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Abstract

From clinical development of cancer therapies to investigations into partisan bias,
adaptive sequential designs have become increasingly popular method for causal
inference, as they offer the possibility of improved precision over their non-adaptive
counterparts. However, even in simple settings (e.g. two treatments) the extent to
which adaptive designs can improve precision is not sufficiently well understood.
In this work, we study the problem of Adaptive Neyman Allocation in a design-
based potential outcomes framework, where the experimenter seeks to construct
an adaptive design which is nearly as efficient as the optimal (but infeasible) non-
adaptive Neyman design, which has access to all potential outcomes. Motivated by
connections to online optimization, we propose Neyman Ratio and Neyman Regret
as two (equivalent) performance measures of adaptive designs for this problem. We
present CLIP-OGD, an adaptive design which achieves rOp

?
T q expected Neyman

regret and thereby recovers the optimal Neyman variance in large samples. Finally,
we construct a conservative variance estimator which facilitates the development
of asymptotically valid confidence intervals. To complement our theoretical results,
we conduct simulations using data from a microeconomic experiment.

1 Introduction

From medicine and public health to economics and public policy, randomized control trials are used
in a variety of disciplines to investigate causal effects. Typically, treatment is assigned in a non-
adaptive manner, where assignments are determined before any outcomes are observed. A sequential
experimental approach, which adaptively assigns treatment based on previously observed outcomes,
offers the possibility of more precise or high powered estimates of relevant causal effects. Adaptive
experiments are run to develop clinical therapies for breast cancer [Barker et al., 2009], evaluate
incentives to reduce partisan bias [Offer-Westort et al., 2021], and evaluate customer acquisition via
online advertising [Schwartz et al., 2017], to name a few.

In this paper, we study the problem of Adaptive Neyman Allocation, which we informally define as
follows. An optimal non-adaptive experimental design which minimizes variance of an estimator will
depend on the unknown potential outcomes, rendering it infeasible to run. However, by adaptively
choosing treatment assignments in a sequential manner based on observed outcomes, we can hope
to guarantee that the variance of the estimator under the adaptive design converges to the optimal
non-adaptive variance. The problem of Adaptive Neyman Allocation is to construct such an adaptive
design which guarantees the variance converges to the (infeasible) optimal non-adaptive design.
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An experimental design which sufficiently addresses the Adaptive Neyman Allocation problem offers
the advantage of higher statistical power, relative to a broad class of fixed experimental designs.
Practically speaking, this means that either smaller confidence intervals are obtained for a given
number of experimental units, or that fewer units are required to achieve confidence intervals of a
given length. In practice, this means that investigating causal effects can be cheaper—in terms of
time, money, and other valuable resources—when adaptive experiments are run. Although several
experimental designs have been proposed for this purpose [Hahn et al., 2011, Blackwell et al., 2022],
none have provided formal guarantees that the optimal non-adaptive variance can be achieved and the
effectiveness of such designs has recently been called into question Cai and Rafi [2022].

The main contributions of this work are as follows:

1. Neyman Ratio and Regret: We propose two (equivalent) performance measures of ex-
perimental designs for the problem of Adaptive Neyman Allocation: Neyman Ratio and
Neyman Regret. We show that guarantees on the rates of these performance measures
directly translate to guarantees on the convergence of variance to the Neyman variance.

2. CLIP-OGD: We propose the adaptive design CLIP-OGD, a variant of online stochastic
projected gradient descent for which the Neyman regret is rOp

?
T q. This guarantees that the

variance of the sequential effect estimator approaches the Neyman variance.

3. Confidence Intervals: By constructing a conservative variance estimator, we provide
confidence intervals which guarantee asymptotic coverage of the average treatment effect.

In Section 7, we support these theoretical results with simulations using data from a microeconomic
experiment. Our results rely on viewing the Adaptive Neyman Allocation problem through the lens
of online convex optimization. However, as discussed in Section 4.2, due to the subtleties arising in
the problem, we do not know of an existing online algorithm which directly obtains these results.

1.1 Related Work

We work within the potential outcomes framework for causal inference Neyman [1923], Rubin [1980],
Imbens and Rubin [2015]. The idea of optimal treatment allocation dates back to Neyman [1934],
where he demonstrates that sampling from treatments proportional to the within-treatment outcome
variance will minimize the variance of standard estimators. Unfortunately, this type of design is
not practically feasible when little is known about the statistics of outcomes from each treatment.
Robbins [1952] highlights adaptive sampling as one of the more pressing open statistical problems at
the time. In Chapter 5, Solomon and Zacks [1970] presents a survey of adaptive designs for survey
sampling, but from a Bayesian perspective. More recently, Hahn et al. [2011] proposed a two stage
design in a super-population setting, where data is uniformly collected from both arms in the first
stage, statistics of the treatment arm are estimated, and a fixed probability derived from estimated
statistics is used in the second stage. They derive the limiting distribution of the effect estimator
under the two-stage design, which has a variance that is similar to, but asymptotically bounded away
from the optimal Neyman variance. In a design-based setting, Blackwell et al. [2022] propose a
similar two-stage approach and, through simulations, provide practical guidance on how to choose
the length of the first stage. Although both of these works are motivated by achieving the Neyman
variance, neither formally show that this is possible under the two-stage design.

While the goal in this paper is to increase the precision of treatment effect estimates, a variety of
response-adaptive designs have been developed for various objectives, including reducing mean total
sample size [Hayre and Turnbull, 1981] and reduction of harm reduction in null hypothesis testing
[Rosenberger et al., 2001]. Eisele [1994] proposes the Doubly Adaptive Coin Based Design, which is
a meta-algorithm for targeting various allocation proportions when outcomes are drawn i.i.d. from an
exponential family. Hu and Rosenberger [2003] critiques many response-adaptive designs as being
“mypoic strategies” which have “adverse effects on power”, providing an asymptotic framework by
which to judge adaptive design when the outcomes are i.i.d. and binary. This asymptotic evaluation
framework was extended to continuous outcomes by Zhang and Rosenberger [2006]. An additional
line of work has developed adaptive Bayesian methods for subgroup identification [Xu et al., 2014].

Causal inference under adaptively collected data has seen a variety of recent developments which
are adjacent to, but distinct from, the problem of Adaptive Neyman Allocation. One line of research
has been to construct estimators via re-weighting which ensure consistency and normality when data
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is collected via bandit algorithms [Hadad et al., 2021, Zhang et al., 2020, 2021]. A second line of
research has been to provide inferential methods which are valid under data-dependent stopping times
[Wald, 1945, Howard et al., 2021, Ham et al., 2022]. Finally, Offer-Westort et al. [2021] propose
an adaptive experimental design for improved selective inference, when only the effect of the best
performing treatment is to be inferred.

2 Preliminaries

The sequential experiment takes place over T rounds, where we assume that T is fixed and known
to the experimenter. At each iteration t P rT s, a new experimental unit (e.g. clinical participant),
enters into the experiment, so that there are T units in total. In an abuse of notation, we identify
units with their respective round t P rT s. The experimenter assigns a (random) treatment Zt P t0, 1u
(e.g. drug or placebo) to the experimental unit. The unit has two real-valued potential outcomes
ytp1q, ytp0q which are unknown to the experimenter and represent the unit’s measured response to
the treatment assignments (e.g. measured heart rate). The term “potential” is used here because
while only one treatment is assigned and thus only one outcome is observed, both outcomes have
the potential to be observed. At the end of the round, the experimenter sees the observed outcome
Yt “ 1rZt “ 1sytp1q ` 1rZt “ 0sytp0q.

2.1 Potential Outcomes Framework

In this paper, we adopt a design-based framework where the sequence of potential outcomes
tytp1q, ytp0qu

T
t“1 is deterministic and the only source of randomness is treatment assignment it-

self. In particular, we place no assumption on the homogeneity of the outcomes: they are not
necessarily related to each other in any systematic way. Although the potential outcomes are deter-
ministic, we introduce finite population analogues of various statistics. Define the finite population
second moments Sp1q and Sp0q and correlation of the treatment and control outcomes ρ to be

Sp1q2 “
1

T

T
ÿ

t“1

ytp1q
2 , Sp0q2 “

1

T

T
ÿ

t“1

ytp0q
2 , and ρ “

1
T

řT
t“1 ytp1qytp0q

Sp1qSp0q
.

Observe that the correlation between treatment and control outcomes is bounded ρ P r´1, 1s.
Although we refer to ρ as the correlation, it also known as the cosine similarity and is generally
not equal to the Pearson correlation coefficient. We remark that although the potential outcomes
ytp1q and ytp0q are deterministic, the observed outcome Yt is random, as it depends on random
treatment assignment. The natural filtration according to these rounds is denoted as F1 . . .FT , so
that Ft captures all randomness before the sampling of Zt, i.e. the treatments assigned and outcomes
observed in previous rounds.

In this sequential setting, the mechanism for random treatment assignment can incorporate observed
outcomes from previous experimental rounds. This treatment mechanism, referred to as the experi-
mental design, is selected by and thus known to the experimenter. Formally, the experimental design
is a sequence of functions tΠtu

T
t“1 with signature Πt : pt0, 1u ˆ Rqt´1 Ñ r0, 1s such that treatment

is assigned as PrpZt “ 1 | Ftq “ ΠtpZ1, Y1, . . . Zt´1, Yt´1q. We denote Pt “ PrpZt “ 1 | Ftq as
the (random) probability of treatment assignment at iteration t, given previously observed treatment
assignments and outcomes.

The causal estimand of interest is the average treatment effect, defined as

τ “
1

T

T
ÿ

t“1

ytp1q ´ ytp0q .

The average treatment effect captures the average counterfactual contrast between a unit’s outcomes
under the two treatment assignments. For example, this could be the average contrast of a clinical
participant’s heart rate under the drug or placebo. Individual treatment effects are defined as τt “
ytp1q ´ ytp0q, but they cannot be estimated without strong additional assumptions, as only one
outcome is observed.

A standard estimator of the average treatment effect is the Horvitz–Thompson estimator, which
weights observed outcome by the probability of their observation [Narain, 1951, Horvitz and Thomp-
son, 1952]. For adaptive designs, the standard Horvitz–Thompson estimator is infeasible because
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the marginal probability of treatment assignment PrpZt “ 1q depends on the unknown potential
outcomes. For this reason, we investigate the adaptive Horvitz–Thompson estimator, which uses the
random (observed) treatment probabilities used at each iteration.

τ̂ fi
1

T

T
ÿ

t“1

Yt

´1rZt “ 1s

Pt
´

1rZt “ 0s

1´ Pt

¯

,

where we recall that Pt “ ΠtpZ1, Y1, . . . Zt´1, Yt´1q is the treatment probability under the ex-
perimental design given the observed data. When treatment assignments are non-adaptive and
independent, then the adaptive Horvitz–Thompson estimator is the equivalent to the standard Horvitz–
Thompson estimator. Such adaptively weighted estimators have been proposed previously in the
literature, e.g. [Bowden and Trippa, 2015, Hadad et al., 2021]. Below, we provide positivity
conditions under which the adaptive estimator is unbiased, and derive its variance.
Proposition 2.1. If mintPt, 1 ´ Ptu ą 0 almost surely for all t P rT s then the adaptive Horvitz–
Thompson estimator is unbiased: Erτ̂ s “ τ .
Proposition 2.2. The variance of the adaptive Horvitz–Thompson estimator is

T ¨Varpτ̂q “
1

T

T
ÿ

t“1

´

ytp1q
2 E

” 1

Pt

ı

` ytp0q
2 E

” 1

1´ Pt

ı¯

´
1

T

T
ÿ

t“1

τ2t .

2.2 Asymptotic Framework and Assumptions

Following the convention of design-based inference, we analyze statistical methods within an asymp-
totic framework [see e.g., Freedman, 2008, Lin, 2013, Sävje et al., 2021]. This provides a formal
basis for reasoning about the performance of statistical methods as the sample size increases, giving
meaning to conventional notions such as consistency and limiting distribution. Formally speaking, the
asymptotic sequence of potential outcomes is a triangular array ttyt,T p1q, yt,T p0quTt“1u

8
T“1, which

yields a sequence of estimands tτT u8T“1 and, together with an appropriately specified sequence of
experimental design, a sequence of estimators tτ̂T u8T“1. Analysis which applies to a fixed T is said
to be finite-sample (e.g. Erτ̂T s “ τT ) whereas analysis which applies to the entire sequence is said to
be asymptotic (e.g. τT ´ τ̂T

p
ÝÑ 0). Although we use an asymptotic framework, we emphasize that

the majority of our results are derived from finite-sample analysis and are merely interpreted through
the lens of the asymptotic framework. We drop the subscript T for notational clarity.

The main regularity conditions we place on the sequence of potential outcomes is below.
Assumption 1. There exist constants 0 ă c ď C with c ă 1 such that for all T in the sequence:

1. Bounded Moments: c ď
`

1
T

řT
t“1 ytpkq

2
˘1{2

ď
`

1
T

řT
t“1 ytpkq

4
˘1{4

ď C @ k P t0, 1u.

