
PICProp: Physics-Informed Confidence Propagation
for Uncertainty Quantification

Qianli Shen
National University of Singapore

Singapore
shenqianli@u.nus.edu

Wai Hoh Tang
National University of Singapore

Singapore
waihoh.tang@nus.edu.sg

Zhun Deng
Columbia University

USA
zhun.d@columbia.edu

Apostolos Psaros
Brown University

USA
a.psaros@brown.edu

Kenji Kawaguchi
National University of Singapore

Singapore
kenji@nus.edu.sg

Abstract

Standard approaches for uncertainty quantification in deep learning and physics-
informed learning have persistent limitations. Indicatively, strong assumptions
regarding the data likelihood are required, the performance highly depends on the
selection of priors, and the posterior can be sampled only approximately, which
leads to poor approximations because of the associated computational cost. This
paper introduces and studies confidence interval (CI) estimation for deterministic
partial differential equations as a novel problem. That is, to propagate confidence,
in the form of CIs, from data locations to the entire domain with probabilistic guar-
antees. We propose a method, termed Physics-Informed Confidence Propagation
(PICProp), based on bi-level optimization to compute a valid CI without making
heavy assumptions. We provide a theorem regarding the validity of our method,
and computational experiments, where the focus is on physics-informed learning.
Code is available at https://github.com/ShenQianli/PICProp.

1 Introduction

Combining data and physics rules using deep learning for solving differential equations [25] and
learning operator mappings [20] has recently attracted increased research interest. In this context,
physics-informed machine learning is transforming the computational science field in an unprece-
dented manner, by solving ill-posed problems, involving noisy and multi-fidelity data as well as
missing functional terms, which could not be tackled before [16]. Nevertheless, uncertainty – mainly
due to data noise and neural network over-parametrization – must be considered for using such
models safely in critical applications [24]. Despite extensive work on uncertainty quantification
(UQ) for deep learning [1], standard UQ has persistent limitations. Indicatively, although for most
practical applications where only confidence intervals (CIs) are required, the harder problem of UQ
is often solved first using simplifying assumptions, and the CIs are subsequently computed. Further,
strong assumptions regarding the data likelihood are required, the performance highly depends on

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/ShenQianli/PICProp

the selection of priors, and the posterior can be sampled only approximately, which leads to poor
approximations because of the associated computational cost.

In this paper, we introduce and study CI estimation for addressing deterministic problems involving
partial differential equations (PDEs) as a novel problem. That is, to propagate confidence, in the
form of CIs, from data locations to the entire domain with probabilistic guarantees. We name our
framework Physics-Informed Confidence Propagation (PICProp) and propose a practical method
based on bi-level optimization to identify valid CIs in physics-informed deep learning. Our method
can be applied in diverse practical scenarios, such as propagating data CIs, either estimated or given
by experts, to the entire problem domain without distributional assumptions. Indicative applications
are provided in Appendix A.

PICProp provides distinct advantages over traditional UQ approaches in the context of physics-
informed deep learning. Specifically, PICProp does not rely on strong assumptions regarding the
data likelihood and constructs theoretically valid CIs. Further, PICProp offers a unique capability
to construct joint CIs for continuous spatio-temporal domains. In contrast, UQ methods typically
construct marginal intervals for discrete locations. Furthermore, due to the conservative propagation
of uncertainty, PICProp produces conservative CIs, which is preferred in critical and risk-sensitive
applications [7, 13], considering the significant harm of non-valid confidence intervals. This sets it
apart from commonly used UQ methods like deep ensembles [18] and Monte-Carlo dropout [28, 10],
which are known to be overconfident in practice [9, 7].

The paper is organized as follows: In Section 2 (and its Appendices B & C), we introduce the PDE
problem setup and discuss related work. In Section 3 (and its Appendices D-F), we introduce the
problem of CI estimation for PDEs and extensively describe joint solution predictions. Next, we
formulate this novel problem as a bi-level optimization problem in Section 4 and Appendices G & H,
and adopt various algorithms for computing the required implicit gradients in Appendix I. Finally, we
evaluate our method on various forward deterministic PDE problems in Section 5 and Appendices
J-L, and discuss our findings in Section 6.

2 Background

2.1 Problem Setup

Consider the following general PDE describing a physical or biological system:

F [u(x), λ(x)] = 0, x ∈ Ω, B[u(x), λ(x)] = b(x), x ∈ Γ, (1)

where x is the Dx-dimensional space-time coordinate, Ω is a bounded domain with boundary Γ,
and F as well as B are general differential operators acting on Ω and Γ, respectively. The PDE
coefficients are denoted by λ(x), the boundary term by b(x), and the solution by u(x).

In this paper, we focus on the data-driven forward deterministic PDE problem, where (i) operators
F ,B and coefficients λ are deterministic and known; (ii) datasets Df = {xif}

Nf

i=1 for the force
condition and Db = {(xjb, bj)}Nb

j=1 for the boundary condition are given; (iii) uncertainty only occurs
in the boundary term due to data noise, i.e., bj = b(xjb) + ϵj for j = 1, ..., Nb, and the rest of the
dataset is considered to be deterministic without loss of generality. We denote the function obtained
by utilizing the dataset z = {Df ,Db} for approximating the solution u(x) of Equation (1) with a
data-driven solver A as uA(x; z).

Clearly, different datasets z contaminated by random noise lead to different solutions u(x; z) and
thus, to a distribution of solutions at each x. It follows that the solution u(x;Z) can be construed as
stochastic, where Z is used to denote the dataset as a random variable and z to denote an instance of
Z. In this regard, this paper can be viewed as an effort towards a universal framework, with minimal
assumptions, for constructing CIs for solutions of nonlinear PDEs.

2.2 Related Work

Physics-Informed Neural Networks The physics-informed neural network (PINN) method, devel-
oped by [25], addresses the forward deterministic PDE problem of Equation (1) by constructing a
neural network (NN) approximator uθ(x), parameterized by θ, for modeling the approximate solution

2

u(x; z). The approximator uθ(x) is substituted into Equation (1) via automatic differentiation for
producing fθ = F [uθ, λ] and bθ = B[uθ, λ]. Finally, the optimization problem for obtaining θ in the
forward problem scenario given a dataset z is cast as

θ̂ = argmin
θ
Lpinn(θ, z), where Lpinn :=

wf
Nf

Nf∑
i=1

||fθ(xif)||22 +
wb
Nb

Nb∑
i=1

||bθ(xjb)− bj ||22, (2)

and {wf , wb} are objective function weights for balancing the various terms in Equation (2); see [23].
Following the determination of θ̂, uθ̂ can be evaluated at any x in Ω. PINN can be scalled up for
high-dimensional PDEs [14].

Uncertainty Quantification for Physics-Informed Learning Although UQ for physics-informed
learning is not extensively studied, the field is gaining research attention in recent years. Indicatively,
[37] employed dropout to quantify the uncertainty of NNs in approximating the modal functions of
stochastic differential equations; [36] presented a model based on generative adversarial networks
(GANs) for quantifying and propagating uncertainty in systems governed by PDEs; [35] developed
a new class of physics-informed GANs to solve forward, inverse, and mixed stochastic problems;
[11] further studied Wasserstein GANs for UQ in solutions of PDEs; [34] proposed Bayesian PINNs
for solving forward and inverse problems described by PDEs with noisy data. Although this field
is always evolving, we refer to it in this paper as “standard” UQ in order to distinguish it from our
proposed method in Section 4. In Appendices B-C, we summarize the limitations of standard UQ,
and we direct interested readers to the review paper [24] for more information.

Interval Predictor Model (IPM) The Interval Predictor Model (IPM) in regression analysis has a
similar motivation as our approach. A function of interest is approximated by an IPM and the bounds
on the function are obtained. [26] proposed a technique using a double-loop Monte Carlo algorithm
to propagate a CI using the IPM. The technique requires sampling epistemic and aleatory parameters
from uniform distributions to estimate the upper and lower bounds of the IPM. Our approach is
different for two reasons. First, we fit a PINN model directly and thus, sampling epistemic parameters
may not be feasible. Second, we do not require a sampling procedure. Instead, we cast the CI
estimation as a bi-level optimization problem and solve it using hyper-gradient methods.

3 Confidence Intervals for Solutions of Nonlinear Partial Differential
Equations

In this section, we provide the definition of CI for the exact PDE solution and introduce our main
assumption.
Definition 3.1 (Joint CI for PDE Solution). A pair of functions (LZ , UZ) ∈ RΩ × RΩ is a p-CI for
the exact PDE solution u(x) if the random event E := {{LZ(x) ≤ u(x) ≤ UZ(x), ∀x ∈ Ω} holds
with probability at least p.

Note that this interval refers to the exact solution u(x). Therefore, a novel problem is posed in
Definition 3.1, pertaining to propagating randomness, in the form of CIs, from the data locations,
typically on the boundary, to the rest of the domain. The subscript Z in (LZ , UZ) signifies that the
CI is random as it depends on the random dataset Z. The available data can be an instance of Z,
denoted as z, or a collection of instances; see Appendix D for the considered problem scenarios.
Such instances can, for example, be drawn from repeating independent experiments. The subscript Z
in (LZ , UZ) is dropped if there is no ambiguity.

