
NeuroEvoBench: Benchmarking Evolutionary
Optimizers for Deep Learning Applications

Robert Tjarko Lange⇤
Technical University Berlin

Science of Intelligence Cluster of Excellence

Yujin Tang
Google DeepMind

Yingtao Tian
Google DeepMind

Abstract

Recently, the Deep Learning community has become interested in evolutionary opti-
mization (EO) as a means to address hard optimization problems, e.g. meta-learning
through long inner loop unrolls or optimizing non-differentiable operators. One
core reason for this trend has been the recent innovation in hardware acceleration
and compatible software – making distributed population evaluations much easier
than before. Unlike for gradient descent-based methods though, there is a lack of
hyperparameter understanding and best practices for EO – arguably due to severely
less “graduate student descent” and benchmarking being performed for EO meth-
ods. Additionally, classical benchmarks from the evolutionary community provide
few practical insights for Deep Learning applications. This poses challenges for
newcomers to hardware-accelerated EO and hinders significant adoption. Hence,
we establish a new benchmark of EO methods (NeuroEvoBench) tailored toward
Deep Learning applications and exhaustively evaluate traditional and meta-learned
EO. We investigate core scientific questions including resource allocation, fitness
shaping, normalization, regularization & scalability of EO. The benchmark is
open-sourced at https://github.com/neuroevobench/neuroevobench un-
der Apache-2.0 license.

1 Introduction

The Deep Learning revolution has been largely enabled by the (arguably) “unreasonable effective-
ness” of gradient descent (GD)-based optimization in high-dimensional search spaces of parame-
ters (Kleinberg et al., 2018; Hardt et al., 2016; Ge et al., 2015). However, a plethora of challenging
high-dimensional optimization problems where GD methods are inadequate exist, including not only
hyperparameter search but also the optimization of non-differentiable operators (e.g. objective or
architecture, Tian and Ha, 2022; He et al., 2021), the computation of ill-behaved gradients through
long computational graphs (Peyré et al., 2017), and applications requiring black-box optimization
(Metz et al., 2021). Such challenges have sparked a recent resurgence of interest in modern scalable
EO methods by the machine learning community. Still, compared to widely-studied GD optimizers,
there remains a lack of intuition for EO methods. We argue that this is due to three reasons:

Hardware lottery phenomenon (Hooker, 2021): Until recently neuroevolution experimentation
required a significant amount of engineering overhead caused by the orchestration of parallelized
population rollouts (e.g. using Dask or Ray, Moritz et al., 2018). This has obstructed replicability
and hindered EO from leveraging the recent advances in hardware acceleration.

Lack of ‘graduate-student’ descent (Gencoglu et al., 2019): The last decade has seen a strong
increase in GD optimization practitioners. This facilitated the discovery of robust hyperparameter
basins that perform well on standard research tasks. EO, on the other hand, lacks behind in human

⇤Work was partially done while being at Google DeepMind. Contact: robert.t.lange@tu-berlin.de.

37th Conference on Neural Information Processing Systems (NeurIPS 2023) Track on Datasets and Benchmarks.

https://github.com/neuroevobench/neuroevobench
robert.t.lange@tu-berlin.de

Figure 1: Proposed NeuroEvoBench benchmark. Left. The benchmark is composed of four classes
of problems, different classes of EO and experiment types including a random search tuning protocol
with different budgets (default, small, medium, large). Right. Aggregated normalized median
performance across EO algorithms on nine neuroevolution tasks, sorted by their median performances
and across 5 seeds. Genetic Algorithms are generally outperformed by Evolution Strategies.

capital investment and sufficient hyperparameter intuition. This has been partly caused by engineering
challenges and the lack of adequate hardware acceleration and the required software.

Missing ML-relevant EO benchmarks: The majority of existing benchmarks focus on synthetic
functions and standard black-box optimization tasks (e.g. BBOB, Hansen, 2009). But neural network
fitness landscapes can fundamentally differ from these settings, limiting the meaningfulness of any
drawn conclusions for relevant practical cases of neuroevolution. This is due to differences in the
nature of considered problems (e.g. robot policy parameters) and the size of the search space.