2. Bounded Correlation: ρ ě ´p1´ cq.

The upper moment bound in Assumption 1 stipulates that the potential outcomes cannot grow too
large with the sample size, while the lower moment bound is a type of non-degeneracy condition
that prevents an increasingly large fraction of the outcomes going to zero. These assumptions are
analogous to finite fourth moment and positive second moment assumptions in an i.i.d. setting. The
bounded correlation assumption stipulates that the treatment and control outcomes are not exactly
negatively correlated. In this paper, we do not assume that these constants C and c are known to the
experimenter; however, if the experimenter can correctly specify such bounds (perhaps knowing a
priori the scaling of the outcomes) then some of the constant factors in our analysis can be improved.
We emphasize here that Assumption 1 places no assumption on the order in which units arrive in
the experiment. In this sense, Assumption 1 allows for arbitrary “non-stationarity” or “drift” in the
potential outcomes over the experimental rounds. In the next section, these regularity assumptions
will ensure that the Neyman variance converges to zero at the parametric rate.

3 Neyman Design: The Infeasible Non-Adaptive Ideal

The problem of Adaptive Neyman Allocation is to construct an adaptive experimental design that
achieves nearly the same variance as an optimal non-adaptive experimental design, chosen with

4



knowledge of all potential outcomes. The optimal non-adaptive design, referred to as the Neyman
Design, is infeasible to implement because it depends on all potential outcomes, which are unknown
to the experimenter at the design stage. The goal is that an adaptive experimental design—which can
select treatment assignment based on observed outcomes—can gather enough information to perform
as well as the infeasible Neyman design.

In order to define the optimal non-adaptive design, we begin by defining the class of Bernoulli designs.
Informally, the class of Bernoulli designs consists of non-adaptive designs where each unit receives
treatment Zt “ 1 with probability p, independently of past treatment assignments and observations.
Formally, this class is parameterized by a non-adaptive sampling probability p P r0, 1s such that for
all t P rT s, the treatment policy Πt is a constant function whose value is p. Using Proposition 2.2,
we can derive the variance of the Bernoulli design with parameter p P r0, 1s to be

T ¨ Vp “ Sp1q2
´1

p
´ 1

¯

` Sp0q2
´ 1

1´ p
´ 1

¯

` 2ρSp1qSp0q .

From the above, we can see that in order to minimize the variance of the Horvitz–Thompson estimator
under the Bernoulli design, we should set the sampling probability p so as to balance the square
of the second moments of treatment and control outcomes. The Neyman Design is the Bernoulli
design which minimizes the variance of the Horvitz–Thompson estimator. The corresponding optimal
probability p˚ and variance VN are referred to as the Neyman probability and Neyman variance,
respectively. The following proposition derives these quantities in terms of the potential outcomes.
Proposition 3.1. The Neyman variance is T ¨ VN “ 2p1 ` ρqSp1qSp0q, which is achieved by the
Neyman probability p˚ “ p1` Sp0q{Sp1qq´1.

In order to quantify the reduction in variance achieved by the Neyman design, define the relative
Neyman efficiency with respect to p P r0, 1s to be VN{Vp. Intuitively, this ratio is a scale-free measure
which captures the percent reduction in variance of the sequential Horvitz–Thompson estimator under
the Neyman design. Formally, the equation for the relative Neyman efficiency is given below:

VN

Vp
“ 2p1` ρq

«

Sp1q

Sp0q
¨
p1´ pq

p
`
Sp0q

Sp1q
¨

p

p1´ pq
` ρ

ff´1

.

Consider the setting where outcomes are uncorrelated, and treatment outcomes are larger than control
outcomes, e.g. ρ “ 0, Sp1q “ 4 ¨ Sp0q. In this case, the Neyman design is able to achieve less than
half the variance of the uniform Bernoulli design (with p “ 1{2): we can plug in to 3 to see that in
this setting, we have VN{Vp “ 0.47. The improvement is larger if the experimenter makes erroneous
assumptions about the relative magnitudes of the treatment and control outcomes and attempts to
set p accordingly: for example, if the experimenter had set p “ 1{4, incorrectly believing that
Sp1q ď Sp0q, then the Neyman allocation results in a sixfold improvement in variance. Blackwell
et al. [2022] derives qualitatively similar analysis of Neyman efficiency for stratified designs.

While the relative Neyman efficiency is helpful in determining the variance reduction afforded by
the (infeasible) optimal Bernoulli design, it does not address the main question: which adaptive
experimental designs can guarantee similar variance reduction? In the next section, we propose a
performance metric which better addresses this question.

4 Adaptive Neyman Allocation: An Online Optimization Approach

4.1 Neyman Ratio and Neyman Regret: New Performance Measures

Let V be the variance of the adaptive experimental design. We introduce our first performance
measure of a sequential experimental design for Adaptive Neyman Allocation.
Definition 1. The Neyman ratio of a sequential experimental design is κT “ pV ´ VNq{VN.

The subscript T in κT in included the reflect dependence of the number of rounds T . The Neyman
ratio is motivated by the following relationship between the adaptive variance and the optimal Neyman
variance:

V “
´ V

VN

¯

¨ VN “

´

1` κT

¯

¨ VN . (1)
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Equation (1) shows that the adaptive design can recover the Neyman variance if and only if the
Neyman ratio κT can be made arbitrarily small. For this reason, we propose the Neyman ratio as a
performance measure of a sequential experimental design.

A natural question then becomes: how small can the Neyman ratio κT be made as the number of
rounds T increases? To answer this question, we view the problem of minimizing the Neyman
ratio through the lens of online optimization. To this end, we must re-express the variance of the
sequential experimental design. For each round t P rT s, define the cost function ft : r0, 1s Ñ R
as ftppq “ ytp1q

2{p ` ytp0q
2{p1´ pq. Observe that by Proposition 2.2, the variance is given by

T ¨ Varpτ̂q “ Er 1T
řT
t“1 ftpPtqs. This reformulation of variance does not allow us to minimize

variance directly, for the usual reason that the outcomes, and thus the cost functions ft, are not fully
observed. On the other hand, our goal is only to show that the variance of the adaptive design is
comparable to the Neyman variance.

Definition 2. The Neyman regret of a sequential experimental design is

RT “

T
ÿ

t“1

ftpPtq ´ min
pPr0,1s

T
ÿ

t“1

ftppq .

Recall that Pt is the random treatment probability at round t. The Neyman regret compares the
accumulated costs ftpPtq incurred by the adaptive design to the accumulated costs incurred by the
optimal Bernoulli design which has access to all potential outcomes. The Neyman regret is random
because the sequence P1, . . . PT is random. The following theorem connects the expected Neyman
regret to the Neyman ratio.

Theorem 4.1. Under Assumption 1, the Neyman ratio is within a constant factor of the 1{T -scaled
expected Neyman regret: κT “ Θp 1T ErRT sq.

Theorem 4.1 demonstrates that the Neyman ratio can be made small by minimizing the expected
Neyman regret in an online fashion. In particular, any sublinear bound on the expected Neyman regret
ensures that the Neyman ratio goes to zero so that, in large samples, the adaptive design achieves
the variance reduction of the optimal Neyman design. Any adaptive design which aims to achieve
Neyman variance must, to some extent, minimize expected Neyman regret.

Fortunately, online optimization is a well-studied area with a rich source of techniques from which
we may draw inspiration. However, to the best of our knowledge, existing regret minimization
algorithms are not well-suited to minimizing the Neyman regret. For example, the multi-arm bandit
literature typically defines regret in terms of a finite number of actions that can be taken [Lattimore
and Szepesvári, 2020] while Adaptive Neyman Allocation consists of a continuum of actions as
Pt P r0, 1s. This means that algorithms like UCB [Auer et al., 2002a] and EXP3 [Auer et al., 2002b]
are not appropriate for Adaptive Neyman Allocation. Our cost objectives ft and action space r0, 1s
are both convex, so the problem of Adaptive Neyman Allocation is an instance of Online Convex
Optimization (OCO) [Hazan, 2016]. Even so, the problem of minimizing Neyman regret is not
immediately amenable to existing algorithms, which typically requires assumptions on the cost
functions such as bounded gradients or known Lipschitz parameters. In this setting, the cost functions
have gradients which blow up at the boundary and Lipschitz parameters cannot be guaranteed as they
rely on the unknown heterogeneous potential outcomes. For these reasons, we must design a new
algorithm specifically tailored to Adaptive Neyman Allocation.

4.2 CLIP-OGD: A Variant of Online Stochastic Projected Gradient Descent

We present CLIP-OGD, which aims to minimize the Neyman regret and thus recover the Neyman
variance in large samples. The algorithm is based on the online stochastic projected gradient descent
principle, but with a twist: the projection set continuously grows over the rounds. At each round
t, a new treatment probability Pt is chosen by updating the previous sampling probability Pt´1 in
the negative (estimated) gradient direction of the previous cost, and then projecting to an interval
rδt, 1´ δts. Initially, this projection interval contains only the point 1{2 and it grows as the rounds
increase, allowing for larger amounts of exploitation in later rounds.

The gradient estimator Gt is obtained in the following way: the gradient of ft at Pt is given as
f 1pPtq “ ´

ytp1q
2

P 2
t
`

ytp0q
2

p1´Ptq2
. Only one outcome is observed, so we used the adaptive Horvitz–
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Thompson principle using the conditional probability Pt to unbiasedly estimate the outcomes. CLIP-
OGD is formally presented below as Algorithm 1, where the projection operator is defined as
Pcpxq “ maxtc,mintx, 1´ cuu.

Algorithm 1: CLIP-OGD
Input: Step size η and decay parameter α
Initialize P0 Ð 1{2 and G0 Ð 0
for t “ 1 . . . T do

Set projection parameter δt “ p1{2q ¨ t´1{α

Compute new treatment probability Pt Ð PδtpPt´1 ´ η ¨Gt´1q

Sample treatment assignment Zt as 1 with probability Pt and 0 with probability 1´ Pt
Observe outcome Yt “ 1rZt “ 1sytp1q ` 1rZt “ 0sytp0q

Construct gradient estimator Gt “ Y 2
t

´

´
1rZt“1s
P 3
t

`
1rZt“0s
p1´Ptq3

¯

end

Unlike the two-stage design of [Hahn et al., 2011, Blackwell et al., 2022], CLIP-OGD does not
feature explicit explore-exploit stages, but rather performs both of these simultaneously. The trade-off
is implicitly controlled through parameters η and α: smaller values of η limit the amount of that
sampling probabilities can update and, likewise, larger values of α prevent extreme probabilities in
earlier stages. Because the gradient of the cost functions are inversely proportional to the treatment
probabilities, limiting the extremeness of the treatment probabilities in this way ensures that the
gradient estimates do not increase at a fast rate. By appropriately setting input parameters, CLIP-OGD
achieves rOp

?
T q expected Neyman regret, where the rOp¨q notation hides sub-polynomial factors.

Theorem 4.2. Under Assumption 1 the parameter values η “
a

1{T and α “
a

5 logpT q ensure
the expected Neyman regret of CLIP-OGD is asymptotically bounded: E

“

RT

‰

ď rO
`
?
T
˘

.

Theorem 4.2 answers, in the affirmative, that it is possible to construct an adaptive experimental
design whose variance recovers that of the Neyman variance, in large samples. Note that the amount
of exploration (as given by the parameters η and α) should be increasing with T in order to recover
these regret bounds. In Appendix C, we show that CLIP-OGD is somewhat robust to different values
of the decay parameter, i.e. for any value α ą 5, the expected regret will be sublinear. We also
show that if the experimenter presumes to have correctly specified bounds C and c appearing in
Assumption 1, then the step size can be modified to improve the constant factors in the Neyman
regret bound, which may lead to improved performance in moderate sample sizes. We conjecture
that the minimax rate for expected Neyman regret is Op

?
T q, but proving this is beyond the scope of

the current paper—we only remark that we do not know it to immediately follow from any existing
regret lower bounds for OCO.

5 Inference in Large Samples

The proposed CLIP-OGD was constructed to ensure that the variance of the adaptive Horvitz–
Thompson estimator quickly approaches the Neyman variance. In this section, we provide confidence
intervals for the average treatment effect which also enjoy reduced width compared to non-adaptive
counterparts.

A necessary condition for variance estimation is that the variance itself cannot be going to zero too
quickly. In design-based inference, it is common to directly posit a so-called “non-superefficient”
assumption that Varpτ̂q “ Ωp1{T q [Aronow and Samii, 2017, Leung, 2022, Harshaw et al., 2022].
The non-superefficiency assumption may be seen as an additional regularity assumption on the
outcomes, e.g. preventing ytp1q “ ytp0q “ 0 for all t P rT s. In this work, a similar lower bound on
the rate of the adaptive variance is obtained through a different, perhaps more transparent, assumption
on the expected Neyman regret.
Assumption 2. The outcome sequence is not overly-fit to CLIP-OGD: ´ErRT s “ opT q.

While we have shown that ErRT s ď rOp
?
T q, the Neyman regret could in principle be negative if the

adaptive design achieves variance which is strictly smaller than the best Bernoulli design. While this
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seems unlikely to happen for “typical” outcomes, it is not impossible. Assumption 2 rules out these
edge-case settings. We suspect that Assumption 2 would not be necessary in an i.i.d. setting, but
proving this seems beyond the scope of the current paper. As shown in the appendix, Assumptions 1
and 2 imply that the adaptive variance achieves the parametric rate: Varpτ̂q “ Θp1{T q.