We also note that the joint CI (also referred to as confidence sequence [17, 32]) in Definition 3.1
corresponds to joint predictions u(·) over the whole domain Ω, rather than to marginal predictions
u(x) for a given x. The importance of joint predictions as an essential component in UQ has been
emphasized in recent works for active learning [30], sequential decision making [33], and supervised
learning [22]. Nevertheless, the present paper is the first work to consider joint predictions, and
general CI estimation, in the context of physics-informed learning. In Appendix E, we provide
several theoretical remarks delineating the differences between marginal and joint predictions, as
well as unions of bounds, which are typically used in standard UQ. In Appendix F, we highlight these
differences with a toy example.

Next, to relate the PINN solution with the exact PDE solution u(x) of Definition 3.1, we make the
following assumption regarding the noise at the boundary.

3

Assumption 3.2 (Zero-mean Noise). The noise on the boundary is zero-mean, i.e., E[ϵj] = 0,∀j ∈
{1, . . . , Nb}.

Next, a clean dataset (without noise), denoted as z̄, can be considered as the expectation of Z, i.e.,
z̄ = E[Z]. In this regard, consider a data-driven PDE solver A, which yields an approximate solution
uA(x; z) given a dataset z. We define the properness of A based on the concept of a clean dataset.
Definition 3.3 (Proper PDE Solver). A PDE solver A is η-proper with respect to a clean dataset z̄, if
maxx∈Ω |uA(x; z̄)− u(x)| ≤ η.

Henceforth, we only consider proper PDE solvers. That is, a powerful solver is available such that
the absolute error of the solution obtained by the solver with a clean dataset is bounded. In all cases,
we assume that such an informative clean dataset exists, but is not available. Further, the constant η,
which is only related to z̄ and A, is considered known and fixed in the computational experiments.
Note that no assumptions are made about u(x; z) for z ̸= z̄, i.e., there are no assumptions about
the PINN solver robustness against noisy data. Finally, in all NN training sessions we consider
no NN parameter uncertainty, although it is straightforward to account for it by combining our
method with Deep Ensembles [18], for instance. The aim of this paper is to propose a principled and
theoretically guaranteed solution approach and thus, we refrain from applying such ad hoc solutions
in the computational experiments and plan to consider parameter uncertainty rigorously in a future
work. Nevertheless, we provide in Appendix L a comparison with Bayesian PINNs for completeness.

4 Method

In this section, we introduce our PICProp method and provide the accompanying theorem, as well as
practical implementation algorithms. Further, we discuss the computational cost of our method and
propose a modification for increasing efficiency. Specifically, based on Definition 3.1, we address
the problem of propagating the uncertainty from the boundary to arbitrary locations x ∈ Ω of the
domain. Equivalently, this relates to obtaining the corresponding p-CIs, i.e., obtaining the functions
(L,U) ∈ RΩ × RΩ in Definition 3.1.

4.1 Physics-Informed Confidence Propagation (PICProp)

Our method comprises two steps: (i) a p-CI Z̃p for the clean data z̄ is constructed. (ii) Z̃p is
propagated to any point x ∈ Ω of the domain by solving the following problem,

L(x) = min
z∈Z̃p

uA(x; z)− η, U(x) = max
z∈Z̃p

uA(x; z) + η, (3)

which searches for configurations of points z within the interval Z̃p such that the predicted values for
u(x) given by the η-proper solver A are minimized or maximized, respectively.

The CI in the first step can either be given or constructed from data. The former case relates to
various practical scenarios (e.g., the error ranges of measurement sensors with a certain confidence
degree are known or given by experts), whereas the latter serves as a data-driven scheme, where
less prior knowledge is required. Techniques to construct the CI in the first step depend on the data
(noise) distribution. For example, if the noise is assumed to be Gaussian, the corresponding CI can be
identified by chi-squared or Hotelling’s T -squared statistics. If the noise distribution is not known, a
concentration inequality can be used to identify the CI. Relevant details are provided in Appendix D.
See also Figure 1 for an illustration.

The interval constructed via Equation (3) is a joint p-CI for the whole domain Ω of u. This fact is
formalized in the next theorem (see Appendix G for the corresponding proof).

Theorem 4.1. Consider a p-CI for z̄ denoted as Z̃p, constructed such that Pr(z̄ ∈ Z̃p) ≥ p. Then
the functions (L,U) obtained by solving Equation (3) define a p-CI for u.

Although the robustness of the PDE solver does not affect the validity of Theorem 4.1, it nevertheless
affects the quality of intervals constructed via Equation (3). Specifically, although valid CIs can
always be constructed with arbitrary proper PDE solvers by solving Equation (3), a robust PDE
solver less sensitive to data noise is expected to yield tighter CIs compared to a less robust solver.

4

Note that the confidence guarantee of the constructed CIs corresponds to a probability that is greater
than, rather than equal to, p, which means that the constructed CIs are conservative. From a design
perspective, conservative uncertainty estimation is the preferred route for critical and risk-sensitive
applications [7, 13], although it can be more costly.

Next, a brute force and computationally expensive approach to solve Equation (3) pertains to
traversing z ∈ Z̃p in an exhaustive search (ES) manner and invoking a PDE solver for each candidate
z. Alternatively, we propose to first employ a NN for obtaining uθ̂(z) by minimizing the physics-

informed loss of Equation (2) and approximating u(x; z) for each z ∈ Z̃p. In this regard, if a PINN is
assumed to be an η-proper PDE solver, Equation (3) can be further extended to a bi-level optimization
problem cast as

L(x) = min
z∈Z̃p

uθ̂(z)(x)− η, U(x) = max
z∈Z̃p

uθ̂(z)(x) + η,

s.t. θ̂(z) = argmin
θ
Lpinn(θ, z).

(4)

Nevertheless, explicit gradient ∇zu calculation is intractable, as multiple steps of gradient descent
for the NN are required for a reliable approximation. Despite this fact, bi-level optimization involving
large-scale parameterized models such as NNs, with main applications in meta-learning, has been
extensively studied in recent years and has resulted to numerous implicit gradient approximation
methods (see Appendix I). In this regard, Algorithm 1 in Appendix H summarizes our method
for solving efficiently Equation (3) by using such approximations. In passing, note that η = 0 is
considered for all implementations in this work.

4.2 Efficient Physics-Informed Confidence Propagation (EffiPICProp)

If joint CIs are required for multiple query points, denoted by the set Xq , Algorithm 1 has to be used
multiple times to solve Equation (4) for each and every point x in the set. This clearly incurs a high
computational cost. To address this issue, a straightforward approach pertains to training an auxiliary
model parameterized by ψ that models the CI as (Lψ(xq), Uψ(xq)) for all query points xq ∈ Xq , or
more generally of the entire domain Ω. However, this naive regression using solutions of the bi-level
optimization at a set of locations, which we refer to as SimPICProp, does not provide accurate results
when the size of the query set is small; see computational results in Section 5.1.

For improved generalization properties with limited query points, we propose to train a two-input
parameterized meta-model uψ(xq, x) that models the resulting PDE solution u(x), via Equation (4),
for each different query point. For example, note that L(x) in Equation (4) evaluates the NN uθ̂(z)
at the location of the query point and z minimizes the corresponding value. As a result, if a trained
model uψ(xq, x) minimizes the value of u at xq , the sought p-CI can be simply obtained by evaluating
uψ at (xq, xq). More generally, given a query set consisting of K randomly selected query points
Xq = {xkq}Kk=1, the model is trained such that it solves the problem

min
ψ

1

2K

K∑
k=1

Lpinn(uLψ(xkq , ·), zL(xkq)) + Lpinn(uUψ (xkq , ·), zU (xkq)),

where zL(xkq) = argmin
z∈Z̃p

uθ̂(z)(x
k
q), z

U (xkq) = argmax
z∈Z̃p

uθ̂(z)(x
k
q),

s.t. θ̂(z) = argmin
θ
Lpinn(uθ(·), z).

(5)

The estimated p-CI is, subsequently, given by

L(x) = uLψ(x, x), U(x) = uUψ (x, x). (6)

In fact, we can train a single model for both upper- and lower-bound predictions because the
parameters are shared as in Equation (5). This is achieved by encoding an indicator into the input
vector, so that uLψ(xq, ·) = uψ(xq, ·,−1) and uUψ (xq, ·) = uψ(xq, ·, 1). Furthermore, to balance the
weights of the terms in the objective of Equation (5) more effectively, PINNs are separately trained
with boundary conditions zL(x1:Kq) and zU (x1:Kq). In this regard, uψ is obtained by

5

min
ψ
LEffi (x1:Kq ;ψ), where LEffi :=

1

2K

K∑
k=1

(1− λ)L(xkq , xkq ;ψ) + λ E
x∈Ω
L(xkq , x;ψ),

s.t. L(xkq , x;ψ) := (uψ(x
k
q , x,−1)− uθ̂(zL(xk

q))
(x))2 + (uψ(x

k
q , x, 1)− uθ̂(zU (xk

q))
(x))2,

(7)

and λ ∈ [0, 1] is a weight to balance the two loss terms, of which the first aims to enforce close
predictions of CIs at query points, and the second to utilize extra information in PDE solutions
for better generalization. We refer to this model as EffiPICProp and provide the corresponding
implementation in Algorithm 2 in Appendix H. Specifically, the EffiPICProp version with λ = 0 is
called SimPICProp, as it simply focuses on close predictions of confidence intervals at query points,
while disregarding additional information at other locations.

5 Computational experiments

We provide three computational experiments that are relevant to physics-informed machine learning.
We will start with a 1D pedagogical example to illustrate our proposed approaches. Next, we
will move to more complicated problems involving standard representative equations met in many
real-world problems including heat transfer, fluid dynamics, flows through porous media, and even
epidemiology [21, 38]. Details regarding implementation, query points, and computational times can
be found in Appendix J.

