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Abstract

A popular heuristic method for improving clustering results is to apply dimension-1

ality reduction before running clustering algorithms. It has been observed that2

spectral-based dimensionality reduction tools, such as PCA or SVD, improve the3

performance of clustering algorithms in many applications. This phenomenon4

indicates that spectral method not only serves as a dimensionality reduction tool,5

but also contributes to the clustering procedure in some sense. It is an interesting6

question to understand the behavior of spectral steps in clustering problems.7

As an initial step (but not the final step) in this direction, this paper studies the8

power of vanilla-SVD algorithm in the stochastic block model (SBM). We show9

that, in the symmetric setting, vanilla-SVD algorithm recovers all clusters correctly.10

This result answers an open question posed by Van Vu (Combinatorics Probability11

and Computing, 2018) in the symmetric setting.12

1 Introduction13

Clustering is a fundamental task in machine learning, with applications in many fields, such as14

biology, data mining, and statistical physics. Given a set of objects, the goal is to partition them into15

clusters according to their similarities. Objects and known relations can be represented in various16

ways. In most cases, objects are represented as vectors in Rd, forming a data set D ⊂ Rd; each17

coordinate is called a feature, whose value is directly derived from raw data.18

In many applications, the number of features could be very large. It has been observed that the19

performance of classical clustering algorithms such as K-means may be worse on high-dimensional20

datasets. Some people call this phenomenon curse of dimensionality in machine learning [SEK04]. A21

popular heuristic method to address this issue is to apply dimensionality reduction before clustering.22

Among tools for dimensionality reduction, it is noted in practice that spectral methods such as23

principal component analysis (PCA) and singular value decomposition (SVD) significantly improve24

clustering results, e.g., [SEK04, KAH19].25

A natural question arises: why do spectral steps help to cluster high-dimensional datasets? Some prac-26

titioners believe one reason is that the spectral method filters some noise from the high-dimensional27

data [ARS+04, SEK04, ZLWZ09, KAH19]. Simultaneously, many theory works also (partially)28

support this explanation [AFWZ20, EBW18, LZK22, MZ22a]. With this explanation in mind, people29

analyzed the behavior of spectral-based algorithms with noise perturbation. Based on these analyses,30

many algorithms were proposed to recover clusters in probabilistic generative models. Among them,31

a well-studied model is the signal-plus-noise model.32

Signal-plus-noise model In this model, we assume that each observed sample v̂i has the form33

v̂i = vi + ei, where vi is a ground-truth vector and ei is a random noise vector. For any two vectors34

v̂i, v̂j , if they are from the same cluster, their corresponding ground-truth vectors are identical, i.e.,35

vi = vj . Signal-plus-noise model is very general; it has plentiful variants with different types of36
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ground-truth vectors and noise distribution. In this paper, we focus on an important instance known as37

the stochastic block model (SBM). Though SBM is not as broad as general signal-plus-noise model, it38

usually serves as a benchmark for clustering and provides preliminary intuition about random graphs.39

Stochastic block model The SBM is first introduced by [HLL83] and is widely used as a theoretical40

benchmark for graph clustering algorithms. In the paper, we focus on the symmetric version of41

stochastic block model (SSBM), described as follows. Given a set of n vertices V , we uniformly42

partition them into k disjoint sets (clusters), denoted by V1, . . . , Vk. Based on this partition, a random43

graph Ĝ = (V,E) is sampled in the following way: for all pairs of vertices u, v ∈ V , an edge (u, v)44

is added independently with probability p, if u, v ∈ Vℓ for some ℓ; otherwise, an edge (u, v) is added45

independently with probability q.46

We usually assume that p > q. The task is to recover the hidden partition V1, . . . , Vk from the random47

graph Ĝ. We denote this model as SSBM(V, n, k, p, q).48

SBM as a signal-plus-noise model Though SBM was originally designed for graph clustering,
we view it as a special form of vector clustering. Namely, given the adjacency matrix of a graph
Ĝ ∈ {0, 1}V×V , the columns of Ĝ form a set of n = |V | vectors. To see that SBM fits into the
signal-plus-noise model, note that in SBM, the adjacency matrix Ĝ ∈ {0, 1}V×V can be view as a
fixed matrix G plus a random noise, i.e., Ĝ = G + E, where G def

= E
[
Ĝ
]

is the mean and E is a
zero-mean random matrix. More precisely, in the case of SSBM,

Guv =

{
p, if u, v ∈ Vℓ for some ℓ;
q, otherwise;

and Euv =

{
1−Guv, with probability Guv;

−Guv, with probability 1−Guv.

1.1 Motivations: Analyzing Vanilla Spectral Algorithms49

Since the seminal work by McSherry [McS01], many spectral-based algorithms have been proposed50

and studied in SBM [GM05, Vu18, LR15, EBW18, Col19, AFWZ20, MZ22b] and even more general51

signal-plus-noise models [AFWZ20, EBW18, CTP19, LZK22, MZ22a]. These algorithms are largely52

based on the spectral analysis of random matrices. The purpose of designing and analyzing such53

algorithms is twofold.54

Understand the limitation of spectral-based algorithms. SBM is specified by parameters, such55

as n, k, p, q in the symmetric case. Clustering is usually getting harder for larger k and smaller56

gap (p − q). Many existing works aim to understand in which regimes of these parameters it is57

possible to recover the hidden partition. In this regard, the state-of-the-art bound is given by Vu58

[Vu18]. Concretely, [Vu18] proved that, in the symmetric setting, there is an algorithm that recovers59

all clusters if n ≥ C · k
(

σ
√
k+

√
logn

p−q

)2

, where σ2 def
= max {p(1− p), q(1− q)} and C is a constant.60

Understand spectral-based algorithms in practice. Besides analyzing spectral algorithms in61

theory, the other purpose (the primary purpose of this paper) is to explain the usefulness of such62

algorithms in practice. Indeed, as we mentioned before, many spectral-based algorithms, as observed63

in practice, can filter the noise and address the curse of dimensionality [ARS+04, SEK04, ZLWZ09,64

KAH19]. Some representative algorithms are PCA and SVD. Furthermore, it has been observed that65

spectral algorithms used in practice, such as PCA or SVD, are usually very simple: they just project66

data points into some lower-dimension subspace, and no extra steps are conducted.67

In stark contrast, most of the aforementioned theoretical algorithms have pre-processing or post-68

processing steps. For example, the idea in [LR15] is that one first applies SVD, and then runs a69

variant of K-means to clean up the clustering; the main algorithm in [Vu18] partitions the graph70

into several parts and uses these parts in different ways. As noted in [Vu18], these extra steps are71

only for the purpose of theoretical analysis. The author believed, from the perspective of algorithm72

design, these extra steps appear redundant. Later on, [AFWZ20] coined the phrase vanilla spectral73

algorithms to describe spectral algorithms that do not include any additional steps. Both [Vu18] and74

