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Abstract

Diffusion models have achieved remarkable success in diverse domains such as
image synthesis, super-resolution, and 3D molecule generation. Surprisingly, the
application of diffusion models in graph learning has garnered little attention. In
this paper, we aim to bridge this gap by exploring the use of diffusion models for
unsupervised graph representation learning. Our investigation commences with
the identification of anisotropic structures within graphs and the recognition of
a crucial limitation in the vanilla forward diffusion process when dealing with
these anisotropic structures. The original forward diffusion process continually
adds isotropic Gaussian noise to the data, which may excessively dilute anisotropic
signals, leading to rapid signal-to-noise conversion. This rapid conversion poses
challenges for training denoising neural networks and obstructs the acquisition of
semantically meaningful representations during the reverse process. To overcome
this challenge, we introduce a novel class of models termed directional diffusion
models. These models adopt data-dependent, anisotropic, and directional noises
in the forward diffusion process. In order to assess the effectiveness of our pro-
posed models, we conduct extensive experiments on 12 publicly available datasets,
with a particular focus on two distinct graph representation learning tasks. The
experimental results unequivocally establish the superiority of our models over
state-of-the-art baselines, underscoring their effectiveness in capturing meaningful
graph representations. Our research not only sheds light on the intricacies of the
forward process in diffusion models but also underscores the vast potential of these
models in addressing a wide spectrum of graph-related tasks. Our code is available
at https://github.com/statsle/DDM.

1 Introduction

Unsupervised representation learning through diffusion models has emerged as a prominent area
of research in computer vision. Several methods that leverage diffusion models, such as those
proposed by Zhang et al. (2022); Preechakul et al. (2022); Abstreiter et al. (2021); Baranchuk
et al. (2021), have been put forth for representation learning. Notably, Baranchuk et al. (2021)
showed that the intermediate actiations obtained from denoising networks contain valuable semantic
information. Their findings emphasize the effectiveness of diffusion models in learning meaningful
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Figure 1: 2D visualization of the data using SVD decomposition. (a) Visualization of the node
features in CIFAR-10, with different colors indicating different labels. (b) Visualization of the two
classes in Amazon-Photo. (c) Visualization of the graph features in IMDB-M.

visual representations. More recently, Choi et al. (2022) showed that restoring data corrupted with
certain noise levels offers a proper pretext task for the model to learn rich visual concepts.

Despite the increasing research on diffusion models in computer vision, there is still a noticeable
shortage of studies exploring the use of diffusion models in graph learning. Previous works, such
as those by Haefeli et al. (2022) and Jo et al. (2022), have primarily concentrated on employing
diffusion models for generating discrete graph structures. However, the realm of graph representation
learning, a fundamental and challenging aspect of graph learning, has yet to harness the potential of
diffusion models. To effectively adapt and incorporate diffusion models into graph representation
learning, and to facilitate progress in this domain, it is imperative to identify and understand the
obstacles hindering the application of diffusion models.

To gain insights into the limitations of the vanilla diffusion models which are commonly adopted
for image generation tasks (Ho et al., 2020), we first investigate the underlying structural disparities
between images and graphs. In particular, we employ singular value decomposition (SVD) on both
image and graph data, and visualize the projected data in a 2-dimensional plane, as shown in Figure
1. This figure illustrates that the projected data from Amazon-Photo and IMDB-M exhibit strong
anisotropic structures along only a few directions, while the projected images from CIFAR-10 form
a relatively more isotropic distribution within a circular shape centered around the origin. This
observation strongly implies that graph data may feature distinctive anisotropic and directional
structures that are less prevalent in image data. As we will subsequently demonstrate, the vanilla
diffusion models with isotropic forward diffusion processes result in a rapid decrease in the signal-to-
noise ratios (SNRs), which in turn diminishes their effectiveness in learning anisotropic structures.
Therefore, it is imperative to develop new approaches that can effectively account for these anisotropic
structures.

