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Abstract

We introduce Dataset Grouper, a library to create large-scale group-structured
(e.g., federated) datasets, enabling federated learning simulation at the scale of
foundation models. This library facilitates the creation of group-structured ver-
sions of existing datasets based on user-specified partitions, and directly leads
to a variety of useful heterogeneous datasets that can be plugged into existing
software frameworks. Dataset Grouper offers three key advantages. First, it
scales to settings where even a single group’s dataset is too large to fit in mem-
ory. Second, it provides flexibility, both in choosing the base (non-partitioned)
dataset and in defining partitions. Finally, it is framework-agnostic. We empir-
ically demonstrate that Dataset Grouper enables large-scale federated language
modeling simulations on datasets that are orders of magnitude larger than in pre-
vious work, allowing for federated training of language models with hundreds
of millions, and even billions, of parameters. Our experimental results show
that algorithms like FedAvg operate more as meta-learning methods than as em-
pirical risk minimization methods at this scale, suggesting their utility in down-
stream personalization and task-specific adaptation. Dataset Grouper is available at
https://github.com/google-research/dataset_grouper.

1 Introduction

In most machine learning and artificial intelligence settings, algorithms operate on “flat” collections
of examples, that is, examples with no differentiation in source or group structure. However, data in
the real world often consists of an explicit or implicit underlying group structure, where the examples
are partitioned across some number of groups with markedly different statistical characteristics.
Increasingly, research has found that this structure is important in a variety of settings, both for
encoding constraints (such as data restrictions) and in developing algorithms for learning tasks.

Federated learning (FL) is one such setting. FL methods are designed to operate on data partitioned
explicitly across “clients”. In cross-device FL [1, Table 1], clients are often edge devices which
exhibit heterogeneity in both quantity and distribution of data. Cross-silo FL exhibits a similar
structure, often with a coarser notion of clients (such as institutions or companies). Group structures
also arise in meta-learning, in which data is grouped according to a notion of “task” [2], and in
personalization, in which a user’s specific data is used to tune an algorithm’s outputs. The group
structure can also be highly relevant in the context of differential privacy [3, 4]. An intuitive “unit
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Source Dataset Group by Words Groups Words per group Examples Words per example

10th perc. Median 90th perc. 10th perc. Median 90th perc.

Ours

FedC4 Domain 132B 15.6M 82 815 0.5B 0.36B 49 191 783

FedWiki Article 3B 6.5M 39 198 70K 6.5M 39 198 70K

FedBookCO Book 1.2B 18K 24K 52K 4M 18K 24K 52K 4M

FedCCnews Domain 0.3B 8.8K 303 5K 8.4M 0.7M 78 316 842

Existing

Amazon Reviews Account 4.3B 1.5M 278 1.1K 5K 68M 3 28 155

Stack Overflow Account 2B 0.3M 1.2K 2.7K 11K 0.1B 3 13 29

Reddit Account 1.2B 1.7M 58 257 1720 33M 7 21 81

Blog Corpus Account 0.1B 17K 551 2K 13K 0.5M 6 105 460

Shakespeare Role/play 0.4M 715 14 175 1.6K 16K 4 12 63

Gigaword Synthetic 0.3M 100 3.0K 3.1K 3.2K 10K 21 31 41

Table 1: Summary of the per-group (i.e., per-client) and per-example (i.e., per-sequence) statistics of the new
language modeling datasets we introduce using Dataset Grouper, compared to those of previous federated
benchmark datasets supplied by TFF [11], LEAF [12], FedNLP [13, 14], and FedScale [15].

of privacy” is the total collection of examples associated with a given user [5]. To ensure user-level
differential privacy, we must generally train the model in a user-aware manner.

The increasing prominence of foundation models and large language models (LLMs) and their wise
applicability to downstream tasks enhance the need for group-structured data. Though foundation
models are generally trained on massive flat datasets, they are often evaluated by considering the
performance on various benchmarks, yielding a natural group structure. Moreover, for downstream,
user-facing applications, one may want to train on user-partitioned data that is representative of the
actual task at hand. Alternatively (or in conjunction) one can personalize a foundation model for a
given user [6–8]. In all these settings, one may wish to maintain formal user-level privacy guarantees,
especially given the privacy and memorization concerns surrounding foundation models [9, 10].

All of the aforementioned scenarios require datasets with explicit group structure. Since foundation
models generally require large amounts of data, these research areas may specifically benefit from
large-scale group-structured datasets. Unfortunately, to the best of our knowledge, there are relatively
few existing datasets that meet such criteria. While a variety of federated datasets are available to
researchers [11–15], many of these are small-scale in terms of the number of groups, the quantity of
data, or quantity of data per group. Moreover, they may only be available in formats that do not scale
well, either due to memory requirements or insufficient efficiency.

Contributions. In this work, we address the growing need for a wider variety of group-structured
datasets, especially at larger scales. Concretely, we make the following contributions.

• A library for creating group-structured datasets: We introduce Dataset Grouper, a library that
can flexibly create group-structured (and federated) versions of existing datasets via user-defined
partition functions. We engineer it for efficiency, both in partitioning datasets and in iterating
over data. The library is designed with large-scale datasets in mind and can support datasets
with millions or even billions of groups. Dataset Grouper can be used to create group-structured
versions of all datasets available in Tensorflow Datasets [16] and HuggingFace Datasets [17].
• Large-scale federated text datasets: While Dataset Grouper can be used for a wide array of

modalities and tasks, we illustrate its use by creating group-structured versions of four large
language modeling datasets (see Table 1 and Figure 1), designed specifically for FL research. They
are orders of magnitude larger than previous datasets in terms of one or more of the following: the
number of groups, the amount of data, and the length of sequences. They are suitable for both
pre-training and fine-tuning tasks, and exhibit long tails, as is common in large-scale text corpora.
• Experiments: We train O(100M) and O(1B) parameter decoder-only transformer models from

scratch on a group-structured version of the C4 dataset [18], using FL training algorithms. This
is, to the best of our knowledge, the first demonstration of federated training of a model of this
magnitude on a federated dataset of this scale. We compare FedAvg and FedSGD in this setting in
terms of their pre- and post-personalization metrics. Our results highlight that at this scale, FedAvg
behaves more like a meta-learning algorithm than an empirical risk minimization algorithm.

On the term “federated”. Our work is primarily motivated by the research needs of the FL com-
munity. Throughout, we will often approach questions, design decisions, and experiments from this
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Figure 1: Per-group statistics of the new group-structured (i.e. federated) language modeling datasets.

perspective, and will occasionally use the terms “federated” and “group-structured” interchangeably.
This is a broadening of the definition of the federated setting often given in the literature, especially
the definition proposed by Kairouz et al. [19]. There and in previous literature, FL is characterized by
the group-level structure of the data coupled with the location of each group (e.g., a client’s dataset is
assumed to reside only on its local device). In this work, we de-emphasize the location of the data,
and will primarily focus on the group-structure of the data regardless of where that data lives.

2 Related Work

Many widely used group-structured datasets arise from the FL community. Early work on FL
benchmark datasets combined benchmark datasets with simulation environments. For example,
LEAF [12], TensorFlow Federated (TFF) [11], Flower [20], FedML [14] (and its text-specific dataset
provided in FedNLP [13]), FedScale [15], FLBench [21], OARF [22], and FedJAX [23] all supply
partitioned datasets commonly used in FL benchmarks. These frameworks have helped drive much
of FL research into areas such as optimization algorithms [24–31], privacy and security [32–35],
robustness to adversaries [36–40] and distribution shifts [41–45], and personalization [46–51].

