specifically, we simultaneously input the question and passage into the214

aforementioned models, utilizing the distinctive symbol [SEP] to demarcate them. By stacking the215

predicted head onto each model, we could further fine-tune the model such that it can predict the start216

and end positions of the answer within the passage. This is achieved by using two binary classifiers,217

where one is dedicated to identifying the start position and the other to pinpointing the end.218

Comparison Baselines. Here we calculate the average τw and time of it with F-labels from K219

foundation models respectively.220

C.3.5 Referring Expression Comprehension221

Pre-trained Models. The candidate multi-modal architectures considered for REC task incorporate222

Blip [60], ALBEF [61], CLIP [9] (ViT-B-32, ViT-B-16, ViT-L-14, ViT-L-14-336, RN50), OFA [62]223

(Base, Large, Huge). In practice, we respectively extract the visual and textual representations from224

each of these models and feed them into a multi-modal interaction module followed by a stacked225

detection head, and further fine-tune the model to generate the ground truth of model selection.226

Comparison Baselines. Here we calculate the average τw and time of LogME with K single F-label227

from K foundation models we use respectively.228
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Table 3: The fine-tuning accuracy of supervised CNN models on 11 target tasks.
Aircraft Caltech Cars CF-10 CF-100 DTD Flowers Food Pets SUN VOC

ResNet-34 84.06 91.15 88.63 96.12 81.94 72.96 95.2 81.99 93.5 61.02 84.6
ResNet-50 84.64 91.98 89.09 96.28 82.8 74.72 96.26 84.45 93.88 63.54 85.8
ResNet-101 85.53 92.38 89.47 97.39 84.88 74.8 96.53 85.58 93.92 63.76 85.68
ResNet-152 86.29 93.1 89.88 97.53 85.66 76.44 96.86 86.28 94.42 64.82 86.32
DenseNet-121 84.66 91.5 89.34 96.45 82.75 74.18 97.02 84.99 93.07 63.26 85.28
DenseNet-169 84.19 92.51 89.02 96.77 84.26 74.72 97.32 85.84 93.62 64.1 85.77
DenseNet-201 85.38 93.14 89.44 97.02 84.88 76.04 97.1 86.71 94.03 64.57 85.67
MNet-A1 66.48 89.34 72.58 92.59 72.04 70.12 95.39 71.35 91.08 56.56 81.06
MobileNetV2 79.68 88.64 86.44 94.74 78.11 71.72 96.2 81.12 91.28 60.29 82.8
Googlenet 80.32 90.85 87.76 95.54 79.84 72.53 95.76 79.3 91.38 59.89 82.58
InceptionV3 80.15 92.75 87.74 96.18 81.49 72.85 95.73 81.76 92.14 59.98 83.84

Table 4: The fine-tuning accuracy of vision transformer models on 11 target tasks.
Aircraft Caltech Cars CF-10 CF-100 DTD Flowers Food Pets SUN VOC

ViT-T 71.26 89.39 82.09 96.52 81.58 71.86 95.5 81.96 91.44 58.4 83.1
ViT-S 73.12 92.7 86.72 97.69 86.62 75.08 96.79 86.26 94.02 64.76 86.62
ViT-B 78.39 93.47 89.26 98.56 89.96 77.66 97.98 88.96 94.61 68.62 87.88
PVTv2-B2 84.14 93.13 90.6 97.96 88.24 77.16 97.89 88.67 93.86 66.44 86.44
PVT-T 69.76 90.04 84.1 94.87 75.26 72.92 95.8 83.78 91.48 61.86 84.6
PVT-S 75.2 93.02 87.61 97.34 86.2 75.77 97.32 86.98 94.13 65.78 86.62
PVT-M 76.7 93.75 87.66 97.93 87.36 77.1 97.36 85.56 94.48 67.22 87.36
Swin-T 81.9 91.9 88.93 97.34 85.97 77.04 97.4 86.67 94.5 65.51 87.54
MoCov3-S 76.04 89.84 82.18 97.92 85.84 71.88 93.89 82.84 90.44 60.6 81.84
DINO-S 72.18 86.76 79.81 97.96 85.66 75.96 95.96 85.69 92.59 64.14 84.8

