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Abstract

Visual model-based RL methods typically encode image observations into low-
dimensional representations in a manner that does not eliminate redundant in-
formation. This leaves them susceptible to spurious variations – changes in
task-irrelevant components such as background distractors or lighting conditions.
In this paper, we propose a visual model-based RL method that learns a latent
representation resilient to such spurious variations. Our training objective encour-
ages the representation to be maximally predictive of dynamics and reward, while
constraining the information flow from the observation to the latent representation.
We demonstrate that this objective significantly bolsters the resilience of visual
model-based RL methods to visual distractors, allowing them to operate in dynamic
environments. We then show that while the learned encoder is resilient to spirious
variations, it is not invariant under significant distribution shift. To address this, we
propose a simple reward-free alignment procedure that enables test time adaptation
of the encoder. This allows for quick adaptation to widely differing environments
without having to relearn the dynamics and policy. Our effort is a step towards mak-
ing model-based RL a practical and useful tool for dynamic, diverse domains. We
show its effectiveness in simulation benchmarks with significant spurious variations
as well as a real-world egocentric navigation task with noisy TVs in the background.
Videos and code: https://zchuning.github.io/repo-website/.

1 Introduction

Consider the difference between training a single robot arm against a plain background with rein-
forcement learning (RL), and learning to operate the same arm amidst of plentiful dynamic distractors
- uncontrollable elements such as changing lighting and disturbances in the scene. The latter must
contend with spurious variations - differences in environments which are irrelevant for the task but
potentially confusing for a vision-based RL agent - resilience to which is indispensable for truly
versatile embodied agents deployed in real world settings.

Standard end-to-end techniques for visual RL struggle in the presence of spurious variations [64, 48],
in part because they fail to discard task-irrelevant elements. To improve generalization [38, 59],
self-supervised representation learning methods [23, 39, 55, 54, 17, 31] pre-train visual encoders that
compress visual observations. These methods aim for lossless compression of how image observations
evolve in time (e.g. by minimizing reconstruction error). Unaware of the demands of downstream
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tasks, these methods also cannot determine which elements of an environment can be discarded. As
such, they often struggle in dynamic and diverse scenes [64, 48, 17] - ones where significant portions
of the observations are both unpredictable and irrelevant - despite being remarkably successful in
static domains.

Figure 1: Reinforcement learn-
ing in environments with spurious
variations - including dynamic
elements like humans, changes
in lighting and training across a
range of visual appearances.

This paper proposes Resilient Model-Based RL by Regularizing
Posteior Predictability (RePo) – an algorithm for learning lossy la-
tent representations resilient to spurious variations. A representation
is satisfactory if it (a) predicts its own dynamics and (b) accurately
predicts the reward. To satisfy these criteria, RePo jointly learns (i)
a visual encoder mapping high-dimensional observations to inter-
mediate image “encodings” (ii) a latent encoder which compresses
histories of intermediate image encodings into compressed latent rep-
resentations (iii) a dynamics model in the latent representation space,
and (iv) a reward predictor to most accurately predict current and
future rewards. What distinguishes us from past work [63, 12, 17]
is a new desideratum of predictability: that, conditioned on past
latents and actions, future latent dynamics should look as determin-
istic as possible. This is because an agent should try to maximize its
control over task-relevant parts of the state, whilst neglecting aspects
of the environment that it cannot influence [20, 60]. RePo optimizes
a novel loss which encourages predictability, thereby discarding a
broad range of spurious variations in aspects of the environment
which are out of the agents control (e.g. changes in background, lighting, or visual traffic in the
background). At the same time, by penalizing reward prediction error, we capture the task-relevant
aspects of the dynamics necessary for learning performant policies.

RePo implements a deceptively simple modification to recurrent state-space models for model-based
RL [17, 59, 46]. We maximize mutual information (MI) between the current representation and all
future rewards, while minimizing the mutual information between the representation and observation.
Instead of minimizing image reconstruction error, we optimize a variational lower bound on the
MI-objective which tractably enforces that the learned observation encoder, latent dynamics and
reward predictors are highly informative of reward, while ensuring latents are as predictable as
possible (in the sense described above). We demonstrate that the representations, and the policies
built thereupon, learned through RePo succeed in environments with significant amounts of dynamic
and uncontrollable distractors, as well as across domains with significant amounts of variability and
complexity. Through ablations, we also validate the necessity of our careful algorithm design and
optimization decisions.

While these learned representations enable more effective reinforcement learning in dynamic, complex
environments, the visual encoders (point (i) above) mapping from observations into intermediate
encodings suffer from distribution shift in new environments with novel visual features (e.g. a new
background not seen at train time.) We propose a simple test-time adaptation scheme which uses
(mostly) unlabeled test-time data to adapt the visual encoders only, whilst keeping all other aspects
of the RePo model fixed. Because RePo ensures resilience of the compressed latent representation at
training time, modifying only the test-time visual encoders to match training time representations
allows representations to recover optimal performance with only minor amounts of adaptation.

Concretely, the key contributions of this work are: (1) We propose a simple representation learning
algorithm RePo for learning representations that are informative of rewards, while being as predictable
as possible. This allows model-based RL to scale to dynamic, cluttered environments, avoiding
reconstruction. (2) We show that while the learned encoders may be susceptible to distribution shift,
they are amenable to a simple test-time adaptation scheme that can allow for quick adaptation in new
environments. (3) We demonstrate the efficacy of RePo on a number of simulation and real-world
domains with dynamic and diverse environments.

2 Related Work

Our work is related to a number of techniques for visual model-based reinforcement learning, but
differs in crucial elements that allow it to scale to dynamic environments with spurious variations.
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Model-Based RL. Though model-based RL began with low-dimensional, compact state spaces
[26, 37, 27, 57], advances in visual model-based reinforcement learning [17, 19, 18, 44, 42, 21] learn
latent representations and dynamics models from high dimensional visual feedback (typically via
recurrent state-space models). Perhaps most relevant to RePo is DREAMER [17]. Section 4 explains
the salient differences between DREAMER and RePo; notably, we eschew a reconstruction loss in
pursuit of resilience to spurious variations. A closely related work is TD-MPC [22], which learns a
task-oriented latent representation by predicting the value function. However, its representation may
not discard irrelevant information and necessarily contains information about the policy.

Representation Learning for Control. There is a plethora of techniques for pretraining visual
representations using unsupervised learning objectives [38, 34, 30, 32, 41, 49, 47, 13]. While these
can be effective on certain domains, they do not take downstream tasks into account. Task-relevant
representation learning for RL uses the reward function to guide representation learning, typically
in pursuit of value-equivalence (e.g. via bisimulation) [63, 8, 62, 12, 50, 22]. However, these
approaches do little to explicitly counteract spurious variations. Our work aligns with a line of work
that disentangles task-relevant and task-irrelevant components of the MDP. [7, 6] obtain provable
guarantees for representation learning with exogeneous distractors - parts of the state space whose
dynamics is independent of the agent’s actions. [56] introduces a more granular decomposition of the
MDP across the task relevance and controllability axes. Our work, in contrast, does not impose a
specific form on the spurious variations.