[AFWZ20] conjectured that vanilla spectral algorithms are themselves good clustering algorithms. In75

practice, this is a widely-used heuristic; however, in theory, the analysis of vanilla spectral algorithms76
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is not satisfactory due to the lack of techniques for analysis. We refer to [MZ22b] for a detailed77

discussion on barriers of the current analysis.78

Why do we study vanilla algorithms? Our main focus is particularly on vanilla spectral algorithms79

for two reasons:80

1. Vanilla spectral algorithms are the most popular in practice—no extra steps are widely used.81

Plus, their performance seems good enough. The lack of theoretical analysis is mostly due82

to technical obstacles.83

2. A vanilla spectral algorithm is often simple and is not specifically designed for theoretical84

models such as SBM. In contrast, some complicated algorithms use extra steps which are85

designed for SBM. These steps made the analysis of SBM go through (as commented by86

[Vu18]). Meanwhile, these extra steps exploit specific structures and may cause ‘overfittings’87

on SBM, which makes these algorithms less powerful in practice.88

The main purpose of this paper is to theoretically understand the power of practically successful89

vanilla spectral algorithms. To this end, we study SBM as a preliminary demonstration. We do not90

aim to design algorithms for SBM that outperforms existing algorithms.91

1.2 Our Results92

The contribution of this paper is twofold. On the one hand, we show that vanilla algorithms (alg. 1) is93

indeed a clustering algorithm in SSBM for a wide range of parameters, breaking previous barrier on94

analyzing on only constant number of clusters. On the other hand, we provide a novel analysis on95

matrix perturbation with random noise. We discuss more details on this part in Section 1.4.96

Recall that parameters of SBM is specified by SSBM(V, n, k, p, q), where n = |V |. Let σ2 =97

max {p(1− p), q(1− q)}. Our main result is stated below.98

Theorem 1.1. There exists a constant C > 0. In the model SSBM(V, n, k, p, q), if σ2 ≥ C log n/n99

and n ≥ C · k
(√

kp·log6 n+
√
logn

p−q

)2

, then alg. 1 recovers all clusters with probability 1−O(n−1).100

Here we describe the vanilla-SVD algorithm in more detail. Algorithms in [McS01, Vu18, Col19]101

share a common idea: they both use SVD-based methods to find a clear-cut vector representation102

of vertices. That is, every node v ∈ V is associated with a vector ρ(v), and we say a vector103

representation ρ is clear-cut if the following holds for some threshold ∆: if u, v ∈ Vℓ for some ℓ,104

then ∥ρ(u)− ρ(v)∥ ≤ ∆/4; otherwise, ∥ρ(u)− ρ(v)∥ ≥ ∆.105

Once a clear-cut representation is found, the clustering task is easy. If the parameters n, k, p, q106

are all known, we can calculate ∆ and simply decide whether two vertices are in the same cluster107

based on their distance; in the case where ∆ is unknown, we need one more step. 1 Following108

[Vu18], we denote by ClusterByDistance an algorithm that recovers the partition from a clear-cut109

representation. One natural representation is obtained by SVD as follows. Let Ĝ ∈ {0, 1}V×V be the110

adjacent matrix of the input graph, and let PĜk
be the orthogonal projection matrix onto the space111

spanned by the first k eigenvectors of Ĝ. Then set ρ(u) def
= PĜk

Ĝu, where Ĝu is the column index112

by u ∈ V . This yields alg. 1, the vanilla-SVD algorithm.

Algorithm 1: Vanilla-SVD algorithm for graph clustering

1 Input: adjacent matrix Ĝ ∈ {0, 1}V×V

2 Output: a partition of V

1. Compute ρ(u) def
= PĜk

Ĝu for each u ∈ V .

2. Run ClusterByDistance with representation ρ.

113

1For example, one possible implementation is as follows: create a minimal spanning tree according to the
distances under ρ, then remove the heaviest (k − 1) edges, resulting in k connected components, and output
these components as clusters.
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1.3 Comparison with Existing Analysis for Vanilla Spectral Algorithms in SBM114

To the best of our knowledge, there are very few works on the analysis of vanilla spectral algorithms115

[AFWZ20, EBW18, PPV+19]. All of them only apply to the case of k = O(1). In this work, we116

obtain the first analysis for general parameters n, k, p, q, in the symmetric SBM setting.117

Davis-Kahan approaches. To study spectral algorithms in signal-plus-noise models, a key step is118

to understand how random noise perturbs the eigenvectors of a matrix. A commonly-used technical119

ingredient is the Davis-Kahan sinΘ theorem (or its variant). However, this type of approach faces120

two challenges in SBM.121

• Davis-Kahan leads to worst-case perturbation bounds. For perturbations caused by ran-122

dom noises, such as signal-plus-noise models, Davis-Kahan sinΘ theorem is sometimes123

suboptimal.124

• These sinΘ theorems only lead to bound on 2-norm. However, in SBM analysis, we may125

need (2 → ∞)-norm bounds. See [CTP19] for more discussions.126

Previous works such as [AFWZ20, EBW18, PPV+19] mainly followed this approach. They proposed127

some novel ideas to (partially) address these two challenges, but only apply to the case of k =128

O(1). In contrast, our approach, following the power-iteration-based analysis proposed by [MZ22b],129

completely avoids Davis-Kahan sinΘ theorem and can handle the case of k = ω(1).130

Comparison with [MZ22b]. Inspired by power iteration methods, Mukherjee and Zhang [MZ22b]131

proposed a new approach to analyze the perturbation of random matrices. The idea is to approximate132

the eigenvectors of a matrix by its power. In fact, this method has been widely used in practice as a133

fast algorithm to approximate eigenvectors. However, there are two limitations of [MZ22b].134

• Their analysis requires a nice structure of the mean matrix, i.e., all large eigenvalues are135

more or less the same.136

• Their algorithm is not vanilla as it has a ‘centering step’. Moreover, their algorithm requires137

the knowledge of parameters p, q, k, and particularly, the centering step alone requires the138

knowledge of q. In comparison, we only need to know k; further, we can also guess k (by139

checking the number of large eigenvalues) and then make alg. 1 fully parameter-free.140

To overcome these limitations, we introduce a novel ‘polynomial approximation + entrywise analysis’141

method, which makes this analysis more robust and requires less structure. More details will be142

discussed in Section 1.4.143

1.4 Proof Outline and Technical Contributions144

Let su denote the size of the cluster to which u belongs. Assume for now that all Vi’s are of size145

roughly n/k. Indeed, this happens with high probability inasmuch as the partition is uniformly146

sampled.147

Our goal is to show that there exists some threshold ∆ > 0 such that for every u, v ∈ V : if148

u, v ∈ Vℓ for some ℓ, then
∥∥∥PĜk

Ĝu − PĜk
Ĝv

∥∥∥ ≤ ∆/4; otherwise,
∥∥∥PĜk

Ĝu − PĜk
Ĝv

∥∥∥ ≥ ∆.149

Write ε(u) def
=

∥∥∥PĜk
Ĝu −Gu

∥∥∥. Then
∣∣∣∥∥∥PĜk

Ĝu − PĜk
Ĝv

∥∥∥− ∥Gv −Gu∥
∣∣∣ ≤ ε(u) + ε(v). Note150

that ∥Gv −Gu∥ = 0 if u, v ∈ Vℓ for some ℓ, otherwise, ∥Gv −Gu∥ = (p− q) ·
√
su + sv > (p−151

q)
√
n/k. Therefore, setting ∆ = 0.8(p− q)

