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In this supplementary material, we provide additional discussions and results. In Sec. A, we present1

additional implementation details including the inference requirements, choice of hyperparameters2

involved in the inference process, and discussions on the pre-trained restorer for blind face restoration.3

In Sec. B, we provide more results on various tasks, i.e., blind face restoration, old photo restoration,4

reference-based restoration, face colorization and inpainting. Sec. C and Sec. D discuss the limitations5

and potential negative societal impacts of our work, respectively.6

A Implementation Details7

A.1 Inference Requirements8

The pre-trained diffusion model we employ is a 512× 512 denoising network trained on the FFHQ9

dataset [5] provided by [20]. The inference process is carried out on NVIDIA RTX A5000 GPU.10

A.2 Inference Hyperparameters11

During the inference process, there involves hyperparameters belonging to three categories. (1)12

Sampling Parameters: The parameters in the sampling process (e.g., gradient scale s). (2) Par-13

tial Guidance Parameters: Additional parameters introduced by our partial guidance, which are14

mainly relative weights for properties involved in a certain task (e.g., α that controls the relative15

importance between the structure and color guidance in face colorization). (3) Optional Parameters:16

Parameters for optional quality enhancement (e.g., the range for multiple gradient steps to take place17

[Sstart, Send]). While it is principally flexible to tune the hyperparameters case by case, we provide18

a set of default parameter choices for each homogeneous task in Table 1.19

Table 1: Default hyperparameter settings in our experiments.

Task Sampling Partial Guidance Optional

snorm s
Unmasked

Region Lightness Color
Statistics

Smooth
Semantics

Identity
Reference N = 2 N = 3

Perceptual
Loss

GAN
Loss

Restoration 0.1 - - - Lres - T ∼ 0.5T T ∼ 0.7T 1e-2 1e-2
Colorization ✓ 0.01 - Ll 0.01Lc - - - - - -
Inpainting ✓ 0.1 Linpaint - - - - - - - -
Ref-Based Restoration 0.1 - - - Lres 100sim(vx̂0 , vr) T ∼ 0.5T T ∼ 0.7T 1e-2 1e-2

A.3 Restorer Design20

Network Structure. In the blind face restoration task, given an input low-quality (LQ) image y0,21

we adopt a pre-trained face restoration model f to predict smooth semantics as partial guidance. In22

this work, we employ the ×1 generator of Real-ESRGAN [17] as our restoration backbone. The23

network follows the basic structure of SRResNet [6], with RRDB being its basic blocks. In a ×124
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generator, the input image is first downsampled 4 times by a pixel unshuffling [14] layer before any25

convolution operations. In our work, we deal with 512× 512 input/output pairs, which means that26

most computation is done only in a 128× 128 resolution scale. To employ it as the restorer f , we27

modify some of its settings. Empirically we find that adding xt and t as the input alongside y0 can28

enhance the sample quality in terms of sharpness. Consequently, the input to f is a concatenation of29

y0, xt, and t, with t embedded with the sinusoidal timestep embeddings [15].30

Training Details. f is implemented with the PyTorch framework and trained using four NVIDIA31

Tesla V100 GPUs at 200K iterations. We train f with the FFHQ [5] and CelebA-HQ [4] datasets and32

form training pairs by synthesizing LQ images Il from their HQ counterparts Ih, following a common33

pipeline with a second-order degradation model [17, 7, 16, 19]. Since our goal is to obtain smooth34

semantics without hallucinating unnecessary high-frequency details, it is sufficient to optimize the35

model f solely with the MSE loss.36

Model Analysis. To investigate the most effective restorer for blind face restoration, we compare the37

sample quality with restorer being f(y0) and f(y0, xt, t), respectively. Here, f(y0, xt, t) is the one38

trained by ourselves as discussed above, and f(y0) is SwinIR [9] from DifFace [20], which is also39

trained with MSE loss only. As shown in Fig.1, when all the other inference settings are the same, we40

find that the sample quality with restorer f(y0, xt, t) is higher in terms of sharpness compared with41

that of f(y0). One may choose to sacrifice a certain degree of sharpness to achieve higher inference42

speed by substituting the restorer with f(y0), whose output is constant throughout T timesteps.43
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Figure 1: Visual comparison of the restoration outputs with different restorers f in blind restoration.
We observe that including xt and t as the input to f enhances the sharpness of the restored images.

B More Results44

B.1 More Results on Blind Face Restoration45

In this section, we provide quantitative and more qualitative comparisons with state-of-the-art46

methods, including (1) task-specific CNN/Transformer-based restoration methods: PULSE [11],47

GFP-GAN [16], and CodeFormer [21] and (2) diffusion-prior-based methods: GDP [2], DDNM [18]48

and DifFace [20].49

To compare our performance with other methods quantitatively, we adopt FID [3] and NIQE [12] as50

the evaluation metrics and test on three real-world datasets: LFW-Test [16], WebPhoto-Test [16], and51

WIDER-Test [21]. LFW-Test consists of the first image from each person whose name starting with52

A in the LFW dataset [16], which are 431 images in total. WebPhoto-Test is a dataset comprising 40753

images with medium degradations collected from the Internet. WIDER-Test contains 970 severely54

degraded images from the WIDER Face dataset [16]. As shown in Table 2, our method achieves best55

or second-best scores across all three datasets for both metrics. Although GFP-GAN achieves the56

best NIQE scores across datasets, notable artifacts can be observed as shown in Fig. 2. Meanwhile,57

our method shows exceptional robustness and produces visually pleasing outputs without artifacts.58
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Table 2: Quantitative comparison on the real-world LFW-Test, WebPhoto-Test, and WIDER-Test.
Red and blue indicate the best and the second best performance, respectively.