Domain Adaptation. Unsupervised domain adaptation adapts representations across visually dif-
ferent source and target domains [66, 58, 45, 11, 25]. These techniques predominantly adapt visual
encoders by minimizing a distribution measure across source and training distributions, such as MMD
[5, 33, 53, 24], KL divergence [67, 35] or Jensen-Shannon divergence [11, 52]. In [61], distribution
matching was extended to sequential decision making. While domain adaptation settings typically
assume that the source and target share an underlying marginal or joint distribution in a latent space,
this assumption does not hold in online RL because the data is being collected incrementally through
exploration, and hence the marginals may not match. Hence, our test-time adaptation technique,
as outlined in Section 4.1, introduces a novel support matching objective that enforces the test
distribution to be in support of the train distribution, without trying to make the distributions identical.

3 Preliminaries
MDPs. A (discounted) MDP M = (S,A, γ, P, P0, r) consists of a state-space S, action space
A, discount factor, γ ∈ (0, 1), transition and P (·, ·) : S × A → △(S), initial state distribu-
tion P0 ∈ △(S), and reward function r(·, ·) : S × A → [0, 1] (assumed deterministic for sim-
plicity). A policy π : S → △(A) is a mapping from states to distributions over actions.We
let EπM denote expectations under s0 ∼ P0, at ∼ π(st), and st+1 ∼ P (st, at); the value is
V πM(s) := EπM

[∑∞
t=0 γ

hr(st, at) | s0 = s
]
, and V πM = Es0∼P0 [V

π
M(s0)]. The goal is to learn a

policy π that maximizes the sum of expected returns EπM
[∑∞

t=0 γ
hr(st, at) | s0 = s

]
, as in most

RL problems, but we do so based on a belief state as explained below.

Visual RL and Representations. For our purposes, we take states st to be visual observations
st ≡ ot ∈ O; for simplicity, we avoid explicitly describing a POMDP formulation - this can be
subsumed either by introducing a belief-state [68], or by assuming that images (or sequences thereof,
e.g. to estimate velocities) are sufficient to determine rewards and transitions [36]. The states ot may
be high-dimensional, so we learn encoders h : O → X to an encoding space X . We compress these
encodings xt further into latent states zt, described at length in our method in Section 4.

Spurious variation. By spurious variation, we informally mean the presence of features of the states
st which are irrelevant to our task, but which do vary across trajectories. These can take the form of
explicit distractors - either static objects (e.g. background wall-paper) or dynamic processes (e.g.
video coming from a television) that do not affect the part of the state space involved in our task [7, 6].
Spurious variation can also encompass processes which are not so easy to disentangle with the state:
for example, lighting conditions will affect all observations, and hence will affect the appearance of
transition dynamics.

Consider the following canonical example: an MDP with state space S1 × S2, where for s =
(s(1), s(2)) ∈ S1 × S2, the reward r(s, a) is a function r̄(s(1), a) only of the projection onto S1.
Moreover, suppose that P[(s+)(1) ∈ · | s, a], where s+ ∼ P (s, a), is a distribution P̄ (s(1), a) again
only depending on s(1). Then, the states s(2) can be viewed as spuriously various. For example, if
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Figure 2: RePo learns a latent representation resilient to spurious variations by predicting the dynamics
and the reward while constraining the information flow from images.

s(1) is a Lagrangian state and s(2) is a static background, then it is clear that transitions of Lagrangian
state and reward do not depend on s(2). Our template also encompasses dynamic distractors; e.g.
a television show in the background has its own dynamics, and these also do not affect reward or
physical dynamics. Even varying lighting conditions can be encompassed in this framework: the
shadows in a scene or brightness of the environment should not affect reward or physics, even though
these visual features themselves evolve dynamically in response to actions and changes in state. That
is, there are examples of spurious variation where s(1) (e.g. Lagrangian state) affect s(2) (e.g. certain
visual features), but not the other way round. In all cases, “spurious” implies that states (s(2)t )t≥0,
and their possible variations due to different environments, have no bearing on optimal actions.

4 RePo: Parsimonious Representation Learning without Reconstruction

We propose a simple technique for learning task-relevant representations that encourages parsimony by
removing all information that is neither pertinent to the reward nor the dynamics. Such representations
discard information about spurious variations, while retaining the information actually needed for
decision making.

To describe our method formally, we introduce some notation (which is also shown in Fig 2). Let
O be the space of image observations, X the space of encoded observations, where h : O → X
represents the encoding function from images observations to encoded observations, and Z the space
of latent representations. Note that xt+1 is simply the instantaneous encoding of the image ot+1 as
xt+1 = h(ot+1), but the latent representation zt+1 at time step t+ 1 is an aggregation of the current
encoding xt+1 and previous latent zt and action at. Let Ppost denote the space of “posteriors” on
latent dynamics z of the form p(zt+1 ∈ · | zt, at, xt+1), where zt, zt+1 ∈ Z , at ∈ A, xt+1 ∈ X , and
where and z0 ∼ p0 has some initial distribution p0. In words, the latent posterior use past latent state
and action, in addition to current encoding to determine current latent. Control policies and learned
dynamics models act on this latent representation zt+1, and not simply the image encoding xt+1 so
as to incorporate historical information.

Let Dbuf denote the distribution over experienced actions, observations and rewards from the
environment ((a1:T , o1:T , r1:T ) ∼ Dbuf ). For p ∈ Ppost, let Ep,h denote expectation of
(a1:T , o1:T , r1:T ) ∼ Dbuf , xt = h(ot) and the latents zt+1 ∼ p(· | zt, at, xt+1) drawn from
the latent posterior, with the initial latent z0 ∼ p0. Our starting proposal is to optimize the latent
posterior p and image encoder h such that information between the latent representation and future
reward is maximized, while bottlenecking [1] the information between the latent and the observation:

max
p,h

Ip,h(z1:T ; r1:T | a1:T ) s.t. Ip,h(z1:T ; o1:T | a1:T ) < ϵ. (4.1)

Above, Ip,h(z1:T ; r1:T | a1:T ) denotes mutual information between latents and rewards conditioned
actions under the Ep,h distribution, and distribution Ip,h(z1:T ; o1:T | a1:T ) measures information
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between latents and observations under Ep,h as well. Thus, (4.1) aims to preserve large mutual
information with rewards whilst minimizing information stored from observations.

Optimizing mutual information is intractable in general, so we propose two variational relaxations of
both objects (proven in Appendix B)

Ip,h(z1:T ; r1:T | a1:T ) ≥ Ep,h
[∑T

t=1 log qr(rt | zt)
]

(4.2)

Ip,h(z1:T ; o1:T | a1:T ) ≤ Ep,h
[∑T−1

t=0 DKL(p(· | zt, at, xt+1) ∥ qz(· | zt, at))
]
, (4.3)

where qr and qz are variational families representing beliefs over rewards rt and latent representations
zt+1, respectively. We refer to zt+1 ∼ p(· | zt, at, xt+1) as the latent posterior, because it conditions
on the latest encoded observation xt+1 = h(ot+1). We call the variational approximation qz(· | zt, at)
the latent prior because it does not use the current observation ot+1 (or it’s encoding xt+1) to
determine zt+1. Note that the right hand side of Eq. (4.3) depends on h through xt+1 = h(ot+1),
and thus gradients of this expression incorporate gradients through h.