This paper presents directional diffusion models as a solution for better learning anisotropic struc-
tures. Our approach involves incorporating data-dependent and directional noise into the forward
diffusion process, effectively mitigating the challenge of rapid signal-to-noise ratio deterioration. The
intermediate activations obtained from the denoising network excel at capturing valuable semantic
and topological information crucial for downstream tasks. Consequently, the proposed directional
diffusion models offer a promising approach for generative graph representation learning. Numeri-
cally, we perform experiments on 12 benchmark datasets covering both node and graph classification
tasks. The results consistently highlight the superior performance of our models when compared to
state-of-the-art contrastive learning and generative approaches (Hou et al., 2022). Notably, for graph
classification problems, our directional diffusion models even surpass supervised baseline methods,
underscoring the considerable potential of diffusion models in the field of graph representation
learning.

Our main contributions are summarized as follows.
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1. We contribute to the exploration of anisotropic structures in graph data, being among the
pioneers in the literature. We demonstrate that the vanilla forward diffusion process with
isotropic white noise leads to a rapid decline in signal-to-noise ratios for graph learning
problems. This issue hampers the ability of denoising networks to extract fine-grained
feature representations across a wide range of SNRs.

2. We propose novel directional diffusion models specifically designed for graph data, incorpo-
rating data-dependent and directional noise in the forward diffusion process. Our proposed
models effectively address the issue of the rapid decline of SNRs, enabling better graph
representation learning.

3. Numerically, our proposed directional diffusion models outperform state-of-the-art self-
supervised methods and even supervised methods on 12 benchmark datasets. Additionally,
we provide comprehensive ablation studies to gain a deeper understanding of the mechanisms
underlying directional diffusion models.

2 Related work

Graph representation learning Graph representation learning aims to embed nodes or entire
graphs into a low-dimensional vector space, where the structural and relational properties can be used
for downstream tasks. Two prevalent paradigms for graph representation learning are contrastive
learning and generative self-supervised learning. Contrastive learning approaches such as DGI
(Velickovic et al., 2019), Infograph (Sun et al., 2019), GraphCL (You et al., 2020), GRACE (Zhu
et al., 2020), and GCC (Qiu et al., 2020), have achieved promising results in some particular graph
learning tasks. These methods leverage local-global mutual information maximization for node and
graph representation learning. GraphCL learns node embeddings that are invariant to graph-level
transformations, while GRACE and GCC use subgraph sampling and graph perturbation to create
augmented pairs. Generative self-supervised learning aims to recover masked components of the
input data through approaches such as GraphMAE (Hou et al., 2022), a masked graph autoencoder
that focuses on feature reconstruction by utilizing a masking strategy and scaled cosine error. This
method outperforms self-supervised learning baselines, and revitalizes the concept of generative
self-supervised learning on graphs. GPT-GNN (Hu et al., 2020b) is a recent approach that introduces a
self-supervised attributed graph generation task to pre-train a GNN so that it can capture the structural
and semantic properties of the graph.

Denoising diffusion probabilistic models Denoising diffusion probabilistic models (Ho et al.,
2020; Song et al., 2020), or simply diffusion models, are a class of probabilistic generative models
that turn noise to a data sample and thus are mainly used for generation tasks (Dhariwal and Nichol,
2021; Rombach et al., 2022).Recently, diffusion models have been used as a representation learning
toolbox in computer vision (Preechakul et al., 2022; Abstreiter et al., 2021; Baranchuk et al., 2021).
For instance, Preechakul et al. (2022) proposed Diff-AE, a method that concurrently trains an encoder
to discover high-level semantics and a conditional diffusion model that uses these representations
as input conditions. Abstreiter et al. (2021) augmented the denoising score matching framework
to enable representation learning without any supervised signal. Recently, diffusion models have
also found applications in handling graph data. Haefeli et al. (2022) showed that diffusion models
for graphs benefited from discrete state spaces. Jo et al. (2022) proposed the graph diffusion using
stochastic differential equations. To the best of our knowledge, there have been no works for
diffusion-model-based graph representation learning.

3 The effect of anisotropic structures

As discussed in the introduction section, significant structural differences exist between graphs and
natural images. In addition to the analysis of the Amazon-Photo and IMDB-M datasets, we conducted
similar examinations on all other graph benchmark datasets, and the detailed results can be found
in the appendix. Moreover, it is important to highlight that the anisotropic structures, referred to as
categorical directional dependence, are frequently encountered in natural language data (Gao et al.,
2019; Li et al., 2020). It is intriguing to observe that diffusion models have not yet made significant
strides in the realm of natural language processing. This further underscores the significance of
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Figure 2: The signal-to-noise ratio curve along different diffusion steps.

investigating and tackling the challenges posed by anisotropic structures within the framework of
diffusion models.