Later work on FL introduced specialized datasets and benchmarks. FLAIR [52] is a large-scale
multi-label image classification dataset with 0.4M images from 50K Flickr accounts. FLamby [53]
is a cross-silo FL benchmark for healthcare applications where the datasets contain 2-6 groups with
400 to 23K total examples. The personalized federated learning algorithm benchmark Motley [54]’s
largest dataset is Stack Overflow while pFL-bench [55] offers no language modeling datasets.

The scale of the existing language modeling datasets that FL frameworks provide is summarized
in Table 1. By comparison, the datasets we provide are significantly larger, which allows training
models that are an order of magnitude larger than previous work [56]. Additionally, our datasets
are generally framework-agnostic and can be combined with many of these simulation frameworks.
Further, existing federated datasets that are derived from datasets in TensorFlow Datasets [16], such
as Amazon Reviews and Blog Corpus, can be generated via Dataset Grouper.

Group-structured data have also been studied in the context of distribution shifts, e.g., the WILDS
benchmark [57, 58]. The datasets provided in WILDS are smaller than what we consider in Table 1 —
the code language modeling dataset Py150 dataset has 150K examples partitioned over 8K groups.
Moreover, WILDS does not support optimized per-group data-loaders as of this writing [59], which
are necessary for benchmarking federated algorithms.

LLMs are typically pre-trained on large web-scraped text corpora without any group structure [e.g.
18, 60, 61]. Besides the tremendous amount of data on which they are trained [62], the success
of LLMs is also driven by the capacity of these models to handle much longer sequences than
previous RNN-based models [63–65]. This requires datasets with long enough contiguous sequences
that contain hundreds to thousands of words. Almost all of the existing group-structured language
modeling datasets have extremely short sequences (Table 1). For instance, the Stack Overflow dataset
has a median and 90th percentile sequence lengths of 13 and 29 words respectively. In comparison,
the datasets we introduce have significantly longer sequences, e.g., FedBookCO has on the order of
103 to 106 words per sequence.

Some recent advances at the intersection of FL and foundation models include collaborative prompt
tuning using FL [66], federating chain-of-though reasoning [67] through diverse crowd-workers [68],
and instruction-tuning LLMs using FL [69]. Dataset Grouper can also be used to generate federated
datasets compatible with these methods as well.
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Figure 2: High-level representations of group-structured dataset formats.

3 Core Design

We now discuss the core design of Dataset Grouper and the various trade-offs it entails. One unifying
theme throughout is a focus on enabling the types of training workflows used for foundation models,
at the expense of some amount of flexibility in what kinds of simulations can be performed.

3.1 Group-Structured Datasets at Scale

Our primary goal is to enable research using large-scale group-structured datasets. In order to do so,
we need a group-structured dataset format that balances the following characteristics:

• Scalability: Can the dataset format scale to large numbers of examples, groups, and bytes?
• Group access time: How long does it take to access the examples held by a single group?
• Group access patterns: What kinds of sampling patterns across groups are permitted? Can we

access group datasets arbitrarily, and in any order?

There is a trade-off between these characteristics. Dataset formats used in the FL community often
optimize for either scalability or group sampling time, while enabling maximum flexibility in access
patterns. Our core insight is that by limiting the access patterns possible, we can use a dataset format
that is scalable and efficient simultaneously. We discuss three archetypes of group-structured dataset
formats (in-memory, hierarchical, and streaming) and their resulting trade-offs briefly in Table 2, and
in more detail below. Figure 2 gives a graphical representation of the formats.

In-memory formats. In-memory group-structured datasets are essentially key-value mappings held
entirely in memory. Adopted by e.g. LEAF [12] and FedNLP [13], this is suitable for small datasets
such as EMNIST or CIFAR-100. Looking up a group’s dataset is fast (e.g., via a hash map), and
groups can be accessed in an arbitrary order. Of course, this approach is limited by the cumulative
size of the dataset and is therefore not scalable in full generality. As we see in Table 3, this format
does not even scale to FedBookCO on a single CPU; FedC4 and FedWiki are even larger.

Hierarchical formats. Hierarchical dataset formats store examples across files in such a way that (a)
the dataset need not be loaded entirely into memory, and (b) individual groups can be constructed
in arbitrary orders. For example, TensorFlow Federated [11] uses SQL databases to both store and
access client datasets for FL simulations, facilitating the loading of the group index in-memory, then
construction of a group’s dataset at a later time. For larger datasets, constructing an arbitrary group’s
dataset can be slow, as it is often bottlenecked by indexing and searching over a large number of
(possibly distributed) files. Table 3 shows that the hierarchical format can be significantly slower than
other formats when accessing groups in very large datasets.

In-Memory Hierarchical Streaming

Scalability Limited High High
Group Access Time Very Fast Slow Fast

Group Access Patterns Arbitrary Arbitrary Shuffle + Streaming

Table 2: Characteristics of group-structured dataset formats.
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Dataset Format In-Memory Hierarchical Streaming

CIFAR-100 0.0783± 0.0007 25.11± 0.81 9.88± 0.075

FedCCnews 0.549± 0.014 > 7200 248± 17.5

FedBookCO Out of memory > 7200 192± 9.07

Table 3: The time (in seconds) to iterate over federated datasets. This is the time required to iterate over all
examples in all group datasets, in serial, on a single CPU. We present the average and standard deviation over 5
trials, omitting trials that take more than 2 hours (> 7200 seconds), or that ran out of memory. We compare a
federated CIFAR-100 dataset (partitioned across 100 groups, each with 100 examples), FedCCnews (in which
examples are split across users at a domain level), and FedBookCO (in which examples are split across users at a
title level). See Section 4 for more details on the latter two datasets.

Streaming formats. Instead of allowing arbitrary group access, Dataset Grouper provides ways
to iterate over all the groups in a stream-like fashion. The datasets for each group are backed
by some number of files,2 which are interleaved to create a “group stream”. Concretely, this
restricts the possible group access patterns, only allowing stream-level operations such as buffered
shuffling, repeating, and batching. This essentially lifts the stream-of-examples format used large-
scale centralized training pipelines to streams of groups for federated training — both formats allow
dataset iterators with limited shuffling (e.g., with a fixed-size buffer), but not arbitrary access to the
individual elements. This restriction allows us to use parallel reads, prefetching, and interleaving to
speed up dataset iteration and generally enables the total iteration time of the dataset to scale linearly
(as opposed to super-linearly) with the number of groups in the dataset.

Each group’s dataset is further represented as a stream of examples so that no group’s data need to
be fully loaded into memory. This is crucial in scaling to large datasets like FedC4, something that
is memory-prohibitive for in-memory formats, and speed-prohibitive for hierarchical formats. To
illustrate this further, we detail the time required to iterate fully over various group-structured datasets
(accessing the groups’ datasets sequentially, in a random order) in different formats in Table 3. For
details on the amount of memory used by each format, see Appendix E.

3.2 Flexible and Efficient Dataset Partitioning

An underlying theme of both foundation model research and FL research is the need for a wide variety
of datasets. It is often useful to have different datasets for different downstream tasks and modalities
for foundation models, while the wide variety of FL settings (e.g. cross-device vs. cross-silo) and
types of group heterogeneity (feature heterogeneity, label heterogeneity, heteroskedasticity, etc.)
require dedicated datasets. It is often useful in FL to be able to explicitly partition the same dataset in
multiple ways, in order to understand the impact of heterogeneity [71]. Therefore, our second key
design goal is to allow flexibility both in the base (non-partitioned) dataset and in how it is partitioned.

To achieve this, we make two important, albeit related, design decisions. First, Dataset Grouper does
not directly host datasets, but instead allows users to create partitioned versions of existing datasets
in TensorFlow Datasets [16] and HuggingFace Datasets [17]. Second, Dataset Grouper operates
by applying data-parallel processing pipelines3 to partition these “base” datasets. Notably, Dataset
Grouper allows user-specified partition methods, but they must operate in an embarrassingly parallel
manner. This decision is a formal trade-off made for scalability reasons. Sequential partitioning
(e.g., deciding which group has an example x based on which group has an example y) can fail to
scale to datasets with billions of examples. Thus, Dataset Grouper supports (at scale) embarrassingly
parallelizable partitions of datasets available in TensorFlow Datasets or HuggingFace Datasets.