The magic of Eq. (4.3). The upper bound in (4.3) reveals a striking feature which is at the core of
our method: that, in order to reduce extraneous information in the latents zt about observations ot,
it is enough to match the latent posterior zt+1 ∼ p(· | zt, at, xt+1) to our latent prior qz(· | zt, at)
that does not condition on current xt+1. Elements that are spurious variations can be captured by
p(· | zt, at, xt+1), but not by qz(· | zt, at), since qz is not informed by the latest observation encoding
xt+1, and spurious variations are not predictable. To match the latent posterior and the latent prior,
the latent representation must omit these spurious variations. For example, in an environment with a
TV in the background, removing the TV images reduces next-step stochasticity of the environment.
Thus, (4.3) encourages representations to omit television images.

The relaxed bottleneck. The above discussion may make it seem as if we suffer in the presence
of task-relevant stochasticity. However, by replacing the terms in Eq. (4.1) with their relaxations in
Eqs. (4.2) and (4.3), we only omit the stochasticity that is not useful for reward-prediction. We make
these substitutions, and move to a penalty-formulation amenable to constrained optimization methods
like dual-gradient descent [2]. The resulting objective we optimize to learn the latent posterior p,
latent prior qz, reward predictor qr and observation encoder h jointly is:

max
p,qr,qz,h

min
β

Ep,h
[∑T

t=1 log qr(rt | zt)
]
+ β

(
Ep,h

[∑T−1
t=0 DKL(p(· | zt, at, xt+1) ∥ qz(· | zt, at))

]
− ϵ
)
.

(4.4)

Implementation details. We parameterize p and q using a recurrent state-space model (RSSM)
[17]. The RSSM consists of an encoder hθ(xt | ot), a latent dynamics model qθ(zt+1 | zt, at)
corresponding to the prior, a representation model pθ(zt+1 | zt, at, xt+1) corresponding to the
posterior, and a reward predictor qθ(rt | zt). We optimize (4.4) using dual gradient descent. In
addition, we use the KL balancing technique introduced in Dreamer V2 [19] to balance the learning of
the prior and the posterior. Concretely, we compute the KL divergence in Eq. (4.4) as DKL(p ∥ q) =
αDKL(⌊p⌋ ∥ q) + (1− α)DKL(p ∥ ⌊q⌋), where ⌊·⌋ denotes the stop gradient operator and α ∈ [0, 1]
is the balancing parameter. With the removal of reconstruction, the KL balancing parameters becomes
especially important as shown by our ablation in Sec. 5.

Policy learning As is common in the literature on model-based reinforcement learning [19, 17, 18],
our training procedure alternates between (1) Representation Learning: learning a representation z by
solving the optimization problem outlined in Eq. (4.4) to infer a latent posterior p(zt+1 | zt, at, xt+1),
a latent prior qz(zt+1 | zt, at), an encoder xt = h(ot) and a reward predictor qr(rt | zt), and (2)
Policy Learning: using the inferred representation, dynamics model and reward predictor to learn
a policy πϕ(at | zt) for control. With the latent representation and dynamics model, we perform
actor-critic policy learning [16, 10] by rolling out trajectories in the latent space. The critic Vψ(z) is
trained to predict the discounted cumulative reward given a latent state, and the actor πϕ(a | z) is
trained to take the action that maximizes the critic’s prediction. While policy learning is carried out
entirely using the latent prior as the dynamics model, during policy execution (referred to as inference
in Fig. 2), we infer the posterior distribution p(zt+1 | zt, at, xt+1) over latent representations from
the current observation, and use this to condition the policy acting in the world. We refer readers to
Appendix C for further details.
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Figure 3: Depiction of test-time adaptation scheme for latent alignment via support constraints. During
exploration, the marginal distributions may not match perfectly, so we match the supports of the latent features
instead, using a reweighted distribution constraint.

Comparison to DREAMER, DEEPMDP, and BISIMULATION. DREAMER [17] was first derived to
optimize pixel-reconstruction, leading to high-fidelity dynamics but susceptibility to spurious varia-
tions. Naively removing pixel reconstruction from dreamer, however, leads to poor performance [17].
Our objective can be interpreted as modifying DREAMER so as to maintain sufficiently accurate
dynamics, but without the fragility of pixel-reconstruction. DEEPMDP [12] sets the latents zt to
exactly the image encodings xt = h(ot). It learns a dynamics P̄ : X × A → △(X ) such that the
distribution x̄t+1 ∼ P̄ (h(ot), at) is close to xt+1 ∼ h(ot+1), ot+1 ∼ P ⋆(ot, at), where P ⋆ denotes
a ground-truth transition dynamics; this enforces consistency of dynamics under encoding. The
above distributions are viewed as conditional on past observation and action, and as a result, highly
non-parsimonious representations such as the identity are valid under this objective. BISIMULATION
[63] learns an optimal representation in the sense that a perfect bisimulation metric does not dis-
card any relevant information about an MDP. However, there is no guarantee that it will disregard
irrelevant information. Indeed, the identity mapping induces a trivial bisimulation metric. Hence,
BISIMULATION compress only by reducing the dimensionality of the latent space. In contrast, we
further compress the encodings xt into latents zt so as to enforce the latent prior qz(· | at, zt) is
close to the latest observation-dependent posterior distribution p(· | zt, at, xt+1). As mentioned in
Eq. (4.3), this ensures information compression and invalidates degenerate representations such as
the identity mapping.

4.1 Transferring Invariant Latent Representations via Test-Time Adaptation
While resilient to spurious variations seen during training, our learned latents zt - and hence the
policies which depend on them - may not generalize to new environment which exhibit systematic
distribution shift, e.g. lighting changes or background changes. The main source of degradation is
that encoder h : O → X may observe images that it has not seen at train time; thus the latent, which
depend on observations through xt = h(ot), may behave erratically, even when system dynamics
remain unchanged.

Relying on the resilience of our posteriors p over latents zt introduced by RePo, we propose a
test-time adaption strategy to only adjust the encoder h to the new environment, whilst leaving p
fixed. A natural approach is to apply unsupervised domain adaptation methods [66, 58] to adapt
the visual encoder h to htest. These domain adaptation techniques typically operate in supervised
learning settings, and impose distributional constraints between source and target domains [61, 25],
where the distributions of training and test data are stationary and assumed to be the same in some
feature space. A distribution matching constraint would be:

min
htest(·)

D(Ptrain ∥ Ptest) s.t. Ptest = htest ◦ Dtest,Ptrain = h ◦ Dtrain. (4.5)

In Eq. (4.5), we consider matching the distributions over encodings x of observations o. Specifically,
we assumeDtrain andDtest denote training and test-buffer distributions over observations o, Ptrain =
htrain◦Dtrain denotes the distribution of x = htrain(o) where o ∼ Dtrain is encoded by the train-time
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Distracted DeepMind Control Realistic Maniskill

Lazy TurtleBot

Figure 4: Depiction of the environments being used for evaluation. (Left): the Distracted DeepMind Control
suite [64], (Top Right): Maniskill2 [15] environments with realistic backgrounds from Matterport [3]. (Bottom
Right): TurtleBot environment with two TVs playing random videos in the background.

encoder htrain, and Ptest = htest ◦ Dtest denotes encodings under a test-time encoder htest(·) over
which we optimize. Here, D(·, ·) denotes an f -divergence, such as the χ2-divergence.