5.1 A Pedagogical Example

We consider the following equation, which has been adopted from the pedagogical example of [11],

uxx − u2ux = f(x), x ∈ [−1, 1], (PDE), (8)

where f(x) = −π2 sin(πx) − π cos(πx) sin2(πx). For the standard BCs u(−1) = u(1) = 0, the
exact solution is u(x) = sin(πx). The purpose of this one-dimensional PDE with only two boundary
points, i.e., with a two-dimensional search space in Equation (4), is to demonstrate the applicability of
our method in different data scenarios (see Appendix D). Further, the small size of the problem is ideal
for comparing computationally expensive methods, such as exhaustive search (ES) and employing
PICProp separately at all domain locations, with the more efficient implementation of Algorithm 2.

Figure 1: Pedagogical example: Boundary 95% CIs to be propagated to the rest of the domain. (a-b)
Random samples follow N (0, σ2I), where σ = 0.05. The black crosses correspond to 5,000 random
samples from the distribution. A χ2 CI is constructed using the only one available sample and a
T 2 CI is constructed using the five available samples. (c) Random samples follow U([−1.5, 1.5]×
[−1.5, 1.5]). The black crosses correspond to 2,000 random samples from the distribution. A
Hoeffding CI is constructed using the five available samples. All available samples are shown with
red crosses.

We consider two types of noisy BCs (Figure 1). First, we consider BCs with Gaussian noise given as

u(−1) ∼ N (0, σ2
1), u(1) ∼ N (0, σ2

2), (9)

6

where the standard deviations are σ1 = σ2 = 0.05, i.e., the data is assumed to be Gaussian and the
standard deviations are known (or estimated if unknown). We sample one or five datapoint(s) for
each side of the boundary, for each case, respectively. Given the dataset, a χ2 CI and a T 2 CI are
constructed according to the corresponding problem scenarios discussed in Appendix D; see also
Figure 1(a),(b).

Second, we consider BCs with uniform noise given as

u(−1) ∼ U(−D1, D1), u(1) ∼ U(−D2, D2), (10)

where D1 = D2 = 1.5 are assumed to be known. We sample five datapoints for each boundary side.
Given the dataset, a Hoeffding CI is constructed; see also Figure 1(c).

For the query set, six points are used for implementing SimPICProp and EffiPICProp in Section 4.2,
whereas 41 points are used for implementing the brute-force version of PICProp, which amounts to
solving the bi-level optimization problem of Equation (4) for each point. The implementation details
of the PICProp-based methods are summarized in Table J.1. Further, 5,000 BCs are sampled for
solving Equation (4) with ES, which can be considered as a reference solution.

Figure 2: Pedagogical example: CI predictions for the entire domain x ∈ [−1, 1]. Left: Noise is
Gaussian with known standard deviation, and a χ2 CI is constructed at the boundary. Middle: Noise
is Gaussian with unknown standard deviation, and a T 2 CI is constructed at the boundary. Right:
Uniform noise with known bounds, and a Hoeffding CI is constructed at the boundary.

The CI predictions for the three cases are visualized in Figure 2, whereas the meta-learning curves
can be found in Appendix K.1. Note that the sizes of the CIs are approximately equal to 0.1 – 0.2
near the boundaries, which are comparable with the propagated CI sizes of Figure 1, and become
larger around x of ±0.5. In all cases, the PICProp results match those of ES, despite the fact that
PICProp requires solving a challenging bi-level optimization method with approximate implicit
gradient methods. Further, the efficient method EffiPICProp performs accurately as compared to its
reference method PICProp, while retaining a significantly lower computational cost (see Figure 3 for
χ2 results and Figure K.4 K.5 for T 2 and Hoeffding results). On the other hand, the predictions of
SimPICProp match the brute-force PICProp results only on the query points, but generalize poorly on
other locations. In contrast, EffiPICProp, which is based on a meta-model that fits the PDE solutions
for multiple query points, generalizes well on unseen locations.

Some additional experimental results are summarized in Appendix K.1 for the completeness of our
empirical study: Firstly, a comparison among PICProp and EffiPICProp with various λs is provided in
Figure K.3 to better demonstrate how the balance between two EffiPICProp loss terms in Equation (7)
affects the CI prediction. Next, we conduct an additional experiment to empirically verify the validity
of EffiPICProp CIs in Appendix K.1.4. Finally, a brief comparison with Bayesian PINNs is presented
in Appendix L.

5.2 Two-dimensional Poisson equation

Next, we consider a two-dimensional Poisson equation given as

uxx + uyy = f(x, y), (x, y) ∈ [−1, 1]× [−1, 1], (PDE),
u(x, y) = ex + ey, x = ±1 or y = ±1, (BCs).

(11)

7

Figure 3: Pedagogical example, χ2: Although the results of both SimPICProp and EffiPICProp
match PICProp results on the query points, EffiPICProp generalizes better on unseen locations.

The exact solution is u(x, y) = ex + ey, and the corresponding f(x, y) is obtained by substituting
u(x, y) into Equation (11). This example serves to demonstrate the effectiveness of our method
for treating cases with large numbers of noisy BC datapoints. In such cases, an exhaustive search
approach for solving the bi-level optimization of Algorithm 1 generally fails to identify the global
optimum, unless we increase the number of trials and the computational cost at prohibitive levels.

We propagate the following fixed CI from the boundary to the rest of the domain (x, y) ∈ (−1, 1)×
(−1, 1):

u(x, y) ∈ [ex + ey − 0.05, ex + ey + 0.05], x = ±1 or y = ±1. (12)

To solve the problem, 10 boundary points are sampled for each side of the domain, i.e., 40 boundary
points in total are used for training and uncertainty is considered at all points. The search space is
thus 40-dimensional. The implementation details of the PICProp-based methods are summarized
in Table J.1, whereas 4,000 steps of standard PINN training are run for each BC for ES. For a
fair comparison, 121 query points for PICProp are selected in the domain, see Figure J.1, and the
computational time is approximately the same as of ES with 1,000 trials. Moreover, we include the
ES result with 5,000 trials, which is considered to be exhaustive, as a reference.

Figure 4: 2-D Poisson equation: Slices of CI predictions for x ∈ {−0.5, 0.0, 0.5, 1.0}. EffiPICProp
can identify the solution to the bi-level optimization problem more efficiently and accurately, as
compared with the computationally expensive, search-based method ES.

Figure 4 plots the slices of CI predictions for x ∈ {−0.5, 0.0, 0.5, 1.0}, whereas Appendix K.2
includes slices along the y axis and the heatmaps over the entire domain. For reference, the size

8

of the CIs obtained with EffiPICProp is approximately 0.1 across the domain, which is equal to
the size of the propagated CI of Equation (12). The predicted CI size is also larger in most cases
than that of the ES-based CIs. We conclude that 1,000 trials for ES are clearly not sufficient, as the
intervals of ES with 5,000 trials are significantly wider; thus, a global optimum is not reached with
1,000 trials. In contrast, EffiPICProp converges to similar or wider intervals compared to ES with
5,000 trials. Overall, the optimization-based method EffiPICProp can identify the solution to the
bi-level optimization problem more efficiently and accurately, as compared with the computationally
expensive, search-based method ES.

5.3 One-dimensional, time-dependent Burgers equation

In this example, we study the Burgers equation given as

ut + ux − νuxx = 0, (x, t) ∈ [−1, 1]× [0, 1], (PDE),
u(x, t = 0) = − sin(πx), u(x = −1, t) = u(x = 1, t) = 0, (BCs),

(13)

where ν = 0.01
π is the viscosity parameter. We consider clean data for the BCs and noisy data for the

initial conditions (ICs). Specifically, for the ICs, we propagate the following fixed CI from t = 0 to
the rest of the time domain t ∈ (0, 1] and for all x ∈ [−1, 1]:

u(x, t = 0) ∈ [− sin(πx)− 0.2,− sin(πx) + 0.2]. (14)

This problem serves to demonstrate the reliability of our method even in challenging cases with steep
gradients or discontinuities of the PDE solution. For solving the problem using PINNs, we consider
200 boundary points, 256 initial points, and 10,000 samples in the interior domain. The 256 initial
points are evenly spaced along [−1, 1]. The implementation details of the PICProp-based methods
are summarized in Table J.1, whereas 2,500 and 5,000 trials are considered for ES. The 246 PICProp
query points are visualized in Figure J.1 and the respective computational time is approximately
equal to that of ES with 2,500 trials.

Slices of CI predictions for t ∈ {0.0, 0.25, 0.5, 0.75} are plotted in Figure 5, whereas Appendix K.3
includes the respective meta-learning curves. We conclude that EffiPICProp, although computa-
tionally cheaper, in most cases provides wider, i.e., more conservative, CIs, as compared to ES
with varying numbers of trials. It also succeeds in capturing the expected increase in uncertainty as
the query points move away from the source of uncertainty, which corresponds to larger t values.
Specifically, the size of the CIs at t = 0 is approximately 0.4, which is equal to the size of the
propagated CI in Equation (14), and becomes approximately 2 at t = 0.75 and near x = 0. On the
other hand, since we consider 256 random initial points, the search space of ES is 256-dimensional.
It requires a prohibitively large number of trials to identify the global optima of Equation (4). Finally,
note that the results of EffiPICProp in Figure 5 correspond to λ = 0 in Equation (7), because we
found that the additional information provided by the second loss term in Section 4.2 adversely affects
generalization. This is partly due to the large number of query points in this problem.