5.1 Variance Estimation

In this section, we provide a variance estimator and show its stability in large samples. Rather than
estimating the adaptive variance (which has no simple closed form), our approach is to estimate the
Neyman variance directly. For an adaptive design achieving sublinear expected Neyman regret, these
two quantities are asymptotically equivalent. In this way, our variance estimator may be appropriate
not only for CLIP-OGD, but for any adaptive design achieving sublinear expected Neyman regret.

Recall that the Neyman variance is given by T ¨ VN “ 2p1 ` ρqS1S0, where ρ is the outcome
correlation, S1 is the second moment of treatment outcomes and S0 is the second moment of control
outcomes. Unfortunately, the outcome correlation term is generally not estimable without strong
assumptions in a design-based framework. Indeed, the difficulty is that terms like ytp1qytp0q are
unobservable due to the fundamental problem of causal inference [Imbens and Rubin, 2015]. A
common solution to the problem is to opt for a conservative estimate of the variance, which will
ensure validity of resulting confidence intervals.

We propose estimating the following upper bound on the variance: T ¨ VB “ 4S0S1. This upper
bound on the Neyman variance is tight (i.e. VB “ VN) when outcome correlation satisfies ρ “ 1. For
example, this occurs when all individual treatment effects are zero, i.e. ytp1q “ ytp0q for all t P rT s.
Conversely, the upper bound will become looser for smaller values of the outcome correlation. In this
sense, our bound resembles both the Neyman bound and the Aronow-Samii bound [Neyman, 1923,
Aronow and Samii, 2013]. It may be possible to use the recent insights of Harshaw et al. [2021] in
order to construct variance bounds which are tight in other scenarios, but that is beyond the scope of
the current paper. Our variance estimator is defined as

T ¨ xVB fi 4

g

f

f

e

˜

1

T

T
ÿ

t“1

y2t
1rzt “ 1s

pt

¸

¨

˜

1

T

T
ÿ

t“1

y2t
1rzt “ 0s

1´ pt

¸

,

which is essentially a plug-in Horvitz-Thompson estimator for the second moments. Theorem 5.1
shows the error of the normalized variance estimator converges at a parametric rate.
Theorem 5.1. Under Assumptions 1 and 2, and the parameters stated in Theorem 4.2, the error of
the normalized variance estimator under CLIP-OGD is T ¨ xVB´ T ¨ VB “ rOppT

´1{2q.

5.2 Confidence Intervals

The variance estimator may be used to construct confidence intervals for the average treatment effect.
This offers experimenters standard uncertainty quantification techniques when running CLIP-OGD.
The following corollary shows that the resulting Chebyshev-type intervals are asymptotically valid.
Corollary 5.1. Under Assumptions 1 and 2, and parameters stated in Theorem 4.2, Chebyshev-type
intervals are asymptotically valid: for all α P p0, 1s, lim infTÑ8 Prpτ P τ̂ ˘ α´1{2

a

xVBq ě 1´ α.

While these confidence intervals are asymptotically valid under our regularity assumptions, they
may be overly conservative in general. In particular, they will over cover when the Chebyshev tail
bound is loose. We conjecture that the adaptive Horvitz–Thompson estimator under CLIP-OGD
satisfies a Central Limit Theorem, which would imply asymptotic validity of the narrower Wald-type
intervals where α´1{2 scaling is replaced with the corresponding normal quantile, Φ´1p1´ α{2q. As
discussed in Section 7, the adaptive estimator appears approximately normal in simulations. Until this
is formally shown, we recommend experimenters exhibit caution when using Wald-type confidence
intervals for the adaptive Horvitz–Thompson estimator under CLIP-OGD.

6 Considering Alternative Designs

Explore-Then-Commit Two-stage adaptive designs have been proposed for the purpose of variance
reduction [Hahn et al., 2011, Blackwell et al., 2022]. Due to its similarities to algorithms in the bandits
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literature, we call these types of designs Explore-Then-Commit (ETC) [Lattimore and Szepesvári,
2020]. At a high level, an Explore-then-Commit design runs the Bernoulli design with p “ 1{2 for
T0 ď T iterations, uses the collected data to estimate p˚ by pp˚, and then runs the Bernoulli design
with p “ pp˚ for the remaining T1 “ T ´ T0 iterations. These ETC designs are conceptually simpler
than CLIP-OGD, and may be reasonable to apply in more restricted settings where changing the
treatment probabilities is difficult or costly. However, we provide the following negative result which
shows that they can suffer linear Neyman regret.
Proposition 6.1. For all explore phase lengths T0 satisfying T0 “ ΩpT εq for some ε ą 0, there exist
a class of potential outcomes sequences satisfying Assumption 1 such that the Neyman regret under
Explore-then-Commit is linear: RT “ ΩppT q.

The specific class of potential outcomes referenced in Propposition 6.1 is constructed explicitly in
Appendix E.1. ETC designs suffer larger variance when the estimated pp˚ may be far from the true
optimal probability p˚. In a design-based setting, this happens when the units in the explore phase are
not representative of the entire sequence. Formulating conditions under which Explore-then-Commit
designs achieve low Neyman regret is beyond the scope of this paper, but the proof of Proposition 6.1
shows that additional regularity conditions on the order of the units will be required.

Multi Arm Bandit Algorithms Multi Arm Bandit (MAB) algorithms are often used for adaptive
decision making settings, from online advertising to product development. The goal of MAB
algorithms is to minimize the outcome regret, which measures the contrast between the overall value
obtained from the actions relative to the value of the best action. The outcome regret is conventionally
defined as Routcome

T “ maxkPt0,1u
řT
t“1 ytpkq ´

řT
t“1 Yt. In certain contexts, minimizing outcome

regret may be a more desirable goal than estimating a treatment effect to high precision. However,
the following proposition illustrates that these two objectives are generally incompatible.
Proposition 6.2. Let A be an adaptive treatment algorithm achieving sublinear outcome regret,
i.e. there exists q P p0, 1q such that ErRoutcome

T s ď OpT qq for all outcome sequences satisfying
Assumption 1. Then, there exists a class of outcome sequences satisfying Assumption 1 on which A
suffers super-linear Neyman regret, i.e. ErRT s ě ΩpT 2´qq.

Proposition 6.2 demonstrates that the outcome regret and the Neyman regret cannot generally be
simultaneously minimized. In particular, sublinear outcome regret implies that the variance of the
estimator must converge slower than the Θp1{T q parametric rate. This result contributes to a growing
body of work which highlights trade-offs between various possible objectives in sequential decision
making [Burtini et al., 2015]. It is beyond the scope of the current paper to determine how such
trade-offs ought to be resolved, though Appendix F discusses ethical considerations.

7 Numerical Simulations

We evaluate the performance of CLIP-OGD and Explore-then-Commit (ETC) for the purpose
of Adaptive Neyman Allocation on the field experiment of Groh and McKenzie [2016], which
investigates the effect of macro-insurance on micro-enterprises in post-revolution Egypt2. The
experimental units are 2,961 clients of Egypt’s largest microfinance organization and the treatment
was a novel insurance product. Several outcomes were recorded including whether the clients took
on loans, introduced a new product or service, and the amount invested in machinery or equipment
following treatment. To allocate treatment, Groh and McKenzie [2016] use a non-adaptive matched
pair experimental design. Our goal here is not to provide a new analysis of this study, but rather to
construct a plausible experimental setting under which to evaluate adaptive experimental designs.

In our simulations, we focus on the numerical outcome “invested in machinery or equipment”.
The experimental data contains only observed outcomes, so we must impute the missing potential
outcomes in order to simulate the experiment. We impute outcomes using the model ytp1q ´ ytp0q “
τ ` γt, where τ “ 90, 000 and γ1 . . . γT „ N p0, σ2q are independent with σ “ 5, 000. This
randomness is invoked only to impute potential outcomes, i.e. not re-sampled during each run of
the experiment. In order to increase the sample size, we create a larger population by repeating this
processes 5 times, which yields a total of 14, 445 units after those with missing entries are removed.
Units are shuffled to appear in an arbitrary order and outcomes are normalized to be in the ranger0, 1s.

2A repository for reproducing simulations is: https://github.com/crharshaw/Clip-OGD-sims
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(b) First 100 units have flipped potential outcomes

Figure 1: Normalized Variance of Adaptive Estimator under Experimental Designs

Figure 1 presents two plots illustrating how the variance of the adaptive HT estimator varies with
different designs. The x axis contains the number of rounds T and the y axis contains the normalized
variance T ¨Varpτ̂q under the designs. For each value of T , we take the population to be the first T
units in the sequence. CLIP-OGD is run with the parameters recommended in Theorem 4.2 and ETC
is run with T0 “ T 1{3 so that the exploration phase grows with T . The variance under CLIP-OGD
and ETC is estimated empirically from 50,000 runs of the experiment, while the variance under the
Bernoulli and Neyman designs is computed exactly.

In Figure 1a, we observe that CLIP-OGD requires about T “ 4, 000 samples to achieve variance
equal to Bernoulli, but eventually converges to the Neyman variance. As discussed in Section 4.2,
it may be possible to improve the convergence rate by incorporating knowledge of the outcome
moments in the design parameters. On the other hand, ETC remains comparable with Bernoulli even
for small values of T , but remains far away from the Neyman design for large samples. In Figure 1b,
a similar simulation is run, except that the potential outcomes of the first 100 units are swapped, so
that the first units have negative individual treatment effects. While this produces little effect on the
performance of CLIP-OGD, it substantially worsens the performance of ETC, which relies on the
early outcomes to estimate an optimal treatment probability. In particular, ETC performs worse than
Bernoulli under this minor modification—even in large samples—corroborating Proposition 6.1.

In the appendix, we evaluate the proposed confidence intervals, showing that CLIP-OGD enjoys
intervals of reduced width. We show that normal based intervals cover at the nominal level and
provide further evidence that the estimator is asymptotically normal under CLIP-OGD. We run
additional simulations to investigate the sensitivity of the step size, and to demonstrate that additional
baselines which were not designed for Neyman allocation indeed perform poorly.

8 Conclusion

In this paper, we have proposed the Neyman ratio and Neyman regret as a performance measure
of experimental designs for the Adaptive Neyman Allocation problem. To this end, we proposed
CLIP-OGD which achieves rOp

?
T q expected Neyman regret under mild regularity conditions on

the outcomes. This formally establishes—for the first time—the existence of adaptive experimental
designs under which the variance of the effect estimator quickly approaches the Neyman variance.
Finally, we have provided a variance estimator which provides experimenters with uncertainty
quantification methods when using CLIP-OGD. The main drawback of our analysis is that it is
most relevant for moderate and large sample sizes; in particular, our work does not properly address
whether adaptive designs are always beneficial in small samples.

There are several research directions which can improve relevance of this methodology to practice.
First, establishing conditions under which a central limit theorem holds for CLIP-OGD will yield
smaller and thus more desirable Wald-type confidence intervals. Second, investigations into batched
treatment allocations and delayed observations of outcomes would allow practitioners more flexibility
in their designs. Finally, investigating variants of Adaptive Neyman Allocation in the presence of
interference [Aronow and Samii, 2017, Harshaw et al., 2022] would allow for more realistic inference
in complex settings, e.g. social network experiments and marketplace experiments.
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A Additional Simulation Results

In this section, we present additional simulation results on the Groh and McKenzie [2016] data. We refer to Section 7
for a review of the experimental set-up. In this section, we focus on the full dataset where T “ 14, 445. Simulations
were run on a 2019 MacBook Pro with 2.4 GHz Quad-Core Intel Core i5 and 16 GB LPDDR3 RAM.

A.1 Confidence Intervals

Chebyshev Width Chebyshev Coverage Normal Width Normal Coverage
Bernoulli (p “ 1{2) 0.0541 100% 0.0237 95.21%
CLIP-OGD 0.0507 99.99% 0.0222 95.22%

Table 1: 95% Confidence Intervals for Bernoulli and CLIP-OGD

Table 1 presents the Chebyshev-based and Normal-based intervals for the Bernoulli design pp “ 1{2q and CLIP-OGD.
We see that while Chebyshev over-covers, the normal-based confidence intervals cover at the nominal level with reduced
width for both designs. The relative Neyman efficiency on this dataset is somewhat close to 1, so that the reduction of the
width of the confidence intervals afforded by CLIP-OGD is present, though modest. The coverage of the normal-based
confidence intervals provides further evidence supporting our conjecture that the adaptive Horvitz–Thompson estimator
is asymptotically normal under CLIP-OGD.
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Figure 2: Histogram of Studentized Adaptive Horvitz–Thompson estimator under CLIP-OGD (T “ 14, 445)

Figure 2 plots the histogram of the studentized adaptive Horvitz–Thompson estimator under CLIP-OGD. By studentized,
we mean that the histogram is plotting the draws of the random variable

Z “
τ ´ τ̂

a

Varpτ̂q
.