Support Constraint. (4.5) fails to capture that the encoded distributions at train and test time differ
at the start of our adaption phase: suboptimal encoder performance at the start of the adaptation phase
causes the policy to visit sub-optimal regions of state space not seen at train time. Thus, it may be
impossible to match the distribution as in standard unsupervised domain adaptation. We therefore
propose to replace (4.5) with a support constraint, enforcing that the distribution of htest ◦ Dtest is
contained in the support of htrain ◦ Dtrain. We consider the following idealized objective:

min
τ(·)≥0,htest(·)

D(τ · Ptrain ∥ Ptest) s.t. Ex∼Ptrain
[τ(x)] = 1. (4.6)

Here, by τ · Ptrain, we mean the re-weighted density of Ptrain = htrain ◦ Dtrain by a function τ(x).
The constraints EPtrain

[τ(x)] = 1 and τ(·) ≥ 0 ensures this reweighted distribution is also a valid
probability distribution. The reweighting operation τ · Ptrain seems intractable at first, but we show
that if we take D(·, ·) = χ2(·, ·) to be the χ2 divergence, then Eq. (4.6) admits the following tractable
Lagrangian formulation (we refer readers to [65] and Appendix B for a thorough derivation)

min
τ(·) ≥ 0,htest(·)

max
f(·),λ

EPtrain
[τ(x) · f(x)]− EPtest

[
f(x) +

1

4
f(x)2

]
+ λ(EPtrain

[τ(x)]− 1), (4.7)

where above, λ ∈ R, f : X → R, and the objective depends on htest through the definition
Ptest = htest ◦Dtest. This objective is now a tractable saddle point optimization, which can be solved
with standard stochastic optimization techniques. The optimization alternates between optimizing the
reweighting τ and the visual encoder htest, and the dual variables f, λ. Throughout adaptation, we
freeze all other parts of the recurrent state space model and only optimize the encoder. We provide
more intuition for the support constraint in Appendix E.

Calibration. We note that naively reweighting by τ(·) can cause degenerate encodings that collapse
into one point. To prevent this, we regularize the support constraint by also ensuring that some set of
paired “calibration" states across training and testing domains share the same encoding. We collect
paired trajectories in the training and testing domains using actions generated by an exploration policy,
and minimize the ℓ2 loss between the training and testing encoding of each pair of observations. We
defer the details of the complete optimization to Appendix C.

5 Experimental Evaluation

We conduct empirical experiments to answer the following research questions: (1) Does RePo enable
learning in dynamic, distracted environments with spurious variations? (2) Do representations learned
by RePo quickly adapt to new environments with test time adaptation? (3) Does RePo help learning
in static, but diverse and cluttered environments?
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Figure 5: Results on distracted DeepMind control environments. These environments have spurious variations,
and RePo is able to successfully learn in all of them, both faster and achieving higher asymptotic returns than
prior representation learning methods.

Evaluation domains We evaluate our method primarily in three different settings. (1) Distracted
DeepMind Control Suite [64, 63] is a variant of DeepMind Control Suite where the static back-
ground is replaced with natural videos (Fig. 4). For adaptation experiments, we train agents on
static undistracted backgrounds and adapt them to distracted variants. (2) Realistic Maniskill is a
benchmark we constructed based on the Maniskill2 benchmark [15], but with realistic backgrounds
from [3] to simulate learning in a diverse range of human homes. We solve three tasks - LiftCube,
PushCube, and TurnFaucet in a variety of background settings. (3) Lazy TurtleBot is a real-world
robotic setup where a TurtleBot has to reach some goal location from egocentric observations in a
furnished room. However, there are two TVs playing random videos to distract the “lazy” robot. We
provide more details about evaluation domains in Appendix D.

Baselines We compare our method with a number of techniques that explicitly learn representations
and use them for learning control policies. (1) Dreamer [17] is a state-of-the-art visual model-based
RL method that learns a latent representation by reconstructing images. (2) TIA [9] renders Dreamer
more robust to visual distractors by using a separate dynamics model to capture the task-irrelevant
components in the environment. (3) Denoised MDP [56] further learns a factorized latent dynamics
model that disentangles controllability and reward relevance. (4) TD-MPC [22] trains a latent
dynamics model to predict the value function and uses a hybrid planning method to extract a policy.
(5) DeepMDP [12] is a model-free method that learns a representation by predicting dynamics
and reward, and then performs actor-critic policy learning on the learned representation. (6) Deep
Bisimulation for Control DBC [63] is model-free algorithm which encodes images into a latent space
that preserves the bisimulation metric.

We also compare with a number of techniques for test-time adaptation of these representations. (1)
calibrated distribution matching, a variant of the method proposed in Section 4.1, using a distribu-
tion matching constraint rather than a support matching one, (2) uncalibrated support matching,
a variant of the method proposed in Section 4.1, using a support matching constraint but without
using paired examples, (3) uncalibrated distribution matching, a variant of the method proposed
in Section 4.1, using a distribution matching constraint, but without using paired examples, (4)
invariance through latent alignment ILA [61], a technique for test-time adaptation of representations
with distribution matching and enforcing consistency in latent dynamics, (5) calibration, a baseline
that only matches the encodings of paired examples.

Does RePo learn behaviors in environments with spurious variations? We evaluate our method’s
ability to ignore spurious variations on a suite of simulated benchmark environments with dynamic
visual backgrounds (Fig. 4); these are challenging because uncontrollable elements of the environment
visually dominate a significant portion of the scene. Fig. 5 shows our method outperforms the
baselines across six Distracted DeepMind Control environments, both in terms of learning speed
and asymptotic performance. This implies that our method successfully learns latent representations
resilient to spurious variations. Dreamer [17] attempts to reconstruct the dynamic visual distractors
which is challenging in these domains. TIA [9] and Denoised MDP [56] see occasional success when
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Figure 6: Results on adaptation from static environments to dynamic environments in Deepmind control. RePo
with calibrated support constraints outperforms ablations and previous techniques for domain adaptation.
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Figure 7: Results of training agents on varying static environments in Maniskill [15]. RePo is able to learn
more quickly and efficiently than alternatives even in static domains.

they dissociate the task-relevant and irrelevant components, but they suffer from high variance and
optimization failures. TD-MPC [22] is affected by spurious variations as its representations are not
minimal. The model-free baselines DeepMDP [12] and DBC [63] exhibit lower sample efficiency on
the more complex domains despite performing well on simpler ones.

Table 1: Results on Lazy TurtbleBot at
15K environment steps. RePo achieves
nontrivial success whereas Dreamer
fails to reach the goal.

Success Return

RePo (Ours) 62.5% -24.3
Dreamer [17] 0.0% -61.7

To further validate RePo’s ability to handle spurious varia-
tions in the real world, we evaluate its performance on Lazy
TurtleBot, where a mobile robot has to navigate around a
furnished room to reach the goal from egocentric observa-
tions (Fig. 4). To introduce spurious variations, we place
two TVs playing random Youtube videos along the critical
paths to the goal. As shown in Table. 1, RePo is able to
reach the goal with nontrivial success within 15K environ-
ment steps, whereas Dreamer fails to reach the goal. We
provide details about the setup in Appendix. D.

