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Abstract

Sample-to-class-based face recognition models can not fully explore the cross-
sample relationship among large amounts of facial images, while sample-to-sample-
based models require sophisticated pairing processes for training. Furthermore,
neither method satisfies the requirements of real-world face verification applica-
tions, which expect a unified threshold separating positive from negative facial pairs.
In this paper, we propose a unified threshold integrated sample-to-sample based loss
(USS loss), which features an explicit unified threshold for distinguishing positive
from negative pairs. Inspired by our USS loss, we also derive the sample-to-sample
based softmax and BCE losses, and discuss their relationship. Extensive evaluation
on multiple benchmark datasets, including MFR, IJB-C, LFW, CFP-FP, AgeDB,
and MegaFace, demonstrates that the proposed USS loss is highly efficient and can
work seamlessly with sample-to-class-based losses. The embedded loss (USS and
sample-to-class Softmax loss) overcomes the pitfalls of previous approaches and
the trained facial model UniTSFace exhibits exceptional performance, outperform-
ing state-of-the-art methods, such as CosFace, ArcFace, VPL, AnchorFace, and
UNPG. Our code is available at https://github.com/CVI-SZU/UniTSFace.

1 Introduction

Modern deep facial recognition systems, involving an enormous number of facial images and
identities, essentially rely on discriminative feature learning: the facial images from the same identity
should be close while those from different identities should be distant in the feature space. That is,
the similarity of a positive pair (two facial images from the same identity) is required to be larger than
any negative pair (two facial images from different identities). In other words, a unified threshold is
expected to distinguish positive from negative pairs.

The feature learning process of general deep face recognition models is either based on sample-to-
class losses (such as Softmax loss (27; 28)) or sample-to-sample losses (such as contrastive (4; 10; 25)
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and triplet loss (22)). Inspired by the success of large-scale image classification, the softmax loss and
its extensions have become popular in deep face recognition systems. In the softmax loss, each weight
vector can be regarded as a proxy of the corresponding class (face identity), the classification-based
face recognition models are demanded to learn the class proxy and image features simultaneously.
However, these models possess a significant drawback, namely a domain gap between the training
and testing stages of face models. This gap arises from the reliance on limited identity proxies for
computing and optimizing feature similarity in sample-to-class models. Conversely, in real-world
scenarios, feature similarity is computed and compared across various samples from diverse facial
identities. In other words, the sample-to-class-based classification strategy may not entirely explore
the variances across samples (Problem 1). Therefore, its efficacy in accurately reflecting real-world
scenarios is questionable. To tackle this drawback, VPL (8) considers a small variation around the
class proxy, which implicitly introduces more samples during the optimization and improves the face
recognition performance. However, while this small variation extends the capability of softmax loss,
it cannot essentially represent all the samples in this class.

Face models based on sample-to-sample losses (4; 10; 22; 3; 24) learn facial identity features and
optimize feature similarities by comparing positive and negative samples, which is closer to real-world
face recognition applications than sample-to-class losses. The majority of sample-to-sample losses
aim to maximize inter-class discrepancy while minimizing intra-class distances, which may need a
meticulous sampling/paring step for every mini-batch. Moreover, in face verification tasks, a single
threshold is required to distinguish positive facial pairs from negative ones. Unfortunately, none of
the aforementioned methods incorporate such an explicit constraint (Problem 2).

In this study, we commence our research by analyzing a reasonable, albeit naive, sample-to-sample
loss, which enables us to straightforwardly investigate the variances across facial samples, thereby
resolving Problem 1. To address Problem 2, we integrate a unified learnable threshold into the naive
loss, resulting in a novel sample-to-sample loss function that we term the unified threshold integrated
sample-to-sample (USS) loss. We provide a mathematical elaboration of the relationship between
our USS loss and the sample-to-sample BCE loss and softmax loss, from the perspective of the
naive sample-to-sample loss. To evaluate the effectiveness of the USS loss, we conduct experiments
on various benchmark datasets and qualitatively demonstrate that it meets the requirements of
real-world applications. Additionally, we find that incorporating a margin can easily enhance the
USS loss. Our USS loss also works seamlessly with the sample-to-class based losses and shows
significant improvements when they are combined together to train a face model called UniTSFace.
To summarize, the contributions of this work are

• We introduce a unified threshold integrated sample-to-sample loss (USS) derived from a
reasonable naive loss for face recognition. We also derive the sample-to-sample based soft-
max and binary-cross-entropy (BCE) losses from the naive loss and reveal the mathematical
relationship among the softmax, BCE, and our USS losses.

• We demonstrate that a unified threshold can be learned by adopting the proposed USS loss
and quantitatively and qualitatively demonstrate that the learned threshold aligns with face
verification expectations in experiments.

• The proposed USS loss can be enhanced with an auxiliary margin and is compatible with
existing sample-to-class based losses. We show that USS loss, when used jointly with sample-
to-class based losses such as CosFace and ArcFace, leads to a continuous improvement.

• Our UniTSFace outperforms state-of-the-art methods on the Megaface 1 dataset and ranks
first place on the MFR ongoing challenge till the submission of this work (May 17 ’23,
academic track): http://iccv21-mfr.com/#/leaderboard/academic.

2 Related Works

Sample-to-Sample based Methods. DeepID2 (25) uses a contrastive loss(4; 10) to encourage
the features learned from the same identity to be close while that learned from different identities
are distant. FaceNet(22) constructs three-element tuples and minimizes the distance between an
anchor and a positive sample and maximizes the distance between the anchor and a negative sample.
The effectiveness of contrastive/triplet losses relies on the meticulous selection of pairs/triplets.
Furthermore, neither method explicitly enforces that all positive sample-to-sample similarities are
greater than negative similarities.
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Sample-to-Class based Methods. While Softmax loss is frequently utilized in deep recognition
models, it only promotes separability and does not learn discriminative features. Various approaches
have been proposed to enhance the feature learning of softmax loss. Some methods (32; 9; 34;
16) proposed extra constraints imposed on the softmax loss, such methods normally have a class
proxy (class center/prototype) and maximize (minimize) the similarity (distances) between a facial
feature and its corresponding class proxy (32), as well as maximize the distances between all class
proxies(16; 9; 34). However, the training process of such methods needs careful balancing of the
softmax loss and the extra constraints. Alternatively, some works directly improve the softmax by
normalizing the facial features and adding margins between positive and negative sample-to-class
pairs (18; 29; 30; 7; 17). While sample-to-class methods demonstrate excellent performance in deep
face verification, they may not entirely explore the variability across various facial samples.