We estimate the standard deviation empirically from 50,000 runs of the experiment. The estimator is said to be
asymptotically normal if Z d

ÝÑ N p0, 1q. Figure 2 provides evidence that asymptotic normality is likely to hold in this
setting. Formally establishing asymptotic normality is beyond the scope of the current paper as it would involve very
different analytic techniques than those used to establish sublinear Neyman regret.

A.2 Sensitivity to Step Size

In this section, we explore through simulations how the performance of CLIP-OGD depends on the step size.
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Figure 3: Comparing Step Sizes:

In Figure 3, we re-create Figure 1a in the main paper but we have added instances of CLIP-OGD with different step
sizes of the forms η “ c{

?
T for c P t0.25, 0.5, 1.0, 2.0, 4.0u. We find that smaller step sizes improve convergence

rates, effectively removing the “overhead of adaptivity” in this example. However, because the randomized experiment
can only be run once, experimenters will typically not be able to try many step sizes. While it remains an open question
about how to select a step size which best mitigates the “overhead of adaptivity”, our recommendation of 1{

?
T still

maintains good convergence properties.

A.3 Alternative Designs

In this section, we conduct additional experiments to compare the results of CLIP-OGD to alternative experimental
designs which are not made for Neyman allocation. Indeed, we find that the alternative designs incur a high variance,
relative to CLIP-OGD and the Neyman variance.
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Figure 4: Comparison of (Unnormalized) Variances:

In Figure 4, we plot the variance of the adaptive designs on an unnormalized scale. We include "Doubly Biased Coin
Design" proposed by Eisele [1994] as DBCD in Fig 4a and both DBCD and EXP3 in Fig 4b. We find that both DBCD and
EXP3 suffer from higher variance. This is because they are not designed for Adaptive Neyman Allocation as defined in
this paper: DBCD targets a different allocation rule and EXP3 minimizes outcome regret so that essentially only one arm
is pulled. Both of these algorithms let the sampling probabilities Pt get too close to the boundary of r0, 1s, resulting in
excessively large variance.
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B General Analysis of Adaptive Neyman Allocation

In this section, we provide general analysis relevant for the problem of Adaptive Neyman Allocation. In Section B.1,
we analyze the adaptive Horvitz–Thompson estimator. In Section B.2, we derive the optimal non-adaptive Neyman
design in terms of the potential outcomes. In Section B.3, we show the equivalence of Neyman ratio and expected
Neyman regret. For completeness, all propositions re-appear in the appendix.

B.1 Analysis of Adaptive Horvitz–Thompson Estimator (Propositions 2.1 and 2.2)

Throughout these proofs, we break up the adaptive Horvitz–Thompson estimator into the sum of individual estimators.
For each t P rT s, define

τ̂t “ Yt

´1rZt “ 1s

Pt
´

1rZt “ 0s

1´ Pt

¯

so that the sequential Horvitz–Thompson estimator is equal to τ̂ “ p1{T q
řT
t“1 τ̂t. This mirrors how the average

treatment effect is the average of individual treatment effects, i.e. τ “ p1{T q
řT
t“1 τt.

We begin by proving Proposition 2.1, which establishes the unbiasedness of the adaptive Horvitz–Thompson estimator,
subject to a positivity condition.
Proposition 2.1. If mintPt, 1´ Ptu ą 0 almost surely for all t P rT s then the adaptive Horvitz–Thompson estimator
is unbiased: Erτ̂ s “ τ .

Proof. Observe that by linearity of expectation, we can break the expectation of the adaptive Horvitz–Thompson
estimator as

Erτ̂ s “
1

T

T
ÿ

t“1

Erτ̂ts .

Thus, it suffices to show that the individual effect estimators are unbiased: Erτ̂ts “ τt. Observe that if the positivity
condition holds, then we have that the conditional expectation may be computed as

Erτ̂t | Fts “ E
”

Yt

´1rZt “ 1s

Pt
´

1rZt “ 0s

1´ Pt

¯

| Ft
ı

“ Pt ¨
´ytp1q

Pt

¯

` p1´ Ptq ¨
´ ytp0q

1´ Pt

¯

“ ytp1q ´ ytp0q

“ τt .

The result follows by iterated expectation, Erτ̂ts “ ErErτ̂t | Ftss “ τt.

Next, we prove Proposition 2.2, which derives the variance of the adaptive Horvitz–Thompson estimator.
Proposition 2.2. The variance of the adaptive Horvitz–Thompson estimator is

T ¨Varpτ̂q “
1

T

T
ÿ

t“1

´

ytp1q
2 E

” 1

Pt

ı

` ytp0q
2 E

” 1

1´ Pt

ı¯

´
1

T

T
ÿ

t“1

τ2t .

Proof. We begin by decomposing the variance of the adaptive Horvitz–Thompson estimator as

Varpτ̂q “ Var
´ 1

T

T
ÿ

t“1

τ̂t

¯

“
1

T 2

T
ÿ

t“1

T
ÿ

s“1

Covpτ̂t, τ̂sq .

We now aim to compute each of these individual covariance terms. Before continuing, observe that, by construction,
the individual effect estimators are conditionally unbiased Erτ̂t | Fts “ τt. It follows by iterated expectation that
the individual effect estimators are unbiased (unconditionally), i.e. Erτ̂ts “ τt. Suppose that s ą t. In this case, the
covariance between the individual estimators is equal to zero as,

Covpτ̂t, τ̂sq “ Erτ̂tτ̂ss ´ Erτ̂tsErτ̂ss
“ Erτ̂t Erτ̂s | Fsss ´ τtτs
“ τs Erτ̂ts ´ τtτs

17



“ τsτt ´ τtτs
“ 0 .

Now let us compute the variance of an individual effect estimator. Observe that the variance may be decomposed as

Varpτ̂tq “ Erτ̂2t s ´ Erτ̂ts2 .

Because the individual estimator is unbiased, we have that Erτ̂ts2 “ τ2t . Let us now analyze the first term.

Erτ̂2t s “ E
“

Erτ̂2t | Fts
‰

(iterated expectation)

“ E
”

E
”

Y 2
t

´1rZt “ 1s

P 2
t

´
1rZt “ 0s

p1´ Ptq2

¯

| Ft
ıı

“ E
”

ytp1q
2 1

Pt
` ytp0q

2 1

1´ Pt

ı

“ ytp1q
2 ¨ E

” 1

Pt

ı

` ytp0q
2 ¨ E

” 1

1´ Pt

ı

.

Thus, this establishes that the variance of an individual estimator is equal to

Varpτ̂tq “ ytp1q
2 ¨ E

” 1

Pt

ı

` ytp0q
2 ¨ E

” 1

1´ Pt

ı

´ τ2t .

Combining terms, we have that the variance of the adaptive Horvitz–Thompson estimator is

T ¨Varpτ̂q “
1

T

T
ÿ

t“1

T
ÿ

s“1

Covpτ̂t, τ̂sq

“
1

T

T
ÿ

t“1

Varpτ̂tq

“
1

T

T
ÿ

t“1

˜

ytp1q
2 ¨ E

” 1

Pt

ı

` ytp0q
2 ¨ E

” 1

1´ Pt

ı

¸

´
1

T

T
ÿ

t“1

τ2t

B.2 Derivation of the Neyman Design (Proposition 3.1)

In this section, we prove Proposition 3.1 which derives the (infeasible) non-adaptive Neyman design in terms of the
Neyman probability p˚ and corresponding Neyman variance VN. We also show that, under Assumption 1, the Neyman
variance achieves the parametric rate.
Proposition 3.1. The Neyman variance is T ¨ VN “ 2p1` ρqSp1qSp0q, which is achieved by the Neyman probability
p˚ “ p1` Sp0q{Sp1qq´1.

Proof. Using Proposition 2.2, we have that the variance of the (non-adaptive) Bernoulli design with probability
p P p0, 1q is equal to

T ¨ Vp “ Sp1q2
´1

p
´ 1

¯

` Sp0q2
´ 1

1´ p
´ 1

¯

` 2ρSp1qSp0q .

Thus, the optimal Neyman design is obtained by the p˚ which minimizes the above. The first order condition stipulates
that

B

Bp

”

T ¨ Vp

ı
ˇ

ˇ

ˇ

p“p˚
“ 0 ô ´Sp1q2

´ 1

p˚

¯2

` Sp0q2
´ 1

1´ p˚

¯2

“ 0 ,

which is solved by p˚ “
`

1` Sp0q{Sp1q
˘´1

. Substituting this p˚ back into the variance yields the Neyman variance:

T ¨ Vp˚ “ Sp1q2
´ 1

p˚
´ 1

¯

` Sp0q2
´ 1

1´ p˚
´ 1

¯

` 2ρSp1qSp0q

“ Sp1q2 ¨
Sp0q

Sp1q
` Sp0q2 ¨

Sp1q

Sp0q
` 2ρSp1qSp0q

“ 2p1` ρqSp1qSp0q .

Next, we show that under Assumption 1, the Neyman variance achieves the parametric rate.
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Proposition B.1. Under Assumption 1, the Neyman variance achieves the parametric rate: VN “ Θp1{T q.

Proof. Proposition 3.1, derives the Neyman variance: T ¨ VN “ 2p1` ρqSp1qSp0q.

We begin by showing that the Neyman variance is asymptotically bounded from below. Moreover, Assumption 1
stipulates that there exists a constant c ą 0 which lower bounds the second moments as Sp1q ě c and Sp0q ě c and the
correlation as p1` ρq ě c. Thus, the normalized Neyman variance is bounded below as T ¨ VN ě 2c3.

Next, we show that the Neyman variance is asymptotically bounded from above at the same rate. Assumption 1
stipulates that there exists a constant C ą 0 which upper bounds the second moments as Sp1q ď C and Sp0q ď C.
The correlation is bounded between ρ P r´1, 1s so that p1` ρq ď 2. These bounds together yield that the normalized
Neyman variance is bounded above as T ¨ VN ď 4C2.

Together, these bounds establish that, under Assumption 1, we have that VN “ Θp1{T q.

B.3 Equivalence of Neyman Ratio and Neyman Regret (Theorem 4.1)

In this section, we prove Theorem 4.1, which demonstrates the equivalence between the Neyman Ratio and the expected
Neyman regret.

Theorem 4.1. Under Assumption 1, the Neyman ratio is within a constant factor of the 1{T -scaled expected Neyman
regret: κT “ Θp 1T ErRT sq.

Proof. Recall that the Neyman ratio is defined as

κT “
V ´ VN

VN
“
T ¨ V ´ T ¨ VN

T ¨ VN
,

where the second equality follows by multiplying the numerator and the denominator by T . Observe that by Proposi-
tion 2.2, the numerator is given by

T ¨ V ´ T ¨ VN “
1

T

T
ÿ

t“1

˜

ytp1q
2 ¨ E

” 1

Pt

ı

` ytp0q
2 ¨ E

” 1

1´ Pt

ı

¸

´ min
p˚Pr0,1s

1

T

T
ÿ

t“1

˜

ytp1q
2 ¨

1

p˚
` ytp0q

2 ¨
1

1´ p˚

¸

“ E
” 1

T

T
ÿ

t“1

ftpPtq
ı

´ min
p˚Pr0,1s

1

T

T
ÿ

t“1

ftpp
˚q

“
1

T
E
”

T
ÿ

t“1

ftpPtq ´ min
p˚Pr0,1s

T
ÿ

t“1

ftpp
˚q

ı

“
1

T
E
“

RT

‰

.

Proposition B.1 shows that under Assumption 1, T ¨ VN “ Θp1q so that the denominator is asymptotically constant.
Thus, we have that κT “ Θp 1T ErRT sq.

C Analysis of Neyman Regret for CLIP-OGD

In this section, we will prove Theorem 4.2, which establish that CLIP-OGD achieves Op
?
T log T q expected Neyman

regret under our assumptions on the potential outcomes. While the main paper used capital letters Pt and Gt to signify
that the treatment probability and gradient estimator were random variables, we use lower case letters pt and gt in the
appendix for the purposes of more aesthetically appealing proofs. Throughout the analysis, we define ∆t “ rδt, 1´ δts
and a “ 1` C{c for notational convenience.

C.1 Proof of Theorem 4.2

The first lemma is a bound on the distance of treatment probability pt`1 to the optimal p˚ in terms of the previous
treatment probability, gradient estimate, and whether the projection interval contains the optimal p˚.
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Lemma C.1. For each iteration t P rT s,

|pt`1 ´ p
˚| ď |ppt ´ ηgtq ´ p˚|` δt1rp˚ R ∆ts .

Proof. If p‹ P ∆t, then the statement holds by Pythagorean theorem. Otherwise, note that the most that the projection
operation onto ∆t can move a point is exactly δt. Therefore, the distance between Pδtppt ´ ηgtq and p‹ is at most δt
larger than that between pt ´ ηgt and p‹.

Next, we show that Assumption 1 implies that the optimal Neyman probability lies within an interval bounded away
from zero.
Lemma C.2. Under Assumption 1, p˚ P r 1a , 1´

1
a s, where a “ 1` C{c ě 2.