This section delves deeper into the examination of how anisotropic structures in graphs impact the
effectiveness of vanilla diffusion models. In the vanilla forward diffusion process, isotropic Gaussian
noise is sequentially added to the raw data point x0 ∼ q(x0) until it transforms into isotropic white
noise N (0, I)2. This approach is reasonable when the data follow isotropic distributions, as it
gradually transforms the data into noise, generating a sequence of noisy samples with a wide range
of SNRs. However, in cases where the data exhibits anisotropy, the addition of isotropic noise can
quickly contaminate the data structure, causing the SNRs to rapidly approach zero. Consequently,
denoising networks struggle to extract fine-grained feature representations.

To explore the impact of introducing isotropic noise on the learning of anisotropic graphs, we conduct
an experiment to measure the SNRs for both node and graph classification tasks at each forward step.
We observe how these SNRs change throughout the forward diffusion process. Initially, we pre-train
a graph neural network (GNN) denoted as E to serve as a feature extractor, projecting the graph data
into a linearly separable space. Subsequently, we optimize the weight vector w ∈ Rd in this linear
space using Fisher’s linear discriminant analysis. The weight vector w is then employed to compute
the SNR at each forward diffusion step, where SNR = wTSBw/w

TSWw. In this equation, SB

represents the scatter between class variability, and SW represents the scatter within-class variability.
This SNR quantifies the discriminative power of the learned representations at different stages of the
diffusion process.

We conducted this experiment on all graph benchmark datasets to assess the impact of isotropic noise
on learning anisotropic graphs. Here, we present the results for IMDB-M and Amazon-Photo in
Figure 2a, while the additional results can be found in the appendix. In Figure 2a, we observe that
for anisotropic graph data and isotropic noise, the SNR rapidly decreases to 0 at around 50 steps
for Amazon-Photo and 400 steps for IMDB-M. Furthermore, the SNR remains close to 0 thereafter,
indicating that the incremental isotropic white noise quickly obscures the underlying anisotropic
structures or signals. Consequently, the denoising networks are unable to learn meaningful and
discriminative feature representations that can be effectively utilized for downstream classification
tasks. In contrast, when utilizing our directional diffusion models, which incorporate a data-dependent
and directional forward diffusion process (to be introduced later), the SNR declines at a slower pace.
This slower decline enables the extraction of fine-grained feature representations with varying SNRs,
preserving the essential information of the anisotropic structures.

Overall, these studies underscore the significance of considering anisotropic data structures when
designing forward diffusion processes and the corresponding diffusion models, especially in the
context of graph data.

2Bold symbols are used for matrices, but not for vectors.
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Figure 3: Directional noise vs white noise. We sample directional and white noise1, and subsequently
add the noise in a sequential manner. The upper panel displays the samples with directional noise at
the diffusion steps t = 0, 100, 500, 800, 1000, while the lower panel exhibits the samples with white
noise at these identical diffusion steps. The two distinct colors indicate two different classes.

4 Directional diffusion models

In this section, we start by introducing the requisite notation. Subsequently, we propose the directional
diffusion models (DDMs), with a specific focus on their application to graph representation learning.
Furthermore, we discuss how to extract feature representations from DDMs, a pivotal aspect for
downstream tasks.

Notation We denote a graph by G = (V,A,X), where V is the node set, N = |V| is the node num-
ber, A ∈ RN×N is the adjacency matrix (binary or weighted), and X = (x1, x2, · · · , xN )T ∈ RN×d

is the node feature matrix. Our goal is to learn a network, denoted as f : RN×d ×RN×N → RN×dh ,
to encode graph features into representations H = (h1, h2, · · · , hN )T ∈ RN×dh , where hi ∈ Rdh is
the representation for node i. Mathematically, we have H = f(X,A). These representations can
subsequently be used for downstream tasks, such as graph and node classification.