Hybrid (/combined) Methods. Circle loss (26) is one of the first works that discussed the two
elemental learning paradigms, i.e., learning with class-level labels and pair-wise labels, in a unified
framework. However, the two learning paradigms are respectively used in circle loss. Following
(26), the combination of the two learning paradigms to solve the shortcoming of either method
become popular, e.g., VPL(8), AnchorFace(15), and UNPG(13). VPL extends the softmax loss by
considering a small feature variation around the class proxy W . The embedding of a small feature
variation cannot essentially represent all samples, VPL still presents a large gap between training a
face recognition model and testing over the open sets. UNPG jointly optimizes the distance between
a sample xi with negative class proxies Wj and negative samples xj in the same softmax loss
using batch processing, focusing on the negative pairs during training. AnchorFace, however, uses
a combination of softmax loss and different sample-to-sample losses, such as TAR Loss and FAR
Loss, to target specific testing protocols. In contrast, our USS loss is more general and compatible
with existing sample-to-class losses. We demonstrate our USS loss can lead to a steady improvement
when used with sample-to-class losses jointly in experiments.

3 Methods

Suppose M is a deep face model trained on a facial sample set D =
⋃N

i=1 Di captured from N
subjects, where Di denotes the subset containing the facial samples captured from the same subject i.
Then, we can get a feature set F =

⋃N
i=1 Fi =

⋃N
i=1

{
x(i) = M(X(i)) : X(i) ∈ Di

}
, where x(i)

is the feature vector of the sample X(i) and X(i) denotes the sample captured from subject i.

For any two samples X,X∗ ∈ D, we apply a bivariate operator g(x,x∗) ∈ [−1, 1] denoting their
feature similarity, where x = M(X),x∗ = M(X∗) are features of X,X∗. We term g(x,x∗) the
positive sample-to-sample similarity if the two samples are captured from the same subject, while
the negative sample-to-sample similarity if they are from different subjects. Then, for any sample
X(i) ∈ Di, ∀i, we define its positive and negative similarity sets as

s
(pos)
X(i) =

{
g(x(i),x∗) : x∗ ∈ Fi

}
, (1)

s
(neg)
X(i) =

N⋃
j=1
j ̸=i

{
g(x(i),x∗) : x∗ ∈ Fj

}
, (2)

where x(i) = M(X(i)).

In real applications of face verification, a threshold t̂ ∈ [−1, 1] is chosen to verify whether two
samples X and X∗ are from the same subject or not. Specifically, the two facial samples X,X∗ are
with the same identity if g(x,x∗) ≥ t̂, while they are from two different identities when g(x,x∗) < t̂.

To be in line with face verification applications, during the training process of M, we expect a unified
threshold t such that any two samples (X(i) ∈ Di and X

(j)
∗ ∈ Dj) conform to the above rules. If they

share the same identity (i.e., i = j), then g(x(i),x
(j)
∗ ) ≥ t, in the case of i ̸= j, g(x(i),x

(j)
∗ ) < t,

where x(i) = M(X(i)),x
(j)
∗ = M(X

(j)
∗ ). The unified threshold t satisfies

max
( N⋃

i=1

⋃
X(i)∈Di

s
(neg)
X(i)

)
< t ≤ min

( N⋃
i=1

⋃
X(i)∈Di

s
(pos)
X(i)

)
. (3)
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However, the existing sample-to-sample losses (4; 10; 22; 24) fail to explicitly include and learn the
unified threshold. In this paper, by explicitly defining the unified threshold t, we design a unified
threshold integrated sample-to-sample loss.

3.1 Unified Threshold Integraed Sample-to-Sample Loss (USS Loss)

Clearly, in the training of model M, it expects large positive sample-to-sample similarities but small
negative ones, and then, for any sample X(i), a naive loss could be reasonably defined as,

LNAIVE(X
(i)) = − 1

|Fi|
∑
x∈Fi

γg(x(i),x) +
1

|F − Fi|

N∑
j=1
j ̸=i

∑
x∈Fj

γg(x(i),x), (4)

where γ is a scale factor, |S| denotes the element number of a set S, and F − Fi denotes the
complementary set of Fi in F , i.e., F − Fi =

⋃N
j=1
j ̸=i

Fj .

The loss in Eq. (4) computes the feature similarities of all positive sample-to-sample pairs and all
negative ones for the sample X(i), which is not easily implemented in practice. In this paper, without
loss of generality, we consider the feature similarities of one positive sample pair and N − 1 negative
sample pairs for the sample X(i) in the naive loss,

Lnaive(X
(i)) =− γg(x(i),x

(i)
∗ ) +

1

N − 1

N∑
j=1
j ̸=i

γg(x(i),x
(j)
∗ ), (5)

where x(i)
∗ = M(X

(i)
∗ ), x

(j)
∗ = M(X

(j)
∗ ), and X

(i)
∗ and X

(j)
∗ are randomly taken from the subject

i, j, with j ̸= i.