3.3 Compatibility with Existing Frameworks

Foundation model research and FL research also share a common feature in that there is a wide array
of available simulation frameworks. Another goal of our work is to support as wide an array of such
frameworks as possible. To that end, Dataset Grouper provides access to datasets as nested iterators

2We use the TFRecord format [70] for all datasets.
3We use Apache Beam pipelines, which are also used by TensorFlow Datasets and HuggingFace Datasets.
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Figure 3: Fitting a log-normal distribution to the per-group sizes of the new text datasets we introduce: we
show a Q-Q plot of the log quantiles of the per-group data sizes vs. those of a Gaussian distribution.

of tensors. Specifically, group-structured datasets are represented as an iterator of group datasets,
each of which is an iterator of tensors. These tensors can be represented in both TensorFlow [70]
and NumPy [72] formats, ensuring that, in principle, Dataset Grouper can be used in any simulation
framework built on top of NumPy, TensorFlow, PyTorch [73], or JAX [74].4

4 Examples and Applications

We now focus on four new group-structured text datasets we create via Dataset Grouper: FedC4,
FedWiki, FedCCnews, FedBookCO. We focus on language modeling datasets due to their prominence
in training foundation models and their large-scale nature. Compared to prior benchmark datasets,
FedC4 is an order of magnitude larger, while FedBookCO contains significantly longer sequences.
The new datasets, particularly FedC4 and FedCCnews, are also more heavy-tailed than existing ones.
See Appendix B for more details.

While representative of the statistical structure suited to training larger models, we wish to emphasize
that these datasets are only a small sample of what is possible with Dataset Grouper. The library can
also be used to create group-structured multi-lingual text datasets, datasets in other modalities (audio,
image, etc.), and to study the effect of different partitions on the same base dataset.

FedC4. We create a federated version of the Colossal Clean Crawled Corpus (C4) dataset [18],
which is a cleaned version of Common Crawl’s web crawl corpus.5 We focus on partitioning by
web domain, e.g., all articles crawled from https://www.nytimes.com/ correspond to one group.
We note that a finer partitioning at the level of articles is also possible. We see from Figure 1 and
Table 1 that the amount of data per client is extremely heavy-tailed; this is expected from real-world
text corpora [75, 76]. Indeed, this distribution is nearly log-normal, meaning that its logarithm is
approximately Gaussian. This can be seen from the nearly straight line in the Q-Q plot in Figure 3.

The C4 data is also used as a pre-training corpus for some LLMs such as T5 [18], meaning that
FedC4 can potentially be used for federated pre-training, which we explore further in Section 5. Note
that C4 is already de-duplicated and artifacts like code, placeholder text (e.g. lorem ipsum), and
boilerplate (e.g. menus) are removed along with a heuristic list of “bad words”. See [18] for details.

FedWiki. We create a federated version of the Wikipedia dataset, where each client contains the
content of one full English Wikipedia article. As a result, the amount of data per client is smaller
than that in FedC4, where each client can contain multiple articles. Wikipedia data is often a part of
the pre-training corpora of LLMs.

FedBookCO. We create a federated version of the BookCorpusOpen dataset [77, 78], an open-source
collection of 18K books from various genres. Each client corresponds to one sequence that is a full
book, leading to significantly longer sequences than other datasets.

FedCCnews. We create a federated version of CC-News, which contains English news articles
from news sites around the world. Similar to FedC4, each group corresponds to a web domain; a
finer-grained article-level partitioning is also possible. Indeed, FedCCnews is a subset of FedC4. It
exhibits similar long-tailed behavior and could serve well as its smaller proxy.

4Some frameworks are only inter-operable with specific in-memory or hierarchical dataset formats, and
would need to be extended to be compatible with Dataset Grouper. Other frameworks are directly compatible.
We provide examples of integrating Dataset Grouper with both TensorFlow Federated and JAX.

5https://commoncrawl.org/
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Cohort Size Data Iteration Time (s) Training Time (s) Data Iteration Time (%)

8 0.26± 0.48 3.03± 2.58 7.78
16 0.66± 0.85 5.70± 2.61 10.43
32 1.16± 1.48 11.30± 2.48 9.33

Table 4: Average time spent per round on iterating over data, including preprocessing, versus training. Results
are computed for 100 rounds of training of FedAvg, with varying cohort sizes.

5 Experiments

To begin to demonstrate the scale of federated learning simulation that these newly partitioned
datasets enable, we run experiments on FedC4 with a decoder-only transformer architecture.

5.1 Experimental Setup

We use FedC4 with domain-level partitioning in our experiments. We use a WordPiece tokenizer [79]
with a pre-trained BERT vocabulary [80] of size of 30523. We train from scratch a 108M parameter
decoder-only transformer model commensurate in size with BERT base and GPT-2 small (i.e., 12
layers, 12 attention heads, and hidden layers of dimension 768) using the causal language modeling
loss (i.e., next token prediction with cross-entropy). We report the cross-entropy loss throughout,
which equals the logarithm of the perplexity.

Federated algorithms. We use two prototypical FL algorithms: FedAvg and FedSGD [81]. In each
federated round, we select the next cohort of 16 clients. Local training is done on client data batched
to 16 examples with a sequence length of 128 tokens. We repeat client data as necessary to ensure
that all clients have 1024 examples. For FedAvg, we run 3125 rounds of federated training. During
each round, each client in that round’s cohort takes 64 gradient steps. Thus, the federated training will
involve roughly 200K batched gradient computations in total. For FedSGD, we use the same setup,
except that clients do not locally update their own model when computing local gradients. Instead,
these 64 minibatch gradients are averaged into a single large-batch gradient and sent to the server.

Optimizer hyperparameters. For FedAvg, we use the client/server-optimizer framework proposed
by Reddi et al. [30]. We use SGD for the client optimizer and Adam for the server optimizer. FedSGD
only has a server optimizer, which we also set to Adam. We only tune the learning rate(s), tuning
over {10−4, 10−3, . . . , 100}, and selecting the learning rate(s) that minimize average training loss.
For details and a full list of optimizer hyperparameters, see Appendix C.

Hardware configuration. We run our experiments using a TPU Pod slice consisting of 16 TPU v3
chips in a 4x4 topology, configured to use a multi-machine inter-chip interconnect mesh. Each TPU
v3 chip contains two TensorCores, 32 GiB of high-bandwidth memory, 87.25 GiB RAM, 900 GBps
bandwidth, and 123 teraflops peak compute.

5.2 Experimental Results

Iteration efficiency. We test the efficiency of Dataset Grouper in practical large-scale simulations.
Specifically, we measure the time it takes for each round of federated training and what portion of
that time is spent iterating over data, including preprocessing. We perform 100 rounds of FedAvg for
varying cohort sizes (the number of clients per round) and present the results in Table 4. We see that
dataset iteration takes under 10% of the total runtime, even for larger cohort sizes. This is despite the
fact that dataset iteration is done entirely on the host, while the training time is parallelized between
multiple TPU slices. Further improvements in the data pipeline can only lead to a marginal speedup,
highlighting the efficiency and scalability of the streaming dataset format in Section 3.1.