C.4 Fine-tuning Score on Various Target Tasks229

C.4.1 Image Classification230

Fine-tuning Details. The ground truth of the problem of pre-trained model ranking is to fine-tune all231

pre-trained models with a hyper-parameters sweep on target datasets. Given the model and the target232

dataset, two of the most important parameters would be learning rate and weight decay in optimizing233

the model [63]. Therefore, we carefully fine-tune pre-trained models with a grid search of learning234

rate in {1e − 1, 1e − 2, 1e − 3, 1e − 4} and weight decay in {1e − 3, 1e − 4, 1e − 5, 1e − 6, 0}.235

And using SGD optimizer. After determining the best hyper-parameters candidate, we fine-tune236

the pre-trained model on the target dataset with the candidate and then obtain the test accuracy as237

the ground truth. We use a Tesla V100 with a batch size of 128 to perform finetuning. All input238

images are resized to 224× 224. To avoid random error, we repeat the above fine-tuning procedure239

three times and take an average to obtain the final fine-tuning accuracy. For reference, we list the240

fine-tuning accuracy of supervised CNN models in Table.3, and vision transformer models in Table 4,241

respectively.242

C.4.2 Image Captioning and Visual Question Answering243

Fine-tuning Details. The setting of finetune here is approximately the same as in image classification.244

We carefully fine-tune pre-trained models with a grid search of learning rate in {1e−4, 1e−5, 1e−6}245

and weight decay in {1e − 4, 1e − 5, 1e − 6}. And using AdamW optimizer. After determining246

the best hyper-parameters candidate, we fine-tune the pre-trained model on the target dataset with247

the candidate and then obtain the test BLEU-4 and accuracy as the ground truth. However, since248

Flickr10k-H and Flickr10k-R do not provide a test set, we use a 6:1 ratio to divide the original training249

set of 7000 images into a training set and a test set. For visual question answering, Due to the lack of250

a test set for CLEVR dataset, we also assign its training set as training set and test set in the ratio251

of 6:1. We use an Nvidia A100 with a batch size of 64 to perform finetuning. All input images are252

resized to 224× 224. To avoid random error, we repeat the above fine-tuning procedure three times253

and take an average to obtain the final fine-tuning accuracy. For inference, We use BLEU-4 as the254

score for the model with image captioning and accurarcy as the score for the model with VQA. we255

list result of image captioning models in Table.5, and visual question answering models in Table 6,256

respectively.257
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Table 5: The fine-tuning BLEU-4 of image
captioning models on 5 target tasks.

F8k F30k RSD F10k-H F10k-R

Vit-Bert 18.51 26.65 31.39 5.31 5.18
Vit-Roberta 20.53 23.70 29.92 5.88 5.48
Vit-Bart 21.90 25.13 31.35 5.75 5.53
Swinvit-Bert 22.91 26.61 33.54 6.24 5.67
Swinvit-Roberta 23.99 28.84 33.07 7.11 5.49
Swinvit-Bart 24.68 28.03 32.99 6.10 5.95
Swin2vit-Bert 25.69 31.33 35.45 5.86 5.49
Swin2vit-Roberta 23.40 28.81 36.22 6.80 7.13
Swin2vit-Bart 26.24 30.35 34.72 7.90 5.96

Table 6: The fine-tuning accuracy of visual
question answering models on 3 target tasks.