Using the inequality of arithmetic and geometric means1, we derive two inequalities about Lnaive,

Lnaive(X
(i)) ≤ 2 log

(
1 +

exp
(∑N

j=1
j ̸=i

γg(x(i),x(j)
∗ )

N−1

)
exp

(
γg(x(i),x

(i)
∗ )

) )
− 2 log 2, (6)

Lnaive(X
(i)) ≤ 2

N − 1

N∑
j=1
j ̸=i

log
(
1 +

eγg(x
(i),x(j)

∗ )

eγg(x(i),x
(i)
∗ )

)
− 2 log 2. (7)

According to Eqs. (6), (7), and the unified threshold t in Eq. (3), one can get
N

2
Lnaive(X

(i)) +N log 2

≤ log
(
1 +

exp
(∑N

j=1
j ̸=i

γg(x(i),x(j)
∗ )

N−1

)
exp

(
γg(x(i),x

(i)
∗ )

) )
+

N∑
j=1
j ̸=i

log
(
1 +

exp(γg(x(i),x
(j)
∗ ))

exp(γg(x(i),x
(i)
∗ ))

)
(8)

≤ log
(
1 +

exp
(∑N

j=1
j ̸=i

γt
N−1

)
exp

(
γg(x(i),x

(i)
∗ )

))+

N∑
j=1
j ̸=i

log
(
1 +

exp(γg(x(i),x
(j)
∗ ))

exp(γt)

)
(9)

= log
(
1 + e−γg(x(i),x(i)

∗ )+γt
)
+

N∑
j=1
j ̸=i

log
(
1 + eγg(x

(i),x(j)
∗ )−γt

)
. (10)

We define the Unified threshold integrated Sample-to-Sample (USS) loss Luss(X
(i)) as

Luss(X
(i)) = log

(
1 + e−γg(x(i),x(i)

∗ )+b
)
+

N∑
j=1
j ̸=i

log
(
1 + eγg(x

(i),x(j)
∗ )−b

)
(11)

1 n
√∏n

i=1 ai ≤ 1
n

∑n
i=1 ai for ai ≥ 0.
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where b = γt is a constant to be learned (depicted in Fig. 1). The detailed derivations of the above
inequalities are described in the supplementary (appendix).

We here analyze that the unified threshold t could be learned. Suppose that the model M has been
perfectly trained, and Luss has reached its minimum point after the training, which means (i) the
positive sample-to-sample similarity g(x(i),x

(i)
∗ ) tends to 1, and the negative ones g(x(i),x

(j)
∗ ) tends

to −1; and (ii) Luss reaches its stationary point in terms of variable b. From (ii), one can deduce that

0 =
∂Luss

∂b
=

e−γg(x(i),x(i)
∗ )+b

1 + e−γg(x(i),x
(i)
∗ )+b

−
N∑
j=1
j ̸=i

eγg(x
(i),x(j)

∗ )−b

1 + eγg(x(i),x
(j)
∗ )−b

(12)

(i)
=

e−γ+b

1 + e−γ+b
−

N∑
j=1
j ̸=i

e−γ−b

1 + e−γ−b
(13)

⇒ b = log
(N − 2)e−γ +

√
(N − 2)2e−2γ + 4(N − 1)

2
. (14)

If N < e2γ+3
2 , the final learned threshold t = b

γ will locate between −1 and 1, which means now

the leaned t has correctly separated the negative sample-to-sample similarities, g(x(i),x
(j)
∗ ), and the

positive ones, g(x(i),x
(i)
∗ ). In the practice, following (30; 7), we set γ = 64, then, according to the

above analysis, the unified threshold t could be leaned if N < 1.9× 1055.

3.2 Sample-to-Sample Based Softmax and BCE Losses

Sample-to-class based softmax and BCE losses are widely applied in the image classification. For the
study of face verification, we here deduce the sample-to-sample based softmax and BCE losses from
the naive loss Lnaive.

Similar to the deduction of USS loss, using the inequality of arithmetic and geometric means, we first
present another two inequalities about Lnaive,

Lnaive(X
(i)) ≤− N

N − 1
log

eγg(x
(i),x(i)

∗ )∑N
j=1 eγg(x(i),x

(j)
∗ )

− N logN

N − 1
, (15)

N∑
i=1

Lnaive(X
(i)) ≤ 2

N − 1

N∑
i=1

N∑
j=1
j ̸=i

log
(
1 +

eγg(x
(i),x(j)

∗ )

eγg(x(j),x
(j)
∗ )

)
− 2N log 2. (16)

Softmax Loss. For sample X(i) ∈ Di with x(i) = M(X(i)), we define its sample-to-sample
softmax loss as

Lsoft(X
(i)) = − log

eγg(x
(i),x(i)

∗ )∑N
j=1 eγg(x(i),x

(j)
∗ )

. (17)

Then, according to Eq. (15), one can get

Lnaive(X
(i)) ≤ N

N − 1
Lsoft(X

(i))− N

N − 1
logN. (18)

Similar to the naive loss Lnaive, the design of softmax loss Lsoft does not consider the unified threshold
among the sample-to-sample pairs.

BCE Loss. For all samples captured from subject i, we assume the existence of a threshold ti,
which could separate their all positive sample-to-sample pairs and negative ones, i.e.,

max
( ⋃

X(i)∈Di

s
(neg)
X(i)

)
< ti ≤ min

( ⋃
X(i)∈Di

s
(pos)
X(i)

)
, ∀ i, (19)
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then, according to Eqs. (16) and (6),

N

2

N∑
i=1

Lnaive(X
(i)) +N2 log 2

≤
N∑
i=1

[
log

(
1 +

exp
(∑N

j=1
j ̸=i

γg(x(i),x(j)
∗ )

N−1

)
exp

(
γg(x(i),x

(i)
∗ )

) )
+

N∑
j=1
j ̸=i

log
(
1 +

exp(γg(x(i),x
(j)
∗ ))

exp(γg(x(j),x
(j)
∗ ))

)]
(20)

≤
N∑
i=1

[
log

(
1 + e−γg(x(i),x(i)

∗ )+γti
)
+

N∑
j=1
j ̸=i

log
(
1 + eγg(x

(i),x(j)
∗ )−γtj

)]
. (21)

We define BCE loss for sample X(i) as

Lbce(X
(i)) = log

(
1 + e−γg(x(i),x(i)

∗ )+bi
)
+

N∑
j=1
j ̸=i

log
(
1 + eγg(x

(i),x(j)
∗ )−bj

)
, (22)

where bi = γti are parameters to be learned. Note that the ti can be different for different identities
and therefore are not unified.