√
n/k, it suffices to show that ε(u) ≤ 0.1(p− q)

√
n/k152

for every u ∈ V .153

We decompose ε(u) into two terms:154

ε(u) ≤
∥∥∥PĜk

(Ĝu −Gu)
∥∥∥+

∥∥∥(PĜk
− I)Gu

∥∥∥ =
∥∥∥PĜk

Eu

∥∥∥︸ ︷︷ ︸
"noise term"

+
∥∥∥(PĜk

− I)Gu

∥∥∥︸ ︷︷ ︸
“deviation term”

. (1)

We shall bound the two terms from above separately. Intuitively, the noise term is small means PĜk
155

reduces the noise, while the deviation term is small means PĜk
preserves the data.156
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Upper bound of the noise term It is known that PĜk
(resp., PGk

) can be write as a polynomial of157

Ĝ (resp.,G). By Weyl’s inequality, the eigenvalues of Ĝ are not too far from those ofG. Therefore, in158

our case, one can find a simple polynomial φ which only depends on G, such that φ(Ĝ) (resp., φ(G))159

is a good approximation of PĜk
(resp., PGk

); this is formalized in Lemma 3.2. Then we have the160

following decomposition:
∥∥∥PĜk

Eu

∥∥∥ ≤ 2
∥∥∥φ(Ĝ)Eu

∥∥∥ ≤ 2 ∥φ(G)Eu∥+ 2
∥∥∥(φ(Ĝ)− φ(G)

)
Eu

∥∥∥ ,161

where the first inequality follows from Lemma 3.2, which roughly says φ(Ĝ) is a good approximation162

of PĜk
.163

1. The first term, ∥φ(G)Eu∥, is small with high probability. To see this, we use Lemma 3.2164

again: ∥φ(G)Eu∥ ≤ 3
2 ∥PGk

Eu∥. According to a known result (c.f. Proposition 2.4),165

∥PGk
Eu∥ is small with high probability, largely because the projection PGk

and the vector166

Eu are independent.167

2. The second term is the tricky part, and we draw on an entrywise analysis. Namely, we study168

every entry of (φ(Ĝ)− φ(G))Eu, using the new inequality from [MZ22b]. See Lemma 3.3169

for more details.170

The upper bound for the noise term is encapsulated in Lemma 3.4.171

Upper bound of the deviation term The following argument is reminiscent of [Vu18]. Say u ∈ Vℓ.172

Note that Gχℓ =
√
su ·Gu where χℓ =

1√
su

· 1Vℓ
is the normalized characteristic vector of Vℓ (i.e.,173

1Vℓ
(v) = 1 ⇐⇒ v ∈ Vℓ). It follows that174 ∥∥∥(PĜk

− I)G
∥∥∥
2
≤

∥∥∥(PĜk
− I)Ĝ

∥∥∥
2
+
∥∥∥(PĜk

− I)E
∥∥∥
2
≤

∥∥∥G− Ĝ
∥∥∥
2
+
∥∥∥(PĜk

− I)E
∥∥∥
2
≤ 2 ∥E∥2 ,

where the second inequality holds because PĜk
Ĝ is the best k-rank approximation of Ĝ and175

rank(G) = k, and in the third inequality, we use
∥∥∥(PĜk

− I)
∥∥∥
2
≤ 1, as PĜk

is a projection176

matrix. Therefore,177 ∥∥∥(PĜk
− I)Gu

∥∥∥ =
1

√
su

∥∥∥(PĜk
− I)Gχu

∥∥∥ ≤ 1
√
su

∥∥∥(PĜk
− I)G

∥∥∥
2
≤

2 ∥E∥2√
su

. (2)

A typical result in random matrix theory (c.f. Proposition 2.3) states that with high probability,178

∥E∥2 = O(
√
n). Combining Equation (2) and su ≈ n/k, we get

∥∥∥(PĜk
− I)Gu

∥∥∥ = O(
√
k). And179

by our assumption on n, we have
√
k = o((p− q)n/k) = o(∆).180

Technical contribution. The major novelty of our analysis is using the polynomial φ. [MZ22b]181

used a centering step to make the mean matrix nicely structured, while in our analysis, we used182

polynomial approximation to address this issue. Another difference is that in [MZ22b], the centering183

step appears explicitly in the algorithm. By contrast, our polynomial approximation only appears in184

the analysis — the algorithm is vanilla.185

As a byproduct, we developed new techniques for studying eigenspace perturbation, a typical topic186

in random matrix theory. Our high-level idea is “polynomial approximation + entrywise analysis”.187

That is, we reduce the analysis of eigenspace perturbation to the analysis of a simple polynomial (of188

matrix) under perturbation. We have more tools to deal with the latter.189

1.5 Discussion and Future Directions190

In this paper, we studied the behavior of vanilla-SVD in SSBM, a benchmark signal-plus-noise model191

widely studied in random matrix theory. We showed that vanilla spectral algorithms indeed filter192

noise in SSBM. In fact, our analysis technique, ‘polynomial approximation + entrywise analysis’, is193

not very limited to SSBM. We believe our analysis may provide more applications for some more194

realistic models such as the factor model — a model which has been widely used in economics and195

model portfolio theory.196

In the long term, it would be very interesting to understand the behavior of vanilla spectral algorithms197

on real data: 1) Why does it succeed in some applications? 2) How could we fix it if it has failed in198
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other cases? A deeper understanding of vanilla spectral algorithms will provide guidelines for using199

them in many machine learning tasks.200

2 Preliminaries201

Notations Let 1n denote the n-dimensional vector whose entries are all 1’s, and let Jn be the n×n202

matrix whose entries are all 1’s. Let su denote the size of the cluster to which u belongs. For a matrix203

A, A[i] denotes the row of A indexed by i, and Ai denotes the column indexed by i; λi(A) is the i-th204

largest eigenvalue of A; let PAk
denote the orthogonal projection matrix onto the space spanned by205

the first k eigenvectors of A. For a vector x ∈ Rn, ∥x∥ def
=

√
x21 + · · ·+ x2n denotes the Euclidean206

norm.207

Definition 2.1 (Matrix operator norms). Let A ∈ Rn×n. Define ∥A∥2
def
= max∥x∥=1 ∥Ax∥ and208

∥A∥2→∞
def
= maxx:∥x∥=1 ∥Ax∥∞.209

Proposition 2.1 (e.g., [CTP19]). For all matrices A,B ∈ Rn×n, it holds that (1) ∥A∥2→∞ =210

maxi∈[n] ∥A[i]∥; (2) ∥AB∥2→∞ ≤ ∥A∥2→∞ ∥B∥2.211

Proposition 2.2 (Weyl’s inequality). For all A,E ∈ Rn×n, we have |λi(A)− λi(A+ E)| ≤ ∥E∥2.212

Proposition 2.3 (Norm of a random matrix [Vu18]). There is a constant C0 > 0. Let E be213

a symmetric matrix whose upper diagonal entries eij are independent random variables where214

eij = 1 − pij or −pij with probabilities pij and 1 − pij respectively, where pij ∈ [0, 1]. Let215