6 Conclusion

Physics-informed machine learning is transforming the computational science field in an unprece-
dented manner, by solving ill-posed problems, involving noisy and multi-fidelity data as well as
missing functional terms, which could not be tackled before. However, uncertainty quantification
is necessary for deploying such methods in critical applications. In this work, we considered a
novel problem pertaining to propagating randomness, in the form of CIs, from data locations (at
the boundary but can easily be extended to inner or collocation data points) to the entire domain,
with probabilistic guarantees. We proposed PICProp, a method based on bi-level optimization, and
its efficient version, with a theorem guaranteeing the validity of the obtained CIs (Algorithms 1-2
and Theorem 4.1). To the best of our knowledge, this is the first work on joint CI estimation with
theoretical guarantees in the context of physics-informed learning, while our method can be applied
in diverse practical scenarios without imposing any distributional assumptions.

In the computational experiments of Section 5, involving various partial differential equations, we
demonstrated the effectiveness and efficiency of our proposed methods. Specifically, the predicted
CIs are wider, i.e. more conservative, in most cases, as compared with the more computationally
demanding exhaustive search for solving the bi-level optimization. Although not encountered in the

9

Figure 5: Burgers equation: Slices of CI predictions for x ∈ {0.0, 0.25, 0.5, 0.75}. EffiPICProp,
although computationally cheaper, in most cases provides wider, i.e., more conservative CIs, as
compared to ES with varying numbers of trials. To interpret the cost of ES, note that its search space
is 256-dimensional and requires a prohibitively large number of trials to identify the global optima of
Equation (4).

experiments, a potential limitation of our method is that the obtained CIs can be loose in some cases,
even when propagating a tight CI from the boundaries, due to the max/min operations in the bi-level
optimization of Equation (3). Because of the theoretical challenges involved, we plan to study this
limitation and perform pertinent experiments in a future work.

7 Acknowledgements

This material is based upon work supported by the Google Cloud Research Credit program with the
award (6NW8-CF7K-3AG4-1WH1). The computational work for this article was partially performed
on resources of the National Supercomputing Centre, Singapore (https://www.nscc.sg).

References
[1] Moloud Abdar, Farhad Pourpanah, Sadiq Hussain, Dana Rezazadegan, Li Liu, Mohammad Ghavamzadeh,

Paul Fieguth, Xiaochun Cao, Abbas Khosravi, U Rajendra Acharya, et al. A review of uncertainty
quantification in deep learning: Techniques, applications and challenges. Information Fusion, 76:243–297,
2021.

[2] Vidmantas Bentkus. An extension of the hoeffding inequality to unbounded random variables. Lithuanian
Mathematical Journal, 48(2):137–157, 2008.

[3] BVSS Bharadwaja, Mohammad Amin Nabian, Bharatkumar Sharma, Sanjay Choudhry, and Alankar
Alankar. Physics-informed machine learning and uncertainty quantification for mechanics of heterogeneous
materials. Integrating Materials and Manufacturing Innovation, pages 1–21, 2022.

[4] Steve Brooks, Andrew Gelman, Galin Jones, and Xiao-Li Meng, editors. Handbook of Markov Chain
Monte Carlo. Chapman and Hall/CRC, may 2011.

[5] Nicolas Brosse, Alain Durmus, and Eric Moulines. The promises and pitfalls of stochastic gradient langevin
dynamics. Advances in Neural Information Processing Systems, 31, 2018.

[6] Min Cai, George Em Karniadakis, and Changpin Li. Fractional seir model and data-driven predictions
of covid-19 dynamics of omicron variant. Chaos: An Interdisciplinary Journal of Nonlinear Science,
32(7):071101, 2022.

[7] Kamil Ciosek, Vincent Fortuin, Ryota Tomioka, Katja Hofmann, and Richard Turner. Conservative
uncertainty estimation by fitting prior networks. In International Conference on Learning Representations,
2020.

10

https://www.nscc.sg

[8] Morris L Eaton and Michael D Perlman. Concentration inequalities for multivariate distributions: I.
multivariate normal distributions. Statistics & probability letters, 12(6):487–504, 1991.

[9] Andrew YK Foong, David R Burt, Yingzhen Li, and Richard E Turner. Pathologies of factorised gaussian
and mc dropout posteriors in bayesian neural networks. stat, 1050:2, 2019.

[10] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty
in deep learning. In international conference on machine learning, pages 1050–1059. PMLR, 2016.

[11] Yihang Gao and Michael K Ng. Wasserstein generative adversarial uncertainty quantification in physics-
informed neural networks. arXiv preprint arXiv:2108.13054, 2021.

[12] Riccardo Grazzi, Luca Franceschi, Massimiliano Pontil, and Saverio Salzo. On the iteration complexity of
hypergradient computation. In International Conference on Machine Learning, pages 3748–3758. PMLR,
2020.

[13] Bobby He, Balaji Lakshminarayanan, and Yee Whye Teh. Bayesian deep ensembles via the neural tangent
kernel. Advances in neural information processing systems, 33:1010–1022, 2020.

[14] Zheyuan Hu, Khemraj Shukla, George Em Karniadakis, and Kenji Kawaguchi. Tackling the curse of
dimensionality with physics-informed neural networks. arXiv preprint arXiv:2307.12306, 2023.

[15] Kaiyi Ji, Junjie Yang, and Yingbin Liang. Bilevel optimization: Convergence analysis and enhanced design.
In International Conference on Machine Learning, pages 4882–4892. PMLR, 2021.

[16] George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

[17] Tze Leung Lai. On confidence sequences. The Annals of Statistics, pages 265–280, 1976.
[18] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive

uncertainty estimation using deep ensembles. Advances in neural information processing systems, 30,
2017.

[19] Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing millions of hyperparameters by implicit
differentiation. In International Conference on Artificial Intelligence and Statistics, pages 1540–1552.
PMLR, 2020.

[20] Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators for identi-
fying differential equations based on the universal approximation theorem of operators. arXiv preprint
arXiv:1910.03193, 2019.

[21] Xuhui Meng, Hessam Babaee, and George Em Karniadakis. Multi-fidelity bayesian neural networks:
Algorithms and applications. Journal of Computational Physics, 438:110361, 2021.

[22] Ian Osband, Zheng Wen, Seyed Mohammad Asghari, Vikranth Dwaracherla, Botao Hao, Morteza Ibrahimi,
Dieterich Lawson, Xiuyuan Lu, Brendan O’Donoghue, and Benjamin Van Roy. The neural testbed:
Evaluating joint predictions. arXiv preprint arXiv:2110.04629, 2022.

[23] Apostolos F Psaros, Kenji Kawaguchi, and George Em Karniadakis. Meta-learning pinn loss functions.
Journal of Computational Physics, 458:111121, 2022.

[24] Apostolos F Psaros, Xuhui Meng, Zongren Zou, Ling Guo, and George Em Karniadakis. Uncertainty
quantification in scientific machine learning: Methods, metrics, and comparisons. Journal of Computational
Physics, page 111902, 2023.

[25] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial differential
equations. Journal of Computational physics, 378:686–707, 2019.

[26] Jonathan Sadeghi, Marco De Angelis, and Edoardo Patelli. Robust propagation of probability boxes by
interval predictor models. Structural Safety, 82:101889, 2020.

[27] John G Saw, Mark CK Yang, and Tse Chin Mo. Chebyshev inequality with estimated mean and variance.
The American Statistician, 38(2):130–132, 1984.

[28] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout:
a simple way to prevent neural networks from overfitting. The journal of machine learning research,
15(1):1929–1958, 2014.

[29] Bartolomeo Stellato, Bart PG Van Parys, and Paul J Goulart. Multivariate chebyshev inequality with
estimated mean and variance. The American Statistician, 71(2):123–127, 2017.

[30] Chaoqi Wang, Shengyang Sun, and Roger Grosse. Beyond marginal uncertainty: How accurately can
bayesian regression models estimate posterior predictive correlations? In International Conference on
Artificial Intelligence and Statistics, pages 2476–2484. PMLR, 2021.

[31] Zhuo Wang, Chen Jiang, Pengwei Liu, Wenhua Yang, Ying Zhao, Mark F Horstemeyer, Long-Qing Chen,
Zhen Hu, and Lei Chen. Uncertainty quantification and reduction in metal additive manufacturing. Npj
Computational Materials, 6(1):175, 2020.

11

[32] Ian Waudby-Smith and Aaditya Ramdas. Confidence sequences for sampling without replacement.
Advances in Neural Information Processing Systems, 33:20204–20214, 2020.

[33] Zheng Wen, Ian Osband, Chao Qin, Xiuyuan Lu, Morteza Ibrahimi, Vikranth Dwaracherla, Mohammad
Asghari, and Benjamin Van Roy. From predictions to decisions: The importance of joint predictive
distributions. arXiv e-prints, pages arXiv–2107, 2021.

[34] Liu Yang, Xuhui Meng, and George Em Karniadakis. B-pinns: Bayesian physics-informed neural networks
for forward and inverse pde problems with noisy data. Journal of Computational Physics, 425:109913,
2021.

[35] Liu Yang, Dongkun Zhang, and George Em Karniadakis. Physics-informed generative adversarial networks
for stochastic differential equations. SIAM Journal on Scientific Computing, 42(1):A292–A317, 2020.