Federated learning rate schedules. Large-scale training on non-partitioned data generally involves
a variety of important techniques, such as learning rate scheduling, to attain good performance. In
order to determine how best to scale federated training to larger-scale settings, we investigate the use
of various learning rate schedules for FedAvg and FedSGD. In both cases, we apply the learning rate
schedule at the server (see [30] for a discussion of client versus server optimizers). We use constant
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Figure 4: Training loss of FedAvg and FedSGD on FedC4 with different learning rate schedules. The per-round
training loss is computed by (a) averaging over all batches seen by a given client within the round, and (b)
averaging over all clients that participate in the round.

learning rates, warmup with exponential decay, and warmup with cosine decay. Whenever we use
warmup, we warmup for 10% of the total number of training rounds, and decay for the remainder.

We compare the resulting training loss for FedAvg and FedSGD in Figure 4. Notably, we see that
learning rate scheduling leads to significant improvements in the behavior of FedSGD, while FedAvg
is robust to different choices. This reflects the fact that these learning rate schedules were developed
in the context of SGD, which involves applying many unbiased gradient estimates. FedSGD operates
similarly, computing an unbiased gradient estimate at each round. By contrast, FedAvg involves
biased gradients, often called “pseudo-gradients” [30], which may not be the gradient of any loss
function [82]. Our results suggest that developing effective learning rate scheduling techniques for
FedAvg is an open question, and may involve coordinating client and server learning rates.

We also see that FedAvg appears to attain a significantly lower train loss than FedSGD. We stress that
this is due to how the training loss is computed. For both algorithms, it is computed by averaging the
loss of all batches seen by a client and then averaging that quantity across all clients. However, the
client trains as it sees data batches in FedAvg. Therefore, the client’s local model adapts to its own
distribution (leading to a lower loss), while in FedSGD the client does not adapt its local model. We
explore this difference, which is connected to meta-learning, below.

Federated evaluation and personalization. Partitioned datasets enable group-structured learning,
as well as group-level (or federated) evaluation, which may be particularly informative for measuring
downstream performance across heterogeneous data splits. To demonstrate this, we use Dataset
Grouper to generate an evaluation dataset from FedC4 by using its held-out validation split. We use
the same partition structure as before, grouping examples according to their base domain. Because
of this group structure, we can compute histograms of metrics across all groups, rather than just an
average metric across all examples.

We take the resulting models trained by FedAvg and FedSGD (with constant learning rates, though
we see similar results for all learning rate schedules we considered above), and compute two separate
metrics for each validation client. First, we compute the average loss of the model on all examples
held by the client. We refer to this as the pre-personalization loss. We then fine-tune the model for
a single epoch on the client’s dataset (using a client optimizer of SGD with a tuned learning rate).
After personalization, we compute the average loss again, resulting in the post-personalization loss.

Algorithm Pre-Personalization Loss Post-Personalization Loss

10th perc. Median 90th perc. 10th perc. Median 90th perc.

FedAvg 5.13 5.64 6.27 0.002 0.012 0.934

FedSGD 4.38 4.93 5.40 1.25 3.38 4.53

Table 5: Validation loss of FedAvg and FedSGD, before and after personalizing on a client’s dataset. Percentiles
are computed across all clients in the FedC4 validation dataset.
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Figure 5: Histograms of pre- and post-personalization loss across all FedC4 validation clients.

We present quantiles of these metrics in Table 5. Intriguingly, they show that the FedSGD-trained
model works better for pre-personalization, but the FedAvg-trained model is much more effective
at personalizing to the client’s data. To further illustrate this, we consider histograms of the two
distributions (across all clients) in Figure 5. This suggests a more dramatic shift. While the FedAvg-
and FedSGD-trained models are close in pre-personalization performance (though FedSGD does
better), the post-personalization distribution for FedAvg is extremely light-tailed.

Task-specific personalization. Pre-trained foundation models are typically employed on a range
of downstream tasks. In this spirit, we use the models trained on FedC4 to perform pre- and post-
personalization evaluation on FedBookCO. The results, Figures 6 and 7, are similar to but less drastic
than those of Figure 5. The pre-personalization loss of FedAvg is slightly larger than FedSGD (5.0
vs. 4.3 in the last checkpoint) while its post-personalization loss is smaller (2.9 vs. 4.0). Similar
trends hold for FedCCnews and FedWiki datasets; cf. Appendix D. Overall, these results show that
FedAvg’s superior personalization performance is robust to shifts in the distribution over clients.

This phenomenon highlights connections between federated learning and meta-learning previously
noted in the literature [46, 83–88]. In short, we see that FedAvg acts as a meta-learning algorithm
(specifically, the Reptile algorithm [89]) where it quickly minimizes the loss of a client after a
few local gradient steps (i.e., after personalization). It does not behave like an algorithm designed
to minimize the empirical risk. By contrast, FedSGD operates much like SGD in the centralized
setting, attempting to minimize the average loss across all examples. To the best of our knowledge,
Figure 5 constitutes some of the strongest empirical evidence of the connection between federated
and meta-learning to date. The scale of the FedC4 dataset (enabled by Dataset Grouper) is critical
here, as clients have sufficiently large amounts of data to exacerbate client drift [28] and cause tension
between loss minimization and meta-learning.

Scaling to larger models. To further demonstrate the scalability of Dataset Grouper, we train a
transformer model with 1 billion parameters on the FedC4 dataset. In contrast to the results above, we
train with 4 batches per client (rather than 64). Despite this, we see in Figure 8 that FedSGD still sees
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Figure 6: Median pre-personalization (left) and post-personalization (left) loss over FedBookCO clients while
training on FedC4. The shaded region indicates the 10th and 90th percentiles.
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Figure 7: Histograms of pre- and post-personalization loss on FedBookCO after FedC4 training.
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Figure 8: Pre-personalization loss of FedAvg and FedSGD across all FedC4 validation clients on a 1 billion
parameter transformer model.

improved pre-personalization loss compared to FedAvg. Moreover, both algorithms see improved
pre-personalization compared to Table 5, highlighting the effect of increasing the larger size.

6 Discussion and Outlook

The intersection of foundation models and group-structured data is a fertile area for research. We
provide tooling for creating group-partitioned datasets for use in large-scale research simulation.
We acknowledge that there are inherent risks in this endeavor. As detailed by Koch et al. [90], the
typical dynamics of dataset use in machine learning research tend to enshrine certain datasets as “sole
benchmarks” in the field, even on tasks for which they were not designed. Tooling aimed at allowing
for flexible and reproducible dataset creation risks further entrenchment of these sole benchmarks by
expanding the scope of tasks to which they are applied. However, we posit that Dataset Grouper’s
pipeline approach will prove to be a sustainable mechanism for ensuring availability of datasets whose
intended use cases match their application in research, and can potentially reduce the enshrinement
of benchmarks in areas such as federated learning.

There are a wide array of other research benefits enabled by Dataset Grouper, especially as it delivers
scalable and efficient partitioned dataset pipelines compatible with foundation model training and
fine-tuning. This crucially enables the exploration of phenomena that only emerge at the scale of
foundation models. Our experiments are intended as a demonstration of the scaling capabilities
unlocked by Dataset Grouper to the billion parameter regime. Our empirical findings indicate several
interesting future directions. Most excitingly (and speculatively), the tendency of FedAvg to meta-
learn tasks suggests that it could provide a better “base” model for the personalization of foundation
models or adaptation to downstream tasks. Moreover, there is a need to design tailored learning rates
and default optimization recipes for the wider applicability of federated training algorithms. We hope
that Dataset Grouper will spur further research in training, evaluation, finer grained analyses, and
diagnoses of foundation models with group-structured data.
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What Does it Mean for a Language Model to Preserve Privacy? In FAccT, pages 2280–2292,
2022.

[11] TensorFlow Federated: Machine Learning on Decentralized Data. https://www.tensorflow.
org/federated.