σ2 := maxij{pij(1− pij)}. If σ2 ≥ C0 log n/n, then Pr[∥E∥2 ≥ C0σn
1/2] ≤ n−3.216

Proposition 2.4 (Projection of a random vector, lemma 2.1 in [Vu18]). There exists a constant C1217

such that the following holds. Let X = (ξ1, . . . , ξn) be a random vector in Rn whose coordinates ξi218

are independent random variables with mean 0 and variance at most σ2 ⩽ 1. Assume furthermore219

that the ξi are bounded by 1 in absolute value. Let H be a subspace of dimension d and let ΠHξ be220

the length of the orthogonal projection of ξ onto H . Then Pr
[
ΠHX ≥ σ

√
d+ C1

√
log n

]
≤ n−3.221

Proposition 2.5. For a ∈ [0, 2] and r ∈ N, if |a− 1| ≤ δ < 1
2r , then |ar − 1| ≤ 2rδ.222

3 Analysis of Vanilla SVD Algorithm223

Write si
def
= |Vi|. We say the partition V1, . . . , Vk is balanced if

(
1− 1

16 logn

)
n
k ≤ si ≤224 (

1 + 1
16 logn

)
n
k ,∀i ∈ [k]. By Chernoff bound, the partition V1, . . . , Vk is balanced with proba-225

bility at least 1 − n−1; hence, we assume that the partition is balanced in the following argument.226

Since σ2 ≥ C log n/n, the event ∥E∥ = O(
√
n) holds with high probability (see Proposition 2.3).227

Recall the decomposition into deviation term and noise term in Equation (1). We first state our228

upper bound of the deviation term, which readily follows from the argument in Section 1.4, and the229

complete proof is in Appendix B.230

Lemma 3.1 (Upper bound of deviation term). Let C0 be the constant in Proposition 2.3. If the231

partition is balanced and n ≥ 104 · C2
0

k2σ2

(p−q)2 , then with probability at least 1 − n3 we have232 ∥∥∥(PĜk
− I)Gu

∥∥∥ ≤ 0.04(p− q)
√
n/k,∀u ∈ V.233

Section 3.1 and Section 3.2 lead to an upper bound of the noise term, and Section 3.3 is the proof of234

main theorem.235

3.1 An Approximation of PGk
and PĜk

236

In order to give some intuition on the choice of φ, we first analyze the spectrum of G, and the result237

is summed up in Theorem 3.1.238
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The eigenvalues ofG Note thatG = H+q1n1
⊤
n , whereH =


(p−q)Js1

0 0 0

0 (p−q)Js2 0 0

0 0
. . . 0

0 0 0 (p−q)Jsk

.239

Without loss of generality, assume that s1 ≥ s2 ≥ · · · ≥ sk. It is easy to see that the eigenvalues of240

H are (p− q)s1, . . . , (p− q)sk, 0. Viewing G as a rank-one perturbation of H , we have the following241

theorem that characterizes eigenvalues of G. Its proof, in Appendix C, readily follows from a theorem242

in [BNS79], which studies eigenvalues under rank-one perturbation.243

Theorem 3.1. Write si
def
= |Vi| and assume that s1 ≥ s2 ≥ · · · ≥ sk. Define δi

def
= λi(G)− (p−q)si,244

then (1) δi ≥ 0 and
∑k

i=1 δi = nq; (2) λ1(G) ≥ nq+(p−q)nk , and hence
∑k

i=2 δi ≤ (p−q)(s1−n
k ).245

The choice of the polynomial φ Let µ def
= (p− q)nk , and let ψ(t) be the quadratic polynomial such246

that ψ(λ1(G)) = ψ(µ) = 1, ψ(0) = 0, i.e., ψ(t) def
= − 1

λ1(G)µ (t− λ1(G))(t− µ) + 1
def
= At2 +Bt,247

where A = − 1
λ1(G)µ , B = 1

λ1(G) +
1
µ . Finally, let φ(t) def

= (ψ(t))r where r def
= log n.248

Here we give some intuition for the choice of φ. Let Ĝ =
∑n

i=1 λ̂iviv
⊤
i be the spectral decomposition249

of Ĝ. Then φ(Ĝ) =
∑n

i=1 φ(λ̂i)viv
⊤
i , PĜk

=
∑k

i=1 viv
⊤. The spectral decomposition of φ(Ĝ)−250

PĜk
is φ(Ĝ)− PĜk

=
∑k

i=1(φ(λ̂i)− 1)viv
⊤ +

∑n
i=k+1 φ(λi)viv

⊤. Hence,251 ∥∥∥φ(Ĝ)− PĜk

∥∥∥
2
= max{|φ(λ̂1)− 1|, . . . , |φ(λ̂k)− 1|, |φ(λ̂k+1)|, . . . , |φ(λ̂n)|}. (3)

Recall that λ̂i − λi(G) is bounded by Weyl’s inequality. Plus, when the partition is balanced,252

Theorem 3.1 shows that the eigenvalues ofG is nicely distributed: except for λ1(G), other eigenvalues253

are all close to µ. Hence, our choice of φ makes
∥∥∥φ(Ĝ)− PĜk

∥∥∥
2

small, and thus φ(Ĝ) is a good254

approximation of PĜk
. Formally, we have the following lemma.255

Lemma 3.2 (Polynomial approximation). Assume that the partition is balanced and n ≥ 104 · C2
0 ·256

k2·p·logn
(p−q)2 , where C0 is the constant in Proposition 2.3. Then with probability at least 1 − n−3, it257

holds that for all x ∈ Rn, 1
2

∥∥∥PĜk
x
∥∥∥ ≤

∥∥∥φ(Ĝ)x∥∥∥ ≤ 3
2

∥∥∥PĜk
x
∥∥∥+ ∥x∥ /nlog logn, and 1

2 ∥PGk
x∥ ≤258

∥φ(G)x∥ ≤ 3
2 ∥PGk

x∥ .259

Proof. Let G =
∑k

i=1 λiuiu
⊤
i (resp., Ĝ =

∑n
i=1 λ̂iviv

⊤
i ) be the spectral decomposition of G (resp.,260

Ĝ). We shall use the following claim.261

Claim 3.1. The following holds with probability 1− n−3 (over the choice of E): for every i ∈ [k],262 ∣∣∣φ(λ̂i)− 1
∣∣∣ < 1

2 , |φ(λi)− 1| < 1
2 ; and for every i = k + 1, . . . , n,

∣∣∣φ(λ̂i)∣∣∣ < n− log logn.263

Fix x ∈ Rn. On the one hand, 1
2 ≤ φ(λ̂i) ≤ 3

2 ,∀i ∈ [k], and hence∥∥∥φ(Ĝ)x∥∥∥2 =

n∑
i=1

φ(λ̂i)
2⟨x, vi⟩2 ≥

k∑
i=1

φ(λ̂i)
2⟨x, vi⟩2 ≥

k∑
i=1

1

4
⟨x, vi⟩2 =

1

4

∥∥∥PĜk
x
∥∥∥2 ,

which means
∥∥∥φ(Ĝ)x∥∥∥ ≥ 1

2

∥∥∥PĜk
x
∥∥∥. On the other hand,

∥∥∥φ(Ĝ)x∥∥∥2 =

n∑
i=1

φ(λ̂i)
2⟨x, vi⟩2 ≤

k∑
i=1

(
3

2

)2

⟨x, vi⟩2+
n∑

i=k+1

⟨x, vi⟩2

n2 log logn
≤ 9

4

∥∥∥PĜk
x
∥∥∥2+ ∥x∥2

n2 log logn
.