After the training of the model M, i.e., the threshold ti =
bi
γ were learned, then,

N∑
i=1

Lnaive(X
(i)) ≤ 2

N

N∑
i=1

Lbce(X
(i))− 2N log 2. (23)

3.3 Marginal Sample-to-Sample Based Losses

Our USS loss, as well as the deduced sample-to-sample based Lsoft and Lbce, only encourage the
separability between positive and negative sample pairs. To further improve the discriminative ability
of such losses, i.e., to encourage the positive features to be distant from the negative ones, we further
proposed the marginal extensions for such losses.

By introducing a margin on the feature similarities, we can have the marginal USS loss as:

Luss-m(X
(i)) = log

(
1 + e−γ(g(x(i),x(i)

∗ )−m)+b
)
+

N∑
j=1
j ̸=i

log
(
1 + eγg(x

(i),x(j)
∗ )−b

)
(24)

where the m is the introduced hyper-parameter on the margin. Proper adjusting of such a parameter
can improve the recognition performance, as discussed in Sec. 4.3. Similarly, we can extend the
vanilla Lsoft and Lbce to the marginal version of Lsoft-m and Lbce-m, the full equations are given in the
supplementary materials (and appendix).

4 Experiments

4.1 Datasets and Evaluations

Datasets. We utilize four publicly available datasets for training, namely, CASIA-WebFace(33)
(consisting of 0.5 million images of 10K identities), Glint360K(2) (comprising 17.1 million images
of 360K identities), WebFace42M(35) (containing 42.5 million images of 2 million identities), and
WebFace4M, which is a subset of WebFace42M with 4.2 million images of 0.2 million identities.
For evaluating the face verification performance, the ICCV-2021 Masked Face Recognition Chal-
lenge (MFR Ongoing)(5) is adopted. The MFR ongoing testing protocol includes various popular
benchmarks, such as LFW (11), CFP-FP (23), AgeDB (21), and IJB-C (20), along with its own MFR
benchmarks, such as the Mask, Children, and Globalized Multi-Racial (GMR) test sets. The Mask set
comprises 13.9K positive pairs and 96.9 million negative pairs (including 6.9K masked images and
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13.9K non-masked images) of 6.9K identities. The Children set contains 157K images (totaling 1.7
million positive pairs and 24.7 billion negative pairs) of 14K identities. The Globalized Multi-Racial
sets comprise 1.6 million images in total, consisting of 4.6 million positive pairs and 2.6 trillion
negative pairs, and representing 242K identities across four races: African, Caucasian, South-Asian,
and East-Asian. For face identification, the MegaFace Challenge 1(14) is employed as the test set,
which comprises a gallery set with over 1 million images from 690K different identities, and a probe
set with 3,530 images from 530 identities. It is worth noting that the MegaFace Challenge 1 also has
a verification track, and the verification performance is included in the experiments.

Evaluation and Metrics. For the MFR Ongoing Challenge, the trained models are submitted to
and evaluated by the online server. Specifically, we report 1:1 verification accuracy for LFW, CFP-FP,
and AgeDB. We report True Accept Rate (TAR) at False Accept Rate (FAR) levels of 1e-4 and 1e-5
for IJB-C. We report TARs at FAR=1e-4 for the Mask and Children test sets, and TARs at FAR=1e-6
for the GMR test sets. For the MegaFace Challenge 1, we report Rank1 accuracy for identification
and TAR at FAR=1e-6 for verification.

4.2 Implementation Details

Preprocessing. Firstly, we aligned all face images using the 5 landmarks detected by RetinaFace (6)
and cropped the center 112×112 patch. We then normalized the cropped images by first subtracting
127.5 and then dividing 128. Finally, we augmented the training images with horizontal flipping.

Training. We adopt customized ResNets as our backbone following (7). We implement all models
using Pytorch and train them using the SGD optimizer with a weight decay of 5e-4 and momentum
of 0.9. For the face models on CASIA-WebFace, we train them over 28 epochs with a batch size of
512. The learning rate starts at 0.1 and is reduced by a factor of 10 at the 16th and 24th epoch. For
both Glint360K and WebFace4M, we train the ResNets for 20 epochs using a batch size of 1024.
The learning rate is initially set at 0.1, while a polynomial decay strategy (power=2) is applied for
the learning rate schedule. In the case of WebFace42M, we train the ResNets for 20 epochs, using a
larger batch size of 4096. The learning rate linearly warms up from 0 to 0.4 during the first epoch,
followed by a polynomial decay (power=2) for the remaining 19 epochs. We include the detailed
settings of all hyper-parameters used in Sec. 4 and Sec. 5 in the appendix for further reference.

Testing. For a given facial image, we extract two 512-dimensional features from the original image
and its horizontally flipped counterpart. These features are then combined together as the final
representation with element-wise addition. To assess the similarity between two images, we utilize
the cosine similarity metric.

4.3 Ablation and Parameter Study

Loss MR-ALL IJB-C LFW CFP Age
Lnaive 0.0 0.35 50.0 50.0 50.0
Lsoft 26.34 76.88 98.80 95.50 93.48
Lbce 8.91 39.19 92.60 66.41 74.36
Luss 38.43 72.20 99.40 96.51 94.05
Lsoft-m 38.11 83.60 99.18 96.32 94.18
Lbce-m 9.01 45.08 92.48 65.34 76.30
Luss-m 42.55 83.92 99.46 96.81 94.28

Table 1: Ablation study of the proposed Luss.