[12] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečný, H. Brendan
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jun Nitin Bhagoji, Kallista A. Bonawitz, Zachary Charles, Graham Cormode, Rachel Cum-
mings, Rafael G. L. D’Oliveira, Hubert Eichner, Salim El Rouayheb, David Evans, Josh Gardner,
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Avestimehr, Aurélien Bellet, Aymeric Dieuleveut, Martin Jaggi, Sai Praneeth Karimireddy,
Marco Lorenzi, Giovanni Neglia, Marc Tommasi, and Mathieu Andreux. FLamby: Datasets and
Benchmarks for Cross-Silo Federated Learning in Realistic Healthcare Settings. In NeurIPS,
2022.

[54] Shanshan Wu, Tian Li, Zachary Charles, Yu Xiao, Ziyu Liu, Zheng Xu, and Virginia Smith.
Motley: Benchmarking Heterogeneity and Personalization in Federated Learning. arXiv
Preprint, 2022.

[55] Daoyuan Chen, Dawei Gao, Weirui Kuang, Yaliang Li, and Bolin Ding. pFL-Bench: A
Comprehensive Benchmark for Personalized Federated Learning. In NeurIPS, 2022.

[56] Jae Hun Ro, Theresa Breiner, Lara McConnaughey, Mingqing Chen, Ananda Theertha Suresh,
Shankar Kumar, and Rajiv Mathews. Scaling Language Model Size in Cross-Device Federated
Learning. arXiv Preprint, 2022.

[57] Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay
Balsubramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, Tony Lee,
Etienne David, Ian Stavness, Wei Guo, Berton Earnshaw, Imran S. Haque, Sara M. Beery, Jure
Leskovec, Anshul Kundaje, Emma Pierson, Sergey Levine, Chelsea Finn, and Percy Liang.
WILDS: A Benchmark of in-the-Wild Distribution Shifts. In Marina Meila and Tong Zhang,
editors, ICML, volume 139, pages 5637–5664. PMLR, 2021.

[58] Shiori Sagawa, Pang Wei Koh, Tony Lee, Irena Gao, Sang Michael Xie, Kendrick Shen, Ananya
Kumar, Weihua Hu, Michihiro Yasunaga, Henrik Marklund, Sara Beery, Etienne David, Ian
Stavness, Wei Guo, Jure Leskovec, Kate Saenko, Tatsunori Hashimoto, Sergey Levine, Chelsea
Finn, and Percy Liang. Extending the WILDS Benchmark for Unsupervised Adaptation. In
ICLR, 2022.

14



[59] How do I access data from only one group? Github Issue #73 for p-lambda/wilds. https:
//github.com/p-lambda/wilds/issues/73. Accessed on June 1, 2023.

[60] Ellie Pavlick Stefanie Tellex Aaron Gokaslan, Vanya Cohen. OpenWebText Corpus. http:
//Skylion007.github.io/OpenWebTextCorpus, 2019.

[61] Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The Pile:
An 800GB Dataset of Diverse Text for Language Modeling. arXiv Preprint, 2020.

[62] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling Laws for Neural Language
Models. arXiv Preprint, 2020.

[63] Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti,
Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big Bird:
Transformers for Longer Sequences. NeurIPS, 33:17283–17297, 2020.

[64] Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The Long-Document Trans-
former. arXiv Preprint, 2020.

[65] Ofir Press, Noah A. Smith, and Mike Lewis. Train Short, Test Long: Attention with Linear
Biases Enables Input Length Extrapolation. In ICLR, 2022.

[66] Tao Guo, Song Guo, Junxiao Wang, and Wenchao Xu. PromptFL: Let Federated Participants
Cooperatively Learn Prompts Instead of Models–Federated Learning in Age of Foundation
Model. arXiv Preprint, 2022.

[67] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H.
Chi, Quoc V. Le, and Denny Zhou. Chain-of-Thought Prompting Elicits Reasoning in Large
Language Models. In NeurIPS, 2022.

[68] Xiangyang Liu, Tianqi Pang, and Chenyou Fan. Federated Prompting and Chain-of-Thought
Reasoning for Improving LLMs Answering. arXiv Preprint, 2023.

[69] Jianyi Zhang, Saeed Vahidian, Martin Kuo, Chunyuan Li, Ruiyi Zhang, Guoyin Wang, and
Yiran Chen. Towards Building the Federated GPT: Federated Instruction Tuning. arXiv Preprint,
2023.

[70] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow,
Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,
Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek
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A Software

All code for Dataset Grouper can be found on GitHub,6 including all applicable licenses, disclaimers,
usage instructions, and examples. We showcase some functionalities below.

A.1 Installation, Usage and Examples

Installation. Dataset Grouper can be installed as a Python package7 using the pip command pip
install dataset-grouper.

Basic usage. At its core, Dataset Grouper can be used to partition datasets (eg. from TensorFlow
Datasets [16]) across groups. It can be used with any embarrassingly parallel user-defined partitioning
function of the signature get key fn(example) -> group id.

Below we give a simple example where we partition the MNIST dataset according to label (so that
we form one group per label).

Listing 1: Using Dataset Grouper to partition MNIST
1 import apache_beam as beam
2 import dataset_grouper as dsgp
3 import tensorflow_datasets as tfds
4
5 # First we download the MNIST dataset from TFDS.
6 dataset_builder = tfds.builder("mnist")
7 dataset_builder.download_and_prepare(...)
8
9 # Next, we define a function that maps MNIST examples to their group.

10 def get_label_fn(x):
11 label = x["label"].numpy()
12 return str(label).encode("utf-8")
13
14 # Finally, we build the partitioning pipeline, and run it using Apache Beam.
15 mnist_pipeline = dsgp.tfds_to_tfrecords(
16 dataset_builder=dataset_builder,
17 split="train",
18 get_key_fn=get_label_fn,
19 file_path_prefix=...
20 )
21 with beam.Pipeline() as root:
22 mnist_pipeline(root)

Dataset partitioning examples. We give additional examples of using Dataset Grouper to partition
datasets into groups:

• Feature-based partitioning: This script allows partitioning of a dataset by one of its features,
allowing for natural heterogeneous partitions. The language modeling datasets in Section 4
use this approach. For example, to create FedCCnews and FedC4 we partition based on the
URL.

• Random partitioning: This script assigns each example to client at random.

• Heterogeneous partitioning using a Dirichlet process: This script assigns each example to a
client based on a Dirichlet process. This is an embarrassingly parallel version of the popular
LDA-based method that is popular in the federated learning literature [e.g. 71]. Together
with the random partitioning, this can be used, for instance, to study the effect of the level of
data heterogeneity on FL algorithms.

The specific commands used to create the datasets introduced in Section 4 can be found in
the GitHub repository at https://github.com/google-research/dataset_grouper/tree/
main/dataset_grouper/examples/datasets.

6https://github.com/google-research/dataset_grouper
7https://pypi.org/project/dataset-grouper/
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Usage in training loops. Dataset Grouper saves partitioned datasets to the widely used TFRecord
format and builds grouped dataset pipelines via tf.data [91]. It can be used as shown below.

Listing 2: Iterating over group-partitioned datasets via Dataset Grouper
1 import dataset_grouper as dsgp
2
3 # Load the dataset by passing the file. paths and the TFDS dataset name
4 partitioned_dataset = dsgp.PartitionedDataset(
5 file_pattern=...,
6 tfds_features="c4" # Or any other TFDS dataset name.
7 )
8 # Obtain an iterator of clients/groups.
9 client_stream = partitioned_dataset.build_group_stream()

10 # Iterate over clients.
11 for client_dataset in client_stream:
12 # client_dataset is an iterable of examples.
13 for example in client_dataset.as_numpy_iterator():
14 # Process this example.

Typically, FL processes cohorts of clients. This can easily by achieved by applying a batch operation
on the client stream object above; see the training code below for details.

