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A Implementation details

A.1 Architectural designs

We provide additional details of the architectural designs for our rearranging network and semantic
mapper. For the rearranging network, we incorporate a single head cross-attention module, which is
surrounded by two 4-layer residual blocks on either side. In Figure S1, the cross-attention module
operates by computing an attention matrix from the query (the proxy mask) and the key (feature maps).
This process enables the value (feature maps) to be rearranged (through a weighted sum) to align
with the form of the query, thereby reflecting their strong correspondence. To reflect dissimilarity
between different pixels in a mask, we add a sinusoidal position encoding before the residual block
that precedes the module.
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Figure S1: Illustration of the cross-attention operation. The module computes an attention matrix
using the query (proxy mask) and key (feature maps), enabling the rearrangement of the value (feature
maps) according to the shape of the query.
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For the semantic mapper, we adopt the architecture of OASIS [9], which takes the input condition
and generates a 642 resolution output proxy mask, except input noise. This method ensures a high
level of incorporation of the input mask in the proxy mask. The input noise is removed because
its stochasticity slows down the training. However, when the input condition is not a semantic
segmentation mask, it is not appropriate to use a SPADE layer [7]. As a solution, we added a U-Net
structured decoder to the encoder which has same structure with discriminator of the StyleGAN2 [4],
allowing the shape of the input mask to be preserved all the way to the output proxy mask.

A.2 Training details

In our training setup, we follow a similar approach to that of StyleGAN2[4], where the learning rate
is set to 0.002 for both the generator and discriminator. Additionally, the weight for R1 regularization
is set to 10.

We prepare the proxy masks from the centroids obbtained by clustering feature maps of 256 sample
images. The size of the feature maps is 642. To achieve this, we employ K-means clustering [2].
Given the need for balancing between high correspondence and image quality, we empirically
set the weights of our loss terms. Specifically, we set λmask to 1.0 and λself to 10.0. To prevent
shortcuts of self-reconstruction loss, we apply a random horizontal flip augmentation. Furthermore,
we alternate training with a proxy mask generated from the same noise as the feature maps used for
self-reconstruction and a proxy mask generated from random noise in each iteration.

The training for our rearrangement network was conducted using the CelebAMask-HQ [5], LSUN
Church, and LSUN Bedroom datasets [13], each at a resolution of 256. We adopted a strategy where
Lself and Lmask were computed for every iteration during the initial 100k iterations, whereas Ladv
was computed once every five iterations. Subsequently, all three loss components were computed for
each iteration over the next 40k iterations. When training with the 1024 resolution FFHQ [3] and
512 resolution AFHQ[1] datasets, we computed Lself and Lmask at each iteration for the first 150k
iterations, with Ladv being evaluated once every 5 iterations. Subsequently, all three loss terms were
computed for each iteration over the following 65k iterations.

For the training of the semantic mapper, we initially trained for the first 100k iterations using only
Lrecon with λself to 10.0. Then, for the subsequent 10k iterations, Ladv was added to calibrate the
generated image within its domain, during which we adjusted λrecon to 100.0. It should be noted that
all λadv values used in the mapper and rearranging network were consistently set to 1.0.

The entire training completes within a day for data at a resolution of 256 using an NVIDIA RTX
3090 GPU. For higher resolution configuration (10242), the training completes within two days. This
efficient training process highlights the feasibility of our approach for practical applications.

B Ablation study

B.1 Proposed loss function

To demonstrate the influence of the additional losses introduced in our method, we provide both quan-
titative and qualitative ablations in Figure S2 and S3, respectively. We conducted these experiments
on the CelebA dataset, comparing three scenarios: using only Ladv, adding Lself, and using all three
losses, including Lmask. The Fréchet Inception Distance (FID) is measured at each iteration, and the
degree of attribute preservation is demonstrated through a curation of the images produced at the final
convergence point. When evaluating the FID , we generated a dataset consisting of 28,000 images by
employing two latent codes. One latent code was used for generating proxy masks, while the other
code was utilized for defining the desired style. These generated images were then compared with a
dataset of 28,000 training images for FID calculation.

As evident from the plot in Figure S2, the presence or absence of Lself significantly affects the speed of
convergence. This is because the self mask serves as a guide for the rearranging network, particularly
in the early stages of training. However, if only Lself is incorporated, the network tends to disregard
the proxy mask, favoring the restoration of its original state, as illustrated in the corresponding figure.

Thus, the inclusion of Lmask serves to counterbalance this trend, ensuring that the proxy mask is not
ignored and is effectively utilized in the image generation process. These results demonstrate the
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Figure S2: Quantitative studies to demonstrate the impact of additional losses introduced in our
method Lself leads to a rapid decrease in FID, thus demonstrating its contribution to achieving fast
convergence.
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Figure S3: Qualitative studies to demonstrate the impact of additional losses introduced in our
method (a) Lloss contributes to producing realistic results. (b)Lself increases the preservation rate of
style attributes but tends to ignore the shape of source image. (c)Lmask effectively reflects the shape
of the source image.

critical role and effectiveness of our proposed loss components in achieving high-quality, attribute-
preserving image generation.

B.2 Number of clusters

The number of clusters significantly impacts the shape of the proxy mask and, consequently, the
generated image. Therefore, we carry out a qualitative ablation study on how the number of clusters
influences the generated image, the results of which are presented in Figure S4.

For this evaluation, we generate images by applying rearrangement using the feature map and the
proxy mask obtained from random noise. Our results, presented in Figure S4, show that as the number
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of clusters increases, detailed elements like glasses are more accurately reflected in the proxy mask.
This improvement can be attributed to the increased capacity to capture finer image details as the
number of classes in the proxy mask escalates.