Directional diffusion models In the preceding section, our investigation uncovered a pivotal factor
contributing to the underwhelming performance of vanilla diffusion models in graph learning: the
swift deterioration of signal-to-noise ratios. To tackle this challenge, we introduce the directional
noise in the forward diffusion process, which involves transforming the isotropic Gaussian noise into
an anisotropic noise by incorporating two additional constraints. These two constraints play a vital
role in enhancing the efficacy of vanilla diffusion models.

Let Gt = (A,Xt) be the noisy graph at the t-th forward diffusion step, where Xt =
{xt,1, xt,2, ..., xt,N} represents the learned features at the t-th step. Specifically, the node feature
xt,i ∈ Rd of node i at time t is obtained as follows:

xt,i =
√
ᾱtx0,i +

√
1− ᾱtϵ

′, (1)

ϵ′ = sgn(x0,i)⊙ |ϵ̄|, (2)
ϵ̄ = µ+ σ ⊙ ϵ where ϵ ∼ N (0, I) , (3)

where x0,i is the raw feature vector of node i, µ ∈ Rd and σ ∈ Rd consist of the means and standard
deviations of the d features across N nodes, respectively. The symbol ⊙ denotes the Hadamard
product. During the mini-batch training, µ and σ are calculated using graphs within the batch. The
parameter ᾱt :=

∏t
i=0(1 − βi) ∈ (0, 1) represents the variance schedule (Ho et al., 2020) and is

parameterized by a decreasing sequence {β1:T ∈ (0, 1)}.
1The generation parameters are provided in the appendix.
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In contrast to the conventional forward diffusion process, our directional diffusion models integrate
two additional constraints, as denoted in equations (2) and (3). The second constraint, (3), transforms
the data-independent Gaussian noise into an anisotropic and batch-dependent noise. In this constraint,
each coordinate of the noise vector shares the same empirical mean and empirical standard deviation
as the corresponding coordinate in the data within the same batch. This constraint confines the
diffusion process to the local neighborhood of the batch, preventing excessive deviation from the
batch and preserving local coherence.

The first constraint, (2), aligns the noise ϵ′ with the feature x0,i to ensure that they share the same
coordinate signs. This guarantees that adding noise does not result in noisy features pointing in the
opposite direction of x0,i. By preserving the directionality of the original feature, this constraint plays
a crucial role in maintaining the inherent data structure during the forward diffusion process. These
two constraints work in tandem to ensure that the forward diffusion process respects the underlying
data structure and mitigates the rapid degradation of signals. Consequently, the SNR decays slowly,
enabling our directional diffusion models to effectively extract meaningful feature representations
across various steps. This, in turn, enhances the utility of these representations in downstream tasks
by providing reliability and informativeness.

To illustrate the impact of directional noise, we refer to the experiments conducted in Section 3.
Our newly proposed "directional noise" ensures a smoother decline of the SNRs throughout the
diffusion process, confirming our initial intuition. To further visualize the differences between using
directional noise and isotropic noise in the forward diffusion process, we conducted simulations on
two ellipses and sequentially added noise, as depicted in Figure 3. The figure clearly illustrates the
distinct behaviors exhibited by the two types of noise. With directional noise, the samples maintain a
clear decision boundary, indicating the preservation of discriminative structures during the diffusion
process. Conversely, samples with white noise quickly blend into pure noise, leading to the loss of
discriminative information. This visual comparison unequivocally underscores the superiority of
directional noise in preserving the structural information of the data during the forward diffusion
process.

Model architecture We follow the same training strategy as in the vanilla diffusion models, where
we train a denoising network fθ in the reverse diffusion process. Since the posterior of the forward
process with directional noise cannot be expressed in a closed form, we borrow the idea from Bansal
et al. (2022); Li et al. (2022) and let the denoising model fθ directly predict X0. The loss function L
is defined as the expected value of the Euclidean distance between the predicted feature representation
fθ(Xt,A, t) and the original feature representation X0:

L = EX0,t∥fθ(Xt,A, t)−X0∥2. (4)

This loss function ensures that the model predicts X0 at every step.

