
Appendix

Table of Contents
A Full Task Descriptions 16

A.1 BBO Tasks . 16
A.2 Control Tasks . 16
A.3 Vision Tasks . 17
A.4 Sequence Tasks . 17

B Hyperparameter Tuning Ranges 18

C Fitness Shaping Transformations 19

D Code, Data Availability & Compute Resources 19

E Additional Results 20
E.1 Aggregated Performance by Problem Class . 20
E.2 Hyperparameter Robustness of EO Methods across Tasks 21

15

A Full Task Descriptions

The following section reviews the proposed task sweep and optimization surrogates in more detail.

A.1 BBO Tasks

We start by reviewing the standard black-box optimization tasks, which NEB incorporates for
completeness. These include both the noiseless BBOB (Hansen, 2009) and HPO-B (continuous
surrogate model) (Arango et al., 2021) tasks. BBOB consists of a set of functions with different
properties, e.g. uni- versus multi-modal fitness landscapes with moderate or high conditioning and
other structural properties (see Figure 7). The aim of the EO is to minimize the attained function
value. HPO-B, on the other hand, considers the exercise of tuning hyperparameters of small Machine
Learning models. The continuous version uses a gradient-boosted tree surrogate model in order to
interpolate the performance from the originally discrete setting. For both settings, the EO methods
have to optimize raw parameter vectors.

Figure 7: Example of 2-dimensional contour plots for BBOB (Hansen, 2009) functions.

Parameter Value
Population size 32

Dimensions <50
Generations 100

Fitness Function value
Performance (max) Aggregated neg. fct. value

EO init range [�5, 5]
Evaluation runs 50

Table 3: BBOB (Hansen, 2009).

Parameter Value
Population size 4

Dimensions <20
Generations 100

Fitness Normalized task score
Performance (max) Aggregated norm. task score

EO init range [0.5, 0.5]

Table 4: HPO-B (Arango et al., 2021).

A.2 Control Tasks

Next, we consider a set of control tasks, both robotic and visual pixel-based (see Figure 8). The
agents are parametrized by deterministic policies (MLP with tanh output layer for robotic control
and CNN with argmax output layer for visual control). The resulting parameter sets are evolved to
maximize the cumulative episode return of the agents. We use the brax (Freeman et al., 2021) and
gymnax (Lange, 2022b) libraries for fast accelerated policy rollouts. The brax tasks make use of
observation normalization.

Figure 8: Control tasks including Brax (Freeman et al., 2021) and MinAtar (Young and Tian, 2019).

16

Parameter Value
Population size 256

Generations 2000
Episode steps 500

MC evaluations/member 8
Hidden layers, units & activ. 2, 32 & tanh

Fitness Cum. ep. return
Performance (max) Cum. ep. return

EO init range [0, 0]

Table 5: Ant & Fetch (Freeman et al., 2021).

Parameter Value
Population size 256

Generations 1500
Episode steps 500

MC evaluations/member 8
CNN layers, features & kernel 1, 16 & (3, 3)

MLP layers, units & activ. 1, 32 & ReLU
Fitness Cum. ep. return

Performance (max) Cum. ep. return
EO init range [0, 0]

Table 6: Asterix & Breakout (Young and Tian,
2019; Lange, 2022b).

A.3 Vision Tasks

The vision tasks consist of two classification problems (Fashion MNIST and CIFAR-10) as well
as a VAE MNIST digit generation task. For the classification settings, we optimize the weights to
minimize the training loss, i.e. cross-entropy loss, and evaluate the accuracy on the test set. For the
VAE task we minimize the ELBO loss on the train dataset and evaluate the same loss on the test set.

Figure 9: Vision tasks including F-MNIST/CIFAR-10 classification, MNIST generation.

Parameter Value
Population 128

Generations 400
Batch size 1024

CNN 2, 18/6 & (5, 5)
Fitness Cross-entropy

Perf. (max) Test accuracy
EO init range [0, 0]

Table 7: F-MNIST Classification.

Parameter Value
Population 256

Generations 8000
Batch size 1024

MLP Hidden U 32
VAE Latent U 20

Fitness ELBO
Perf. (max) Neg. ELBO

EO init range [0, 0]

Table 8: MNIST Generation.

Parameter Value
Population 128

Generations 2500
Batch size 128

Model Type Small All-CNN
Fitness Cross-entropy

Perf. (max) Test accuracy
EO init range [0, 0]

Table 9: CIFAR Classification.