Effectiveness of unified threshold. We first
demonstrate the necessity of learning a unified
threshold by comparing our proposed Luss with two
other sample-to-sample losses, Lsoft and Lbce, in
Table 1. We additionally report the performance
of the model trained with Lnaive. The first to third
rows respectively show the results from Lnaive, Lsoft
and Lbce, while the fourth row lists the performance
of our Luss. We observe that Lsoft performs 4.68%
better than our proposed Luss on IJB-C. However,
our USS loss outperforms Lsoft on the other four
datasets, particularly on MFR-All where it achieves a 12.09% higher TAR@FAR=1e-6. Compared
to the Lbce, the gains achieved by our Luss are more significant, with performance improvements
of 29.52% on MFR-All, 33.01% in terms of TAR@FAR=1e-4 on IJB-C, 30.10% on CFP-FP, and
19.69% on AgeDB. The Lnaive, however, is difficult to train and the trained model barely learns any
useful features. We note that the results are not cherry-picked. For a fair comparison, we adopted
the same experimental setting when we trained the model using the different losses. During our
experiments, we found that the model is easy to converge using Lsoft and Luss, and the training process
is stable, which leads to more favorable results. The model, however, is difficult to train with Lnaive
and Lbce. We have dedicated many efforts to these two losses, but the convergence is still problematic.
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Figure 1: Threshold distributions of Lsoft, Lbce, and
Luss on 20 random selected identities in CASIA-
WebFace. Each dot denotes the optimal threshold
for each identity. The dashed blue line represents
the threshold that was learned solely by Luss with
t = b

γ = 31.3344/64 = 0.4896 in Eq. (11).

When comparing the marginal softmax loss
Lsoft-m, marginal BCE loss Lbce-m with marginal
USS loss Luss-m (last three rows), we observe
that the marginal USS loss Luss-m achieves the
highest performance across all five reported
datasets, which further confirms the effective-
ness of our proposed unified threshold strategy.

It is noteworthy that all the methods in this ta-
ble are based on the same ResNet-50 network
trained on the CASIA-WebFace dataset.

Qualitative study of unified threshold. To
better understand the effects of unified thresh-
old, in Fig. 1, we randomly select 20 identities
(5,074 facial images) from the whole training
dataset with N = 10572 subjects, and then con-
struct 1 positive sample pair and N − 1 negative
pairs for each of the selected images. For each of
the 20 identities, we compute the optimal thresh-
old to separate the positive pair and the hardest
negative pair, i.e., the most similar negative pair.
We respectively plot threshold distributions of the 20 identities for Lsoft, Lbce, and Luss. In Fig. 1,
each dot denotes the optimal threshold for each identity. The blue dashed line is the unified threshold
t = b

γ = 31.3344/64 = 0.4896 exclusively learned by our Luss in Eq. (11). From this figure, we
can clearly observe that our Luss has the most compact threshold distribution, while the threshold
distributions from Lbce and Lsoft are relatively loose. Most importantly, for Luss, the median threshold
from the randomly sampled 20 identities is in line with the learned unified threshold 0.4896 from the
face model trained with Luss, which proves the effects of including an explicit unified threshold.

Impact of Margins. The results in Table 1 (with m = 0.1) demonstrate that a margin improves
the performance of Luss. However, the introduced margin m remains a hyperparameter that needs to
be tuned. In Table 2, we investigate the effects of using different margins in Luss-m. Specifically, we
experiment with four more settings that increase m to 0.2, 0.3, 0.4, and 0.5. We observe that i) the
highest performance on MR-ALL, IJB-C, LFT, CFP-FP, and AgeDB are respectively achieved when
m equals 0.2, 0.4, 0.1, 0.1, and 0.3; ii) the performance of the four marginal Luss-m losses are all
higher than that of the original Luss (i.e., m = 0 in Luss-m). Although the auxiliary margin improves
the overall performance, the performance seems to saturate when m is set to 0.4. Note that in our
later experiments, we use m = 0.1.

Margin MR-ALL IJB-C LFW CFP Age
m = 0.0 38.43 72.20 99.40 96.51 94.05
m = 0.1 42.55 83.92 99.46 96.81 94.28
m = 0.2 44.74 87.65 99.26 96.65 94.16
m = 0.3 44.14 87.58 99.30 96.41 94.38
m = 0.4 43.38 87.82 99.26 96.04 94.23
m = 0.5 43.91 87.62 99.13 96.05 94.23

Table 2: Parameter study of margin in Luss-m.

MR-ALL IJB-C LFW CFP Age
USS 42.55 83.92 99.46 96.81 94.28
ArcFace 42.21 48.49 99.31 97.07 94.51
ArcFace+USS 48.92 89.56 99.40 97.22 95.20
CosFace 45.12 56.65 99.36 97.30 94.98
CosFace+USS 50.28 89.84 99.41 97.35 95.13

Table 3: Combination of USS and two sample-to-
class based methods.

Compatibility. In Table 1 and Table 2, we have shown that the proposed Luss is superior to other
sample-to-sample based losses and can be boosted by adding a proper margin. In Table 3, we
investigate the effects of combining Luss with two marginal softmax losses, i.e., ArcFace and CosFace.
We find that the model trained with the combined loss significantly outperforms the original ArcFace
and CosFace models, as well as our USS loss. For example, the model trained with ArcFace + USS
respectively outperforms ArcFace and USS with 6.71% and 6.37% gains on MR-ALL, and 41.07%
and 5.64% gains on IJB-C. The model trained with CosFace + USS respectively outperforms CosFace
and USS with 5.16% and 7.73% gains on MR-ALL, and 33.19% and 5.92% gains on IJB-C. Such
significant improvements suggest the compatibility of our USS loss. In this work, we refer to the
model trained using a combination of a sample-to-class method and our USS as UniTSFace. For our
experiments, we choose to use CosFace as the sample-to-class method.
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Method P R Iden. Veri. Method P R Iden. Veri.
Softmax Loss (18) S ✗ 54.85 65.92 ArcFace (7) L ✗ 81.03 96.98
Triplet Loss (18; 22) S ✗ 64.79 78.32 CurricularFace (12) L ✗ 81.26 97.26
Contrastive (18; 25) S ✗ 65.21 78.86 CosFace (30) L ✗ 82.72 96.65
Center (18; 32) S ✗ 65.49 80.14 UniTSFace L ✗ 85.01 97.85
L-Softmax (18; 19) S ✗ 67.12 80.42 SphereFace2 (31) L ✓ 89.84 91.94
SphereFace (18) S ✗ 72.72 85.56 CosFace (7; 30) L ✓ 97.91 97.91
SphereFace+ (16) S ✗ 73.03 - SphereFace (18) L ✓ 98.16 98.46
CosFace (30) S ✗ 77.11 89.88 ArcFace (7) L ✓ 98.35 98.48
ArcFace (7) S ✗ 77.50 92.34 Circle Loss (26) L ✓ 98.50 98.73
CurricularFace (12) S ✗ 77.65 92.91 CurricularFace (12) L ✓ 98.71 98.64
UniTSFace S ✗ 77.41 93.50 VPL (8) L ✓ 98.80 98.97
ArcFace (7) S ✓ 91.75 93.69 Partial FC (2) L ✓ 98.94 99.10
CurricularFace (12) S ✓ 92.48 94.55 UNPG (13) L ✓ 99.27 -
UniTSFace S ✓ 92.36 94.84 UniTSFace L ✓ 99.27 99.19