DAQUAR COCO-QA CLEVR

Vit-Bert 25.01 55.11 59.29
Vit-Roberta 26.38 57.30 62.80
Vit-Bart 26.30 59.60 64.98
Swinvit-Bert 28.05 61.72 68.25
Swinvit-Roberta 27.75 62.81 66.09
Swinvit-Bart 27.06 60.62 67.17
Swin2vit-Bert 26.45 63.1 67.4
Swin2vit-Roberta 26.33 66.54 65.91
Swin2vit-Bart 26.25 64.4 70.34

C.4.3 Text Question Answering258

Fine-tuning Details. The accuracy of most models in TQA is provided by DeBERTa [58, 59], except259

for DeBERTa-V3 [59](Base, Small, XSmall). Following the setting of Bert [17], we finetune these260

models with a batch size of 24 for 2 epochs. We use AdamW optimizer with an initial learning rate of261

3e− 5, polynomial decay. The Dev F1 score is used for pre-trained model ranking. All experiments262

are implemented on an NVIDIA Tesla A100 GPU. The finetune accuracy is shown in Table 7.263

Table 7: The standard metric the Dev F1 score
of text question answering models on 2 target
tasks.

SQu1.1 SQu2.0

BERT-Large 90.9 81.8
RoBERTa-Large 94.6 89.4
XLNet-Large 95.1 90.6
DeBERTa-Large 95.5 90.7
DeBERTa-V2-XLarge 95.8 91.4
DeBERTa-V2-XXLarge 96.1 92.2
DeBERTa-V3-Base 93.9 88.4
DeBERTa-V3-Small 89.8 82.9
DeBERTa-V3-XSmall 91.5 84.8

Table 8: The standard metric Acc@0.5 of
referring expression comprehension models
on 3 target tasks.

RefCOCO RefCOCO+ RefCOCOg

Blip 88.67 84.68 85.08
ALBEF 87.98 82.20 82.89
CLIP-ViT-B-32 83.20 74.56 76.98
CLIP-ViT-B-16 87.35 80.12 81.69
CLIP-ViT-L-14 90.17 86.09 87.13
CLIP-ViT-L-14-336 91.67 87.60 87.89
CLIP-RN50 84.69 76.72 79.39
OFA-Base 88.48 81.39 82.29
OFA-Large 90.05 85.80 85.89
OFA-Huge 92.04 87.86 88.07

C.4.4 Referring Expression Comprehension264

Fine-tuning Details. For referring expression comprehension, the standard metric Acc@0.5 on the265

validation set is used as the ground truth. For finetuning, we use a batch size of 128 with a resolution266

of 512× 512 for each image. We finetune the models on each dataset for 12 epochs with a learning267

rate of {3e − 5, 5e − 5} and weight decay in {1e − 3, 1e − 5} using Adam optimizer. The best268

performance on the validation set for each task is reported among these hyper-parameters. Table 8269

shows the performance of referring expression comprehension models.270

Table 10: The effect of Label Embedding in EMMS. Three variants of EMMS are considered:
(1) EMMS with one-hot label; (2) EMMS with single F-Label; (3) EMMS with multiple F-Labels
which is the original. We see that label embedding brings some performance improvement to EMMS

Aircraft Caltech Cars CF-10 CF-100 DTD Flowers Food Pets SUN VOC Avg.

Weighted Kendall’s tau τw

(1) 0.481 0.546 0.304 0.963 0.804 0.701 0.498 0.588 0.574 0.638 0.707 0.618
(2) 0.531 0.562 0.426 0.952 0.804 0.720 0.481 0.602 0.535 0.667 0.726 0.636
(3) 0.556 0.562 0.565 0.963 0.840 0.720 0.498 0.608 0.604 0.667 0.735 0.664

D More Ablation Analysis271

The Efftiveness of EMMS under Various Measurements. In addition to weighted Kendall’s tau,272

we employ various other measures to evaluate our EMMS. These include Kendall’s tau (τ ), Pearson’s273

correlation (r), weighted Pearson’s correlation (rw), and top-k relative accuracy, denoted as Rel@k,274

which represents the ratio between the best fine-tuning accuracy achieved on the downstream task275

using the top-k ranked models and the best fine-tuning precision achieved with all models. We test276
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Table 9: EMMS under different measurements of transferability assessment. The results are obtained
on Flickr8k and RSICD datasets with image captioning task and Aircraft and DTD datasets with
image classification task with ViT-based models. EMMS outperforms LogME and other baselines
under various measures.