A.4 Sequence Tasks

Finally, we consider two sequence prediction tasks: The addition regression (Le et al., 2015) and the
sequential MNIST classification task. For the addition setting, the recurrent network (GRU, Cho
et al., 2014) receives a two-dimensional input consisting of a random floating point between 0 and 1
as well as a binary indicator of whether to keep it in memory for an addition. Note that the binary
indicator is only set to 1 for two timesteps. The final task is to predict the sum of two values. For
sequential MNIST, on the other hand, the network (LSTM, Hochreiter and Schmidhuber, 1997)
receives the individual pixels of MNIST digits sequentially. At the final timestep, it has to predict
the digit identity. The sequence length is set to 150 and for the addition task and 784 for MNIST.
Thereby, both tasks test the optimization of systems, which require long-term memory.

17

Parameter Value
Population 128

Generations 5000
Batch size 1024
GRU units 32

Fitness MSE loss
Perf. (max) Neg. MAE loss

EO init range [0, 0]

Table 10: Addition Regression.

Parameter Value
Population 512

Generations 3500
Batch size 512

LSTM units 48
Fitness Cross-entropy

Perf. (max) Test accuracy
EO init range [0, 0]

Table 11: S-MNIST Classification.

B Hyperparameter Tuning Ranges

• OpenAI-ES (Salimans et al., 2017) and PGPE (Sehnke et al., 2010)

– Initial perturbation strength: �0 2 [0.01, 0.15]

– Initial learning rate: ↵0 2 [0.005, 0.05]

– Gradient descent optimizer: Adam (Kingma and Ba, 2014)
– Fitness transformation: centered ranks
– Exponential learning rate decay: 0.999
– Exponential perturbation strength decay: 0.999

• ARS (Mania et al., 2018): Same as OpenAI-ES/PGPE, but we also tune the fitness transform.

– Fitness transformation 2 {raw, z-score, ranks}
• SNES (Schaul et al., 2011): Next to the default fitness shaping, SNES can also use the

following utility/fitness shaping transformation as proposed by Lange et al. (2022):

wt,j = softmax (� ⇥ (rank(j)/N � 0.5)) , 8j = 1, ..., N.

– Initial perturbation strength: �0 2 [0.01, 0.15]

– Softmax sharpness/temperature: � 2 [10, 15, 20, 25, 30, 35, 40]

• Sep-CMA-ES (Ros and Hansen, 2008)

– Initial perturbation strength: �0 2 [0.01, 0.15]

– Elite ratio 2 {0.1, 0.2, 0.3, 0.4, 0.5}
• LES (Lange et al., 2022)

– Initial perturbation strength: �0 2 [0.01, 0.15]

• Simple GA (Rechenberg, 1978)

– Initial perturbation strength: �0 2 [0.01, 0.15]

– Elite ratio 2 {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}
• SAMR-GA (Clune et al., 2008)

– Initial perturbation strength: �0 2 [0.01, 0.15]

– Elite ratio 2 {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}
– Meta-perturbation strength for �: 2 [1.0, 3.0]

• GESMR-GA (Kumar et al., 2022)

– Initial perturbation strength: �0 2 [0.01, 0.15]

– Elite ratio 2 {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}
– Meta-perturbation strength for �: 2 [1.0, 3.0]

• LGA (Lange et al., 2023)

– Initial perturbation strength: �0 2 [0.01, 0.15]

– Elite ratio 2 {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}

18

C Fitness Shaping Transformations

• Centered ranks transformation: f̃i = rank(fi|{fj}Nj=1)/N � 0.5 with rank(fi|{fj}Nj=1) 2
{0, 1, . . . , N � 1}. The best-performing population member has rank 0.

• Z-score: f̃i = (fi � µ({fj}Nj=1)/�({fj}Nj=1) with fitness mean µ & standard deviation �

• [�1, 1] range normalization: f̃i = 2⇥ fi�min{fj}N
j=1

max{fj}N
j=1�min{fj}N

j=1
+min{fj}Nj=1

D Code, Data Availability & Compute Resources

Code & Documentation. The NeuroEvoBench codebase is open-sourced under Apache 2.0
license and publicly available under https://github.com/neuroevobench/neuroevobench.
The accompanying analysis and experiment configuration can be found under https://github.
com/neuroevobench/neuroevobench-analysis. Furthermore, we provide a documenta-
tion webpage for further information and result summarization: https://sites.google.

com/view/neuroevobench. Finally, we provide a colab notebook, which explains how
to add a custom EO method and executes a random search pipeline for the BBOB tasks.
It can be found here: https://colab.research.google.com/github/neuroevobench/

neuroevobench/blob/main/examples/neb_introduction.ipynb.