Table 4: Comparisons between different methods on the MegaFace Challenge 1. The letter P indicates
the ‘Small’ or ‘Large’ protocols, R denotes whether the label refinement is used. All reported results,
with the exception of our own, were directly taken from their respective papers.

Method Net. MFR IJB-C Verification Acc.
Data. Mask Child. Afri. Cau. S-A. E-A. MR-All 1e-4 1e-5 LFW CFP Age

Contrastive(4) 6.67 10.58 12.40 18.84 13.57 10.38 12.38 58.47 46.75 95.50 74.65 82.28
(N+1)-Tuplet (24) 26.56 28.23 39.16 50.92 47.71 24.06 38.11 83.60 73.93 99.18 96.32 94.18
ArcFace(7) 38.52 31.42 45.87 63.69 59.85 7.66 42.21 48.49 9.18 99.31 97.07 94.51
CosFace(30) 38.79 31.33 48.06 63.56 58.71 15.08 45.12 56.65 11.30 99.36 97.30 94.98
Sphere-Rv1(17) R50 32.80 28.09 40.24 57.24 50.38 22.30 39.92 86.35 75.81 99.38 96.95 94.48
SphereFace2(31) CASIA 35.40 30.55 46.65 62.69 56.23 26.65 44.20 88.41 79.18 99.46 97.42 94.96
VPL(8) 33.86 31.39 46.52 59.93 54.07 27.18 47.02 88.44 81.38 99.30 97.07 94.75
AnchorFace(15) 37.04 32.28 49.60 63.17 59.80 28.88 48.44 88.81 77.82 99.56 97.48 95.18
UNPG(13) 38.62 33.24 49.94 63.85 59.60 29.21 48.66 88.17 77.73 99.45 97.25 94.83
UniTSFace 37.98 31.73 51.45 64.89 59.73 29.56 50.28 89.84 82.64 99.41 97.35 95.13
Partial FC (1) R50 72.28 - 84.86 91.57 88.57 67.52 86.85 - - - - -
UniTSFace WF4M 75.93 72.00 88.17 93.68 91.40 70.55 89.65 97.03 95.18 99.80 99.04 97.93
Partial FC (1) R200 91.87 - 97.79 98.70 98.54 89.52 97.70 97.97 96.93 99.83 99.51 98.70
UniTSFace WF42M 92.87 93.51 98.35 99.03 98.99 90.76 98.16 97.99 97.00 99.83 99.47 98.71

Table 5: Comparisons between different methods on MFR-Ongoing.

5 Comparison with the State-Of-The-Art

MegaFace Challenge 1. In Table 4, we compare both the identification and verification performance
of our UniTSFace with several state-of-the-art methods on MegaFace Challenge 1. These methods
include sample-to-sample based Contrastive Loss (4; 10) and Triplet Loss (22), sample-to-class based
CosFace(30) and ArcFace(7), as well as the hybrid/combined approaches: VPL(8) and UNPG(13).

To ensure a fair comparison, as per the official protocols, we compare our UniTSFace trained
on the CASIA-WebFace with the models trained on ‘Small’ datasets, while UniTSFace trained
on Glint360K is compared with the models trained on ‘Large’ datasets in Table 4. When label
refinement (7) is not used, our UniTSFace achieves the highest accuracy among the compared
models trained on ‘Large’ datasets, with an 85.01% identification accuracy and a 97.85% verification
accuracy. When label refinement (7) is used, the accuracies can be further increased to 99.27% and
99.19% respectively. Though our UniTSFace is slightly lower than CurricularFace (12) in terms
of identification performance on ‘Small’ datasets, UniTSFace achieves the highest accuracy on the
verification track, regardless of whether label refinement is used or not. These results demonstrate the
effectiveness of our UniTSFace in both identification and verification tasks.
MFR Ongoing Benchmarks. We then compare the proposed UniTSFace with Contrastive Loss(4;
10), (N+1)-Tuplet Loss(24), CosFace(30), ArcFace(7), VPL(8), AnchorFace(15), and UNPG(13) on
the MFR Ongoing benchmark. We re-implement these methods with the optimal hyper-parameters
recommended in their original papers. All the compared models are trained with a ResNet-50
backbone and the CASIA-WebFace dataset. As reported in Table 5, our UniTSFace achieves clear
improvement over other methods.
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Additionally, we compare our UniTSFace with the recent Partial FC(1), which is the leading method
on the MFR ongoing challenge. Following the settings of Partial FC(1), we train the proposed
UniTSFace on the WebFace4M and WebFace42M datasets using two different architectures, i.e.,
ResNet-50 and ResNet-200. We can observe that, on average, our performance is better than that of
the Partial FC. Till the submission of this work (May 17 ’23), the proposed UniTSFace ranks first
place on the academic track of the MFR-ongoing leaderboard.