Since
√
a+ b ≤

√
a +

√
b, we have

∥∥∥φ(Ĝ)x∥∥∥ ≤ 3
2

∥∥∥PĜk
x
∥∥∥ + ∥x∥

nlog log n . This establishes the first264

part.265

Note that ∥φ(G)x∥ =
√∑k

i=1 φ(λi)
2⟨x, ui⟩2 and we also have 1

2 ≤ φ(λi) ≤ 3
2 ,∀i ∈ [k], and thus266

similar argument goes for G. This finishes the proof of Lemma 3.2.267
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It remains to prove Claim 3.1. The claim readily follows from the choice of φ and the fact that λi, λ̂i268

are close. A complete proof can be found in Appendix C.269

3.2 The Upper Bound of the Noise Term270

According to Equation (1), in order to derive an upper bound of ∥PGk
Eu∥, it remains to bound271 ∥∥∥(φ(Ĝ)− φ(G)

)
Eu

∥∥∥ from above. This is done by the following lemma.272

Lemma 3.3. Let C0 be the constant in Proposition 2.3. Assume that the partition is balanced and
n ≥ (100 + C0)

2 · k2·p·log12 n
(p−q)2 . For every u ∈ V , it holds that

Pr
E

[∥∥∥(φ(Ĝ)− φ(G)
)
Eu

∥∥∥ ≤ C2(
√
kp log2 n) +

1

log n
)

]
≥ 1−O(n−2),

where C2
def
= 7 · 106 is a constant.273

Combining Lemma 3.2 and Proposition 2.4, we get an upper bound of the noise term:274

Lemma 3.4 (Upper bound of noise term). Let C0 be the constant in Proposition 2.3. Assume that275

n ≥ (100 + C0)
2 · k2·p·log12 n

(p−q)2 . Then with probability at least 1 − O(n−1), we have
∥∥∥PĜk

Eu

∥∥∥ ≤276

C3(
√
kp log2 n+

√
log n) for all u ∈ V , where C3 is a constant.277

The proof of Lemma 3.3 is deferred to Section 4. We use it to prove Lemma 3.4 here.278

Proof of Lemma 3.4. It follows from Lemma 3.2 that279 ∥∥∥PĜk
Eu

∥∥∥ ≤ 2
∥∥∥φ(Ĝ)Eu

∥∥∥ ≤ 2
∥∥∥(φ(Ĝ)− φ(G)

)
Eu

∥∥∥+ 2 ∥φ(G)Eu∥

≤ 2
∥∥∥(φ(Ĝ)− φ(G)

)
Eu

∥∥∥+ 3 ∥PGk
Eu∥ .

By Proposition 2.4, with high probability at least 1−n−1, ∥PGk
Eu∥ is bounded by σ

√
k+C1

√
log n,280

where C1 is a universal constant. Meanwhile, by Lemma 3.3 and union bound over all u, with281

probability at least 1−O(n−1),
∥∥∥(φ(Ĝ)− φ(G)

)
Eu

∥∥∥ ≤ 7 · 106(
√
kp log2 n+ 1/ log n) for every282

u ∈ V . Therefore, with probability 1−O(n−1), it holds that
∥∥∥PĜk

Eu

∥∥∥ ≤ 1.4× 107
√
kp log2 n+283

3σ
√
k + 3C1

√
log n for all u ∈ V . Setting C3

def
= (1.4 × 107 + 3 + 3C1), we have the desired284

result.285

3.3 Putting It Together286

Now we are well-equipped to prove Theorem 1.1.287

Proof of Theorem 1.1. Let C def
= (100+100C0+100C3)

2, where C0, C3 are the constants in Propo-288

sition 2.3 and Lemma 3.4. By our assumption on n, we have (p− q)
√
n/k > 100C3(

√
kp log6 n+289 √

log n). It is easy to verify n satisfies the conditions in Lemma 3.4 and Lemma 3.1.290

Write ∆
def
= 0.8(p − q)

√
n/k. We aim to show that for every u, v ∈ V : if u, v ∈ Vℓ for some291

ℓ, then
∥∥∥PĜk

Ĝu − PĜk
Ĝv

∥∥∥ ≤ ∆/4; otherwise,
∥∥∥PĜk

Ĝu − PĜk
Ĝv

∥∥∥ ≥ ∆. Then by calling292

ClusterByDistance, alg. 1 recovers all large clusters correctly.293

Let ε(u) def
=

∥∥∥PĜk
Ĝu −Gu

∥∥∥. According to the argument in Section 1.4, it suffices to show that294

ε(u) ≤ 0.1(p− q)
√
n/k for all u ∈ V . We further decompose ε(u) into noise term and deviation295

term, i.e., ε(u) ≤ noise(u) + dev(u), where noise(u)
def
=

∥∥PĜEu

∥∥ and dev(u)
def
=

∥∥(PĜ − I)Gu

∥∥.296

By Lemma 3.4 and Lemma 3.1, with probability at least 1−O(n−1), the following hold for all u ∈ V :297

(1) noise(u) ≤ C3(
√
kp log2 n +

√
log n) ≤ 0.01(p − q)

√
n/k; (2) dev(u) ≤ 0.04(p − q)

√
n/k.298

Therefore, with probability at least 1−O(n−1), we indeed have ε(u) ≤ 0.1(p− q)
√
n/k,∀u ∈ V .299

This completes the proof.300
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4 Proof of Lemma 3.3: Entrywise Analysis301

This section is dedicated to proving Lemma 3.3.302

Since both (φ(Ĝ) − φ(G)) and E are symmetric, we have
∥∥∥(φ(Ĝ)− φ(G))Eu

∥∥∥ ≤303 ∥∥∥E(φ(Ĝ)− φ(G))
∥∥∥
2→∞

. The high-level idea is to write E(φ(Ĝ) − φ(G)) as a sum of ma-304

trices, where each matrix is of the form EtSQ such that ∥Q∥2 = O(1). This way, we have305

∥EtSQ∥2→∞ ≤ ∥EtS∥2→∞ ·O(1), and ∥EtS∥2→∞ is bounded by a lemma from [MZ22b].306

Let D def
= ψ(Ĝ)− ψ(G) = A(EG+GE + E2) +BE and write F def

= ψ(G), F̂
def
= ψ(Ĝ). Then307

φ(Ĝ)− φ(G) = ψ(Ĝ)r − ψ(G)r = (F +D)r − F r

= F r−1D + F r−2DF̂ + · · ·+ FDF̂ r−2︸ ︷︷ ︸
def
=M

+DF̂ r−1,

where the last step is a decomposition based on the first location of D in the product terms. And308

DF̂ r−1 = D(D + F )r−1 = Dr +DFF̂ r−2 +D2FF̂ r−3 + · · ·+Dr−1F︸ ︷︷ ︸
def
=M ′

.