[36] Yibo Yang and Paris Perdikaris. Adversarial uncertainty quantification in physics-informed neural networks.
Journal of Computational Physics, 394:136–152, 2019.

[37] Dongkun Zhang, Lu Lu, Ling Guo, and George Em Karniadakis. Quantifying total uncertainty in physics-
informed neural networks for solving forward and inverse stochastic problems. Journal of Computational
Physics, 397:108850, 2019.

[38] Zongren Zou, Xuhui Meng, Apostolos F Psaros, and George Em Karniadakis. Neuraluq: A comprehen-
sive library for uncertainty quantification in neural differential equations and operators. arXiv preprint
arXiv:2208.11866, 2022.

12

A Indicative applications

Our proposed method, delineated in Algorithms 1 and 2 of Appendix H, provides a way to quantify how the data
uncertainty affects the obtained solution. In addition, if the unseen clean data lies within the constructed/given
data bounds, the ground-truth solution lies within our predicted CIs. Some indicative applications include:

1. In additive manufacturing problems, understanding, through our computed CIs, how the model
responds to different material properties arising from the manufacturing process can help in model
correction and thus quality control (see [31]).

2. Further, in material science, cracks affect the elasticity constants which together with geometric
properties affect deformations (see [3]). The range of these deformations can be identified with our
method. Accurately predicting the upper bound of such deformations can help designers to adjust
cross-sectional properties of structural elements to better account for potential cracks.

3. More generally, our model can be extended to account for PDE model uncertainty. For example,
PINNs have been used for short-term predictions of infected cases and deaths due to COVID-19 (see
[6]). In such problems, our approach can be used to provide bounds of uncertainty for the predicted
variables of interest. Accurately predicting the upper bound of infected cases can help the states better
prepare for short-term hospitalization needs.

B Additional details regarding standard UQ

Standard UQ considers that the data is generated from a distribution p(u|x, θ = θ∗), where θ∗ is the NN
parameters that are assumed to represent exactly the PDE solution u(x). Given a dataset z, standard UQ
approximates the solution uθ∗(x) with the distribution

p(u|x; z) =
∫

p(u|x, θ)p(θ|z)dθ, (15)

where p(θ|z) ∝ p(θ)p(z|θ) according to Bayes’ theorem and p(z|θ) is the data likelihood. However, as a
closed-form p(θ|z) is typically intractable, UQ draws approximate samples from p(θ|z), denoted as {θ̂j}Nθ

j=1.
Next, it constructs p̂(u|x; z) for each x based on the collected samples to approximate p(u|x; z). Typically,
a Gaussian distribution is fitted to the PINN solutions {uθ̂j

(x)}Nθ
j=1 and its corresponding statistical intervals

are used in lieu of CIs for the PDE solution. Loosely speaking, statistical intervals of {θ̂j}Nθ
j=1 can be viewed

as credible intervals from Bayesian statistics, and intervals of {uθ̂j
(x)}Nθ

j=1 as the corresponding prediction
intervals.

Alternatively, one could use a concentration inequality to construct directly a prediction interval using the samples
{uθ̂j

(x)}Nθ
j=1. Nevertheless, such intervals still correspond to the Bayesian estimate Eθ∼p(θ|D)uθ , rather than to

the exact solution u(x), unless further assumptions are made. Even if the assumption that the Bayes estimate
corresponds to θ∗ is made, i.e., θ∗ = Eθ|Dθ, the typically considered Eθ|Duθ(x) is not guaranteed to equal
uEθ|Dθ(x) as uθ can be arbitrary nonlinear (see also Appendix C).

Standard UQ approaches have several other limitations. For example, strong assumptions regarding the noise
distribution and data likelihood are often required, and depending on the problem it is notoriously difficult to tune
Bayesian NNs [5]. Furthermore, it is not possible to obtain/sample p(u|x, z) exactly in practical problems and
thus, additional approximations are required, typically referred to as approximate posterior inference. In addition,
UQ approaches for PINNs are not supported by theoretical guarantees regarding the quality of uncertainty
propagation due to the physics-informed constraints [11]. Finally, for the case of multiple available datasets, see
Appendices C and E for the limitations of Monte Carlo-based approaches.

C Additional details regarding Monte Carlo Simulation

Assume that we have m i.i.d. datasets denoted as {z(j)}mj=1 and a 0-proper data-driven PDE solver (see
Definition 3.3). It is natural to consider solving the PDE with each dataset in a Monte Carlo manner and then
using a concentration inequality to construct CIs. However, a CI for the exact solution u(x) cannot be identified
without further assumptions. The reason is that we only have access to E[u(x;Z)], rather than to u(x) given as
u(x) = u(x; Z̄) = u(x;E[Z]), considering data-driven solutions from a 0-proper solver. Clearly, the difference
between the two is in the form of E[f(X)] ̸= f(E[X]), where f in our case is the solver. In Figure C.1
we provide an illustration of this point as applied to linear/convex/concave functions, as s straightforward
consequence of Jensen’s inequality.

13

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

f(x
) f (E[X])=E[f (X)]

(a) f(x) = x
f(x) = x

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

f(x
)

f (E[X])>

E[f (X)]

(b) f(x) = (ex 1)/(e 1)
f(x) = (ex − 1)/(e− 1)

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

f(x
)

f (E[X])

>E[f (X)]

(c) f(x) = sin(x/2)
f(x) = sin(πx/2)

Figure C.1: Difference between E[f(X)] and f(E[X]). (a) Linear function f(x) = x, E[f(X)] =
f(E[X]); (b) Convex function f(x) = (ex− 1)/(e− 1), E[f(X)] > f(E[X]); (c) Concave function
f(x) = sin(πx/2), E[f(X)] < f(E[X]).

D Confidence Interval Construction with Data

Consider a dataset {z(j)}mj=1, which contains m independent samples of an n-dimensional random vector
Z. Based on the data {z(j)}mj=1, we construct a CI for Z, denoted as Z̃p, where p is the confidence level.
Equivalently, Pr(z̄ ∈ Z̃p) ≥ p.

In this regard, we consider the following problem scenarios:

1. The random vector Z follows a multivariate Gaussian distribution with known covariance matrix Σ of
rank n. Given one observation z, i.e., m = 1, the chi-squared statistic χ2 = (z − µ)TΣ−1(z − µ)

follows a chi-squared distribution with n degrees of freedom. The corresponding p-CI is Z̃p =

{z′| ||z− z′||Σ−1 ≤ kχ2

n,p}, where ||z− z′||Σ−1 =
√

(z − z′)TΣ−1(z − z′) and kχ2

n,p is the squared
root of the upper (1− p)/2 critical value of the chi-squared distribution with n degrees of freedom;
see Figure 1 for an example corresponding to the case of n = 2.

2. The random vector Z follows a multivariate Gaussian distribution with unknown covariance matrix Σ
and m observations are available. The sample mean and covariance are estimated as z̄ = 1

m

∑m
i=1 zi

and Σ̂ = 1
m−1

∑m
i=1(zi − z̄)(zi − z̄)T , respectively. The Hotelling’s t-squared statistic t2 =

N(z̄ − µ)T Σ̂−1(z̄ − µ) follows a Hotelling’s T -squared distribution with parameters n, m − 1.
The corresponding p-CI is Z̃p = {z′| ||z̄ − z′||Σ̂−1 ≤ m−1/2kT2

n,m−1,p}, where ||z̄ − z′||Σ̂−1 =√
(z̄ − z′)T Σ̂−1(z̄ − z′) and kT2

n,m−1,p denotes the squared root of the upper (1−p)/2 critical value
of the aforementioned Hotelling’s T -squared distribution; see Figure 1 for an example corresponding
to the case of n = 2 and m = 5.

3. The components of the random vector Z follow an unknown distribution, and m independent observa-
tions are available. For this case, a concentration inequality can be used for each component, i.e., for
each data location, and the obtained bounds can be combined using a union of bounds for obtaining a
p-CI (see also Appendix E).
Note that many popular concentration inequalities require specific assumptions for the unknown distri-
bution besides the fact that independent samples are available. For example, Hoeffding’s inequality and
its variants require the random variable to be bounded. [2] extends Hoeffding’s inequality to unbounded
random variables, but it is limited to Pareto-type tails. Other concentration inequalities without heavy
assumptions for the distribution, such as Chebyshev’s inequality and Chernoff’s inequality, require
various true population statistics (e.g., the population mean and variance) for computing the bounds,
which are not available in the cases we consider. In this regard, [27] provides a Chebyshev-type bound
with estimated mean and variance. [29] further extends the bound of [27] to the multivariate case.

4. The CI Z̃p can alternatively be given by domain experts.

E Joint Confidence Intervals for PDE Solutions

In this section, we provide the necessary definitions, lemmas, and remarks that are required for introducing and
addressing the CI propagation problem in Section 4.1. That is, how to propagate, with probabilistic guarantees, a
CI constructed at the locations of the available data to arbitrary sets of query points of the domain.

To this aim, we first define the marginal CI for a single query point xq .

14

Definition E.1 (Marginal CI). A pair of random variables (L,U) ∈ R2 is a p-CI for u(xq) on the single query
point xq ∈ Ω, if the random event E := {L < u(xq) < U} holds with probability at least p.

Intuitively, considering repeating experiments of drawing random datasets {z(j)}1:m, the proportion of the
(L,U) CIs, constructed according to Definition E.1, that contain u(xq) is at least p. Next, we define the joint CI
for multiple query points.
Definition E.2 (Joint CI). A pair of functions (L,U) ∈ RXq × RXq is a p-CI for u on query set Xq ⊆ Ω, if the
random event E := ∩xq∈Xq{L(xq) < u(xq) < U(xq)} holds with probability at least p.