6 Discussion and Conclusion

Discussion.

1) Though the threshold range of USS is narrowed compared to other losses in Fig. 1, is it correct to
claim the word “unified”? Firstly, our theoretical objective is to learn a unified threshold that satisfies
Eq.(3) during the training of a facial model. Therefore, we first assume the existence of such a unified
threshold, and then propose the unified threshold integrated sample-to-sample (USS) loss. We have
proven through our analysis in Section 3.1 that, ideally, a model trained by USS could learn a unified
threshold for the training dataset.

However, we must admit that achieving this ideal goal is subjective to the model capacity, training
hyper-parameters, and even the training dataset itself, which are all independent from our USS loss.
For example, if the backbone network only uses one single linear neural layer, our USS loss definitely
cannot guarantee a unified threshold either. In Fig. 1, using the same backbone architecture and
training hyper-parameters, i) our USS loss is able to achieve a more compact threshold distribution
than the other losses, moreover, and ii) the learned threshold denoted by the blue dashed line lies
around the median of the boxplot, these two observations suggest the superiority of imposing the
unified threshold and are consistent with our expectations.

2) In the testing stage, how to determine the threshold? The threshold learned by the training stage
cannot be directly used in testing. In the testing stage, the threshold is determined according to the
specific testing criteria. For example, when reporting the 1:1 verification accuracy on LFW, CFP-FP,
AgeDB, 10-fold validation is used. We first select the threshold that achieves the highest accuracy in
the first 9 folds and then adopt this threshold to calculate the accuracy in the leave-out fold.

3) How does UniTSFace compare to other methods such as CosFace in terms of computational
efficiency and memory usage? UniTSFace utilizes the ResNet architecture as its backbone and
optimizes the parameters using the algorithmic average of the cosine-margin Softmax loss and the
proposed USS loss. When compared to CosFace, the extra computational cost brought by USS
loss is relatively small, as the computational consumption and memory usage mostly depend on the
convolutional operations inherent to the selected network architecture and the resolutions of the input
images. In experiments, we indeed found that the computational differences between these methods
during both the testing and training stages are negligible.

Conclusion.

We propose the USS loss for deep face recognition by explicitly defining a unified threshold that
separates all positive sample-to-sample pairs from negative ones. Though this unified threshold
learned in the training stage cannot be directly applied to the testing stage, the model trained by
USS is desired to extract more discriminative features and subsequently improve the face recognition
performance in various testing scenarios, which have been demonstrated with extensive experiments.

Furthermore, the proposed USS loss can be effortlessly extended to the Marginal USS loss and can
also be seamlessly combined with other sample-to-class losses. In our experiments, we have combined
the USS loss with ArcFace and CosFace methods, and the combined approaches consistently surpass
their respective individual counterparts. We denote the fusion of the CosFace and USS losses as
“UniTSFace” which we have compared with other sophisticated combinations such as VPL, UNPG,
and AnchorFace. The experimental results on multiple benchmark datasets further suggest the
superiority of our UniTSFace.

In conclusion, we believe our USS loss provides the research community with a much more versatile
and effective solution for face recognition tasks.
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Appendix for USS

A Inequalities about Lnaive

We here present the detailed derivations for the inequalities about the naive loss Lnaive. For any
sample X(i) captured from subject i, with feature x(i) = M(X(i)), the naive loss Lnaive comprises
of one positive sample-to-sample similarity and N − 1 negative similarities,

Lnaive(X
(i)) =− γg(x(i),x

(i)
∗ ) +

1

N − 1

N∑
j=1
j ̸=i

γg(x(i),x
(j)
∗ ), (25)

where x(i)
∗ = M(X

(i)
∗ ), x

(j)
∗ = M(X

(j)
∗ ), and X

(i)
∗ and X

(j)
∗ are randomly taken from the subject

i, j, with j ̸= i.

Using the inequality of arithmetic and geometric means, i.e., n
√∏n

i=1 ai ≤
1
n

∑n
i=1 ai for ai ≥ 0,

we derive four inequalities about Lnaive.

Lnaive(X
(i))

= − γg(x(i),x
(i)
∗ ) +

1

N − 1

N∑
j=1
j ̸=i

γg(x(i),x
(j)
∗ )

= − N

N − 1

(N − 1

N
γg(x(i),x

(i)
∗ )− 1

N

N∑
j=1
j ̸=i

γg(x(i),x
(j)
∗ )

)
(26)

= − N

N − 1

(
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(27)
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[
log exp

(
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− log exp
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∗ )

2
− (N − 1)γg(x(i),x

(i)
∗ )

)
(39)

=
2

N − 1

( N∑
j=1
j ̸=i

log exp
γg(x(i),x

(j)
∗ ) + γg(x(i),x

(i)
∗ )

2
− (N − 1) log exp

(
γg(x(i),x

(i)
∗ )

))
(40)

≤ 2

N − 1

( N∑
j=1
j ̸=i

log
eγg(x

(i),x(j)
∗ ) + eγg(x

(i),x(i)
∗ )

2
− (N − 1) log exp

(
γg(x(i),x

(i)
∗ )

))
(41)

=
2

N − 1

N∑
j=1
j ̸=i

(
log

eγg(x
(i),x(j)

∗ ) + eγg(x
(i),x(i)

∗ )

2
− log eγg(x

(i),x(i)
∗ )

)
(42)

=
2

N − 1

N∑
j=1
j ̸=i

log
eγg(x

(i),x(j)
∗ ) + eγg(x

(i),x(i)
∗ )

2eγg(x(i),x
(i)
∗ )

(43)

=
2

N − 1

N∑
j=1
j ̸=i

log
[1
2

(
1 +

eγg(x
(i),x(j)

∗ )

eγg(x(i),x
(i)
∗ )

)]
(44)

=
2

N − 1

N∑
j=1
j ̸=i

log
(
1 +

eγg(x
(i),x(j)