All training loops and ES are implemented in JAX (Bradbury et al., 2018). All visualizations
were done using Matplotlib (Hunter, 2007) and Seaborn (Waskom, 2021, BSD-3-Clause License).
Finally, the numerical analysis was supported by NumPy (Harris et al., 2020, BSD-3-Clause License).
Furthermore, we used the following libraries: Evosax: Lange (2022a), Gymnax: Lange (2022b),
Evojax: Tang et al. (2022), Brax: Freeman et al. (2021).

Data Availability. We make all data used in our experiments publicly available in a Google Cloud
Storage bucket. This includes all random search sweeps for 10 EO methods on the 9 considered tasks
as well as the multi-seed re-evaluations. The data can be downloaded by executing gsutil -m -q

cp -r gs://neuroevobench/ .. All figures displayed in this paper can then be reproduced by
executing the accompanying notebooks provided here: https://github.com/neuroevobench/
neuroevobench-analysis. We hope that this will enable other researchers to directly benchmark
their methods against the 10 baselines without having to spend substantial compute on re-evaluating
the other methods.

Compute Requirements & Experiment Organization. The experiments were organized using the
MLE-Infrastructure (Lange, 2021, MIT license) training management system.

Simulations were conducted on a high-performance cluster using between 1 and 5 independent runs
(random seeds). We mainly rely on individual V100S and A100 NVIDIA GPUs.

The individual random search experiments last between 4.5 and 50 hours depending on the considered
task and EO combination. The final evaluation of a tuned configuration, on the other hand, only
requires up to a single hour.

The tasks were chosen so that executing the entire benchmark only requires 2.5 days given 9 suitable
GPUs. Furthermore, the open-data availability of the benchmark results allows researchers to focus
on their method, instead of having to spend computing resources in order to collect baseline results.

19

https://github.com/neuroevobench/neuroevobench
https://github.com/neuroevobench/neuroevobench-analysis
https://github.com/neuroevobench/neuroevobench-analysis
https://sites.google.com/view/neuroevobench
https://sites.google.com/view/neuroevobench
https://colab.research.google.com/github/neuroevobench/neuroevobench/blob/main/examples/neb_introduction.ipynb
https://colab.research.google.com/github/neuroevobench/neuroevobench/blob/main/examples/neb_introduction.ipynb
https://github.com/neuroevobench/neuroevobench-analysis
https://github.com/neuroevobench/neuroevobench-analysis

E Additional Results

E.1 Aggregated Performance by Problem Class

Figure 10: Aggregated normalized median performance across EO algorithms grouped by the problem
class (vision, control, sequence).

Figure 11: Aggregated normalized median performance across EO algorithms on BBOB and HPO-B
tasks.

20

E.2 Hyperparameter Robustness of EO Methods across Tasks

Figure 12: Ant (P3) control task hyperparameter robustness across EO methods.

Figure 13: Fetch (P4) control task hyperparameter robustness across EO methods.

Figure 14: Asterix (P5) control task hyperparameter robustness across EO methods.

21

Figure 15: Breakout (P6) control task hyperparameter robustness across EO methods.

Figure 16: F-MNIST Classification (P7) vision task hyperparameter robustness across EO methods.

Figure 17: MNIST Generation (P8) vision task hyperparameter robustness across EO methods.

22

Figure 18: CIFAR-10 Classification (P9) vision task hyperparameter robustness across EO methods.

Figure 19: Addition (P10) sequence task hyperparameter robustness across EO methods.

Figure 20: S-MNIST classification (P11) sequence task hyperparameter robustness across EO
methods.

23

	Introduction
	Related Work & Background
	NeuroEvoBench: Problems, Optimizers, Fitnesses and Experiment Types
	Problems
	Optimizers and Fitnesses
	Experiment Types
	NeuroEvoBench Task Evaluation API

	Results
	Given a predefined tuning budget, which EO performs best?
	How much tuning is required to achieve competitive performance?
	What are general EO recommendations and their scaling properties?

	Discussion
	Appendix
	 Appendix
	Full Task Descriptions
	BBO Tasks
	Control Tasks
	Vision Tasks
	Sequence Tasks

	Hyperparameter Tuning Ranges
	Fitness Shaping Transformations
	Code, Data Availability & Compute Resources
	Additional Results
	Aggregated Performance by Problem Class
	Hyperparameter Robustness of EO Methods across Tasks