To parameterize the denoising network fθ, we employ a symmetrical architecture inspired by the
successful UNet architecture in computer vision (Dhariwal and Nichol, 2021). Figure 4 illustrates
our DDM framework, comprising four GNN layers and one multilayer perception (MLP). The first
two GNN layers function as the encoder, responsible for denoising the target node by aggregating
neighboring information. The final two GNN layers serve as the decoder, mapping the denoised
node features to a latent code and smoothing the latent code among neighboring nodes. To address
the potential issue of over-smoothing and account for long-distance dependencies in the graph,
we introduce skip-connections between the encoder and decoder. The algorithm, along with the
mini-batch training procedure, is presented in the appendix.

Learning representations For a given graph G = (A,X), the learned node-level representations
are obtained from the activations of the denoising network fθ at user-selected time steps. It is
important to note that we only utilize the activations from the decoder of fθ since they incorporate
the encoder activations through skip connections. As depicted in Figure 4, at each time step k,
we introduce k steps of directional noise following (1) and employ the denoising network fθ to
denoise and encode the noisy data Xk. The decoder of fθ maps the denoised node features to a latent
code while smoothing the latent code among neighboring nodes. We extract the activations from
the decoder of fθ and concatenate them to obtain Hk = {hk,1, hk,2, · · · , hk,N} ∈ RN×dh . The
complete pipeline is presented in the appendix.
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Extracting the last two GNN’s feature maps in the denoising network as the representation of the
graph.

5 Experiments

This section provides an evaluation of the directional diffusion models from two perspectives. First,
we compare our models with existing state-of-the-art methods on various graph learning tasks,
including node and graph classification tasks. This allows us to assess the effectiveness of our
approach for graph representation learning problems. Second, we conduct several studies to gain a
better understanding of the effect of our directional noise and evaluate the necessity of our design
choices.

In all experiments, we follow a two-step process. First, we pre-train a DDM on the dataset in an
unsupervised manner. Then, we extract feature representations from diffusion steps 50, 100, 200
using the pre-trained model. Although this approach is inspired by the experimental results and
insights from Section 3, it is deliberately not fine-tuned for each dataset. Ideally, fine-tuning with
carefully selected steps for each dataset could further improve the performance.

5.1 Graph classification

To demonstrate the effectiveness of our method, we conduct comparisons with state-of-the-art
(SOTA) unsupervised learning methods, which include GCC (Qiu et al., 2020), Infograph (Sun et al.,
2019), GraphCL (You et al., 2020), JOAO (You et al., 2021), MVGRL (Hassani and Khasahmadi,
2020), and GraphMAE (Hou et al., 2022). We also compare our approach with supervised learning
methods, specifically GIN (Xu et al., 2018) and DiffPool (Ying et al., 2018). These experiments
are conducted on seven widely-used datasets, namely MUTAG, IMDB-B, IMDB-M, PROTEINS,
COLLAB, and REDDIT-B (Yanardag and Vishwanathan, 2015). Node degrees are used as initial
node features for IMDB-B, IMDB-M, REDDIT-B, and COLLAB, while node labels are employed
for MUTAG and PROTEINS, in accordance with prior literature (Hou et al., 2022). We extract
graph-level representations at various steps, train linear SVMs using LIBSVM (Chang and Lin,
2011), and independently test them. The final predictions are obtained by majority vote, and we
report the average accuracy and standard deviation, calculated after five runs. Additional details on
hyper-parameters can be found in the appendix.

Table 1 presents the results, clearly indicating that our DDM achieves the most competitive, if not
the best, performance across all benchmark datasets. Notably, our DDM outperforms even the
supervised approaches in certain experiments, such as IMDB-B, COLLAB, and MUTAG. This
remarkable performance can be attributed to two key factors. First, from a data perspective, these
datasets have limited information in their node features, which can hinder the accuracy of supervised
learning (Hou et al., 2022). By leveraging directional noise diffusion, our DDM effectively acts as a
pseudo-infinite-step data augmentation technique, generating numerous samples while preserving the
classification boundary. This augmentation significantly enhances the effectiveness of unsupervised
learning. Second, from a model perspective, the DDM framework harnesses the power of directional

7



Table 1: Results in unsupervised representation learning for graph classification.
Dataset IMDB-B IMDB-M COLLAB REDDIT-B PROTEINS MUTAG