Proof. As shown previously, the optimal Neyman probability is equal to

p˚ “

˜

1`

g

f

f

e

řT
t“1 ytp0q

2

řT
t“1 ytp1q

2

¸´1

Recall that Assumption 1 places the following moment conditions on the potential outcomes:

c ď
´ 1

T

T
ÿ

t“1

ytp1q
2
¯1{2

ď C and c ď
´ 1

T

T
ÿ

t“1

ytp1q
2
¯1{2

ď C .

This bounds p˚ by
´

1`
C

c

¯´1

ď p˚ ď
´

1`
c

C

¯´1

.

The result follows by using the definition of a “ 1 ` C{c to deduce that p1{aq “ p1 ` C{cq´1 and p1 ´ 1{aq “
p1` c{Cq´1.

The next lemma guarantees that after a fixed number of iterations, the projection interval will contain the Neyman
optimal p˚.
Lemma C.3. We have that p˚ P ∆t for all t ě pa{2qα.

Proof. Lemma C.2 guarantees that p˚ P r1{a, 1 ´ 1{as, where a “ 1 ` C{c. Thus, p˚ P ∆t if δt ď 1{a. Using the
definition of δt and rearranging terms, we have that

δt ď 1{aô p1{2qt´1{α ď 1{aô t ě pa{2qα .

The next lemma bounds the expected difference between the cost objective ft evaluated at pt and the cost objective ft
evaluated at the Neyman optimal probability p˚.
Lemma C.4. For each iteration t P rT s, we have the bound

2E
”

ftpptq ´ ftpp
˚q

ı

ď
1

η

”

E
”

ppt ´ p
˚q2

ı

´ E
”

ppt`1 ´ p
˚q2

ıı

` η E
“

g2t
‰

` 41
”

t ă
´a

2

¯αı´δt
η
`
δt
2
E
”

|gt|
ı¯

.

Proof. Fix an iteration t P rT s. By Lemma C.1, and using the triangle inequality, we have that

ppt`1 ´ p
˚q2 ď

´

|ppt ´ ηgtq ´ p˚|` δt1rp˚ R ∆ts

¯2

“
`

ppt ´ ηgtq ´ p
˚
˘2
` δ2t 1rp

˚ R ∆ts
2 ` 2|ppt ´ ηgtq ´ p˚|δt1rp˚ R ∆ts

“
`

ppt ´ p
˚q ´ ηgt

˘2
` 1rp˚ R ∆ts

´

δ2t ` 2δt ¨ |ppt ´ p˚q ´ ηgt|
¯

ď
`

ppt ´ p
˚q ´ ηgt

˘2
` 2δt1rp

˚ R ∆ts

´

δt ` |pt ´ p˚|` η|gt|
¯

Because pt P rδt, 1´ δts, we have that |pt ´ p˚| ď 1´ δt so that

ď
`

ppt ´ p
˚q ´ ηgt

˘2
` 2δt1rp

˚ R ∆ts

´

1` η|gt|
¯
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“ď ppt ´ p
˚q2 ` η2g2t ´ 2ηgtppt ´ p

˚q ` 4η ¨ 1rp˚ R ∆ts

´δt
η
`
δt
2
|gt|

¯

.

Rearranging terms yields that

2ηgtppt ´ p
˚q ď

”

ppt ´ p
˚q2 ´ ppt`1 ´ p

˚q2
ı

` η2g2t ` 4η ¨ 1rp˚ R ∆ts

´δt
η
`
δt
2
|gt|

¯

.

Dividing both sides by the step size 2η yields

gtppt ´ p
˚q ď

1

2η

”

ppt ´ p
˚q2 ´ ppt`1 ´ p

˚q2
ı

`
η

2
g2t ` 21rp˚ R ∆ts

´δt
η
`
δt
2
|gt|

¯

.

Using convexity of ft, adding and subtracting terms, and using the above, we have that

ftpptq ´ ftpp
˚q ď x∇ftpptq, pt ´ p˚y (convexity)

“ xgt, pt ´ p
˚y ` x∇ftpptq ´ gt, pt ´ p˚y (adding, subtracting)

ď
1

2η

”

ppt ´ p
˚q2 ´ ppt`1 ´ p

˚q2
ı

`
η

2
g2t ` 21rp˚ R ∆ts

´δt
η
`
δt
2
|gt|

¯

(above)

` x∇ftpptq ´ gt, pt ´ p˚y

By construction, we have that the gradient estimator is unbiased conditioned on Dt, i.e. Ergt | Dts “ ∇ftpptq. Thus,
by iterated expectation we have that the gradient estimator is unbiased, i.e.

Er∇ftpptq ´ gts “ ErEr∇ftpptq ´ gt | Dtss “ 0 .

Thus, taking expectations of both sides and applying Lemma C.3 yields

2E
”

ftpptq ´ ftpp
˚q

ı

ď
1

η

”

E
”

ppt ´ p
˚q2

ı

´ E
”

ppt`1 ´ p
˚q2

ıı

` η E
“

g2t
‰

` 4 ¨ 1rp˚ R ∆ts

´δt
η
`
δt
2
E
”

|gt|
ı¯

ď
1

η

”

E
”

ppt ´ p
˚q2

ı

´ E
”

ppt`1 ´ p
˚q2

ıı

` η E
“

g2t
‰

` 4 ¨ 1
”

t ă
´a

2

¯αı´δt
η
`
δt
2
E
”

|gt|
ı¯

The following lemma derives bounds on the first and second (raw) moments of the gradient estimator at each iteration.
Lemma C.5. For each t P rT s, the gradient estimates have bounded first and second moments:

E
”

g2t

ı

ď 25t5{α ¨
`

ytp1q
4 ` ytp0q

4
˘

E
”

|gt|
ı

ď 22t2{α ¨
`

ytp1q
2 ` ytp0q

2
˘

Proof. We begin by handling the E
”

g2t

ı

term. By definition of the gradient estimator, we have that the conditional
expectation is at most

Erg2t | Dts “ pt ¨
´ytp1q

2

p3t

¯2

` p1´ ptq ¨
´ ytp0q

2

p1´ ptq3

¯2

“
ytp1q

4

p5t
`

ytp0q
4

p1´ ptq5

By definition of the algorithm, we have that pt P rδt, 1´ δts at iteration t. Thus, we may invoke the bound:

ď δ´5
t

´

ytp1q
4 ` ytp1q

4
¯

“ rp1{2qt´1{αs´5 ¨

´

ytp1q
4 ` ytp1q

4
¯

“ 25t5{α ¨
´

ytp1q
4 ` ytp1q

4
¯

,

and the desired bound on Erg2t s follows from applying the law of iterated expectation.
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The bound on the E
”

|gt|
ı

term follows in a similar way. By definition of the gradient estimator, we have that the
conditional expectation is at most

Er|gt| | Dts “ pt ¨
∣∣∣ytp1q2
p3t

∣∣∣` p1´ ptq ¨ ∣∣∣ ytp0q
2

p1´ ptq3

∣∣∣
“
ytp1q

2

p2t
`

ytp0q
2

p1´ ptq2

ď δ´2
t

´

ytp1q
2 ` ytp1q

2
¯

“ rp1{2qt´1{αs´2 ¨

´

ytp1q
2 ` ytp1q

2
¯

“ 22t2{α ¨
´

ytp1q
2 ` ytp1q

2
¯

,

and the desired bound on Er|gt|s follows from applying the law of iterated expectation.

The following proposition bounds the expected Neyman regret for general settings of the projection parameter α.
Proposition C.1. Suppose Assumption 1 holds. Then, for any choice of projection parameter α ě 2 (possibly depending
on T ) and for the step size η “

b

eα

T 1`5{α , a finite-sample bound on the expected Neyman regret incurred by CLIP-OGD
is

E
“

RT

‰

ď p22ea{2 ` 25C4q

a

eαT 1`5{α ` 22C2e2`a{2
?
eαT .

Proof. By Lemma C.4, we have that the regret is at most

2E
”

RT

ı

“

T
ÿ

t“1

2E
”

ftpptq ´ ftpp
˚q

ı

ď
1

η

T
ÿ

t“1

”

E
”

ppt ´ p
˚q2

ı

´ E
”

ppt`1 ´ p
˚q2

ıı

` η
T
ÿ

t“1

E
“

g2t
‰

` 4
T
ÿ

t“1

1
”

t ă
´a

2

¯αı´δt
η
`
δt
2
E
”

|gt|
ı¯

Using a telescoping argument, we have that the first term is bounded by

1

η

T
ÿ

t“1

”

E
”

ppt ´ p
˚q2

ı

´ E
”

ppt`1 ´ p
˚q2

ıı

ď
1

η
E
”

pp1 ´ p
˚q2

ı

ď
1

η
.

Using Lemma C.5 and Assumption 1, the sum in the second term may be bounded as
T
ÿ

t“1

Erg2t s ď
T
ÿ

t“1

25t5{αpytp1q
4 ` ytp0q

4q (Lemma C.5)

ď 25T 5{α
´

T
ÿ

t“1

ytp1q
4 `

T
ÿ

t“1

ytp0q
4
¯

ď 25T 5{α
´

2C4T
¯

(Assumption 1)

“ 26C4T 1`5{α .

Next, we deal with the third term by breaking it up into two more terms. Define t˚ “ rpa{2qαs. The third term can be
broken into two terms:

4
T
ÿ

t“1

1
”

t ă
´a

2

¯αı´δt
η
`
δt
2
E
”

|gt|
ı¯

“
4

η

t˚´1
ÿ

t“1

δt ` 2
t˚´1
ÿ

t“1

δt Er|gt|s .

The first of these two terms can be bounded in the following way. Using that α ě 2 we have that
t˚´1
ÿ

t“1

δt “
t˚´1
ÿ

t“1

p1{2qt´1{α
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“ p1{2q
”

1`
t˚´1
ÿ

t“2

t´1{α
ı

ď p1{2q
”

1`

ż t˚´1

x“1

x´1{αdx
ı

“ p1{2q
”

1`
α

α´ 1
¨ ppt˚ ´ 1qp1´1{αq ´ 1q

ı

ď pt˚ ´ 1qp1´1{αq

ď pa{2qαp1´1{αq

“ pa{2qα´1 .

The second term can be bounded using Lemma C.5 as follows:

t˚´1
ÿ

t“1

δt Er|gt|s ď
t˚´1
ÿ

t“1

p1{2qt´1{α22t2{α
`

ytp1q
2 ` ytp0q

2
˘

(Lemma C.5)

“ 2
t˚´1
ÿ

t“1

t1{α
`

ytp1q
2 ` ytp0q

2
˘

ď 2
`

t˚´1
ÿ

t“1

t2{α
˘1{2

”´

t˚´1
ÿ

t“1

ytp1q
4
¯1{2

`

´

t˚´1
ÿ

t“1

ytp0q
4
¯1{2ı

, (Cauchy-Schwarz)

where the last inequality follows from Cauchy–Schwarz. By extending the sum involving the outcomes to all units, we
obtain an upper bound on which we can apply the bounded moment assumption:

ď 2
`

t˚´1
ÿ

t“1

t2{α
˘1{2

”´

T
ÿ

t“1

ytp1q
4
¯1{2

`

´

T
ÿ

t“1

ytp0q
4
¯1{2ı

ď 2
`

t˚´1
ÿ

t“1

t2{α
˘1{2

”

2pC4T q1{2
ı

(Assumption 1)

What remains in this step is to bound the first term above. By replacing each of the t in the sum with t˚, we obtain the
following upper bound:

ď 2pt˚ ´ 1qp1{2`1{αq
”

2pC4T q1{2
ı

ď 2ppa{2qαqp1{2`1{αq
”

2pC4T q1{2
ı

“ 22C2
´a

2

¯p1`α{2q

T 1{2 .

Using the above work, we have that the overall regret is bounded as

2E
”

RT

ı

ď
1

η
` η26C4T 1`5{α `

4

η

´a

2

¯pα´1q

` 23C2
´a

2

¯p1`α{2q

T 1{2

“
1

η

´

1` 4
´a

2

¯pα´1q¯

` η26C4T 1`5{α ` 23C2
´a

2

¯p1`α{2q

T 1{2 .

Next, we separate the constant a from the projection parameter α. To this end, we use the inequality yr ď e1`y ¨ er for
all y P R and r ě 0, to obtain

´a

2

¯pα´1q

ď e1`a{2eα´1 “ ea{2eα and
´a

2

¯p1`α{2q

ď e1`a{2e1`α{2 “ e2`a{2eα{2 ,

where we have used that a ě 2. Substituting these back into the above, we have that the regret bound is Substituting
this quantities into the above, we have that the regret bound is

2ErRT s ď
1

η

´

1` 4ea{2eα
¯

` η26C4T 1`5{α ` 23C2e2`a{2eα{2T 1{2
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ď
1

η
23ea{2eα ` η26C4T 1`5{α ` 23C2e2`a{2eα{2T 1{2

By setting η “
b

eα

T 1`5{α to minimize the bound above, we have that the expected Neyman regret is bounded as

“ p23ea{2 ` 26C4q

a

eαT 1`5{α ` 23C2e2`a{2
?
eαT .

where we have used that and the result follows by dividing both sides by 2.