Do representations learned by RePo transfer under distribution shift? We evaluate the effective-
ness of the test-time adaptation method described in Section 4.1 on three DeepMind Control domains:
Walker Stand, Walker Walk, and Cheetah Run. We train the representation in environments with
static backgrounds, and adapt the representation to domains with natural video distractors (as shown
in Fig. 4). For methods that use calibration between the source and target environments, we collect
10 trajectories of paired observations. Results are shown in Fig. 6. RePo shows the ability to adapt
quickly across all three domains, nearly recovering the full training performance within 50k steps.
Performance degrades if we replace the support constraint with a distribution matching objective, as
it is infeasible to match distributions with the test-time distribution having insufficient exploration.
We also observe that by removing the calibration examples, both support constraint and distribution
perform worse as the distributions tend to collapse. We found the addition of dynamics consistency
in ILA to be ineffective. Nor is calibaration alone sufficient for adaptation.

Does RePo learn across diverse environments with varying visual features? While the previous
two sections studied learning and adaptation in dynamic environments with uncontrollable elements,
we also evaluate RePo on it’s ability to learn in a diverse range of environments, each with a realistic
and cluttered static background. Being able to learn more effectively in these domains suggests that
RePo focuses it’s representation capacity on the important elements of the task across environments,
rather than trying to reconstruct the entire background for every environment.
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We test on three robotic manipulation tasks - LiftCube, PushCube, and TurnFaucet with realistic
backgrounds depicted in Fig. 4. As shown in Fig. 7, our method achieves saturating performance
across all three tasks. Dreamer [17] spends its representation capacity memorizing backgrounds and
is unable to reach optimal task performance. TIA [9] suffers from high variance and occasionally
fails to dissociate task-relevant from task-irrelevant features. Denoised MDP [56], TD-MPC [22],
and DBC [63] learn to ignore the background in two of the tasks but generally lag behind RePo in
terms of sample efficiency. DeepMDP [12] fails to learn meaningful behavior in any task.
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Figure 8: Ablating objectives show-
ing the importance of information bot-
tleneck and KL balancing described in
Section 4.

Visualizing representations learned by RePo To decipher
our representation learning objective, we probe the learned rep-
resentations by post-hoc training a separate image decoder to
reconstruct image observations from the latents. We visualize
the results in Fig. 9 and compare them with Dreamer recon-
structions [17]. Our representation contains little information
about background but is capable of reconstructing the agent,
implying that it contains only task-relevant information.

In addition to probing, we qualitatively compare the latent
states of RePo and Dreamer by visualizing their top two prin-
cipal components. We collect the same trajectory across all
backgrounds in Maniskill and visualize the final recurrent latent
state inferred by RePo and Dreamer respectively. As shown in
Fig. 10, RePo produces more compact latent representations
than Dreamer, meaning the latent states encode less information
about background variations. This enables RePo to share data
across different backgrounds, explaining its superior sample
efficiency compared to baselines.

Ablation experiments We conduct ablation experiments to determine the effect of hyperparameters
in Fig. 8. As we can see, the performance is crucially dependent on the information bottleneck ϵ, as
well as KL balancing. We refer readers to Appendix E for a more thorough discussion.

6 Discussion
This work presents RePo, a technique for learning parsimonious representations that are resilient to
spurious variations. Our representation is effective on learning in dynamic, distracted environments.
And while the representation is subject to degradation under distribution shift, it can be quickly
adapted to new domains by a semi-supervised test-time adaptation procedure. A limitation of our
method is that the learned dynamics model is no longer task-agnostic, as it only captures task-
relevant information. This can be potentially addressed by simultaneously predicting multiple reward
objectives. Our framework opens up several interesting directions for future research, such as: can a
multi-task variant of RePo allow for representations applicable to a some distribution of tasks? Can
we apply our algorithm in a continual learning setup? We believe our method holds promise in these
more general settings, especially for real robots deployed into dynamic, human-centric environments.
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Supplementary Materials for
“RePo: Resilient Model-Based Reinforcement Learning by Regularizing Posterior Predictability”

A Algorithm Pseudocode

Algorithm 1 Resilient Model-Based RL by Regularizing Posterior Predictability (RePo)

1: Initialize dataset Dbuf with S random seed episodes.
2: Initialize neural network parameters θ, ϕ, ψ randomly and set dual variable β = β0.
3: while not converged do
4: for update step c = 1 . . . C do
5: // Dynamics Learning
6: Draw B data sequences {(ot, at, rt)}Tt=1 ∼ Dbuf .
7: Encode images x1:T = hθ(o1:T ).
8: Infer prior and posterior distributions qθ(zt | zt−1, at−1), pθ(zt | zt−1, at−1, xt).
9: Sample latent states zt ∼ pθ(zt | zt−1, at−1, xt) and infer reward distributions qθ(rt | zt).

10: Compute the Lagrangian objective in (4.4)
11: Update θ and β using dual gradient descent.
12: // Behavior Learning
13: Imagine trajectories {(zτ , aτ )}t+Hτ=t from each zt.
14: Predict rewards rτ ∼ qθ(rτ | zτ ), values vτ ∼ Vψ(vτ | zτ ), actions aτ ∼ πϕ(aτ | zτ ).
15: Update ϕ and ψ using actor-critic learning.
16: // Data Collection
17: for time step t = 1 . . . N do
18: Compute zt ∼ pθ(zt, zt−1, at−1, hθ(ot)) from history and current observation.
19: Compute at ∼ πϕ(at | zt) from policy.
20: Execute at in environment and collect ot+1, at+1.
21: Add experience to dataset Dbuf ← Dbuf ∪ {ot, at, rt}Nt=1.

Algorithm 2 Semi-Supervised Adaptation of Visual Encoder Using Support Constraint

1: Fix training encoder hθ, model pθ, policy πϕ and replay buffer Dtrain.
2: Initialize test-time replay buffer Dtest with S random seed episodes.
3: Initialize test-time encoder hθ′ by setting θ′ = θ.
4: Initialize neural networks τρ and fω randomly and set dual variable λ = λ0.
5: Collect N calibration trajectories with paired observationsDcal ← {(otrain

t , otest
t , at, rt)}Tt=1 using

an exploration policy.
6: while not converged do
7: for update step c = 1 . . . C do
8: // Adaptation
9: Draw B observations from training and test buffers otrain

1:B ∼ Dtrain, o
test
1:B ∼ Dtest.

10: Encode images using respective encoders xtrain
1:B = hθ(o

train
1:B), x

test
1:B = hθ′(o

test
1:B).

11: Compute the Lagrangian objective in (4.7)
12: Draw B pairs of observations from the calibration buffer {(ocal_train

i , ocal_test
i )}Bi=1 ∼ Dcal.

13: Encode images using encoders xcal_train
1:B = hθ(o

cal_train
1:B ), xcal_test

1:B = hθ′(o
cal_test
1:B ).