For simplicity, in the rest of the paper we refer to the p-CI for u on the whole domain Ω as p-CI for u, and to the
p-CI for u on Xq ⊂ Ω as query set p-CI.
Remark E.3. Let (L,U) be a p-CI for u. For any Xq ⊆ Ω, (L,U) is a p-CI for u on Xq , i.e., the random event
E(Xq, Z) := ∩xq∈Xq{L(xq) < u(xq) < U(xq)} holds with probability at least p.

Remark E.3 indicates that a p-CI for u on an arbitrary query set can be derived from a p-CI for u by slicing.
The query set Xq can be either discrete or continuous including multiple or even infinite queries. Note that the
p-CIs of Definition E.2 and Remark E.3 hold with probability at least p; i.e., there is no statement about their
tightness. In this regard, the next remark shows that slicing using larger sets Xq yields tighter p-CIs for u on
Xq . Nevertheless, the maximum tightness that can be achieved, for the p-CI for u on Xq , is determined by the
tightness of the p-CI for u on the whole domain Xq . This is corroborated by the following remark.
Remark E.4. Let (L,U) ∈ RΩ ×RΩ be a p-CI for u. For query set X 1

q ⊆ X 2
q ⊆ Ω, the probabilities of random

events E1 := ∩xq∈X1
q
{L(xq) < u(xq) < U(xq)}, E2 := ∩xq∈X2

q
{L(xq) < u(xq) < U(xq)} satisfy

Pr(E1 ≥ Pr(E2). (16)

Next, we define the union of single-query p-CIs. It is often used in practice as a proxy to the query set p-CI and
can be used also within the context of the present study for addressing problem scenarios 3 and 4, as described
in Appendix D.

Definition E.5 (Union of CIs). A pair of functions (L,U) ∈ RXq × RXq constructed based on {z(j)}1:m is a
union of p-CIs for u on query set Xq ⊆ Ω if for each xq ∈ Xq , (L(xq), U(xq)) is a p-CI for u(xq), i.e., each
random event E := {L(xq) < u(xq) < U(xq)} holds with at least probability p.

The next lemma provides insight into the connection between the marginal p-CI on Xq and the union of p-CIs.
Lemma E.6. For u and Xq , a p-CI is a union of p-CIs, whereas a union of p-CIs is not necessarily a p-CI.

That is, u(xq), ∀xq ∈ Xq, belongs to the p-CI constructed by slicing of the p-CI for u with probability at
least p. On the other hand, the probability of the event ∩xq∈Xq{L(xq) < u(xq) < U(xq)}, where (L,U) are
constructed based on a union of p-CIs, may be less than p. This is supported by the following two remarks as
well as the computational experiment of Appendix F.
Remark E.7. The probability of the random event ∩xq∈Xq{L(xq) < u(xq) < U(xq)}, where (L,U) are
constructed based on a union of p-CIs, is upper-bounded by the minimum probability of the events {L(xq) <
u(xq) < U(xq)},∀xq ∈ Xq . That is,

Pr(∩xq∈Xq{L(xq) < u(xq) < U(xq)})
≤ min

xq∈Xq

Pr({L(xq) < u(xq) < U(xq)}). (17)

Remark E.8. If one of the p-CIs is tight, i.e. ∃x′
q ∈ Xq such that Pr({L(x′

q) < u(x′
q) < U(x′

q)}) = p, the
union of these p-CIs is a p-CI for u if and only if it holds ∀xq ∈ Xq \ {x′

q} that

Pr({L(xq) < u(xq) < U(xq)|L(x′
q) < u(x′

q) < U(x′
q)}) = 1. (18)

Finally, in order to obtain a guarantee that a union of CIs is a p-CI, we can equate a lower bound of the
probability of the former with p. This lower bound can be obtained by disregarding correlations among the
different locations, as formalized in the following lemma.
Lemma E.9. For u and finite query set Xq , a union of (1− (1− p)/|Xq|)-CIs is a p-CI for u as

Pr(∩xq∈Xq{L(xq) ≤ u(xq) ≤ U(xq)})

=1− Pr(∪x∈Xq{L(x) ≤ f(x) ≤ U(x)}C)

≥1−
∑
x∈Xq

(1− Pr({L(x) ≤ u(x) ≤ U(x)}))

≥1− |Xq|(1− (1− 1− p

|Xq|
)) = p.

(19)

15

However, as the size of the query set Xq increases, the required confidence level of each interval must approach
1, which leads to loose union bounds. Finally, another approach for obtaining a p-CI for multiple queries is
to use multivariate concentration inequalities [8]. Nevertheless, this approach is limited to a finite number of
queries.

F Toy Linear System

In this section, we highlight the differences between joint CIs and union of CIs, as described in Appendix E,
with a simple example. Consider a true function u and a model given as uθ(x) = (1− x)θ0 + xθ1, x ∈ [0, 1],
with θ = (θ0, θ1) ∈ R2. We assume that there exists θ∗ such that uθ∗ = u, and that we are given measurements
Z = (Z0, Z1) ∼ N (θ∗, I). Thus, for one observation Z, we simply estimate θ̂ = Z. As a result, the estimator
for u is given as

uθ̂ = (1− x)Z0 + xZ1 ∼ N ((1− x)θ∗0 + xθ∗1 , 2x
2 − 2x+ 1). (20)

Next, define as k-interval the lower and upper intervals (Lk, Uk) obtained by subtracting and adding k standard
deviations from the estimated mean of u, respectively, i.e.,

Lk(x) :=(1− x)Z0 + xZ1 − k
√

2x2 − 2x+ 1,

Uk(x) :=(1− x)Z0 + xZ1 + k
√

2x2 − 2x+ 1.
(21)

Remark F.1. We define kN
p -interval as the interval constructed as a union of one-query p-CIs for uθ(x) and for

different values of x ∈ Ω, similarly to Definition E.5. The value kN
p is the upper (1− p)/2 critical value of the

standard normal distribution.

Proof : For x ∈ Ω,

Pr({LkN
p

≤ u(x) ≤ UkN
p
})

=Pr({(1− x)Z0 + xZ1 − kN
p

√
2x2 − 2x+ 1 < f(x) < (1− x)Z0 + xZ1 + kN

p

√
2x2 − 2x+ 1}

=Pr({|uθ̂(x)− E[uθ̂(x)]| < kN
p std(uθ̂(x))}

=p.

(22)

Remark F.2. We define kχ2

p -interval as the p-CI for u, constructed as (L
k
χ2
p

(x), U
k
χ2
p

(x)) for each x ∈ Ω,

where
L

k
χ2
p

(x) = argmin
||z−Z||2≤k

χ2
p

(1− x)z0 + xz1,

U
k
χ2
p

(x) = argmax
||z−Z||2≤k

χ2
p

(1− x)z0 + xz1.
(23)

The value kχ2

p is the squared root of the upper (1− p)/2 critical value of the chi-squared distribution with 2
degrees of freedom.

Proof : According to Theorem 4.1,

Pr({L
k
χ2
p

(x) < u(x) < U
k
χ2
p (x)

, ∀x ∈ Ω})

≥Pr({||θ∗ − Z||2 ≤ kχ2

p })
=p.

(24)

The left side of Figure F.1 provides an indicative example of a kN
p -interval and a kχ2

p -interval, with p = 95%
and θ∗ = (0, 0). The results are obtained using only one sample Z = (Z0, Z1), which can be visualized
by considering that uθ(0) = Z0 and uθ(1) = Z1. Further, the empirical confidence level of an interval
(L,U) can be estimated as p̄ := 1

J

∑J
j=1 1(∩k=0,1,...,⌊1/ϵ⌋{LZj (kϵ) < u(kϵ) < UZj (kϵ)}) with ϵ > 0.

That is, we calculate the proportion of times that such a construction of the interval contains the true values
on {0, ϵ, ..., ⌊1/ϵ⌋ϵ}. According to the law of large numbers, the empirical confidence level converges with
increasing J , in probability, to the true confidence level p. The right side of Figure F.1 shows that the empirical
confidence level curve of the kχ2

p -interval (or the kN
p -interval) converges to a value above (or below) 95%. This

result implies that the kχ2

p -interval is a valid 95%-CI for u while the kN
p -interval is not.

16

0.0 0.2 0.4 0.6 0.8 1.0
x

2

1

0

1

2

3

y

kp -interval
k 2

p -interval
Ground Truth
Sample

0 2000 4000 6000 8000 10000
of samples

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

p

kp -interval
k 2

p -interval
95%

Figure F.1: Left: An indicative example of a kNp -interval and a kχ
2

p -interval, with p = 95% and
θ∗ = (0, 0). The results are obtained using only one sample Z = (Z0, Z1), which can be visualized
by considering that uθ(0) = Z0 and uθ(1) = Z1. Right: Empirical confidence level on Ω versus the
number of samples J .

G Proofs

G.1 Proof of Theorem 4.1

If z̄ ∈ Z̃p, then L(x) = minz∈Z̃p
u(x; z̄) ≤ uA(x; z̄) ≤ maxz∈Z̃p

u(x; z̄) = U(x), for all x ∈ Ω.
Further, according to the definition of the proper solver, we have uA(x; z̄) − η ≤ u(x) ≤ uA(x; z̄) + η,
for all x ∈ Ω, and thus L(x) − η ≤ u(x) ≤ U(x) + η, for all x ∈ Ω. Finally, we can conclude that
Pr{L(x)− η ≤ u(x) ≤ U(x) + η,∀x ∈ Ω} ≥ Pr{z̄ ∈ Z̃p} ≥ p.