Proposition C.1 demonstrates that many different values of α will guarantee sublinear expected Neyman regret. For
example, setting α to be a constant satisfying α ą 5 will ensure sublinear expected Neyman regret. However, by
tuning α according to the analysis above, we can achieve Op

a

T logpT qq expected Neyman regret, as demonstrated by
Theorem 4.2.
Theorem 4.2*. Under Assumption 1 the parameter values η “

a

1{T and α “
a

5 logpT q ensure the expected
Neyman regret of CLIP-OGD is bounded as

E
“

RT

‰

ď

´

22ea{2 ` 25C4 ` 22C2e2`a{2
¯

¨
?
T ¨ expp

a

5 logpT qq ,

which implies that E
“

RT

‰

ď rO
`
?
T
˘

.

Proof. Observe that for α “
a

5 logpT q, we have that the step size posited in Proposition C.1 (i.e. η “
b

eα

T 1`5{α ) is

equal to η “
a

1{T . Thus, by rearranging terms and using the result of Proposition C.1, we have that expected Neyman
regret is bounded as

E
“

RT

‰

ď p22ea{2 ` 25C4q

a

eαT 1`5{α ` 22C2e2`a{2
?
eαT

“ p22ea{2 ` 25C4q
?
T ¨

a

eαT 5{α ` 22C2e2`a{2
?
T ¨
?
eα .

The difficulty is now to find which setting of α will make this bound smallest. Observe that the real tension is in the
first term and we can re-write the relevant part of this term as

a

eαT 5{α “

”

exppα` logpT 5{αqq

ı1{2

“

”

exppα` p5{αq logpT qq
ı1{2

.

To minimize this term, we select α “
a

5 logpT q which results in
a

eαT 5{α “ expp
a

5 logpT qq .

Likewise, this choice of α results in
?
eα ď eα “ expp

a

5 logpT qq. Putting this together yields the desired finite
sample regret bound:

E
“

RT

‰

ď

´

22ea{2 ` 25C4 ` 22C2e2`a{2
¯

¨
?
T ¨ expp

a

5 logpT qq .

The result follows by observing that the terms inside the parenthesis are constant by Assumption 1 and the function
expp

a

5 logpT qq is subpolynomial.

C.2 Selecting Parameters When Moment Bounds are Known

We briefly remark on how to select the step size parameter η when the experimenter can correctly specify the constants
C ě c used in the Assumption 1. The proof of Proposition C.1 shows that for general parameters, the Neyman regret
may be bounded as

ErRT s ď
1

η
22ea{2eα ` η25C4T 1`5{α ` 22C2e2`a{2eα{2T 1{2 .

To optimize the step size with respect to these constants, one would choose α “
a

5 logpT q and

η “
e

1
4 ¨p1`C{cq

2
?

2C2
¨

1
?
T

,

where we have used that a “ 1` C{c. When these moment bounds are correctly specified, this choice of step size will
likely yield improved convergence rates, as our bound on the Neyman regret will have a factor of C2 rather than C4.
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D Analysis for Inference in Large Samples

In this section, we provide the necessary statistical tools for constructing asymptotically valid confidence intervals. This
can be done in two main steps. First, in Section D.1 we construct a conservative variance estimator which we show is
consistent in probability. Then, in Section D.2, we show that the resulting Chebyshev-type intervals are asymptotically
valid.

While the main paper used capital letters Pt and Gt to signify that the treatment probability and gradient estimator
were random variables, we use lower case letters pt and gt in the appendix for the purposes of more aesthetically
appealing proofs. Throughout the analysis, we use the parameter settings η “

a

1{T and α “
a

5 logpT q , which
are recommended in the main paper. However, we suspect that many of our results will go through for the class of
parameters η “

b

eα

T 1`5{α and α ą 5 which appear in Proposition C.1.

The following lemma shows that under Assumptions 1 and 2, the variance of the adaptive Horvitz–Thompson estimator
under CLIP-OGD achieves the parametric rate.

Lemma D.1. Assumptions 1 and 2, the variance of the adaptive Horvitz–Thompson estimator under CLIP-OGD
achieves the parametric rate: Varpτ̂q “ Θp1{T q.

Proof. Theorem 4.1 shows that under Assumption 1, they Neyman ratio is order equivalent to the 1{T -scaled expected
Neyman regret, i.e. κT “ Θpp1{T qErRT sq. Theorem 4.2 shows that under these assumptions, CLIP-OGD achieves
sublinear expected Neyman regret ErRT s “ opT q which implies that lim supκT ď 0. Likewise, Assumption 2 states
that the negative expected Neyman regret is sublinear, ´ErRT s “ opT q, which implies that lim inf κT ě 0. Thus, we
have that the Neyman ratio converges to zero, e.g. limκT “ 0.

By recalling the definition of the Neyman ratio, we have that

0 “ lim
TÑ8

κT “ lim
TÑ8

V ´ VN

VN
“ lim
TÑ8

T ¨ V ´ T ¨ VN

T ¨ VN
.

Proposition B.1 demonstrates that T ¨ VN “ Θp1q. Together with the above, this implies that T ¨ V “ Θp1q.

The following lemma shows that under the recommended parameter settings, the (random) treatment probabilities are
bounded away from zero and one.

Lemma D.2. When α “
a

5 logpT q, we have that for all iterations t P rT s, the inverse of projection parameter is
bounded:

1

δt
ď 2 expp

b

logpT 1{5qq “ rOp1q .

Proof. A uniform upper bound on the inverse of the projection parameters is

1

δt
ď

1

δT
“

1

p1{2qT´1{α
“ 2T 1{α “ 2 expp

1

α
logpT qq “ 2 expp

b

logpT 1{5qq .

To complete the proof, observe that the function hpT q “ expp
a

1{5 ¨
a

logpT qq is subpolynomial, so that we can write
it as rOp1q.

D.1 Conservative Variance Estimator (Theorem 5.1)

In this section, we prove Theorem 5.1 which establishes that the normalized variance estimator is converges in
probability to the normalized variance upper bound at a rOppT

´1{2q rate. Before continuing, let us review the relevant
quantities. Recall that the Neyman variance and the corresponding upper bound are given by

T ¨ VN “ 2p1` ρqSp1qSp0q and T ¨ VB “ 4Sp1qSp0q ,

where the second moments Sp1q and Sp0q are defined as

Sp1q2 “
1

T

T
ÿ

t“1

ytp1q
2 and Sp0q2 “

1

T

T
ÿ

t“1

ytp0q
2 .
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Our variance estimator is defined as

T ¨ xVB “
b

zAp1q ¨zAp0q where zAp1q “
1

T

T
ÿ

t“1

ytp1q
21rZt “ 1s

pt
and zAp0q “

1

T

T
ÿ

t“1

ytp0q
21rZt “ 0s

1´ pt
.

The random variables zAp1q and zAp0q are unbiased estimates of Sp1q2 and Sp0q2 which are based on the Horvitz–
Thompson principle. However, the fact that the estimators zAp1q and zAp0q are not independent and the square root is
introduced means that the variance estimator xVB is not an unbiased estimator for the variance bound VB. Even so,
we will show that the variance estimator is consistent for the variance bound. For aesthetic considerations, we define
Ap1q “ Sp1q2 and Ap0q “ Sp0q so that zAp1q is an estimator for Ap1q and zAp0q is an estimator for Ap0q.

Our general approach will follow in two steps. First, by bounding its bias and variance, we will show that zAp1q ¨zAp0q´
Ap1qAp0q converges as rOppT

´1{2q. Next, by appealing to a quantitative Continuous Mapping Theorem, we will argue

that the error
b

zAp1q ¨zAp0q ´
a

Ap1qAp0q converges at the same rate. By definition, this is exactly the error of the

normalized variance estimator to the normalized variance bound, i.e. T ¨ xVB´ T ¨ VB.

Before continuing, let us define new auxiliary random variables. For each t P rT s, we define the variables rt and qt as

rt “
1rzt “ 1s

pt
and qt “

1rzt “ 0s

1´ pt
.

Below are basic facts about these auxiliary random variables.
Lemma D.3. The auxiliary random variables satisfy the following properties:

1. Errtqss “ 1rt ‰ ss.

2. Err2t | Dts ď
1
δt

and Erq2t | Dts ď
1
δt

.

3. The covariance Covprtqs, r`qkq behave in the following ways:

Covprtqs, r`qkq “ 0 if t “ s or ` “ k

Covprtqs, r`qkq “ 0 if t ‰ s and ` ‰ k and tt, su X t`, ku “ H
Covprtqs, r`qkq “ ´1 if t ‰ s and ` ‰ k and ( t “ k or s “ ` )

Covprtqs, r`qkq ď
1

δt
´ 1 if t ‰ s and ` ‰ k and t “ ` and s ‰ k

Covprtqs, r`qkq ď
1

δs
´ 1 if t ‰ s and ` ‰ k and t ‰ ` and s “ k

Covprtqs, r`qkq ď
1

δtδs
´ 1 if t ‰ s and ` ‰ k and t “ ` and s “ k

Proof. First, we show that Errtqss “ 1rt ‰ ss. Let t, s P rT s and suppose that t ‰ s. Without loss of generality,
suppose that t ą s. Then by using iterated expectation, we have that

Errtqss “ Erqs Errt | Dtss “ Erqss “ 1 .

Otherwise, if t “ s, then rtqt “ p1rzt “ 1s{ptq ¨ p1rzs “ 0s{p1´ ptqq “ 0 so that Errtqts “ 0.

Next, we show that Err2t | Dts ď
1
δt

and Erq2t | Dts ď
1
δt

. Observe that Err2t | Dts “ ptp1{p
2
t q “ 1{pt ď 1{δt, where

the inequality follows by definition of Algorithm 1. A similar argument shows that Erq2t | Dts ď 1{δt.

Finally, we establish the covariance terms one by one. We do this in order of the cases that they were presented in.

Case 1 pt “ sq or p` “ kq: If t “ s, then rtqt is almost surely zero, as argued above. Likewise, if ` “ k then r`q` is
almost surely zero. In either of these cases, we have that Covprtqs, r`qkq “ 0.

Case 2 pt ‰ sq and p` ‰ kq and tt, su X t`, ku “ H: Note that in this case, all the indices t, s, `, and k are distinct.
Without loss of generality, suppose that t ă s ă ` ă k. A repeated use of the iterated expectation yields that

Errtqsr`qss “ Errtqsr` Erqs | Dsss “ Errtqsr`s “ Errtqs Err` | Drss “ Errtqss “ . . . “ 1 .

Because all terms of distinct, we have that Errtqss “ 1 and Err`qks “ 1. Thus, the covariance is equal to

Covprtqs, r`qkq “ Errtqs, r`qks ´ Errtqss ¨ Err`qks “ 1´ 1 “ 0 .
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Case 3 pt ‰ sq and p` ‰ kq and (t “ k or s “ `): Suppose that t “ k. In this case, observe that rtqk is zero almost
surely. Thus, Errtqsr`qks “ 0. On the other hand, t ‰ s and ` ‰ k so that Errtqss “ Err`qks “ 1. This means that

Covprtqs, r`qkq “ Errtqsr`qks ´ Errtqss ¨ Err`qks “ 0´ 1 ¨ 1 “ ´1 .

The same argument shows that s “ ` yields the same result.

Case 4 pt ‰ sq and p` ‰ kq and t “ ` and s ‰ k): We begin by computing the expectation of the product of these
four terms. In this case, we have that t “ ` so that

Errtqsr`qks “ Err2t qsqks .

By assumption, the indices t, s, and k are all distinct. Our approach will be to obtain an upper bound on the expectation of
the project of these three terms by iterated expectation. In particular, the inequality we will use is that Err2t | Dts ď 1{δt.
Suppose for now that s ă k ă t. In this case, we use iterated expectation to get

Errtqsr`qks “ Erqsqk Errt | Dtss ď
1

δt
Erqsqks “

1

δt
Erqs Erqk | Dkss “

1

δt
Erqss “

1

δt
.

In the above, we have assumes that s ă k ă t, but the same iterated expectation technique can be applied regardless
of the ordering of these indices, because they are unique. Thus, in this case, Errtqsr`qks ď 1{δt. Because t ‰ s and
` ‰ k, we have that Errtqss “ Err`qks “ 1. This means that

Covprtqs, r`qkq “ Errtqsr`qks ´ Errtqss ¨ Err`qks ď
1

δt
´ 1 .

Case 5 pt ‰ sq and p` ‰ kq and t ‰ ` and s “ k): We begin by computing the expectation of the product of these
four terms. In this case, we have that s “ k so that

Errtqsr`qks “ Errtr`q2s s .

By assumption, the indices t, `, and s are all distinct. Using a similar argument as the previous case, we can use iterated
expectation together with the bound Erq2s | Dss ď 1{δ2s to obtain that Errtqsr`qks ď 1{δ2s . Because t ‰ s and ` ‰ k,
we have that Errtqss “ Err`qks “ 1. This means that

Covprtqs, r`qkq “ Errtqsr`qks ´ Errtqss ¨ Err`qks ď
1

δs
´ 1 .

Case 6 pt ‰ sq and p` ‰ kq and t “ ` and s “ k): Suppose without loss of generality that t ą s. In this case, we can
bound the product of the expectation of these four terms using iterated expectation and the proven inequalities:

Errtqsr`qks “ Err2t q2s s “ Erq2s Err2t | Dtss ď
1

δt
Erq2s s ď

1

δtδs
.