Training code examples. The GitHub repository contains JAX code to reproduce the experiments
discussed in Section 5 and Appendix C. It also gives sample code to demonstrate the integration of
Dataset Grouper with TensorFlow Federated [11].

A.2 Dataset Hosting

Dataset Grouper does not directly host any datasets and instead provides tools for downloading,
preparing, and partitioning publicly available datasets. As with most design decisions, this is a
trade-off. It enables Dataset Grouper to focus on utilities that apply to a broad range of datasets
(notably, all datasets hosted by TensorFlow Datasets [16] and HuggingFace Datasets [17]). However,
it also means that we cannot guarantee the hosting of various datasets in perpetuity. That being said,
the tools underlying Dataset Grouper generalize to a wide array of settings (namely, any setting in
which the base dataset can be accessed via an Apache Beam pipeline), and as such we believe Dataset
Grouper provides a concrete benefit to machine learning researchers and practitioners working with
group-structured data.

A.3 Dataset Licenses

Before using Dataset Grouper to partition a “base” dataset, users should also ensure that their use case
falls under the license of that base dataset and that they abide by the associated terms and services.
For example, below, we discuss the end license of the four (non-partitioned) datasets we use to create
the partitioned datasets in Section 4.

BookCorpusOpen. We access this dataset through HuggingFace datasets. This dataset was originally
derived from smashwords.com, and therefore should be used in compliance with the associated
terms of service. We encourage readers to read the datasheet for BookCorpus created by Bandy and
Vincent [78]. This datasheet identifies potential deficiencies of the dataset, including problematic and
skewed content, possible copyright issues, and book duplication.

CC-News. We access this dataset through HuggingFace datasets. This dataset is publicly available
and hosted by https://commoncrawl.org/, and therefore should be used in compliance with the
associated terms of use.

C4. We access this dataset through TensorFlow Datasets. This dataset is based on a publicly available
dataset hosted by https://commoncrawl.org/ and therefore should be used in compliance with
the associated terms of use.

Wikipedia. We access this dataset through TensorFlow Datasets. This dataset is created through
Wikimedia downloads (https://dumps.wikimedia.org/). Each example is derived from single
Wikipedia articles and subjected to post-processing and cleaning to strip markdown and unwanted
sections (references, etc.). This dataset should be used in compliance with Wikipedia’s terms of use.
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A.4 Software Development and Maintenance

Dataset Grouper is actively developed and maintained using standard open-source workflows. In
particular, we accept responsibility for reviewing and acting on issues and contributions from the
community, as long as they abide by a contributor license agreement discussed in the repository.

B Dataset Statistics

Source Dataset Partition on #Clients #Words #Words per client

10th perc. 25th perc. Median 75th perc. 90th perc.

Ours

FedC4 Domain 15.6M 132B 82 220 815 3.3K 0.5B

FedWiki Article 6.5M 3B 39 75 198 486 70K

FedBookCO Book 18K 1.2B 24K 32K 52K 81K 4M

FedCCnews Domain 8.8K 0.3B 303 1.1K 5K 20K 8.4M

Existing

Amazon Reviews Account 1.5M 4.3B 278 565 1.1K 2.3K 5K

Stack Overflow Account 0.3M 2B 1.2K 1.7K 2.7K 5.1K 11K

Reddit Account 1.7M 1.2B 58 111 257 675 1720

Blog Corpus Account 17K 0.1B 551 908 2K 5.3K 13K

Shakespeare Role/play 715 0.4M 14 45 175 0.6K 1.6K

Gigaword Synthetic 100 0.3M 3.0K 3.1K 3.1K 3.2K 3.2K

Table 6: Detailed version of Table 1: A summary of the per-client statistics of the new language modeling
datasets we introduce using Dataset Grouper, and of previous benchmark datasets supplied by TFF, Leaf,
FedNLP, and FedScale.

Source Dataset Partition on #Examples #Words #Words per Exmaple

10th perc. 25th perc. Median 75th perc. 90th perc.

Ours

FedC4 Domain 0.36B 132B 49 88 191 417 783

FedWiki Article 6.5M 3B 39 75 198 486 70K

FedBookCO Book 18K 1.2B 24K 32K 52K 81K 4M

FedCCnews Domain 0.7M 0.3B 78 151 316 548 842

Existing

Amazon Reviews Account 68M 4.3B 3 10 28 67 155

Stack Overflow Account 0.1B 2B 3 7 13 20 29

Reddit Account 33M 1.2B 7 11 21 42 81

Blog Corpus Account 0.5M 0.1B 6 28 105 248 460

Shakespeare Role/play 16K 0.4M 4 8 12 29 63

Gigaword Synthetic 10K 0.3M 21 26 31 36 41

Table 7: Detailed version of Table 1: A summary of the per-example (i.e., per-sequence) statistics of the
new datasets we introduce using Dataset Grouper, and of previous benchmark datasets supplied by TFF, Leaf,
FedNLP, and FedScale.

Here, we detail various statistics of the federated language-modeling datasets we propose and discuss
in Section 4. In Table 6, we present the per-client statistics of the dataset, and compare these
to per-client statistics of existing federated language modeling datasets supplied by TensorFlow
Federated [11], Leaf [12], FedNLP [13], and FedScale [15]. We see that at larger percentiles, FedC4,
FedWiki, FedBookCO, and FedCCnews contain many more words per client. FedBookCO also
contains dramatically more words per client at lower percentiles than previous datasets. In general,
datasets like FedC4 and FedCCnews exhibit a dramatic variance in statistics across clients. This can
make the datasets more challenging for federated algorithms, and potentially more representative of
heavy-tailed settings in practice.

In Table 7, we compare the per-example (i.e. per-sequence) statistics of the same datasets. We note
that this information is important for large-scale language modeling tasks, which may require long
sequences of tokens for training. We see that for nearly every percentile, the datasets we introduce
contain sequences of significantly larger lengths. This is especially true of larger percentiles, at which
point FedBookCO and FedWiki contains examples with thousands if not millions of words.
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To better visualize and compare the distribution of words per client, and given the large number
of clients in each dataset, we present a letter value plot [92] of these distributions. The result is in
Figure 9. This plot gives various quantiles of the distribution of the number of words per client. We
see that many of these datasets exhibit large amounts of variance between quantiles. FedC4 has an
especially heavy tail, with some clients having fewer than 10 words, while others have tens or even
hundreds of millions of words.
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Number of Words
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t

Figure 9: A letter value plot of the number of words held by each client, in the FedC4, FedWiki,
FedBookCO, and FedCCnews datasets.

Example application scenarios. FedBookCO (each client is a book) and FedWiki (each client is
a Wikipedia article) map to applications where each client is an “expert” in a certain topic. In the
context of modern LLM pipelines where each sequence is broken up into multiple examples of a fixed
length, the fact that each client has a single sequence is much less important than the total number of
words. This is especially true for FedBookCO where the 10th percentile data sequence length is 24K
words, while the maximum sequence length for LLMs today is O(1K) words.

FedC4 is typical of a group-structured pre-training (or second stage pre-training) dataset, which might
be practically encountered in practice with documents (corporate, medical, legal, etc.) or emails.
FedCCnews is a subset of FedC4 with similar long-tailed characteristics and is suitable for faster
experimentation of second stage pre-training or fine-tuning. It can also be used to study the effects of
pretraining data contamination.