However, when the number of clusters is low, we noticed that the influence of the position embedding
becomes dominant over the class embedding, resulting in the proxy mask being overlooked and the
image not transforming as intended.

Nonetheless, caution is warranted when overly increasing the number of clusters. Beyond a certain
point, the proxy mask begins to diverge from the semantics understood by humans, which not only
confuses the semantic mapper but also hampers generating a suitable proxy mask from the input
mask. Therefore, for the convenience of our experiments, we decided to fix the number of clusters at
25.
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Figure S4: Qualitative studies to demonstrate the impact of number of clusters As the number of
clusters increases, more detailed semantic parts, such as glasses, can be separated. K denotes number
of clusters.

C Additional quantitative comparison

C.1 Additional diversity metric

Additionally, we assess result diversity using the LPIPS metric. LPIPS diversity of our method
surpasses INADE and OASIS, but there is no clear winner when combining precision and recall.
Table S1, summarizes these metrics. To measure LPIPS, we follow INADE[10], evaluating overall
diversity by generating 10 image groups with random noise and calculating diversity scores between
two groups. We compute 10 scores, averaging them to reduce fluctuation from random sampling.

C.2 Training time comparison

To demonstrate the efficiency of our model, we evaluated our model to OASIS [9] using the FID over
time. As depicted in Figure S5, training Rearranger and Semantic Mapper consecutively shows a
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faster convergence speed than our competitor. Furthermore, if we have trained Rearranger, our model
only requires the retraining of the Semantic Mapper when there is a change in the target semantic
segmentation mask classes.

LPIPS Precision Recall

Ours 0.45 0.76 0.22
INADE 0.36 0.86 0.19
OASIS 0.30 0.69 0.36

Table S1: Additional quantitative comparison with INADE and OASIS.

Figure S5: FID of generated images when time passes. The result shows that our work converges
faster than OASIS.

D Failure cases

The proxy mask in our method is constructed from the clustering of intermediate feature maps of
the pretrained Generator, especially size of 64. Consequently, the variance in resolution between the
full image and the mask often results in an imperfect fit of the image to the given mask. Figure S6
illustrates instances where our method encounters limitations due to this resolution difference. In the
highlighted red boxes within the figure, it is evident that intricate features, such as the length of a
mouth or individual stray hairs, are not faithfully represented in the output image. This provides an
opportunity for future work focused on enhancing pixel-level manipulability.

E Conditional image synthesis using different types of conditions

In Figure S7, S8, S9, we present randomly sampled images generated by our model with different
types of input conditions, utilizing Photo-sketch [6], HED [12], and depth [8] with various datasets
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Figure S6: Failure cases of our method. Boxed areas show where the generated images do not match
the corresponding masks.

such as FFHQ, AFHQ, LSUN Bedroom, and LSUN Church. We trained the mapper using conditions
generated by passing training data through the corresponding pre-trained networks.

To generate training pairs for the mapper without relying on labor-intensive human annotations,
we employed the methodology proposed by [11] for generating segmentation maps and scribbles.
Additionally, for the sketch, HED, Photo-sketch, and depth scenarios, we leveraged simple individual
pretrained networks or tools to acquire pairs of generated images and their respective conditions.
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(a) Ours reflecting the sketch of cat
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(b) Ours reflecting the sketch of church

Figure S7: Ours generated using the sketch on various dataset (a) Ours accurately captures the
shape obtained from the target image. The cat’s facial angle in ours is appropriately aligned with
the target shape. (b) Ours is capable of creating a church position similar to the church in the target
image based solely on the sketch results. In addition, the style image’s church, sky, and tree colors
are applied equally in ours.

7



D
ep

th
 M

ap
O

ur
s

Figure S8: Ours generated using the depth map on LSUN Bedroom Ours effectively reflects the
positions and shapes of objects such as beds or windows that can be observed in the depth map.
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Figure S9: Ours generated using the hed mask on FFHQ Ours is generated to align with the facial
shape determined by HED. It accurately captures aspects such as hairstyle, facial angle, and eye size
in accordance with the shape outlined by HED.
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Figure S10: Ours using the proxy mask obtained from random noise on LSUN Bedroom dataset
By generating images using the proxy mask without considering the perception gap, it is possible to
create images of a higher quality.

F Semantic image synthesis with proxy mask

Figure S10, S11, S12, showcase the results of image generation solely using the proxy mask. Specifi-
cally, we generate images by conducting rearrangement the feature map with the proxy mask, both of
which are derived from random noise. The output images illustrate the capability of our method to
reflect both the attribute of the source and the shape of the target mask.
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Figure S11: Ours using the proxy mask obtained from random noise on LSUN Church dataset
By generating images using the proxy mask without considering the perception gap, it is possible to
create images of a higher quality.
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Figure S12: Ours using the proxy mask obtained from random noise on FFHQ dataset By
generating images using the proxy mask without considering the perception gap, it is possible to
create images of a higher quality.
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(a) Ours reflecting free-form mask on LSUN Church
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(b) Ours reflecting free-form mask on FFHQ

Figure S13: Free-form image manipulation When given free-form mask images, our model flexibly
synthesizes images. Even masks with unusual shape, such as a rectangular mask of LSUN Church or
a three-eyed mask for FFHQ, can generate proper images.

G More free-form image manipulation

In Figure S13. We show the results using free-form image manipulation on LSUN Church and FFHQ.
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