Because t ‰ s, we have that Errtqss “ Err`, qks “ 1. Thus, the covariance is bounded by

Covprtqs, r`qkq “ Errtqsr`qks ´ Errtqss ¨ Err`qks ď
1

δtδs
´ 1 .

First, we show that that the difference between the expected value of zAp1qzAp0q and the target Ap1qAp0q is decreasing
at a linear rate in T .
Proposition D.1. The absolute bias of the estimated crossing term zAp1qzAp0q to its target value Ap1qAp0q is at most∣∣E“zAp1qzAp0q‰´ Sp1q2Sp0q2∣∣ ď C4

T
.

Proof. Using Lemma D.3, we can calculate the expectation of the product zAp1qzAp0q as

E
“

zAp1qzAp0q
‰

“ E

«

´ 1

T

T
ÿ

t“1

ytp1q
2rt

¯´ 1

T

T
ÿ

s“1

ysp0q
2qs

¯

ff

“
1

T 2

T
ÿ

t“1

T
ÿ

s“1

ytp1q
2ytp0q

2 E
”

rtqs

ı
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“
1

T 2

T
ÿ

t“1

T
ÿ

s“1

ytp1q
2ytp0q

2 ´
1

T 2

T
ÿ

t“1

ytp1q
2ytp0q

2

“

´ 1

T

T
ÿ

t“1

ytp1q
2
¯´ 1

T

T
ÿ

s“1

ysp0q
2
¯

´
1

T 2

T
ÿ

t“1

ytp1q
2ytp0q

2

“ Ap1qAp0q ´
1

T 2

T
ÿ

t“1

ytp1q
2ytp0q

2 .

We complete the proof by using Cauchy-Schwarz and Assumption 1, to bound the absolute bias as∣∣E“zAp1qzAp0q‰´Ap1qAp0q∣∣ “ 1

T 2

T
ÿ

t“1

ytp1q
2ytp0q

2

ď
1

T 2

«

´

T
ÿ

t“1

ytp1q
4
¯

¨

´

T
ÿ

t“1

ytp0q
4
¯

ff1{2

“
1

T

«

´ 1

T

T
ÿ

t“1

ytp1q
4
¯1{4

¨

´ 1

T

T
ÿ

t“1

ytp0q
4
¯1{4

ff2

ď
C4

T
.

Next, we show that the variance of zAp1qzAp0q is going to zero at a sufficiently fast rate.

Proposition D.2. The variance of zAp1qzAp0q is bounded as

VarpzAp1qzAp0qq ď
4e
?

logpT 1{5qC8

T
`

4C8e2
?

logpT 1{5q

T 2
“ rO

´ 1

T

¯

.

Proof. We begin by decomposing the variance of zAp1qzAp0q into covariances of products of the auxiliary random
variables rt and qs. To this end, observe that

VarpzAp1qzAp0qq “ Var
´ 1

T 2

T
ÿ

t“1

T
ÿ

s“1

ytp1q
2ytp0q

2rtqs

¯

“
1

T 4

T
ÿ

t“1

T
ÿ

s“1

T
ÿ

`“1

T
ÿ

k“1

ytp1q
2ysp0q

2y`p1q
2ykp0q

2 Covprtqs, r`qkq

Next, we will use the result of Lemma D.3 to handle the individual covariance terms. In particular, the first six types of
terms, as described in Lemma D.3. The first three types of terms are at most 0, so we may discard them from the sum,
as they contribute no positive value. The last three terms have upper bounds, which we use here to obtain the following
upper bound:

ď
1

T 4

T
ÿ

t“1

ÿ

sPrT szttu

ÿ

kPrT sztt,su

ytp1q
4ysp0q

2ykp0q
2
` 1

δt
´ 1

˘

loooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooon

Term T1

`
1

T 4

T
ÿ

t“1

ÿ

sPrT szttu

ÿ

`PrT sztt,su

ytp1q
2y`p1q

2ysp0q
4
` 1

δs
´ 1

˘

loooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooon

Term T2

`
1

T 4

T
ÿ

t“1

ÿ

s‰t

ytp1q
4ysp0q

4
` 1

δtδs
´ 1

˘

looooooooooooooooooooomooooooooooooooooooooon

Term T3

Our goal will now be to bound each of these terms individually.

28



Terms 1 and 2: Terms 1 and 2 are similar and will be handled in the same way. Let’s begin with Term 1. Observe that
by Lyapunov’s inequality, the moment assumptions, and Lemma D.2, we have that

T1 ď
1

δT ¨ T 4

´

T
ÿ

t“1

ytp1q
4
¯´

T
ÿ

t“1

ytp0q
2
¯2

ď
2e
?

logpT 1{5q

T

´ 1

T

T
ÿ

t“1

ytp1q
4
¯´ 1

T

T
ÿ

t“1

ytp0q
2
¯2

(Lemma D.2)

“
2e
?

logpT 1{5q

T

«

´ 1

T

T
ÿ

t“1

ytp1q
4
¯1{4´ 1

T

T
ÿ

t“1

ytp0q
2
¯1{2

ff4

ď
2e
?

logpT 1{5q

T

«

´ 1

T

T
ÿ

t“1

ytp1q
4
¯1{4´ 1

T

T
ÿ

t“1

ytp0q
4
¯1{4

ff4

(Lyapunov’s inequality)

ď
2e
?

logpT 1{5qC8

T
(Assumption 1)

A similar argument shows that T2 ď p2e
?

logpT 1{5qC8q{T .

Term 3: The third term may be upper bounded using Lemma D.2 and the moment assumptions. Namely,

T3 ď
1

δ2TT
4

´

T
ÿ

t“1

ytp1q
4
¯´

T
ÿ

t“1

ytp0q
4
¯

“

`

2e
?

logpT 1{5q
˘2

T 2

´ 1

T

T
ÿ

t“1

ytp1q
4
¯´ 1

T

T
ÿ

t“1

ytp0q
4
¯

(Lemma D.2)

ď
4C8e2

?
logpT 1{5q

T 2
(Assumption 1)

Taken together, this shows that

VarpzAp1qzAp0qq ď
4e
?

logpT 1{5qC8

T
`

4C8e2
?

logpT 1{5q

T 2
“ rO

´ 1

T

¯

.

This establishes the following corollary, which shows that the error zAp1qzAp0q ´ Ap1qAp0q is going to zero at a
near-parametric rate, which follows from by Chebyshev’s inequality from Propositions D.1 and D.2.

Corollary D.1. The following error goes to zero: zAp1qzAp0q ´Ap1qAp0q “ rOp

`

T´1{2
˘

.

Using the results derived above, we are ready to prove Theorem 5.1, which we restate here for convenience.
Theorem 5.1. Under Assumptions 1 and 2, and the parameters stated in Theorem 4.2, the error of the normalized
variance estimator under CLIP-OGD is T ¨ xVB´ T ¨ VB “ rOppT

´1{2q.

Proof of Theorem 5.1. Recall that the variance estimator and the variance bound are equal to T ¨ VB “ 4Sp1qSp0q “

4
a

Ap1qAp0q and T ¨ xVB “ 4

b

zAp1qzAp0q so that the error is given by

T ¨ xVB´ T ¨ VB “ 4
”

a

Ap1qAp0q ´

b

zAp1qzAp0q
ı

.

Corollary D.1 states that the error zAp1qzAp0q ´Ap1qAp0q is on the order of rOp

`

T´1{2
˘

. By Assumption 1, we have
that Ap1qAp0q “

a

Sp1q2Sp0q2 ą c2. Observe that the square root function gpxq “
?
x is Lipschitz on the interval

pc2,8q. Thus, by a rate-preserving Continuous Mapping Theorem, we have that the error of the normalized variance

estimator is on the same order i.e. T ¨ VB´ T ¨ xVB “
a

Ap1qAp0q ´

b

zAp1qzAp0q “ rOp

`

T´1{2
˘

.
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D.2 Valid Confidence Intervals (Corollary 5.1)

We now prove the asymptotic validity of the associated Chebyshev-type intervals. This proof is standard in the
design-based literature, but we present it here for completeness.

Corollary 5.1. Under Assumptions 1 and 2, and parameters stated in Theorem 4.2, Chebyshev-type intervals are
asymptotically valid: for all α P p0, 1s, lim infTÑ8 Prpτ P τ̂ ˘ α´1{2

a

xVBq ě 1´ α.

Proof. Define the random variables

Z “
τ ´ τ̂

a

Varpτ̂q
and Z 1 “

τ ´ τ̂
a

xVB
.

Observe that they are related in the following way:

Z 1 “
τ ´ τ̂
a

xVB
“

τ ´ τ̂
a

Varpτ̂q
¨

´

c

Varpτ̂q

VB
¨

c

VB
xVB

¯

“ Z ¨
´

c

Varpτ̂q

VB
¨

d

T ¨ VB

T ¨ xVB

¯

.

By definition, we have that lim supTÑ8Varpτ̂q{VB ď 1. Recall that by Proposition B.1, T ¨ VB ě T ¨ VN “ Ωp1q so

that by Theorem 5.1 and Continuous Mapping Theorem, we have that
b

T ¨VB
T ¨xVB

p
ÝÑ 1. Thus, by Slutsky’s theorem we

have that Z 1 is asymptotically stochastically dominated by Z. Now we are ready to compute the coverage probability.

lim inf
TÑ8

Pr
´

τ P τ̂ ˘ α´1{2
a

xVB
¯

“ lim inf
TÑ8

Pr
´
∣∣∣ τ ´ τ̂a

xVB

∣∣∣ ď α´1{2
¯

“ lim inf
TÑ8

Pr
´∣∣Z 1∣∣ ď α´1{2

¯

ě lim inf
TÑ8

Pr
´∣∣Z∣∣ ď α´1{2

¯

ě 1´ α ,

where the last line followed from Chebyshev’s inequality and the fact that VarpZq “ 1.

E Analysis of Alternative Designs

In this section, we provide analysis on the efficacy of existing adaptive experimental designs for the problem of Adaptive
Neyman Allocation. To this end, we show two negative results. In Section E.1, we show that the two-stage design of
[Hahn et al., 2011, Blackwell et al., 2022] (i.e. Explore–then–Commit) can suffer linear expected Neyman Regret in
the design-based framework for a large class of potential outcome sequences. In Section E.2, we show that mutli-arm
bandit algorithms which achieve sublinear expected outcome regret will incur super-linear expected Neyman regret,
providing further evidence that these two goals are incompatible.

E.1 Analysis of Explore-then-Commit (Proposition 6.1)

In this setting, we show that Explore-then-Commit designs can sometimes suffer linear Neyman regret, and therefore
not recover the Neyman variance in large samples. We formally introduce our definition of Explore-then-Commit
designs below. Let p˚T0

be defined as

p˚T0
“

˜

1`

g

f

f

e

řT0

t“1 ytp0q
2

řT0

t“1 ytp1q
2

¸´1

,

which is the optimal Neyman probability when considering only the sample up to T0.

Our definition of ETC encompasses many possible ways of estimating the optimal treatment probability. The only
requirement is that the estimation method will converge to p˚T0

at the rate T´1{2
0 . We consider p˚T0

rather than the true
Neyman probability p˚ because the observed data is informative only of the outcomes in the exploration phase T0.
Many natural estimators will fall into this class, including Horvitz–Thompson style estimators similar to those used in
the construction of our variance estimator.
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Algorithm 2: EXPLORE-THEN-COMMIT

Input: Exloration phase size T0
// Explore Phase
for t “ 1 . . . T0 do

Sample treatment assignment Zt as 1 with probability 1{2 and 0 with probability 1{2
Observe outcome Yt “ 1rZt “ 1sytp1q ` 1rZt “ 0sytp0q

end
Construct an estimator xp˚T0

from observed data pZ1, Y1, . . . ZT0 , YT0q satisfying xp˚T0
´ p˚T0

“ OppT
´1{2
0 q.

// Exploit Phase
for t “ T0 ` 1 . . . T do

Sample treatment assignment Zt as 1 with probability xp˚T0
and 0 with probability 1´ xp˚T0

Observe outcome Yt “ 1rZt “ 1sytp1q ` 1rZt “ 0sytp0q
end

Before continuing, we provide a few more definitions. We define the second moments of treatment and control outcomes
as well as the correlation in the exploration phase as

ST0p1q
2 “

1

T

T0
ÿ

t“1

ytp1q
2 ST0p0q

2 “
1

T

T0
ÿ

t“1

ytp0q
2 and ρT0 “

1
T0

řT
t“1 ytp1qytp0q

ST0p1qST0p0q
.

We are now ready to state the formal version of Proposition 6.1.
Proposition 6.1*. Suppose that T0 “ ΩpT εq for some ε ą 0 and further suppose that the outcome sequence satisfies
the following properties for constants C ě c ą 0 and c1 ą 0:

• The second moments Sp1q, Sp0q, ST0p1q, and ST1p0q are contained in the interval rc, Cs.

• The correlations are bounded away from -1, i.e. ρT0
, ρ ě ´1` c.