GIN 75.1±5.1 52.3±2.8 80.2±1.9 92.4±2.5 76.2±2.8 89.4±5.6
DiffPool 72.6±3.9 - 78.9±2.3 92.1±2.6 75.1±2.3 85.0±10.3
Infograph 73.03±0.87 49.69±0.53 70.65±1.13 82.50±1.42 74.44±0.31 89.01±1.13
GraphCL 71.14±0.44 48.58±0.67 71.36±1.15 89.53±0.84 74.39±0.45 86.80±1.34

JOAO 70.21±3.08 49.20±0.77 69.50±0.36 85.29±1.35 74.55±0.41 87.35±1.02
GCC 72 49.4 78.9 89.8 - -

MVGRL 74.20±0.70 51.20±0.50 - 84.50±0.60 - 89.70±1.10
GraphMAE 75.52±0.66 51.63±0.52 80.32±0.46 88.01±0.19 75.30±0.39 88.19±1.26

DDM 76.40±0.22 52.53±0.31 81.72±0.31 89.15 ±1.3 75.47 ±0.50 91.51 ±1.45

Table 2: Results in unsupervised representation learning for node classification.
Dataset Cora Citeseer PubMed Ogbn-arxiv Computer Photo

GAT 83.0 ± 0.7 72.5 ± 0.7 79.0 ± 0.3 72.10 ± 0.13 86.93 ± 0.29 92.56 ± 0.35
DGI 82.3 ± 0.6 71.8 ± 0.7 76.8 ± 0.6 70.34 ± 0.16 83.95 ± 0.47 91.61 ± 0.22

MVGRL 83.5 ± 0.4 73.3 ± 0.5 80.1 ± 0.7 - 87.52 ± 0.11 91.74 ± 0.07
BGRL 82.7 ± 0.6 71.1 ± 0.8 79.6 ± 0.5 71.64 ± 0.12 89.68 ± 0.31 92.87 ± 0.27

InfoGCL 83.5 ± 0.3 73.5 ± 0.4 79.1 ± 0.2 - - -
CCA-SSG 84.0 ± 0.4 73.1 ± 0.3 81.0 ± 0.4 71.24 ± 0.20 88.74 ± 0.28 93.14 ± 0.14
GPT-GNN 80.1 ± 1.0 68.4 ± 1.6 76.3 ± 0.8 - - -
GraphMAE 84.2 ± 0.4 73.4 ± 0.4 81.1 ± 0.4 71.75 ± 0.17 88.63 ± 0.17 93.63 ± 0.22

DDM 83.4 ± 0.2 74.3 ± 0.3 81.7 ± 0.8 71.29 ± 0.18 90.56 ± 0.21 95.09 ± 0.18

noise and ensures that the learned representations capture discriminative information by preventing
the rapid decay of signal-to-noise ratios.

5.2 Node classification

To assess the quality of the node-level representations produced by our method, we conduct eval-
uations of DDM on six standard benchmark datasets: Cora, Citeseer, PubMed (Yang et al., 2016),
Ogbn-arxiv (Hu et al., 2020a), Amazon-Computer (Zhang et al., 2021), and Amazon-Photo (Zhang
et al., 2021). We follow the publicly available data-split schema and employ the evaluation protocol
used in the literature. Graph-level representations are extracted at different diffusion steps, and an
independent linear classifier is trained for each step. The final predictions are determined through
majority voting, and we report the mean accuracy on the test nodes. Additional details regarding
hyperparameters can be found in the appendix.

We compare DDM with state-of-the-art generative unsupervised models, specifically GPT-GNN (Hu
et al., 2020b) and GraphMAE (Hou et al., 2022). Furthermore, we include the results of contrastive
unsupervised models for comparison, which include DGI (Velickovic et al., 2019), MVGRL (Hassani
and Khasahmadi, 2020), GRACE (Zhu et al., 2020), BGRL (Thakoor et al., 2021), InfoGCL (Xu et al.,
2021), and CCA-SSG (Zhang et al., 2021). As shown in Table 2, DDM achieves competitive results
across all benchmark datasets. This underscores the capacity of the generative diffusion method to
learn meaningful node-level representations and highlights the effectiveness of DDM in node-level
tasks. Notably, the node features used in node classification are text embeddings, showcasing the
efficacy of our directional noise in continuous word vector spaces.