14: Compute MSE loss between calibration encodings and add to the Lagrangian objective.
15: Update θ′, ρ, ω and λ using dual gradient descent.
16: // Data Collection
17: for time step t = 1 . . . N do
18: Compute zt ∼ pθ(zt, zt−1, at−1, hθ′(ot)) from history and current observation.
19: Compute at ∼ πϕ(at | zt) from policy.
20: Execute at in environment and collect ot+1, at+1.
21: Add experience to dataset Dtest ← Dtest ∪ {ot, at, rt}Nt=1.
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B Derivations

B.1 RePo objective

Recall that Dbuf denote the distribution over experienced actions, observations and rewards from the
environment ((a1:T , o1:T , r1:T ) ∼ Dbuf ). For p ∈ Ppost (our class of posteriors), let Ep,h denote
expectation of (a1:T , o1:T , r1:T ) ∼ Dbuf , xt = h(ot) and the latents zt+1 ∼ p(· | zt, at, xt+1) drawn
from the latent posterior, with the initial latent z0 ∼ p0.

We derive a variational lower bound for the following information bottleneck objective from eq. (4.1).

max
p,h

Ip,h(z1:T ; r1:T | a1:T ) s.t. Ip,h(z1:T ; o1:T | a1:T ) < ϵ

where the mutual information is with respect to the distribution described by the expectation Ep,h
above. The goal is to learn a latent representation that maximally predicts the dynamics and reward
while sharing minimal information with the observations. Notice that, as defined, p is only a latent
dynamics model. Thus, for the derivation we will introduce p̃ as corresponding to the distribution of
all variables under Ep,h, which in particular takes into account the distribution from Dbuf .

Definition B.1. We let p̃ denote the joint distribution of (z1:T , a1:T , x1:T , o1:T ) under Ep,h.

Lower bound on reward prediction. We first derive a variational lower bound for the objective
Ip,h(z1:T ; r1:T | a1:T ). For our derivation, we make a simplifying assumption:

Assumption B.1. Assume that there is a function pr(rt | zt) such that p̃(rt | z1:t, a1:t) = pr(rt | zt).

The simplifying assumption enforces that zt is sufficient for the reward given past latents, actions,
and the current action at. We remark that Assumption B.1 is not strictly necessary, and the following
lower bound we derive is still valid if it fails; it may just be very loose. The derivation begins as
follows:

Ip,h(z1:T ; r1:T | a1:T )
= Ep,h[log p̃(r1:T | z1:T , a1:T )] + Hp,h(r1:T | a1:T )
+
= Ep,h[log p̃(r1:T | z1:T , a1:T )]

= Ep,h

[
T∑
t=1

log pr(rt | zt, at))

]
(Assumption B.1)

= Ep,h

[
T∑
t=1

log qr(rt | zt))

]
+

T∑
t=1

DKL(pr(rt | zt) ∥ qr(rt | zt))

≥ Ep,h

[
T∑
t=1

log qr(rt | zt))

]
,

where above Hp,h denotes an entropy term under distribution Ep,h, and +
= denotes equality up to a

constant that does not depend on our choice of parametrization p, which only dictates latents zt. In
the fourth line, we add and subtract log qr(rt|zt) in each term of the summation. The last step uses
the nonnegativity of KL divergence.

Upper bound on dynamic compression. We proceed to derive an upper bound for the constraint
Ip,h(z1:T ; o1:T | a1:T ). We make a a simplifying assumption analogous to Assumption B.1; again, this
assumption can also discarded, but illustrates that our lower bound is sharper when this assumption
holds.

Assumption B.2. We assume that there is a function pz(zt+1 | zt, at) such that p̃(zt+1 | z1:t, a1:t) =
pz(zt+1 | zt, at).
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With Assumption B.2, we then invoke a variational upper bound which replaces pz(zt+1 | zt, at)
with a variational approximation qz(zt+1 | zt, at):

Ip,h(z1:T ; o1:T | a1:T )
= Ep,h[log p̃(z1:T | o1:T , a1:T )− log p̃(z1:T | a1:T )]

= Ep,h

[(
T∑
t=1

log p(zt+1 | zt, at, xt+1)

)
− log p̃(z1:T | a1:T )

]
(definition of latent dynamics)

= Ep,h

[
T∑
t=1

log p(zt+1 | zt, at, xt+1)−
T∑
t=1

log pz(zt+1 | zt, at)

]
(Assumption B.2)

= Ep,h

[
T∑
t=1

log p(zt+1 | zt, at, xt+1)−
T∑
t=1

log qz(zt+1 | zt, at)

]
−

T∑
t=1

DKL(pz(zt+1 | zt, at) ∥ qz(zt+1 | zt, at))

≤ Ep,h

[
T∑
t=1

log p(zt+1 | zt, at, xt+1)−
T∑
t=1

log qz(zt+1 | zt, at)

]
,

where in the last two lines we add and subtract qz(zt+1 | zt, at) and apply the nonnegativity of KL
divergence. In the third line, we use the fact that our transition dynamics model is Markov, with

p̃(zt+1 | o1:t, a1:t, z1:t) = p(zt+1 | h(ot+1), at, zt) = p(zt+1 | xt+1, at, zt), (B.1)
where under Ep,h, xt ≡ h(ot) holds by definition. Notice that the same identity would be true if
instead we tried to lower bound the mutual information Ip,h(z1:T ; o1:T | a1:T ), showing that our
objective is agnostic to whether we consider compressing information with respect to x1:T or o1:T .
This may be seem suprrising, but is a simple consequence of choosing a latent dynamics model which
depends on o1:T only through x1:T .

Combining the derivations. Combining these results and writing in Lagrangian form, we arrive
at the objective in eq. (4.4)

max
p,qr,qz,h

min
β

Ep,h
[∑T

t=1 log qr(rt | zt)
]
+ β

(
Ep,h

[∑T−1
t=0 DKL(p(· | zt, at, xt+1)) ∥ qz(· | zt, at))

]
− ϵ
)
.

B.2 Tractable objective for support constraint

We derive a tractable variant for the support matching objective in eq. (4.6):
min

τ(·)≥0,htest(·)
D(τ · Ptrain ∥ Ptest) s.t. Ex∼Ptrain

[τ(x)] = 1,

where Ptrain denotes the distribution of image encodings at training time and Ptest denotes the
distribution of image encodings at test time. τ is a reweighting function and the constraint
Ex∼Ptrain [τ(x)] = 1 ensures that τ · Ptrain is a valid distribution. Let Dϕ be any f -divergence, we
have

min
τ(·)≥0,htest(·)

Dϕ(τ · Ptrain ∥ Ptest)

= min
τ(·)≥0,htest(·)

∫
x

ptest(x)ϕ

(
ptrain(x) · τ(x)

ptest(x)

)
(definition of f -divergence)

= min
τ(·)≥0,htest(·)

∫
x

ptest(x)

{
max
f(·)

[
ptrain(x) · τ(x)

ptest(x)
f(x)− ϕ∗(f(x))

]}
(by convex conjugacy)

= min
τ(·)≥0,htest(·)

max
f(·)

∫
x

ptest(x)

[
ptrain(x) · τ(x)

ptest(x)
f(x)− ϕ∗(f(x))

]
(by interchangeability principle [4])

= min
τ(·)≥0,htest(·)

max
f(·)

EPtrain
[τ(x) · f(x)]− EPtest

[ϕ∗(f(x))]

We follow [4] and use the χ2 divergence where ϕ(x) = (x− 1)2 and ϕ∗(y) = y + y2

4 . This gives

min
τ(·) ≥ 0,htest(·)

max
f(·)

EPtrain
[τ(x) · f(x)]− EPtest

[
f(x) +

1

4
f(x)2

]
.
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Incorporating the constraint as a Lagrange multiplier, we arrive at the objective in eq. (4.7).

min
τ(·) ≥ 0,htest(·)

max
f(·),λ

EPtrain [τ(x) · f(x)]− EPtest

[
f(x) +

1

4
f(x)2

]
+ λ(EPtrain [τ(x)]− 1).