That is, E(φ(Ĝ)− φ(G)) = EM + EDr + EM ′. We bound the three terms respectively.309

Here we first list some definitions and estimations of the quantities involved.310

• According to Proposition 2.3, with probability at least 1− n−3, we have ∥E∥2 ≤ C0σ
√
n,311

where C0 is a constant. In the following argument, we always assume this holds.312

• µ def
= (p− q)n/k. By our assumption on n, we have µ ≥ (100 + C0)

√
np log6 n.313

• A = − 1
λ1(G)µ , B = ( 1

λ1(G) +
1
µ ), r = log n; λ1(G) > µ, and thus B ≤ 2

µ , |A| ≤
1
µ2 .314

• By Claim 3.1, ∥F∥2 ≤ 1+ 1
4 logn ,

∥∥∥F̂∥∥∥
2
≤ 1+ 1

4 logn . By Proposition 2.5, ∥F∥t2 ,
∥∥∥F̂∥∥∥t

2
≤315

2,∀t ≤ log n.316

Upper bound of ∥EM∥2→∞ Note that ∥EF tD∥2→∞ ≤ ∥EF∥2→∞ ∥F∥t−1
2 ∥D∥2, and317

∥F∥t−1
2 ≤ 2 for all t ≤ r. Moreover, ∥D∥2 ≤ |A|(2 ∥E∥2 ∥G∥2 + ∥E∥22) + B ∥E∥2 ≤318

3
∥E∥2

µ +
∥E∥2

2

µ2 + ≤ 4
∥E∥2

µ ≤ 4(log6 n)−1 < 1
log3 n

. And the following lemma gives an upper319

bound of ∥EF∥2→∞.320

Lemma 4.1. PrE
[
∥EF∥2→∞ ≤ 10(

√
kp log n+

√
log n)

]
≥ 1− 2n−2.321

Therefore, by union bound, we have the following holds with probability at least 1− n−1:322

∥EM∥2→∞ ≤ r · 10(
√
kp log n+

√
log n) · 2 · 1

log3 n
≤ 40(

√
kp+ 1)

log n
. (4)

Upper bound of ∥EDr∥2→∞ Since ∥D∥2 <
1

log3 n
, we have323

∥EDr∥2→∞ ≤ ∥E∥2→∞ ∥D∥r2 ≤
√
n · (log3 n)− logn <

1

n
. (5)

Lemma 4.2 (Upper bound of ∥EM ′∥2→∞). With probability 1− O(n−2) (over the choice of E),324

we have ∥EM ′∥2→∞ ≤ 6C2

√
kp log2 n, where C2 = 106 is a constant.325

Finally, combining Equation (4), Equation (5), and the above lemma, we conclude that with probability
at least 1−O(n−2),∥∥∥E(φ(Ĝ)− φ(G))

∥∥∥
2→∞

≤ 40(
√
kp+ 1)

log n
+

1

n
+ 6C2

√
kp log2 n ≤ 7C2(

√
kp log2 n+

1

log n
).

This establishes Lemma 3.3.326

Proofs of Lemma 4.1 and Lemma 4.2 are deferred to Appendix D.327
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A Useful inequalities379

Proposition A.1 (Chernoff bound). Let X1, . . . , Xm be i.i.d random variables that can take values
in {0, 1}, with E[Xi] ≤ p for 1 ≤ i ≤ m. Then it holds that

Pr

[∣∣∣∣∣
n∑

i=1

Xi −mp

∣∣∣∣∣ ≥ t

]
≤ exp

(
− 3t2

mp

)
.

Proposition A.2 (Hoeffding bound). Let X1, . . . , Xm be independent random variables such that
ai ≤ X1 ≤ bi, and write S def

=
∑m

i=1Xi. Then it holds that

Pr [|S −E [S]| > t] ≤ 2 exp

(
− 2t2∑m

i=1(bi − ai)2

)
.

Definition A.1. Let X be a Bernoulli random variable with parameter p, i.e., Pr [X = 1] =380

p,Pr [X = 0] = 1 − p. The random variable Y def
= X − p = X − E [X] is called centered381

Bernoulli random variable with parameter p.382

Proposition A.3 (Adapted from [MZ22b]). Let S ∈ Rn×n, and let E = (ξij) be an n×n symmetric
random matrix, where

{ξij : 1 ≤ i ≤ j ≤ n}
are independent, centered Bernoulli random variables with parameter at most α for all i, j. Suppose
that every entry of S takes value in [−β, β], and each column of S has at most γ non-zero entries.
Then for every t ∈ [log n], it holds that

Pr
[∣∣(EtS)ij

∣∣ > (log n)5tCt

]
= O(n−4),∀i, j ∈ [n],

where
Ct

def
= 500β

√
α
√
γ ·

(
100

√
nα

)t−1
.

By union bound,
Pr

[∥∥EtS
∥∥
2→∞ >

√
n(log n)5tCt

]
= O(n−2).

Remark A.1. The parameter α is determined by E, which equals to p in our case. The above bound383

is particularly useful when β, γ are small, that is, we want the matrix S to have small entries and384

sparse columns.385

Proposition A.4 (Proposition 2.5 restated). For a ∈ [0, 2] and r ∈ N, if |a− 1| ≤ δ < 1
2r , then386

|ar − 1| ≤ 2rδ.387

Proof. Let x = a− 1 ∈ [−δ, δ]. If 0 ≤ a ≤ 1, we have 1 ≥ ar = (1 + x)r ≥ 1 + rx ≥ 1− rδ. If
1 < a < 1 + 1/r, then 0 < x < 1/r and hence

1 ≤ ar = (1 + x)r =

r∑
i=0

(
r

i

)
xi ≤

r∑
i=0

rixi <

∞∑
i=0

(rx)i =
1

1− rx
= 1 +

rx

1− rx
≤ 1 + 2rδ.

388

B Bounding the Deviation Term389

Proof of Lemma 3.1. Our assumption on n implies that (p − q)n/k > 100C0σ
√
n. By Proposi-

tion 2.3, with probability at least 1− n−3, we have

∥E∥2 ≤ C0σ
√
n ≤ 0.01(p− q)n/k.

According to Equation (2) and su ≥ n
2k , we have390 ∥∥(PĜ − I)Gu

∥∥ ≤
2 ∥E∥2√

su
≤ 0.04(p− q)n/k.