5.3 Understanding the directional noise

The aforementioned studies provide evidence that our approach either outperforms or is on par
with existing state-of-the-art (SOTA) methods. To gain a deeper understanding, we conduct a
comprehensive investigation into the impact of different types of noise. Additionally, we analyze the
effect of directional noise by removing the two constraints specified in equations (3) and (2).
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We examine the representations extracted from models trained with directional noise and isotropic
white noise at each reverse step. The results, as depicted in Figure 5, reveal significant differences
between the two approaches. With white noise, only the representations corresponding to the early
steps of the reverse process contained useful discriminative information, while the representations for
later steps are mostly uninformative. This is in stark contrast to the case of directional noise, where
the learned representations consistently preserve sufficient information for downstream classification
tasks.

In our additional experiments, we consistently observe that directional diffusion models outperform
vanilla diffusion models across all datasets, particularly in node classification tasks. This superior
performance can be attributed to the nature of node classification datasets, which often use word
vectors as node features. These word vectors have higher feature dimensionality and greater anisotropy.
The effectiveness of our directional approach is further supported by these findings, reinforcing its
value in graph representation learning.

To examine the impact of different schedulers, we
compare the performance of the vanilla diffusion
model using isotropic white noise and DDM under
the cosine and sigmoid scheduler in Chen (2023).
Table 3 collects the results. Different schedulers
indeed influence the model performance. However,
the performance of the vanilla diffusion model with
isotropic white noise heavily relies on the hyperpa-
rameters of the scheduler. Yet, irrespective of the
scheduler employed, our proposed data-dependent
anisotropic noise consistently yields superior per-
formance.

Table 3: Results for different schedulers.

Noise schedule function Noise type Citeseer PubMed MUTAG
cosine (s=0, e=1, τ = 1) DDM 0.715 0.824 0.867
cosine (s=0, e=1, τ = 1) White Noise 0.371 0.453 0.692

sigmoid (s=0, e=3, τ = 1) DDM 0.710 0.806 0.877
sigmoid (s=0, e=3, τ = 1) White Noise 0.581 0.434 0.691

Lastly, we conduct an ablation study to examine
the effects of the two constraints. Table 4 presents
results, where "w/o R" indicates the removal of
the constraint (2) and "w/o S&R" indicates the re-
moval of both constraints. As shown in Table 4,
the introduction of anisotropic Gaussian noise gen-
erated through (3) led to a significant improvement
compared to isotropic Gaussian noise. Further-
more, the inclusion of constraint (2) provided an
additional and indispensable improvement. This
finding further confirms the importance of making
the noise in the forward process data-dependent
and anisotropic.

Table 4: An ablation study on the two constraints.

Dataset w/o S&R w/o R Full

Citeseer 34.37±0.5 60.77±0.2 74.3 ± 0.3
PubMed 73.07±0.7 77.60±0.4 81.7 ± 0.8

IMDB-M 49.80±0.53 50.87±0.49 52.53±0.31
COLLAB 80.50±0.36 81.04±0.17 81.72±0.31
MUTAG 82.89±1.16 87.25±1.12 91.51±1.45

6 Conclusions

This paper unveils the presence of anisotropic structures in graphs, which pose challenges for vanilla
diffusion models in graph representation learning. To address this limitation, we introduce directional
diffusion models, a novel class of diffusion models that leverage data-dependent and anisotropic noise
to better handle anisotropic structures. Through experiments conducted on 12 benchmark datasets,
we demonstrate the effectiveness of our proposed method.

There are several promising avenues for future research. One direction is to develop methods that
can automatically determine the optimal set of diffusion steps for each dataset, further enhancing
the performance of our directional diffusion models. This could involve techniques such as adaptive
selection of diffusion steps. Additionally, exploring the application of our method to computer
vision and natural language processing tasks holds great potential for advancing these domains. By
adapting and extending our directional diffusion models to these areas, we may leverage their inherent
strengths to improve representations and enable effective learning tasks such as image recognition,
object detection, sentiment analysis, and language understanding.
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Figure 5: Comparing the accuracy in downstream tasks when using representations extracted from
models trained with directional noise and white noise at every step of the reverse process.
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