Dataset Metric CNN/Transformer-based Methods Diffusion-prior-based Methods
PULSE [11] GFP-GAN [16] CodeFormer [21] GDP [2] DDNM [18] DifFace [20] Ours

LFW-Test FID↓ 84.02 72.45 74.10 118.04 122.43 67.98 71.62
NIQE↓ 4.98 3.90 4.52 8.60 9.24 5.47 4.15

WebPhoto-Test FID↓ 88.18 91.43 86.19 163.28 161.35 90.58 86.18
NIQE↓ 4.84 4.13 4.65 10.61 10.76 4.48 4.34

WIDER-Test FID↓ 71.31 40.93 40.26 193.20 153.99 38.54 39.17
NIQE↓ 4.83 3.77 4.12 14.33 11.68 4.44 3.93

PULSE OursCodeFormerInput GFP-GAN DifFaceDDNMGDP

CNN/Transformer-based Methods Diffusion-prior-based Methods

Figure 2: Comparison on Blind Face Restoration. Input faces are corrupted by real-world degrada-
tions. Our method produces high-quality faces with faithful details. (Zoom in for best view)
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B.2 More Results on Old Photo Restoration59

We provide more visual results of old photo restoration on challenging cases both with and without60

scratches, as shown in Fig. 3. The test images come from both the CelebChild-Test dataset [16]61

and the Internet. We compare our method with GFP-GAN (v1) [16] and DDNM [18]. Our method62

demonstrates an obvious advantage in sample quality esepecially in terms of vibrant colors, fine63

details, and sharpness.64

Input DDNMGFP-GAN Ours Input DDNMGFP-GAN Ours

Figure 3: Comparison on Old Photo Restoration on Challenging Cases. Our method is able to
produce high-quality restored outputs with natural color and complete faces.

B.3 More Results on Reference-Based Restoration65

We provide more visual results on the reference-based restoration in Fig. 4, which is our exploratory66

extension based on blind face restoration. Test images come from the CelebRef-HQ dataset [8],67

which contains 1, 005 entities and each person has 3 to 21 high-quality images. With identity loss68

added, we observe that our method is able to produce personal characteristics similar to those of the69

ground truth.70

B.4 More Results on Face Inpainting71

In this section, we provide more qualitative comparisons with state-of-the-art methods in Fig. 5,72

including (1) task-specific methods: GPEN [19] and CodeFormer [21] and (2) diffusion-prior-based73

methods: GDP [2] and DDNM [18]. Since the pre-trained diffusion model DDNM employs [10] is74

trained on the CelebA-HQ dataset [4], we take the CelebRef-HQ [8] dataset for testing. Our method75

is able to recover challenging structures such as glasses. Moreover, diverse and photo-realism outputs76

can be obtained by setting different random seeds.77
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Input ℒ!"# ℒ!"$ Ground TruthReference

Figure 4: Comparison on Reference-Based Face Restoration. Our method produces personal
characteristics which are hard to recover without reference.

Various Random Seeds

Ground Truth Input GDP DDNM OursGPEN CodeFormer

Figure 5: Comparison on Face Inpainting on Challenging Cases. Our method produces natural
outputs with pleasant details coherent to the unmasked regions. Moreover, different random seeds
give various contents of high quality.
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B.5 More Results on Face Colorization78

In this section, we provide more qualitative comparisons with state-of-the-art methods in Fig. 6,79

including (1) task-specific methods: CodeFormer [21] and (2) diffusion-prior-based methods: GDP [2]80

and DDNM [18]. Even though the test images come from the CelebA-HQ dataset [4], our method81

still produces more vibrant colors and finer details than DDNM. Moreover, our method demonstrates82

a desirable diversity by guiding with various color statistics.83

DDNMGround Truth Input GDP OursCodeFormer

Various Color Styles

Figure 6: Comparison on Face Colorization. Our method produces diverse colorized outputs with
various color statistics given as guidance.
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C Limitations84

As our partial guidance is based on a pre-trained diffusion model, our performance largely depends85

on the capability of the model in use. In addition, since a face-specific diffusion model is adopted86

in this work, our method is applicable only on faces in its current form. Nevertheless, this problem87

can be resolved by adopting stronger models trained for generic objects. For example, as shown in88

Fig. 7, we employ an unconditional 256× 256 diffusion model trained on the ImageNet dataset [13]89

provided by [1], and achieve promising results on inpainting and colorization. Further exploration90

on natural scene restoration will be left as our future work.91

(a) Inpainting (b) Colorization

Input Ours Ground Truth Input Ours Ground Truth

Figure 7: Extension on natural images for the inpainting and colorization tasks. By employing an
unconditional 256× 256 diffusion model trained on the ImageNet dataset [13] provided by [1], our
method achieves promising results.

D Broader Impacts92

This work focuses on restoring images corrupted by various forms of degradations. On the one93

hand, our method is capable of enhancing the quality of images, improving user experiences. On94

the other hand, our method could generate inaccurate outputs, especially when the input is heavily95

corrupted. This could potentially lead to deceptive information, such as incorrect identity recognition.96

In addition, similar to other restoration algorithms, our method could be used by malicious users for97

data falsification. We advise the public to use our method with care.98
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