Data Method Rel@1 Rel@3 r rw τ τw Data Method Rel@1 Rel@3 r rw τ τw

F8k LogME 0.928 1.0 0.735 0.799 0.537 0.483 RSD LogME 0.957 1.0 0.727 0.708 0.518 0.501
EMMS 1.0 1.0 0.741 0.823 0.667 0.660 EMMS 1.0 1.0 0.783 0.765 0.611 0.705

Aircraft
LogME 0.852 0.993 0.407 0.060 0.378 0.299

DTD
LogME 0.992 1.0 0.641 0.694 0.556 0.569

TransRate 0.926 0.967 0.457 0.499 0.289 0.244 TransRate 0.992 1.0 0.607 0.676 0.422 0.533
EMMS 0.926 0.967 0.622 0.608 0.511 0.481 EMMS 0.992 1.0 0.704 0.785 0.644 0.621

the robustness of our transferability metrics to different measurements on the Flickr8k and RSICD277

datasets for image captioning tasks, as shown in Table 9. Our EMMS consistently outperforms278

the previous transferability metric, including LogME and TransRate. Under the aforementioned279

measurements, demonstrating the superiority of our EMMS.280

The Effect of Label Embedding In some multimodal tasks or text tasks, including image captioning281

or text question answering. Label emebdding directly affects the applicability of existing model282

selection metric to these tasks. In addition, even in classification tasks, the use of F-Label can also283

bring improvements in results. Here we focus on the comparison between label embedding and direct284

one-hot vectors for image classification tasks in CNN-based models. As shown in Table 10, the285

use of F-Label can bring performance improvement compared to One-Hot vector, the average τw286

increase from 0.618 to 0.636; furthermore, the use of multiple F-Label also brings some improvement287

compared to the average of single F-Label with τw increasing from 0.636 to 0.664.288

The Effect of Computational Speedup. Here we experimentally demonstrate the effect of our289

accelerated algorithm. As shown in Table 11, the algorithm is similar to the in-accelerated version in290

terms of results, but much shorter in terms of the wall-clock time.291

The Wall-clock Time of Label Embedding. For classification tasks, since the maximum number of292

categories is often only a few hundred, Label Embedding is very fast. Here we focus on documenting293

the time required for multimodal tasks, e.g. image captioning, text question answering, and referring294

expression comprehension, where label embedding is more time-consuming. For each task, we use295

8 Nvidia A100 GPUs for label embedding, with a batch size of 512 for each GPU. The running296

time of label embedding for image captioning, text question answering, and referring expression297

comprehension is shown in Table 12.298

Table 11: The effect of computational speedup in image classification with ViT models. We can
see that the accelerated version of the algorithm achieves a significant reduction in time while
guaranteeing results. Two variants of EMMS are considered: (1) EMMS with normal algorithm;
(2) EMMS with fast algorithm;

Aircraft Caltech Cars CF-10 CF-100 DTD Flowers Food Pets SUN VOC Avg.

Weighted Kendall’s tau τw

(1) 0.564 0.463 0.706 0.718 0.745 0.589 0.592 0.531 0.755 0.532 0.730 0.629
(2) 0.481 0.444 0.706 0.718 0.745 0.621 0.562 0.673 0.740 0.619 0.730 0.639

Wall-Clock Time (s)

(1) 102.06 114.72 177.25 718.34 724.5 50.24 87.28 944.57 83.37 336.92 104.9 313.10
(2) 21.31 17.23 28.06 154.61 182.11 13.87 15.95 265.99 17.93 63.86 16.63 72.55

Table 12: The wall-clock time (s) of label embedding in image captioning on 5 target tasks, text ques-
tion answering on 2 target tasks, and referring expression comprehension on 3 target tasks,respectively.

Task Image Captioning Text QA Referring EC

Dataset F8k F30k RSD F10k-H F10k-R SQuAD1.1 SQuAD2.0 RefCOCO RefCOCO+ RefCOCOg

Time 14.56 89.31 18.92 3.37 3.13 35.67 53.87 49.19 48.88 31.63
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