C Full Experimental Details

We describe the full details of the experiments in Section 5. We discuss the datasets and preprocess-
ing in Appendix C.1, the model in Appendix C.2, the federated algorithms in Appendix C.3, the
hyperparameter choices in Appendix C.4, the reported metrics in Appendix C.5, and the hardware
configuration in Appendix C.6.
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C.1 Datasets and Preprocessing

We use FedC4 with domain-level partitioning for all experiments, which we discuss in Section 4. We
use a WordPiece tokenizer [79] with a pre-trained BERT vocabulary [80] of size 30523. For each
client, we concatenate all of the text in its examples into sequences of tokens of length 129, padding
the last sequence as needed. In each sequence x1:129, we predict x2 given x1, x3 given x1:2 and so on
until x129 given x1:128. This leads to a total of 128 predictions per sequence. We batch the sequences
with a batch size of 16 and apply “take” and “repeat” operations to ensure that each client has exactly
64 batches. For evaluation, we follow the same procedure. However, we use the “validation” split of
the C4 dataset, rather than the “train” split.

C.2 Model

We use a decoder-only transformer model whose size is roughly on the order of the BERT base or
GPT-2 small. It has 12 layers, 12 attention heads, and hidden layers of dimension 768. As discussed
above, it makes 128 predictions in each sequence using the causal language modeling loss (i.e.
next-token prediction with cross-entropy loss).

C.3 Federated Algorithms

We use two federated learning algorithms, FedAvg and FedSGD [81]. In both algorithms, at each
round t the server model xt is sent to all the clients participating in round t (i.e. the cohort at round t).
Throughout, 16 clients participate in each round (i.e. the cohort size is 16). As discussed in Section 3,
we shuffle the clients globally once and iterate successively through the stream of shuffled clients in
windows of size 16. In both algorithms, each client uses this model to compute a gradient at each of
its 64 batches. However, the algorithms differ in where these gradients are computed.

For FedAvg, we actually use the slightly generalized FedOpt framework [30] in which FedAvg uses
both a client optimizer and a server optimizer. Throughout, we use SGD as the client optimizer and
Adam as the server optimizer. After a client c computes a gradient, it updates its model locally using
the client optimizer (i.e. SGD), starting at the broadcast model xt. After K = 64 updates, this results
in some updated model xtc. The client then sends ∆t

c := xt − xtc to the server. For FedSGD, the
clients do not locally update their model. Each gradient is computed at the broadcast model xt, and
each client c sends the average ∆t

c of these gradients to the server.

Once the server has received ∆t
c for each participating client, it averages them uniformly (as weighted

and uniform are the same in our setting) to produce some quantity ∆t. The server treats this as an
estimate of the gradient of the empirical risk function at the model xt and applies the server optimizer
(i.e. Adam) to update the model accordingly.

For both algorithms, we perform 3125 rounds of federated training. This means that the server model
is updated 3125 times and that throughout the course of training, 3125× 16× 64 = 3.2M batched
gradients are computed (as each client has 64 batches, and 16 clients participate in each round). If we
consider each client to be computing gradients simultaneously, and form “meta-batches” of gradients
of size 16 over the batched gradients, this means that we are doing roughly 3125 × 64 = 200K
“meta-batched” gradient computations in total.

Note that when doing personalization for the purposes of evaluation, as in Table 5 and Figure 5, we
personalize the model (trained via FedAvg or FedSGD) using the same client training scheme as in
FedAvg: Clients perform 64 steps of SGD on the model broadcast to them. The batches of data are
formed in the exact same way as in training.

C.4 Optimizer Hyperparameters

As discussed in Appendix C.3, for both FedAvg and FedSGD we use a server optimizer of Adam.
We tune only the learning rate of this optimizer (the server learning rate, denoted ηs) and fix the
Adam hyperparameters of β1 = 0.9, β2 = 0.999 and ε = 10−8. For FedAvg we also use a client
optimizer of SGD. We tune the learning rate of this optimizer (the client learning rate, denoted ηc).
We tune both learning rates ηs, ηc over the range {10−4, 10−3, . . . , 100}. We select the learning rates
that minimize average training loss across rounds. See Table 8 for a summary.
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Placement Optimizer Hyperparameter Value Tuning Range

Server Adam

Learning Rate (ηs) N/A {10−4, 10−3, . . . , 100}
First Moment Decay (β1) 0.9 N/A

Second Moment Decay (β2) 0.999 N/A
Numerical Stability Term (ε) 10−8 N/A

Clients SGD Learning Rate (ηc) N/A {10−4, 10−3, . . . , 100}

Table 8: Optimizer hyperparameters.

Algorithm Server LR Schedule Server LR (ηs) Client LR (ηc)

FedAvg
Constant 10−3 10−1

Warmup + Exponential Decay 10−3 10−1

Warmup + Cosine Decay 10−3 10−1

FedSGD
Constant 10−4 N/A

Warmup + Exponential Decay 10−3 N/A
Warmup + Cosine Decay 10−3 N/A

Table 9: Tuned learning rates for FedAvg and FedSGD, with varying server learning rate schedules.

In Figure 4 we also experiment with learning rate scheduling. Note that these are only applied to the
server optimizer. The client learning rate (for FedAvg) is held constant throughout an experiment.
The learning rate schedule is applied across the 3125 training rounds. We compare constant learning
rates to learning rates with (1) exponential decay and (2) cosine decay. For both of these decay
schedules, we perform linear warmup (starting at 0) for the first 312 rounds ( 10% of the total number
of rounds). We then decay for the remaining rounds, with a final server learning rate of 0. In such
cases, the server learning rate parameter ηs refers to the maximum learning rate attained (i.e. at round
312) and is tuned just as above.

The best performing (tuned) learning rates for each algorithm and schedule are given in Table 9.
Generally, we found that a client learning rate of ηc = 10−1 worked well throughout. For FedAvg, a
server learning rate of ηs = 10−3 worked well, though we see little to no difference between server
learning rate schedules Figure 4a. For FedSGD, we find that we could only use ηs = 10−4 for
constant learning rates, but learning rate schedules allowed us to use ηs = 10−3 and led to improved
convergence Figure 4b.

When performing personalization evaluation (Table 5 and Figure 5), we use the same client optimizer
of SGD, and use the client learning rate that led to the best training performance for FedAvg (i.e.
ηc = 10−1, as in Table 9).

C.5 Reported Metrics

In Figure 4, we report a causal language modeling loss (i.e. the logarithm of the perplexity) at each
training round of FedAvg and FedSGD. How we compute these averages depends on the federated
algorithm used. For FedSGD, each client computes gradients and loss values across 64 batches, at the
same model. The client averages the loss across these 64 batches and sends the result to the server.
The server averages these quantities across the 16 clients participating in a round.

We do the same thing for FedAvg, except we must keep in mind that for each client, the 64 different
loss values are computed at different models. This is because in FedAvg, each client locally updates
its model as it computes gradients. The average of these 64 loss values is still sent to the server and
averaged across the 16 clients participating in a round. However, because of the local training, this
loss represents a different quantity. In short, it accounts for both how good the broadcast model is,
and how well the model adapts to a client’s data. By contrast, the loss reported for FedSGD only
represents how good the broadcast model is.
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In Table 5 and Figure 5, there is no such ambiguity. The pre-personalization loss is the average
causal language modeling loss before a client personalizes the model to its own data. The post-
personalization loss is the average causal language modeling loss after a client personalizes to its
own data.

C.6 Hardware Configuration

We run our experiments using a TPU Pod slice consisting of 16 TPU v3 chips in a 4x4 topology,
configured to use a multi-machine inter-chip interconnect mesh. Each TPU v3 chip contains two
TensorCores, 32 GiB of high-bandwidth memory, 87.25 GiB RAM, 900 GBps bandwidth, and 123
teraflops peak compute.

D Additional Experimental Results

Here, we present detailed personalization evaluation results on FedCCnews and FedWiki in Ap-
pendix D.1, followed by detailed ablation results in Appendix D.2.

D.1 Personalization Results

Here we present the results of performing pre-personalization and post-personalization evaluation on
the FedC4-trained models, but using other datasets. In addition to the evaluation on FedBookCO pre-
sented in Section 5, we present results on FedCCnews (Figures 10 and 11), and FedWiki (Figures 12
and 13).