• The second moments satisfy the following:

Sp1q2
´Sp0q

Sp1q
´
ST0
p0q

ST0
p1q

¯

` Sp0q2
´Sp1q

Sp0q
´
ST0
p1q

ST0
p0q

¯

ě c1

Then, the Neyman Regret of Explore-then-Commit is at least linear in probability, RT “ ΩppT q.

The first two conditions are essentially extensions of Assumption 1 to the exploration phase. This ensures that the
probability p˚T0

(which is estimated in the Explore-then-Commit design) does not approach 0 or 1. The third condition is
what really makes Explore-then-Commit fail to achieve sublinear Neyman regret. This condition states that the ratio of
the second moments in the exploration phase is different than in the larger sequence. For example, if Sp1q “ Sp0q “ 1
but ST0p0q{ST0p1q “ 2 then the condition would hold. In this case, we should not expect Explore-then-Commit to
achieve the Neyman variance because the exploration phase does not contain sufficient information about the optimal
Neyman probability. We now prove the proposition.

Proof. Let p˚ “ arg minpPr0,1s
řT
t“1 ftppq be the Neyman probability. We begin by re-arranging terms in the Neyman

regret:

RT “

T
ÿ

t“1

ftpptq ´
T
ÿ

t“1

ftpp
˚q (def of Neyman regret)

“

T0
ÿ

t“1

ftpptq ´ ftpp
˚q `

T
ÿ

t“T0`1

ftpptq ´ ftpp
˚q (splitting terms by phases)

“

T0
ÿ

t“1

ftp1{2q ´ ftpp
˚q `

T
ÿ

t“T0`1

ftpxp
˚
T0
q ´ ftpp

˚q (def of ETC)

“

T0
ÿ

t“1

ftp1{2q ´ ftpxp
˚
T0
q `

T
ÿ

t“1

ftpxp
˚
T0
q ´ ftpp

˚q (adding + subtracting)
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ě

T0
ÿ

t“1

ftpp
˚
T0
q ´ ftpxp

˚
T0
q `

T
ÿ

t“1

ftpxp
˚
T0
q ´ ftpp

˚q ,

Where the inequality follows by the optimality of p˚T0
on the exploration phase. By adding and subtracting the ftpp˚T0

q

to the second sum, we obtain the following decomposition

“

T0
ÿ

t“1

ftpp
˚
T0
q ´ ftpxp

˚
T0
q

loooooooooooomoooooooooooon

Term 1

`

T
ÿ

t“1

ftpxp
˚
T0
q ´ ftpp

˚
T0
q

loooooooooooomoooooooooooon

Term 2

`

T
ÿ

t“1

ftpp
˚
T0
q ´ ftpp

˚q

looooooooooomooooooooooon

Term 3

We handle each of the terms separately in the remainder of the proof.

Term 1: By the assumptions on the second moments and correlation of outcomes in the exploration phase, we have
that p˚T0

is bounded away from 0 and 1 by a constant. Furthermore, the cost functions ft are Lipschitz on the interval
rγ, 1´ γs for any fixed γ. Thus, we may apply the quantitative Continuous Mapping Theorem to bound the absolute
value of Term 1 as follows:

|
T0
ÿ

t“1

ftpp
˚
T0
q ´ ftpxp

˚
T0
q| ď

T0
ÿ

t“1

|ftpp˚T0
q ´ ftpxp

˚
T0
q| (triangle inequality)

ď

T0
ÿ

t“1

OppT
´1{2
0 q (estimator property + CMT)

“ OppT0 ¨ T
´1{2
0 q

“ OppT
1{2
0 q

“ OppT
1{2q ,

where the final inequality follows from the fact that T0 ď T .

Term 2: A similar argument may be applied to the second term. Again, we may apply the continuous mapping theorem
as before to obtain

|
T
ÿ

t“1

ftpp
˚
T0
q ´ ftpxp

˚
T0
q| ď

T
ÿ

t“1

|ftpp˚T0
q ´ ftpxp

˚
T0
q| (triangle inequality)

ď

T
ÿ

t“1

OppT
´1{2
0 q (estimator property + CMT)

“ OppT ¨ T
´1{2
0 q

“ OppT ¨ T
´ε{2q

“ OppT
1´ε{2q ,

where we have used the assumption that T0 “ ΩpT εq.

Term 3: We now handle the third term. Let V0 be the variance of adaptive Horvitz–Thompson estimator under the
Bernoulli design when using the treatment probability p˚T0

. By construction of the cost functions, we have that they are
related to the variance as follows:

T
ÿ

t“1

ftpp
˚
T0
q ´ ftpp

˚q

“ T ¨
”

T ¨ V0 ´ T ¨ VN

ı

“ T ¨

«˜

Sp1q2
! 1

p˚T0

´ 1
)

` Sp0q2
! 1

1´ p˚T0

´ 1
)

¸

´

˜

Sp1q2
! 1

p˚
´ 1

)

` Sp0q2
! 1

1´ p˚
´ 1

)

¸ff

“ T ¨

«

Sp1q2
´ 1

p˚T0

´
1

p˚

¯

` Sp0q2
´ 1

1´ p˚T0

´
1

1´ p˚

¯

ff
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“ T ¨

«

Sp1q2
´Sp0q

Sp1q
´
ST0
p0q

ST0p1q

¯

` Sp0q2
´Sp1q

Sp0q
´
ST0
p1q

ST0p0q

¯

ff

,

where the last equality follows by definition of the probabilities. By Assumption, we have that this bracketed term is
constant so that the third term is linear in T .

Putting these together, we have that the Neyman regret is lower bounded as

RT ě ΩpT q ´OppT
1´ε{2q ´OppT

1{2q “ ΩppT q .

E.2 Analysis of Designs for Outcome Regret (Proposition 6.2)

In this section, we prove Proposition 6.2, which establishes that outcome regret and Neyman regret cannot be simultane-
ously minimized in general. We restate a more formal version of the proposition here. In order for a simpler proof, we
make restrictions that the units have constant treatment effect and that each of the individual outcomes are more strictly
bounded. We conjecture that the trade-off between Neyman and outcome regret will hold under weaker conditions.
Proposition 6.2*. Let A be an adaptive treatment algorithm achieving sublinear outcome regret, i.e. there exists
q P p0, 1q such that ErRoutcome

T s ď OpT qq for all outcome sequences satisfying Assumption 1. Consider an outcome
sequence satisfying Assumption 1 with constants C ě c ą 0 and the additional conditions:

• max1ďtďT ytp0q
2 ď C2

• For all t P rT s, ytp1q ´ ytp0q “ τ and τ ą c1 for a constant c1 ą 0.

Then, A suffers super-linear Neyman regret on this outcome sequence: ErRT s ě ΩpT 2´qq.

Proof. To begin, we re-express the outcome regret in terms of the expected treatment probabilities played by algorithm
A. Observe that the expected outcome regret may be written as

ErRoutcome
T s “ E

”

max
kPt0,1u

T
ÿ

t“1

ytpkq ´
T
ÿ

t“1

Yt

ı

(def of regret)

“

T
ÿ

t“1

ytp1q ´
T
ÿ

t“1

E
“

Yt
‰

(τ ą 0)

“

T
ÿ

t“1

ytp1q ´
T
ÿ

t“1

E
“

ytp1q1rZt “ 1s ` ytp0q1rZt “ 0s
‰

“

T
ÿ

t“1

ytp1q ´
T
ÿ

t“1

ytp1qErpts ` ytp0q ¨
`

1´ Erpts
˘

“

T
ÿ

t“1

`

ytp1q ´ ytp0q
˘

¨
`

1´ Erpts
˘

“ τ ¨
T
ÿ

t“1

`

1´ Erpts
˘

,

where the last equality follow as ytp1q ´ ytp0q “ τ for all t P rT s by assumption. Because the outcome sequence
satisfies Assumption 1, the expected outcome regret is at most ErRoutcome

T s ď β ¨ T q for some constant β. By the above,
this implies that the expectation of the sum of probabilities 1´ pt must be small,

T
ÿ

t“1

`

1´ Erpts
˘

ď
β

τ
T q .

Next, we show that A must incur a large cost with respect to the functions ft in the definition of Neyman regret. To do
this, we will use a weighted version of the AM-HM inequality which states that for x1 . . . xT ą 0 and w1 . . . wn ě 0,
we have that

řT
t“1 wtxt
řT
t“1 wt

ě

řT
t“1 wt

řT
t“1

wt
xt

.
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The usual AM-HM inequality is recovered when wt “ 1{T . We now bound the expected Neyman loss, observing that

E
”

T
ÿ

t“1

ftpptq
ı

“ E
”

T
ÿ

t“1

ytp1q
2

pt
`
ytp0q

2

1´ pt

ı

(def of ft)

ě E
”

T
ÿ

t“1

ytp0q
2

1´ pt

ı

(non-negativity)

“

T
ÿ

t“1

ytp0q
2 ¨ E

” 1

1´ pt

ı

(linearity of Er¨s)

ě

T
ÿ

t“1

ytp0q
2 ¨

1

E
“

1´ pt
‰ (Jensen’s inequality)

ě

´

řT
t“1 ytp0q

2
¯2

řT
t“1 ytp0q

2 ¨ E
“

1´ pt
‰

(weighted AM-HM)

ě T 2

´

1
T

řT
t“1 ytp0q

2
¯2

max1ďtďT ytp0q2
¨

1
řT
t“1 E

“

1´ pt
‰

“ T 2 Sp0q2

max1ďtďT ytp0q2
¨

1
řT
t“1 E

“

1´ pt
‰

ě T 2 c
2

C2
¨
τ

β
T´q

ě
c2c1

C2β
T 2´q ,

where the last two inequalities follow from moment bounds in Assumption 1 together with the assumptions on the
outcome sequence stated in the Theorem.

Next, we show that the optimal Neyman design incurs a much smaller cost. In particular,

min
pPr0,1s

T
ÿ

t“1

ftppq ď
T
ÿ

t“1

ftp1{2q

“

T
ÿ

t“1

ytp1q
2

1{2
`
ytp0q

2

1{2

“ 2T

«

1

T

T
ÿ

t“1

ytp1q
2 `

1

T

T
ÿ

t“1

ytp0q
2

ff

“ 2T pSp1q2 ` Sp0q2q

ď 4C2T .

Together, these facts establish that the Neyman regret for A is lower bounded as

ErRT s “ Er
T
ÿ

t“1

ftpptq ´ min
pPr0,1s

T
ÿ

t“1

ftppqs ě
c2c1

C2β
T 2´q ´ 4C2T ě ΩpT 2´qq .

F Ethical Considerations

There are—at least—two objectives when constructing an adaptive treatment allocation.

• Minimizing Cumulative Regret: give the "best" treatment to as many people as possible.

• Minimizing Variance of the Effect Estimate: estimate the effect of the treatment to as high precision as
possible.
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As we show in Proposition 6.2, these two objective are fundamentally incompatible: an adaptive design which aims
to estimate the effect to high precision must assign treatment which has worse outcomes. Likewise, a design which
seeks to maximize the utility of assigned treatments will not be able to reliably estimate causal effects to high precision.
Which one of these is more ethically desirable depends on the purpose and the context of the experiment. For guidance
on this ethical question, we turn to The Belmont Report.

In 1979, the National Commission for the Protection of Human Subjects of Biomedical and Behavioral Research
released the "Belmont Report", which has been one of the foundational texts for ethical guidance in research conducted
with human subjects [for the Protection of Human Subjects of Biomedical and Research, 1978]. One of the three basic
ethical principles laid out in the report is “benevolence” which is understood as an the obligation the researcher has for
the research to improve the general well-being of society, including those people in the experiment. The report writes:

The Hippocratic maxim ‘do no harm’ has long been a fundamental principle of medical ethics. Claude
Bernard extended it to the realm of research, saying that one should not injure one person regardless
of the benefits that might come to others. However, even avoiding harm requires learning what is
harmful; and, in the process of obtaining this information, persons may be exposed to risk of harm.
Further, the Hippocratic Oath requires physicians to benefit their patients ‘according to their best
judgment.’ Learning what will in fact benefit may require exposing persons to risk. The problem
posed by these imperatives is to decide when it is justifiable to seek certain benefits despite the risks
involved, and when the benefits should be foregone because of the risks.

From this perspective, it may be ethically advisable to use a variance minimizing adaptive design because it allows the
researcher to learn the effect while subjecting fewer human subjects to the experimental treatments. In other words, a
variance minimizing design allows researchers to learn what is harmful and what is beneficial while subjecting fewer
human subjects to possible harm. An adaptive treatment plan which minimizes cumulative regret will ensure that
minimal harm is done to subjects in the experiment, but will offer less certainty about the extent of the benefit or harm
of the treatments. Such an approach will lead to less informative generalizable knowledge of treatment effects, possibly
defeating the goal of the research study.

That being said, it is not our goal to suggest that one adaptive allocation plan is most ethical in all circumstances. Indeed,
these ethical questions have no systematic answers which are generally applicable. It is the burden of the researchers to
carefully “decide when it is justifiable to seek certain benefits despite the risks involved, and when the benefits should
be foregone because of the risks.” Our goal in this work is merely to provide improved statistical methodology which
affords the researchers more choices when addressing these ethical questions.
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