H Algorithms

The developed methods are summarized in Algorithms 1 and 2.

Algorithm 1 PICProp: Physics-Informed Confidence Propagation (Gradient-based)

Input: Z̃p(p-CI for z̃), query point x, inner-steps schedule {Nk}Ko

k=1, learning rates α, β, outer
steps Ko.
Initialize z0 ∈ Z̃p, θ0.
for k = 1, ...,Ko do

for n = 1, ..., Nk do
θn = θn−1 − α∇θLpinn(θn−1, zk−1)

end for
θ̂ = θ0 = θNk

if lower bound is sought then
zk = zk−1 − β∇zuθ̂(zk−1)

(x)

else
zk = zk−1 + β∇zuθ̂(zk−1)

(x)

end if
end for
return uθ̂(zKo)

(x)

I Bi-level Optimization

A bi-level optimization problem can be formulated as

min
ϕ

J (θ∗(ϕ), ϕ) s.t. θ∗(ϕ) = argmin
θ

L(θ, ϕ), (25)

17

Algorithm 2 EffiPICProp: Efficient Physics-Informed Confidence Propagation

Input: η, p(xq), λ.
Randomly sample x1:Kq ∼ p(xq).
Obtain θ̂(zL(xkq)), θ̂(z

U (xkq)) with Algorithm 1 for k = 1, ...,K.
Initialize ψ.
while not done do
ψ ← ψ − η∇L(x1:Kq ;ψ) according to Equation (7).

end while
return uψ

where θ, ϕ are the parameters and the hyperparameters, whereas L and J are the lower-level objective and the
upper-level objective. Many problems like meta-learning, hyperparameter optimization, data poisoning, and
auxiliary learning can be naturally formulated in a bi-level optimization way.

The hardest part of bi-level optimization is that θ∗(ϕ) is not available in a closed-form in many scenarios,
particularly with an empirical lower-level objective that requires multiple steps of gradient descent. In such
cases, the explicit gradient of high-level objective with respect to hyperparameter is intractable.

According to the chain rule,

∇ϕJ (θ∗(ϕ), ϕ) = ∇θJ∇ϕθ
∗(ϕ) +∇ϕJ . (26)

The most challenging part is the approximation of the implicit gradient ∇ϕθ
∗(ϕ), for which many advanced

methods have been proposed and studied in recent years [15]. In this paper, three methods referred to as Reverse,
approximate implicit differentiation with Neumann Series (AID-NS), and approximate implicit differentiation
with conjugate gradient (AID-CG) are evaluated on the confidence interval identification tasks.

I.1 Reverse

Reverse is an iterative differentiation-based method to approximate the hypergradient by unrolling the inner
optimization θ1:K trajectory in a reverse way. The implicit gradient can be approximated by

∇ϕθ
∗(ϕ) ≈∇ϕθK(ϕ) ≈

K−1∑
k=1

(
K−1∏
i=k+1

∂θ̃i+1

∂θi

)
∂θ̃k+1

ϕ
, (27)

where θ̃k+1 = θk − α∇θl(θk, ϕ) and α is a pre-defined inner-learning rate.

I.2 Approximate Implicit Differentiation (AID)

Another family of methods to approximate the hypergradient is Implicit Differentiation, where the implicit
function theorem (IFT) is used to evaluate ∇ϕθ

∗(ϕ). If L is second-order derivable and strong convex, we have

∇ϕθ
∗(ϕ) = −(∇2

θL)−1∇ϕ∇θL. (28)

Then we can approximate the gradients of ϕ using

∇ϕJ (θ∗(ϕ), ϕ) = −∇θJ · (∇2
θL)−1∇ϕ∇θL+∇ϕJ . (29)

The most challenging part is the approximation of the inverse Hessian vector product (inv-hvp) A−1p, where
A ∈ Rd×d is a given symmetric positive matrix and p ∈ R is a given vector.

AID-NS [19] is a method based on the Neumann Series to approximate the inv-hvp as

A−1p = λ

∞∑
k=0

(I − λA)kp ≈ λ

K∑
k=0

(I − λA)kpm (30)

where λ is a hyperparameter that ensures convergence and K is a hyperparameter for precision control.

AID-CG [12] approximates the hypergradient by solving the system of homogeneous linear equations Ax = p
with conjugate gradient.

18

J Details regarding implementation, hyperparameters, query points, and
computational times

J.1 Implementation and hyperparameters

For each PDE, we use a multilayer perceptron (MLP) for the PINN model and another MLP of the same
architecture for EffiPICProp. Query points are collected in a grid manner. For each query point, PICProp starts
with standard PINN training with a randomly initialized virtual boundary condition. We refer to this as the
warmup phase. Subsequently, PICProp alternates between performing a number of inner steps to update the
PINN model and computing the hyper-gradient for a meta step to update the virtual boundary condition. The
inner/outer learning rate is selected from {0.001, 0.01, 0.1}. The inner/outer optimizer is selected from SGD and
Adam. The hyper-gradient method is selected from Neumann Series (NS), Conjugate Gradient (CG), Reverse;
see more details in Appendix I. The numbers of warmup/inner/meta steps are tuned to balance the stability
of bi-level training and the computational cost. For the pedagogical example, as six points are too few for
train-validation splitting, we manually set λ = 1 for EffiPICProp. In the rest of the examples, we split 10% of
the training data as the validation set to select the best λ from {0.0, 0.25, 0.5, 0.75, 1.0}. The hyperparameters
are summarized in Table J.1.

Table J.1: Summary of implementation details, and utilized hyperparameters and architectures in the
experiments.

Pedagogical Poisson Burgers

MLP arch. 32 × 2 20 × 8 20 × 8
BC points 2 40 256
query points 6 11 × 11 41 × 6
inner optim. Adam Adam Adam
inner lr 0.001 0.001 0.001
meta optim. SGD SGD SGD
meta lr 0.01 0.001 0.001
hypergrad NS Reverse Reverse
warmup steps 2,000 4,000 20,000
inner steps 500 20 100
meta steps 50 200 500
λ 1.0 1.0 0.0

J.2 Query Points

The query points are summarized in Figure J.1.

Figure J.1: Visualization of the query points on top of the exact solutions of Equations 11 and 13. (a)
2-D Poisson equation: 121 equally spaced points on a grid. (b) Burgers equation: 246 equally spaced
points on a grid.

19

J.3 Computational times

In our computational experiments, all methods were run serially and thus, the runtimes shown below are much
larger than the required ones for using these methods in practice. For this reason, we have also included a
“pseudo-parallel” runtime that shows the runtimes if parallel processing had been used instead. The runtimes for
the examples of Section 5 are summarized in Table J.2.

Table J.2: Computational time for different experiments.
Experiments ES PICProp SimPICProp EffiPICProp
Pedagogical
example
(CPU)

42 hrs for 5,000
trials

1.7 hrs for 41
queries

16 mins (40s + 6
PICProp queries)

18 mins (40s
per lambda + 6
PICProp queries)

2D Poisson
equation
(GPU)

14 hrs for 1,000
trials
70 hrs for 5,000
trials

400s per query – 14 hrs (180s per
lambda + 121
PICProp queries),
10 mins for
pseudo-parallel

1D time-
dependent
Burgers equa-
tion (GPU)

347 hrs for 2,500
trials
694 hrs for 5,000
trials

5,000s per query – 14 hrs (2000s per
lambda + 246
PICProp queries),
2 hrs for pseudo-
parallel

K Additional Experimental Results

K.1 Pedagogical example

K.1.1 Learning Curves

Figure K.1 provides the meta-learning curves corresponding to the CI predictions of Figure 2 (main text).
Figure K.2 provides the results of all considered meta-learning methods and of ES on six query points. We
conclude that the combination of Neumann Series (NS) and SGD stably converges to the reference result of ES.

K.1.2 λs

Figure K.3 provides comparison among PICProp and EffiPICProp with various λs. Notice that EffiPICProp
with λ = 0 is referred to as SimPICProp in Figure 3. The mean squared errors (MSE) between PICProp CI and
EffiPICProp CI are summarized in Appendix K.1.4. We conclude that EffiPICProp CI with λ = 1.0 is the best
approximation of PICProp CI.

K.1.3 SimPICProp v.s. EffiPICProp

Figure K.4 and Figure K.5 provide the comparison between SimPICProp and EffiPICProp on T 2 and Hoeffding
boundary CI, respectively.

K.1.4 Validity of EffiPICProp CIs

Although it has been already presented in Figure 2 that PICProp and EffiPICProp predictions well match the ES
results, we conduct the following experiment to further verify the validity of EffiPICProp CI predictions.

We independently sampled 500 boundary conditions and propagate the corresponding χ2 CIs using EffiPICProp
to construct CIs for the entire domain. According to the definition of joint CIs (see Definition 3.1), an instance
of CI is valid if it contains the solution u(x) for any x ∈ [−1, 1]. In this regard, we uniformly sampled 101 data
points from [−1, 1] and regard an instance of CI as valid if the solution was enclosed within the interval for
these data points. Further, we run vanilla PINNs with clean boundary data and use the max absolute error among
these 101 data points as η. As a result, 486 out of these 500 (97.2% > 95%) instances of CI are valid, which
empirically indicates that EffiPICProp CI predicitons are valid and conservative.