C Implementation Details

Model architecture We base our implementation of RePo on Dreamer [17]. We fix the image
size to 64 × 64 and parameterize the image encoder using a 4-layer CNN with {32, 64, 128, 256}
channels, kernel size 4, stride 2, and ReLU activation. This results in an embedding size of 1024.
The recurrent state space model is parametrized by a GRU operating on deterministic beliefs. Given
the current belief, state (sampled from either prior or posterior), and action, the GRU recurrently
predicts the next belief. We parameterize the prior qz(zt+1 | zt, at) as a Gaussian whose mean and
standard deviation are predicted by passing the next belief through a 2-layer MLP. Similarly, we
parametrize the posterior p(zt+1 | zt, at, xt+1) as a Gaussian whose mean and standard deviation are
predicted by passing the next belief along with the next image embedding through a 2-layer MLP. We
set the belief size to 200 and the state size to 30. As in Dreamer, we use both deterministic belief
and stochastic state as inputs to the prediction heads, including the reward model, policy, and value
function. The reward model and value function are 4-layer MLPs. The policy is a 4-layer MLP
outputting a squashed Gaussian distribution. We use 200 hidden units per layer and ELU activation
for all MLPs.

Table 2: Hyperparameters for evaluation tasks
β0 ϵ r

Walker 1e-5 3 5
Cheetah 1e-5 3 5
Hopper 1e-4 1 3
Cartpole 1e-4 3 4
Maniskill 1e-4 3 4
TurtleBot 1e-5 3 5

Optimization We train the RL agent in an online setting, performing 100 training steps for every
500 environment steps (except for TurtleBot which trains every 100 environment steps). In each
training step, we sample 50 trajectories of length 50 from the replay buffer and optimize the RePo
objective using the prior and posterior inferred from these trajectories. We then perform behavior
learning by using the posterior states as initial latent states and rolling out the policy for 15 steps in the
dynamics model. To balance bias and variance, we train the value function to predict the generalized
value estimate [17] with λ = 0.95 and discount factor γ = 0.99. We optimize all components with
the Adam [29] optimizer. The image encoder, recurrent state space model, and reward model share
the same learning rate of 3e-4. The policy and value function use a learning rate of 8e-5. Specific to
our method, we initialize the Lagrange multiplier as β = β0 and set its learning rate to 1e-4. We cast
the KL balancing parameter α to the ratio r between the number of prior training steps to posterior
training steps, where r translates to α = r

r+1 . We tune the initial Lagrange multiplier β0, target KL ϵ,
and KL balancing ratio r on our evaluation tasks and report the best hyperparameters in Table 2.

Baselines We implement Dreamer [17] and TIA [9] on top of the RePo codebase and tune their
hyperparameters on the evaluation tasks. For DBC and DeepMDP, we use the official implementation
along with their reported hyperparameters. We use a determinisitic transition model for DBC as we
find it to perform better than using a stochastic transition model.

Adaptation We parametrize the reweighting function τ as 2-layer MLP with 256 hidden units in
each layer and ReLU activation. The dual function f is analogous to the discriminator in a GAN
architecture [14]. To prevent vanishing gradient, we parameterize f using a variational discriminator
bottleneck [40] with 2 hidden layers of size 256 and a bottleneck layer of size 64. Prior to training,
we collect 10 calibration trajectories with corresponding observations from both the source and the
target domains, using an expert policy as an approximation for an exploration policy. We initialize
the test-time encoder with the weights of the training encoder and adapt it online, performing 100
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adaptation steps for every 500 environment steps taken. In each adaptation step, we sample 2500
observations from the offline source buffer and online target buffer respectively, and optimize the
tractable support constraint objective (4.7). In addition, we sample 2500 paired observations from the
calibration data and minimize the ℓ2 loss between their encodings. All components are optimized
using Adam [29] optimizer. We use a learning rate of 3e-4 for htest, 5e-5 for τ , 1e-4 for f , and 5e-3
for the Lagrange multiplier λ initialized to 1e-4.

Adaptation baselines We reuse the same model architecture for all variants of our proposed
method. For baselines involving a distribution matching objective, we optimize the standard GAN
[14] objective to minimize the Janson-Shannon divergence between training and test-time encoding
distributions. To enforce dynamics consistency for the ILA [61] baseline, we forward the image
encodings through the RSSM to get the latent states and compute dynamics violation as the KL
divergence between the prior and the posterior. We minimize dynamics violation by backpropagating
the gradient through the model to the encodings.

D Environment Details

Distracted DeepMind Control To evaluate the ability of RePo to learn in dynamic environments,
we use the distracted DeepMind Control Suite proposed in [63]. Specifically, we replace the
static background in standard DeepMind Control environments [51] with grayscale videos from the
Kinectics-400 Dataset [28]. We use a time limit of 1000 and an action repeat of 2 for all environments.
We evaluate all methods with 4 random seeds.

Realistic Maniskill We evaluate the ability of RePo to learn across diverse scenarios on 3 manipu-
lation tasks adapted from the ManiSkill 2 benchmark [15]:

• Push Cube: the goal is to push a cube to reach a position on the floor.
• Lift Cube: the goal is to lift a cube above a certain height.
• Turn Faucet: the goal is to turn the faucet to a certain angle.

To simulate real-world scenarios, we replace the default background with realistic scenes from the
Habitat Matterport dataset [43]. We curate 90 different scenes and randomly load a new scene at the
beginning of each episode. We use a time limit of 100 and an action repeat of 1. We evaluate all
methods with 4 random seeds.

Lazy TurtleBot To evaluate RePo’s resilience against spurious variations in the real world, we
furnish a room to mimic a typical household setup and train a TurtleBot to reach a certain goal location
from egocentric observations (Fig. 4). We introduce spurious variations by placing two TVs playing
random YouTube videos along the critical paths to the goal. The robot features a discrete action space
with 4 actions: move forward, rotate left, rotate right, and no-op. To minimize algorithmic change,
we convert the action space to a continuous 2D action space where the discrete actions correspond
to (1, 0), (0, 1), (−1, 0), (0,−1) respectively, and continuous actions are mapped back to the closest
discrete actions in L2 distance. The reward is the negative distance to goal, where the robot’s state
is estimated using an overhead camera mounted on the ceiling. We apply a time limit of 100 and
an action repeat of 1. At the start of training, we prefill the replay buffer with 5K offline transitions
collected by sampling and reaching random goals using a state-based controller. This is followed by
10K steps of pure offline training. We then train each method online for 10K environment steps, using
the state-based controller for automatic resets. Due to time constraints, we evaluate each method for
2 seeds.