For FedBookCO and FedCCnews, we report the personalization results on the entire dataset. Due
to the large number of clients in FedWiki, we randomly sample 20K clients in the dataset for
personalization evaluation.
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Figure 10: Median pre-personalization (left) and post-personalization (right) loss over FedCCnews clients
while training on FedC4. Error bars indicate the 10th and 90th percentiles.
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Figure 11: Histograms of pre-personalization (left) and post-personalization (right) loss on FedCCnews after
FedC4 training.
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Figure 12: Median pre-personalization (left) and post-personalization (right) loss over FedWiki clients while
training on FedC4. Error bars indicate the 10th and 90th percentiles.
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Figure 13: Histograms of pre-personalization (left) and post-personalization (right) loss on FedWiki after
FedC4 training.
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D.2 Ablation: Batches per Client

To better explore the phenomena discussed in Section 5, we perform a modified experiment where
we repeat the training from Section 5, but vary the number of batches τ each training client yields.
As above, we repeat and truncate clients’ datasets so that each client has exactly 1024 examples. For
example, when τ = 64, and we use a batch size of 16, this means that for FedAvg and FedSGD, each
client computes τ = 64 mini-batch gradients. For FedAvg, this means that the client does τ = 64
steps of training, while for FedSGD, this means that the client sends the average of these τ = 64
batches back to the server. We vary the number of batches τ over {1, 4, 16, 64}. We do so by repeating
and truncating clients’ data so that they have 16, 64, 256, and 1024 examples, respectively. We
then perform different amounts of training, one in which we equalize the number of communication
rounds, and one in which we equalize the total number of tokens seen across all clients.

Note that fixing the number of examples per client at 1024 and simply changing the batch size would
be a more elegant way to do this kind of ablation, as it would allow normalizing the number of
communication rounds and tokens simultaneously. Unfortunately, the batch size is often dictated
by compute constraints (e.g. what fits in the memory of a given hardware device), and cannot be
increased in an unbounded fashion in realistic machine learning settings, especially on-device settings
which are common in FL. Thus, we instead focus on varying τ .

Equalizing communication rounds. We do 5000 rounds of training for each number of batches per
client τ , using the same warmup and cosine decay schedule discussed above. Throughout training,
we perform personalization evaluation on the models. We give the pre-personalization results in
Figure 14, and the post-personalization results in Figure 15. For more detailed numerical results, see
Appendix D.2.
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Figure 14: Median pre-personalization loss across FedC4 validation clients, with different numbers of batches
used in each client’s local computation. Error bars indicate the 10th and 90th percentiles. All runs are equalized
to perform the same number of communication rounds in total.
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Figure 15: Median post-personalization loss across FedC4 validation clients, with different numbers of batches
used in each client’s local computation. Error bars indicate the 10th and 90th percentiles. All runs are equalized
to perform the same number of communication rounds in total.

We see that for FedSGD, the pre- and post-personalization losses do not change much with the
number of batches per client τ . For FedAvg, on the other hand, lower values of τ attain better
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pre-personalization loss, while higher values achieve better post-personalization loss. Note that
when the number of batches per client is τ = 1, FedAvg and FedSGD are effectively the same
algorithm (up to differences in normalization), and perform only a single update step per client each
round. Notably, FedAvg attains a better trade-off between the pre- and post-personalization metrics.
Specifically, FedAvg with τ = 4 can match the best pre-personalization performance of FedSGD
(FedAvg with τ = 4 and FedSGD with τ = 64 both attain a median pre-personalization loss of 4.2),
while performing significantly better on the post-personalization metrics (a median loss of 1.9 for
FedAvg with τ = 4 versus 3.4 for FedSGD with τ = 64). In short, these results seem to suggest that
“client drift” [28] is less of an impediment to federated learning, and more indicative of a trade-off
between minimizing pre- and post-personalization loss functions.

Algorithm Loss Batches per Client (τ)

1 4 16 64

FedAvg
Pre-Personalization 4.4 4.2 4.8 5.2
Post-Personalization 3.5 1.9 0.009 0.008

FedSGD
Pre-Personalization 4.5 4.4 4.4 4.2
Post-Personalization 3.6 3.4 3.4 3.3

Table 10: Median pre-personalization and post-personalization loss after training with FedAvg and FedSGD,
with different numbers of batches per client, keeping the total number of communication rounds constant.

Equalizing tokens. Next, we perform an analogous experiment, but where each setting of τ (the
number of batches per client), is trained for a different number of rounds, so that in each setting
the same number of tokens is processed (over all clients). For example, τ = 1 trains for 64× more
communication rounds than for τ = 64. Each training run processes roughly 10.5 billion tokens in
total. We give the pre-personalization results in Figure 16, and the post-personalization results in
Figure 17. For more detailed numerical results, see Appendix D.2. Notably, the post-personalization
loss diverged at intermediate stages for τ = 1, but recovered (albeit with high variance across clients)
afterwards.
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Figure 16: Median pre-personalization loss across FedC4 validation clients, with different numbers of batches
used in each client’s local computation. Error bars indicate the 10th and 90th percentiles. All runs are equalized
to process the same number of tokens in total.

Here, we see a notably different story than in Figures 14 and 15. In particular, we see that for both
FedAvg and FedSGD, lower values of τ lead to lower pre-personalization loss. However, for both
algorithms as long as τ is sufficiently large (at least 4 in this case), the post-personalization loss
essentially does not change with τ . This suggests that when communication is not a bottleneck, we
can attain good pre- and post-personalization loss by using FedAvg with a small (but not too small)
value of τ . In other words, by performing enough rounds of FedAvg with a moderate τ , we can attain
a model that does well before and after personalization.
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Figure 17: Median post-personalization loss across FedC4 validation clients, with different numbers of batches
used in each client’s local computation. Error bars indicate the 10th and 90th percentiles. All runs are equalized
to process the same number of tokens in total.

Algorithm Loss Batches per Client (τ)

1 4 16 64

FedAvg
Pre-Personalization 3.6 3.8 4.3 5.2
Post-Personalization 3.8 0.006 0.007 0.007

FedSGD
Pre-Personalization 3.6 3.7 3.9 4.2
Post-Personalization 3.9 3.5 3.3 3.3

Table 11: Median pre-personalization and post-personalization loss after training with FedAvg and FedSGD,
with different numbers of batches per client, keeping the total number of tokens processed constant.

E Memory Usage

In this section, we provide details of how much memory are used by the various dataset formats
in Section 3.1. Recall that we consider three formats: in-memory, hierarchical, and streaming. We
compare the amount of time required to iterate over various federated datasets in these formats in
Table 3. Here, we instead detail the peak memory usage (in megabytes) when iterating over the
same datasets. We note that these were collected on a single CPU, and do not include the time to do
operations like shuffling or batching.

The results are in Table 12. We see that in-memory formats use much larger amounts of memory,
as they load the entire dataset into memory. By contrast, hierarchical and streaming formats use
significantly less peak memory. Moreover, their peak memory usage does not scale with the total
size of the dataset, unlike in-memory formats. We note that streaming can use slightly more memory,
though only at most 2 MB more in all experiments.

Dataset Format In-Memory Hierarchical Streaming

CIFAR-100 156 0.40 0.74

FedCCnews 1996 0.08 1.16

FedBookCO 6643 0.001 0.10

Table 12: Peak memory usage, in megabytes, when iterating over federated datasets. We iterate over all examples
in all group datasets, in serial, on a single CPU. We compare a federated CIFAR-100 dataset (partitioned across
100 groups, each with 100 examples), FedCCnews (in which examples are split across users at a domain level),
and FedBookCO (in which examples are split across users at a title level). See Section 4 for more details on the
latter two datasets.
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