20

0 10 20 30 40 50
meta steps

0.10

0.05

0.00

0.05

0.10

CI
 p

re
di

ct
io

n

x = 1.0

0 10 20 30 40 50
meta steps

1.05

1.00

0.95

0.90

0.85

CI
 p

re
di

ct
io

n

x = 0.6

0 10 20 30 40 50
meta steps

0.70

0.65

0.60

0.55

0.50

CI
 p

re
di

ct
io

n

x = 0.2

0 10 20 30 40 50
meta steps

0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

CI
 p

re
di

ct
io

n

x = 0.2

0 10 20 30 40 50
meta steps

0.85

0.90

0.95

1.00

1.05

CI
 p

re
di

ct
io

n

x = 0.6

0 10 20 30 40 50
meta steps

0.10

0.05

0.00

0.05

0.10

CI
 p

re
di

ct
io

n

x = 1.0

PICProp (NS + SGD) Exaustive Search

Figure K.1: Pedagogical example: The learning curve of PICProp with Neumann Series (NS)
and SGD on six query points. Comparisons with exhaustive search results for solving the bi-level
optimization problem for each query point are also provided.

0 10 20 30 40 50
meta steps

0.10

0.05

0.00

0.05

0.10

CI
 p

re
di

ct
io

n

x = 1.0

0 10 20 30 40 50
meta steps

1.05

1.00

0.95

0.90

0.85

x = 0.6

0 10 20 30 40 50
meta steps

0.70

0.65

0.60

0.55

0.50

x = 0.2

0 10 20 30 40 50
meta steps

0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

CI
 p

re
di

ct
io

n

x = 0.2

0 10 20 30 40 50
meta steps

0.85

0.90

0.95

1.00

1.05

x = 0.6

0 10 20 30 40 50
meta steps

0.10

0.05

0.00

0.05

0.10

x = 1.0

PICProp (CG + ADAM)
PICProp (CG + SGD)

PICProp (NS + ADAM)
PICProp (NS + SGD)

PICProp (REVERSE + ADAM)
PICProp (REVERSE + SGD)

Exaustive Search

Figure K.2: Pedagogical example: Various combinations of hyper-gradient methods with meta-
optimizers and comparisons with exhaustive search results for solving the bi-level optimization
problem for each query point.

λ 0.0 0.25 0.5 0.75 1.0
MSE 1.4E-3 2.2E-4 2.2E-4 1.7E-4 1.8E-5

Table K.1: Mean Squared Errors between PICProp CI and EffiPICProp CI. EffiPICProp CI with
λ = 1.0 is the best approximation of PICProp CI.

K.2 2-D Poisson equation

Figure K.6 includes slices along the y axis and accompanies Figure 4 (main text), which includes slices along
the x axis. Heatmaps with CIs over the entire domain are presented in Figure K.7.

21

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

u

Chi-squared
sin(x)
PICProp
EffiPICrop, = 0.0
EffiPICrop, = 0.25
EffiPICrop, = 0.5
EffiPICrop, = 0.75
EffiPICrop, = 1.0
sample
Points for EffiPICProp

0.2 0.3 0.4 0.5 0.6
x

0.4

0.6

0.8

1.0

1.2

u

Chi-squared (zoomed in)

sin(x)
PICProp
EffiPICrop, = 0.0
EffiPICrop, = 0.25
EffiPICrop, = 0.5
EffiPICrop, = 0.75
EffiPICrop, = 1.0
sample
Points for EffiPICProp

Figure K.3: Pedagogical example, χ2: Comparison among PICProp and EffiPICProp with various
λs. Notice that EffiPICProp with λ = 0 is referred to as SimPICProp in Figure 3

.

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

u

T-squared
sin(x)
EffiPICProp
SimPICProp
PICProp
sample
Points for EffiPICProp

0.2 0.3 0.4 0.5 0.6
x

0.4

0.6

0.8

1.0

1.2

u

T-squared (zoomed in)

sin(x)
EffiPICProp
SimPICProp
PICProp
sample
Points for EffiPICProp

Figure K.4: Pedagogical example, T 2: Although the results of both SimPICProp and EffiPICProp
match PICProp results on the query points, EffiPICProp generalizes better on unseen locations.

K.3 Burgers equation

Figures K.8 & K.9 provide the meta-learning curves corresponding to the CI predictions of Figure 5 (main text).

L Comparison with Bayesian PINNs

In this section, we compare PICProp with Bayesian PINNs (BPINNs) [34] for the problem of Section 5.1. For
BPINNs, the inference method for posterior estimation is Hamiltonian Monte Carlo (HMC) [4]. Although
provided here for completeness, we believe that such a comparison can also be misleading because of the many
differences between the two methods. The first difference pertains to the fact that PICProp does not consider
parameter uncertainty. Further, the assumptions for these two methods are different: BPINN requires heavy
assumptions about the data likelihood, for instance, while PICProp only requires the noise to be mean-zero.
Furthermore, PICProp produces joint CIs for the whole domain, while the BPINN intervals are marginal. Finally,
although supported by a sound Bayesian justification, BPINNs are not supported by a strict confidence guarantee
for the produced intervals, in contrast to Theorem 4.1 that supports PICProp.

We summarize and contrast the two approaches in the following: BPINNs assume a NN parameter prior, and
subsequently approximate and sample the parameter posterior to obtain samples from the solution posterior.
This is done in order to fit a solution posterior distribution and subsequently compute its statistical intervals. In
contrast, the problem of UQ is rethought ab initio in our paper. PICProp first considers either CIs given at the
boundaries or data collected at the boundaries and estimates the corresponding CIs. Subsequently, the boundary
CIs are propagated to the interior domain with mild assumptions and with the theoretical guarantee that the
obtained CIs are indeed CIs according to the definition.

From the results summarized in L.1, we observe from Figure L.1 that the PICProp CIs are more conservative
than the BPINN. From a design perspective, conservative uncertainty estimation is the preferred route for critical
and risk-sensitive applications [7, 13], although it can be more costly. In contrast, most widely used UQ methods,
such as deep ensembles [18] and Monte-Carlo dropout [28, 10], are known to be overconfident in practice [9, 7].
Finally, note that the BPINN results of Figure L.1 were obtained by using the software NeuralUQ developed in
[38].

22

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

u

Hoeffding
sin(x)
EffiPICProp
SimPICProp
PICProp
sample
Points for EffiPICProp

0.2 0.3 0.4 0.5 0.6
x

0.4

0.6

0.8

1.0

1.2

u

Hoeffding (zoomed in)

sin(x)
EffiPICProp
SimPICProp
PICProp
sample
Points for EffiPICProp

Figure K.5: Pedagogical example, Hoeffding: Although the results of both SimPICProp and
EffiPICProp match PICProp results on the query points, EffiPICProp generalizes better on unseen
locations.

Figure K.6: 2-D Poisson equation: Slices of CI predictions for y ∈ {−0.5, 0.0, 0.5, 1.0}.

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

Upper bound: ES (500 points)

1.0 0.5 0.0 0.5 1.0
x

Upper bound: EffiPICProp (50 points)

1.0 0.5 0.0 0.5 1.0
x

Lower bound: ES (500 points)

1.0 0.5 0.0 0.5 1.0
x

Lower bound: EffiPICProp (50 points)

1

2

3

4

5

Figure K.7: 2-D Poisson equation: Heatmaps of upper and lower CIs predicted by the exhaustive
search (ES) and EffiPICProp.

(a) t = 0.0 (b) t = 0.25 (c) t = 0.5 (d) t = 0.75

Figure K.8: Burgers equation: Meta-learning curves for x = 0 demonstrating the stability of our
method.

23

(a) t = 0.0 (b) t = 0.25 (c) t = 0.5 (d) t = 0.75

Figure K.9: Burgers equation: Meta-learning curves for x = 0.2 demonstrating the stability of our
method.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.0

0.5

0.0

0.5

1.0

u

Chi-squared
sin(x)
EffiPICProp
BPINNs+HMC
sample

Figure L.1: Pedagogical example: The comparison between intervals produced by EffiPICProp
and BPINNs [34]+HMC [4]. Noise on the boundary is Gaussian with known standard deviation
σ = 0.05.

24

	Introduction
	Background
	Problem Setup
	Related Work

	Confidence Intervals for Solutions of Nonlinear Partial Differential Equations
	Method
	Physics-Informed Confidence Propagation (PICProp)
	Efficient Physics-Informed Confidence Propagation (EffiPICProp)

	Computational experiments
	A Pedagogical Example
	Two-dimensional Poisson equation
	One-dimensional, time-dependent Burgers equation

	Conclusion
	Acknowledgements
	Indicative applications
	Additional details regarding standard UQ
	Additional details regarding Monte Carlo Simulation
	Confidence Interval Construction with Data
	Joint Confidence Intervals for PDE Solutions
	Toy Linear System
	Proofs
	Proof of Theorem 4.1

	Algorithms
	Bi-level Optimization
	Reverse
	Approximate Implicit Differentiation (AID)

	Details regarding implementation, hyperparameters, query points, and computational times
	Implementation and hyperparameters
	Query Points
	Computational times

	Additional Experimental Results
	Pedagogical example
	Learning Curves
	s
	SimPICProp v.s. EffiPICProp
	Validity of EffiPICProp CIs

	2-D Poisson equation
	Burgers equation

	Comparison with Bayesian PINNs