391
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C Polynomial Approximation392

The proof of Theorem 3.1 rely on the following result on rank-one pertuebation.393

Proposition C.1 (Eigenvalues under rank-one perturbation, Theorem 1 in [BNS79]). Let C =
D + ρzzT , where D is diagonal, ∥z∥2 = 1. Let d1 ≥ d2 ≥ · · · ≥ dn be the eigenvalues of D, and
let d̃1 ≥ d̃2 ≥ · · · ≥ d̃n be the eigenvalues of C. Then

d̃i = di + ρµi, 1 ≤ i ≤ n,

where
∑n

i=1 µi = 1 and 0 ≤ µi ≤ 1.394

Proof of Theorem 3.1. Let χi ∈ {0, 1}V be the indicator vector for Vi, i.e., χi(u) = 1 iff ϕ(u) = i. It
is easy to see that the eigenvectors ofH are 1√

s1
χ1, . . . ,

1√
sk
χk. Write V =

(
1√
s1
χ1, . . . ,

1√
sk
χk

)
∈

RX×X , D = diag((p − q)s1, . . . , (p − q)sk, 0, . . . , 0), then we have H = V DV ⊤. Note that
1n = V (

√
s1, . . . ,

√
sn)

⊤, and hence

G = H + q1n1
⊤
n = V (D + ρzz⊤)V ⊤,

where ρ = nq, z = 1√
n
(
√
s1, . . . ,

√
sn)

⊤. This means the eigenvalues of G are the same as those of395

D + ρzz⊤. Since ∥z∥ = 1, Item 1 follow directly from Proposition C.1. To see Item 2, we use the396

Rayleigh quotient characterization of the largest eigenvalue:397

λ1(G) = max
v

v⊤Gv

∥v∥2
≥ 1⊤

nG1n

n
=

∑
u,v∈X Guv

n
=
n2q + (p− q) · (s21 + · · ·+ s2k)

n

≥ nq + (p− q)
n

k
.

where the last inequality follows from n
k = 1

k

∑k
i=1 si ≤

√∑k
i=1 s

2
i /k,398

Proof of Claim 3.1. The assumption on n in Lemma 3.2 implies that µ = (p−q)n/k ≥ 100C0σ
√
n ·399

log n. By Weyl’s inequality, we have400 ∣∣∣λ̂i − λi

∣∣∣ ≤ ∥E∥2 ≤ C0σ
√
n ≤ µ

100 log n
,∀i ∈ [n].

Meanwhile, by Theorem 3.1,401

|λi − µ| ≤ |λi(G)− (p− q)si|+ |(p− q)si − µ| ≤ (p− q)n/k

16 log n
+

(p− q)n/k

16 log n
≤ µ

8 log n
.

for i = 2, 3, . . . , k. Hence, write ε def
= µ

6 logn , we have402

1.
∣∣∣λ̂1 − λ1

∣∣∣ ≤ ε;403

2. λ2, . . . , λk, λ̂2, . . . , λ̂k ∈ [µ− ε, µ+ ε];404

3. for every i ≥ k + 1,
∣∣∣λ̂i∣∣∣ ≤ ε.405

First, ψ(λ1) = 1 according to the definition of ψ, and hence φ(λ1) = 1. As for λ̂1,406 ∣∣∣ψ(λ̂1)− 1
∣∣∣ = ∣∣∣ψ(λ̂i)− ψ(λ1)

∣∣∣ ≤ |A|ε2 + |2Aλ1 +B|ε (by definition of ψ)

≤ ε2

λ1µ
+
ε

µ
(since 2Aλ1 +B =

1

λ1
− 1

µ
≥ − 1

µ
)

≤ 1

36 log2 n
+

1

6 log n
(as

ε

µ
=

1

6 log n
)

<
1

4 log n
.
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Consequently, |φ(λ̂1)− 1| < 2r
4 logn ≤ 1/2 by Proposition 2.5.407

Next, for a ∈
{
λ2, . . . , λk, λ̂2, . . . , λ̂k

}
, the argument is similar:408

|ψ(a)− 1| = |ψ(a)− ψ(µ)| ≤ |A|ε2 + |2Aµ+B|ε ≤ ε2

λ1µ
+
ε

µ
<

1

4 log n
,

where the second inequality follows from 2Aµ+B = 1
µ − 1

λ1
≤ 1

µ . This yields |φ(a)− 1| ≤ 1/2409

by Proposition 2.5.410

Finally, for i ≥ k + 1, it holds that∣∣∣ψ(λ̂i)∣∣∣ ≤ |A|ε2 +Bε =
ε2

λ1µ
+
ε

µ
<

1

4 log n
,

which means
∣∣∣φ(λ̂i)∣∣∣r =

∣∣∣ψ(λ̂i)∣∣∣r < (
1

4 logn

)logn

< n− log logn.411

D Bounding the Noise Term412

Proof of Lemma 4.1. The lemma readily follows from the following entrywise bound and Chernoff413

bound.414

Claim D.1 (Entries of ψ(G)). For every u, v ∈ X , if u, v ∈ Vℓ for some ℓ, then 0 ≤ Fuv ≤ 5k
n ;415

otherwise, |Fuv| ≤ 10
n .416

We decompose F = F ′ + F ′′, where F ′ is the intra-cluster part, i.e., F ′
uv = Fuv if u, v ∈ Vℓ for417

some ℓ, and F ′
uv = 0 otherwise. Since for every column of F ′

v, its non-zero entries are identical418

and at most 5k/n by the above claim. Hence, every entry of EF ′ equals to the sum of at most419

2n/k independent, centered Bernoulli variables with parameter p, scaled by some factor at most420

5k
n . By Chernoff bound, PrE

[
|(EF ′)uv| > 10

√
kp log n/n

]
≤ n−4,∀u, v ∈ V , and we have421

PrE
[
∥EF ′∥2→∞ ≤ 10

√
kp log n

]
≥ 1− n−2 by union bound. Analogously, by Hoeffding bound,422

PrE
[
∥EF ′′∥2→∞ ≤ 10

√
log n

]
≥ 1− n−2. Since ∥EF∥2→∞ ≤ ∥EF ′∥2→∞ + ∥EF ′′∥2→∞, the423

lemma follows from the above two inequalities and union bound.424

Proof of Claim D.1. Write λ = λ1(G) and recall that (i) (p− q)su ≤ 2µ for all u (ii) nq+µ ≤ λ ≤425

nq + (p − q)s1 < nq + 2µ, (iii) λ > p · µ, and for all u ∈ V . Assume that u, v ∈ Vℓ for some ℓ.426

Then427

Fuv = AG⊤
uGv +BGuv = −nq

2 + (p2 − q2)su
λµ

+

(
1

λ
+

1

µ

)
p

=
−nq2 − (p2 − q2)su + (p− q)(λ+ µ) + q(λ+ µ)

λµ

=
q(µ+ λ− nq) + (p− q)(λ+ µ− (p+ q)su)

λµ
.

Since λ− nq ≥ µ, the numerator is at least

2qµ+ (p− q)(λ+ µ− (p+ q)su) = (p− q) (2qn/k + λ+ µ− (p+ q)su) .

Because su ≤ 2n/k, λ ≥ nq + (p− q)n/k, we have

2qn/k + λ+ µ− (p+ q)su > 2qn/k + nq + (p− q)2n/k − (p+ q)2n/k = (n− 2n/k)q ≥ 0,

which means Fuv ≥ 0. Meawhile,

Fuv ≤ q(µ+ λ− nq)

λµ
+

(p− q)(λ+ µ)

λµ
,

where the first term is at most 3q
λ ≤ 3

n by (ii); second term is at most 2(p−q)
µ ≤ 2k

n . Therefore,428

|Fuv| ≤ 5k
n .429
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For the second part, assume that u, v are not in the same cluster. Then430

Fuv = AG⊤
uGv +BGuv = −nq

2 + (pq − q2)(su + sv)

λµ
+

(
1

λ
+

1

µ

)
q.