E Additional Experiments

E.1 Results on standard DMC environments

In Fig. 11, we provide additional comparisons to Dreamer on standard DeepMind Control tasks. We
note that RePo is able to match Dreamer in asymptotic performance despite not being trained with
a reconstruction objective. Our method slightly lags behind Dreamer in terms of sample efficiency,
which is due to reward signals being inherently more sparse than pixel reconstruction signals.
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Figure 11: Comparison with Dreamer on standard DeepMind control environments. RePo matches Dreamer in
asymptotic performance despite not being trained with a reconstruction objective.

E.2 Results on Distracted Walker Walk with scoreboard

We evaluate RePo on a variant of Distracted Walker Walk which consists of a scoreboard displaying
the cumulative reward of the current episode. The goal is to investigate if RePo’s reward-predictive
nature causes its latent representation to collapse onto predicting the score. We present the probing
visualization in Fig. 12, which shows that the learned latent reconstructs the joint positions of the
agent and ignores the score. This is because RePo predicts not only the current reward but also the
dynamics and future rewards. The empirical performance with the scoreboard is 872.86 ± 43.71,
while without the scoreboard it is 868.72 ± 53.93.

Figure 12: Visualization of RePo’s representation on distracted DMC with scoreboard. Since RePo predicts
not only the current reward but also the dynamics and future rewards, its latent representation does not collapse
to predicting the score.

E.3 Additional ablations

We perform additional ablation experiments on distracted DMC Walker Walk to analyze the effect
of hyperparameters. All other hyperparameters are fixed to those reported in Table. 2. Fig. 13
illustrates the effect of β learning rate. When the learning rate is too high, the constraint is enforced
immediately after training begins, which can lead to ineffective exploration. When the learning rate
is too low, dual gradient descent converges slowly. We find the sweet spot to be a learning rate that
relaxes the information bottleneck at the beginning of training and gradually tightens the bottleneck
to discard redundant information in the representation. Fig. 14 show the result of ablating the KL
constraint value ϵ. With too small a KL target, the representation becomes degenerate and fails to
capture task-relevant information, as indicated by the increase in reward loss. A large KL target,
on the other hand, can result in the dynamics model being inaccurate, thereby affecting behavior
learning. Finally, Fig. 15 explores the effect of KL balancing. In accordance with [19], we find
that the dynamics model is generally harder to train than the representation model. Hence, a larger
KL balancing parameter tends to result in better performance. However, if we train the prior too
aggressively, then the posterior becomes poorly regularized and captures task-irrelevant information.
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Figure 13: Ablating β learning rate. A larger β learning rate corresponds to faster convergence of the constraint,
which can lead to ineffective exploration.
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Figure 14: Ablating information bottleneck ϵ. A tighter information bottleneck generally induces more
parsimonious representations and more accurate dynamics models. But too tight a bottleneck can thwart reward
learning.

0 2 4
Environment Steps 1e5

0.5

1.0

1.5
1e1 KL Divergence

0 2 4
Environment Steps 1e5

9.20

9.25

9.30
1e 1 Reward Loss

0 2 4
Environment Steps 1e5

0

2

4

6

8

1e2 Return

ratio=1 ratio=5 ratio=9

Figure 15: Ablating KL balancing ratio. The dynamics model (prior) is generally harder to train than the
representation model (posterior), which suggests training the prior more frequently than the posterior, i.e. using
a higher KL balancing ratio. However, training the prior too aggressively leads to poorly regularized posterior.

E.4 An illustrative example of support constraint

Training Latent Distribution Testing Latent Distribution

Figure 16: Ground truth latent distributions in training
and testing domains.

We provide a didactic example to illustrate the
intuition behind using a support constraint for
alignment. Consider two ground truth latent
distributions shown in Fig. 16. The training dis-
tribution Ptrain is a uniform distribution span-
ning [0, 6] × [0, 6], and the test-time distribu-
tion Ptest is a uniform distribution covering
exactly half the support of Ptrain. This is to
simulate insufficient online exploration at test
time. We construct a nonlinear emission func-
tion f : X → O : f(x) = 0.025ex to generate
the observations. For illustration purposes, we
use the same emission function for both training
and testing domains. Given access to a perfect training encoder, our goal is to learn a test-time
encoder that recovers the ground truth encoding function (inverse of emission function) and in turn
the test-time latent distribution. We compare the support constraint objective (detailed in eq. (4.7))
with a distribution matching objective minimizing the Jenson-Shannon divergence.

First, notice in Fig. 17 that naively optimizing either objective fails to recover the ground truth
test-time latent distribution. The distribution matching objective “stretches” the test-time distribution
to match the training distribution, whereas the support constraint only forces the former to be within
the support of the latter without any additional stipulation. A common method in unsupervised
domain adaptation is to enforce dynamics consistency between adjacent states, which in our toy
example can be interpreted as preserving the pairwise distance between latent states. When we add in
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Figure 17: Comparison between distribution matching and support constraint. When there is insufficient
exploration, the distribution matching object conflicts with dynamics consistency and calibration objectives,
whereas support constraint conforms to these objectives.

this objective, a crucial difference between support constraint and distribution matching transpires:
while the support constraint conforms to the dynamics consistency objective through the reweighting
function and recovers the correct shape of the distribution, the distribution matching objective is
inherently conflicting with dynamics consistency. Intuitively, the distribution matching objective
attempts to stretch the distribution, whereas the dynamics consistency pulls it together. This leads to
suboptimal results as shown in the middle column of the first row in Fig. 17. Still, neither method
can recover the ground truth distribution by only using dynamics consistency, as it only preserves
the relative positions of latents but not the global position. To address this, we propose to match the
ground truth latent state for a small number of calibration examples. These calibration examples
effectively serve as an anchor for the distribution. When the calibration samples have good coverage,
we see the support matching objective successfully recovers the ground truth encoding function and
latent distribution. Distribution matching, on the other hand, yields suboptimal solution as it still
conflicts with the calibration objective.

Calibration
Calibration + 

Dynamics

Figure 18: Support constraint with skewed calibration
examples. When the calibration examples are skewed,
the result of optimizing the support constraint is only
accurate around the calibration examples. However,
adding dynamics consistency effectively propagates the
calibration signal to other states.

We further investigate the case where the cali-
bration examples do not have good coverage. In
Fig. 18, we see that when the calibration exam-
ples only cover a small region of the test-time
distribution, the result of optimizing the support
constraint is accurate only around the calibration
examples. Under this circumstance, the addition
of dynamics consistency proves to be quite ef-
fective. Since (1) the distribution is anchored
around the calibration samples and (2) pairwise
distance is preserved, the only valid solution is
recovering the ground truth latent distribution.
In our DMC benchmark, we do observe degra-
dation when we replace the exploration policy
with a random policy for collecting calibration
samples. Yet we find optimizing for dynamics
consistency through RSSM to be of little avail.
We hypothesize this is due to the recurrent archi-
tecture interfering with the optimization, and we
leave it for future work to investigate potential
solutions.
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