∗ )

eγg(x(i),x
(i)
∗ )

)
− 2 log 2, (45)

and

N∑
i=1

Lnaive(X
(i))

=
1

N − 1

( N∑
i=1

N∑
j=1
j ̸=i

γg(x(i),x
(j)
∗ )− (N − 1)

N∑
i=1

γg(x(i),x
(i)
∗ )

)
(46)
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=
1

N − 1

( N∑
i=1

N∑
j=1
j ̸=i

γg(x(i),x
(j)
∗ )−

N∑
i=1

N∑
j=1
j ̸=i

γg(x(j),x
(j)
∗ )

)
(47)

=
1

N − 1

N∑
i=1

N∑
j=1
j ̸=i

(
γg(x(i),x

(j)
∗ )− γg(x(j),x

(j)
∗ )

)
(48)

=
1

N − 1

N∑
i=1

N∑
j=1
j ̸=i

(
γg(x(i),x

(j)
∗ ) + γg(x(j),x

(j)
∗ )− 2γg(x(j),x

(j)
∗ )

)
(49)

=
2

N − 1

N∑
i=1

N∑
j=1
j ̸=i

(
log exp

γg(x(i),x
(j)
∗ ) + γg(x(j),x

(j)
∗ )

2
− log exp

(
γg(x(j),x

(j)
∗ )

))
(50)

≤ 2

N − 1

N∑
i=1

N∑
j=1
j ̸=i

(
log

eγg(x
(i),x(j)

∗ ) + eγg(x
(j),x(j)

∗ )

2
− log exp

(
γg(x(j),x

(j)
∗ )

))
(51)

=
2

N − 1

N∑
i=1

N∑
j=1
j ̸=i

[
log

(
eγg(x

(i),x(j)
∗ ) + eγg(x

(j),x(j)
∗ )

)
− log exp

(
γg(x(j),x

(j)
∗ )

)]
− 2N log 2

(52)

=
2

N − 1

N∑
i=1

N∑
j=1
j ̸=i

log
(
1 +

eγg(x
(i),x(j)

∗ )

eγg(x(j),x
(j)
∗ )

)
− 2N log 2. (53)

B Marginal Sample-to-Sample Based Losses

We have derived three sample-to-sample based losses in the manuscript, i.e., USS loss, sample-to-
sample based softmax, and BCE losses. We hereby present their respective marginal versions:

Luss-m(X
(i)) = log

(
1 + e−γ(g(x(i),x(i)

∗ )−m)+b
)
+

N∑
j=1
j ̸=i

log
(
1 + eγg(x

(i),x(j)
∗ )−b

)
, (54)

Lsoft-m(X
(i)) = = − log

eγ(g(x
(i),x(i)

∗ )−m)∑N
j=1 eγg(x(i),x

(j)
∗ )

, (55)

Lbce-m(X
(i)) = log

(
1 + e−γ(g(x(i),x(i)

∗ )−m)+bi
)
+

N∑
j=1
j ̸=i

log
(
1 + eγg(x

(i),x(j)
∗ )−bj

)
. (56)

The experimental evaluations of such marginal losses have been included in Sec. 4.3 of the manuscript.

C Training Details

In our work, we choose the cosine function to represent the similarity of two features, i.e.,

g(x,x∗) = cos(x,x∗) =
⟨x,x∗⟩
∥x∥∥x∗∥

, for ∀ x,x∗ ∈ F . (57)

Following (30; 7), we use customized ResNets (such as ResNet-50, ResNet-100, and ResNet-200)
as our backbone networks. We implement all models using Pytorch and train them using the SGD
optimizer with a weight decay of 5e-4 and momentum of 0.9. We use γ = 64 for Luss, Lsoft, and Lbce
in all experiments. Note that, we use a combination of CosFace(m = 0.4) and our USS(m = 0.1) as
UniTSFace in Tables 4 and 5.

For the face models (using ResNet-50 as the backbone) on CASIA-WebFace, we train them over 28
epochs with a batch size of 512. The learning rate starts at 0.1 and is reduced by a factor of 10 at the
16th and 24th epoch. All models in ablation and parameter study were trained on CASIA-WebFace.
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In Table 1, the margin m of Lsoft-m, Lbce-m and Luss-m are set to be 0.1. In Table 3, the margin m
of ArcFace and CosFace are set to be 0.5 and 0.4 respectively. The UniTSFace under the ‘Small’
protocol of MegaFace Challenge 1 in Table 4 and the models re-implemented in MFR Ongoing (the
first ten rows in Table 5) were also trained on CASIA-WebFace.

For Glint360K, we train the models(ResNet-100) for 20 epochs using a batch size of 1024. Initially,
the learning rate was set at 0.1, and a polynomial decay strategy (power=2) was applied to the learning
rate schedule. The UniTSFace under the ‘Large’ protocol of MegaFace Challenge 1 (as shown in
Table 4) was trained on Glint360K.

For WebFace4M, we train the models(ResNet-50) for 20 epochs using a batch size of 1024. The
learning rate was initially set at 0.1, while a polynomial decay strategy (power=2) was applied to the
learning rate schedule. The UniTSFace at the 12th row of Table 5 was trained on WebFace4M.

In the case of WebFace42M, we train the models(ResNet-200) for 20 epochs, using a larger batch
size of 4096. The learning rate linearly warmed up from 0 to 0.4 during the first epoch, followed by a
polynomial decay (power=2) for the remaining 19 epochs. The UniTSFace at the last row of Table 5
was trained on WebFace42M.

D Megaface Challenge 1

We notice that the official MegaFace challenge website has been decommissioned and MegaFace data
are no longer being distributed. However, despite these changes, we can still utilize the previously
released data and development kit to evaluate the performance of trained models. Specifically, we have
adopted the MegaFace testsuite provided by InsightFace (https://github.com/deepinsight/
insightface/tree/master/recognition/_evaluation_/megaface), which also includes the
official devkit.
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