Hence,

|Fuv| ≤
∣∣∣∣q(λ+ µ− nq)

λµ

∣∣∣∣+ ∣∣∣∣q(p− q)(su + sv)

λµ

∣∣∣∣ .
By (ii), the first term is at most 3q

λ < 3
n ; by (i), the second term is at most 4q

λ ≤ 4
n ; hence,431

|Fuv| ≤ 10
n .432

Upper bound of ∥EM ′∥2→∞ (Proof of Lemma 4.2) Write L def
= A(EG+GE), R

def
= AE2+BE.433

Then DtF = (L+R)tF = RtF +Rt−1LF +Rt−2LDF + · · ·+RLDt−2 +LDt−1F . It suffices434

to derive a good upper bound of ∥EηL∥2→∞ and ∥EηF∥2→∞, as Rw can be further expressed as435

sum of powers of E. This is done by the following lemma:436

Lemma D.1. The following holds with probability 1−O(n−2) over the choice ofE: for all η ≤ log n,437

it holds that438

• ∥EηL∥2→∞ ≤ C2

√
kp(100

√
np)η−1 log5η n,439

• ∥EηF∥2→∞ ≤ C2

√
kp(100

√
np)η−1 log5η n,440

where C2
def
= 106 is an absolute constant.441

Specifically,442

EDtF = ERtF +

t−1∑
i=0

ERiLDt−1−iF

= E

t∑
j=0

(
t

j

)
AjBt−jEj+tF︸ ︷︷ ︸
def
=Mt

+

t−1∑
i=0

E

i∑
j=0

(
i

j

)
AjBi−jEi+jLDt−1−iF︸ ︷︷ ︸

def
=Nt

.

Note that |AjBw−j | ≤ 2w · µ−(w+j) ≤ 2w · (100√np log6 n)−(w+j). It follows that for every443

t ∈ [r − 1],444

∥Mt∥2→∞ ≤
t∑

j=0

(
t

j

)
|AjBt−j |

∥∥Et+j+1F
∥∥
2→∞

≤
t∑

j=0

(
t

j

)
2t · (100√np log6 n)−(t+j) · C2

√
kp · (100√np)t+j log5(t+j) n

≤ C2

√
kp · 2t

t∑
j=0

(
t

j

)
(log n)−(t+j)

= C2

√
kp · 2t(log n)−t · (1 + 1

log n
)t ≤ C2

√
kp,
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where the second inequality is by Lemma D.1, and the last step follows from Proposition 2.5.445

Similarly, for every t ∈ [r − 1],446

∥Nt∥2→∞ ≤
t−1∑
i=0

i∑
j=0

(
i

j

)
|AjBi−j |

∥∥Ei+j+1L
∥∥
2→∞

∥∥Dt−1−iF
∥∥
2

≤ 2

t−1∑
i=0

i∑
j=0

(
i

j

)
|AjBi−j |

∥∥Ei+j+1L
∥∥
2→∞

≤ 2

t−1∑
i=0

i∑
j=0

(
i

j

)
2i · (100√np log6 n)−(i+j) · C2

√
kp · (100√np)i+j log5(i+j) n

≤ 2C2

√
kp

t−1∑
i=0

2i
i∑

j=0

(
t

j

)
(log n)−(i+j)

≤ 2C2

√
kp · t ≤ 2C2

√
kp · log n,

where the second inequality follows from
∥∥Dt−1−iF

∥∥
2

≤ 2, and the third inequality is by447

Lemma D.1. In sum,448

∥EM ′∥2→∞ ≤
r−1∑
t=1

(∥Mt∥2→∞ + ∥Nt∥2→∞)
∥∥∥F̂∥∥∥r−1−t

2
≤ 6C2

√
kp log2 n, (6)

where in the last inequality we also use
∥∥∥F̂∥∥∥t

2
≤ 2.449

The proof of Lemma D.1 draw on the entrywise bound in Proposition A.3.450

Proof of Lemma D.1. Fix an η ≤ log n. Write s∗ def
= n/k for the ease of notation. Observe that451

EηL = A(Eη+1G + EηGE) = A(Eη+1H + EηHE) + Aq(Eη+1Jn + EηJnE). We can apply452

Proposition A.3 to Eη+1H and EηH , with α = p, β = p− q, γ = 2s∗. That is, with probability at453

least 1−O(n−2),454 ∥∥EjH
∥∥
2→∞ ≤ 500(log n)5j

√
n(p− q)

√
p
√
2s∗ · (100√np)j−1 for j = η, η + 1.

Our assumption on n yields µ ≥ C
√
np log6 n; moreover, |A|(p − q) ≤ p−q

µ2 ≤ 1/s∗ · 1
µ ≤455

1/s∗ · (C√np log6 n)−1. Therefore,456 ∥∥A(Eη+1H + EηHE)
∥∥
2→∞

≤ A
(∥∥Eη+1H

∥∥
2→∞ + ∥EηH∥2→∞ ∥E∥2

)
≤ 1

s∗
· (C√np log6 n)−1 · 500(log n)5η+5 ·

√
n · √p ·

√
2s∗

(
(100

√
np)

η
+ (100

√
np)

η−1
C0σ

√
n
)

≤ 500000
√
np/s∗(log n)5η(100

√
np)η−1. (7)

Similarly, by applying Proposition A.3 to EjJn with α = p, β = 1, γ = n, we have, with probability
at least 1−O(n−2),∥∥EjJn

∥∥
2→∞ ≤ 500(log n)5j · √p · n · (100√np)j−1

, j = η, η + 1.

Since |Aq| = q
λ · 1

µ ≤ 1
n · (C

√
n log6 n)−1, we have457 ∥∥Aq(Eη+1Jn + EηJnE)
∥∥
2→∞

≤ |Aq|
(∥∥Eη+1Jn

∥∥
2→∞ + ∥EηJn∥2→∞ ∥E∥2

)
≤ 1

n
· (C√np log6 n)−1 · 500 · (log n)5η+5 · n ·

(
(100

√
np)

η
+ (100

√
np)

η−1
C0σ

√
n
)

≤ 500000
√
p(log n)5η(100

√
np)η−1. (8)
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Combining Equation (7) and Equation (8), we have, with probability at least 1 − O(n−2),458

∥EηL∥2→∞ ≤ C2

√
np/s∗(log n)5η(100

√
np)η−1 where C2

def
= 106.459

For the second part, we decompose F = F ′+F ′′, where F ′ is the intra-cluster part, i.e., F ′
uv = Fuv if460

u, v ∈ Vℓ for some ℓ; andF ′
uv = 0 otherwise. Equipped with Claim D.1, we can apply Proposition A.3461

on EηF ′ (with α = p, β = 10/s∗, γ = 2s∗), and EηF ′′ (with α = p, β = 5
n , γ = n):462

∥EηF∥2→∞ ≤ ∥EηF ′∥2→∞ + ∥EηF ′′∥2→∞

≤ 20000 log5η
√
n
√
p

(
10

s∗
·
√
2s∗ +

10

n
·
√
n

)
(100

√
n)η−1

≤ C2(log n)
5η
√
np/s∗(100

√
n)η−1,

where the second inequality holds with probability at least 1−O(n−2). The lemma follows from a463

union bound over all η ≤ log n.464
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