However, recent advances have shifted the balance. For example, we have seen tremendous advances
in both hardware acceleration (e.g. GPU/TPU) as well as general-purpose frameworks/infrastructures
that facilitate smooth development of distributed programs (e.g. PyTorch and JAX, Bradbury et al.,
2018). These developments enable not only data- and model-parallelism for GD-based training
pipelines but also large-scale EO with auto-vectorized and device-parallel population evaluations,
e.g. EvoJAX (Tang et al., 2022) and evosax (Lange, 2022a). This makes it the right time to reassess
the uncertainty about EO use cases, problem-dependent EO choices, and optimal hyperparameter
settings. We, therefore, introduce NeuroEvoBench (NEB), a benchmark for EO methods tailored
to relevant Deep Learning applications and leveraging such advances in the hardware and software
stack. This allows for effective scientific validation of new algorithmic improvements at low iteration
times. As shown in Figure 1, our proposed benchmark contains four classes of different, selected
black-box optimization tasks, each with three experiment types including a random search tuning
protocol with different budgets. Using NEB, we can investigate several core scientific questions, such
as the performance of different EO, and the impact of different decisions such as population size, and
dimensionality, to give the right picture for future reference. Our contributions are summarized as:

1. We construct a hardware-accelerated EO benchmark providing relevant scientific insight
for the ML community. It consists of 11 selected black-box optimization tasks and a
standardized experiment protocol. We execute the benchmark for 10 EO methods including
both Evolution Strategies (ES) and Genetic Algorithms (GA) and analyze their robustness.

2. We open-source the benchmark for a broader adoption, to provide evidence for future analysis
and make benchmarking new EO method easier. Furthermore, we make a quick overview
for reference available online: https://sites.google.com/view/neuroevobench.

2

https://sites.google.com/view/neuroevobench

3. We investigate several core scientific questions with regard to resource allocation, gradient
optimizer choice and regularization techniques. We further investigate the scaling of EO
with respect to parameters, population size and the number fitness evaluations per candidate.

2 Related Work & Background

Gradient-Based Optimization Benchmarks. The success of Deep Learning methods has arguably
been enabled by the “unreasonable” success of GD-based optimization (Kleinberg et al., 2018; Hardt
et al., 2016; Ge et al., 2015) and the adoption of standardized benchmark tasks (e.g. ImageNet, Deng
et al., 2009). Furthermore, there exist several benchmarks for gradient-based descent optimization,
e.g. Schaul et al. (2013); Schneider et al. (2019); Metz et al. (2020) which vary in the runtime and
number of optimization tasks. However, these benchmarks consider only a subspace of imaginable
solutions due relying on explicit well-behaved gradient evaluations and not natively supporting
distributed population rollouts required for EO methods. EO, on the other hand, deals with problems
with fewer restrictions, e.g., long-horizon tasks or non-differentiable dynamics.

Black-Box Optimization Benchmarks. For BBO methods, on the other hand, the benchmarks
have largely focused on synthetic functions or problems, e.g. the BBOB (Hansen, 2009), HPO-B
(Arango et al., 2021), nevergrad (Bennet et al., 2021) and Vizier (Golovin et al., 2017) benchmarks.
This limits their relevance for large-scale BBO problems and Deep Learning-specific practitioners.
Here we aim to overcome this limitation by introducing NeuroEvoBench which explicitly targets
neuroevolution tasks of varying scale (parameter count, problem domain, resource constraints, etc.).
Finally, Mousavirad et al. (2020) introduce a benchmark evaluating meta-heuristic algorithms on
neural network tasks. Unfortunately, they do not consider ES/GA and the code is closed-source.

Evolutionary Optimization. EO constitute a set of random search algorithms based on the principles
of biological evolution. In this benchmark, we focus on two classes of EO methods:

1. Evolution Strategies (ES): ES adapt a parameterized distribution (e.g. multivariate normal)
to iteratively search for well performing solutions. After sampling a population of candidates,
their fitness is estimated using Monte Carlo (MC) evaluations. The scores are used to update
the search distribution in order to maximize the likelihood of well-performing candidates.

2. Genetic Algorithms (GA): Unlike ES, GA does not rely on a uni-modal search distribution.
Instead, they keep an archive of ‘parent’ solutions from which new ‘children’ candidates are
sampled and adapted via mutation. After evaluation, well-performing children are selected
to replace parents. GAs differ in their replacement and mutation rate adaptation strategy.

Accelerated Neuroevolution. Traditionally, EO has required a substantial amount of software
engineering to orchestrate parallel evaluations of fitnesses in polulation. We argue that this additional
overhead has largely held back EO progress. NeuroEvoBench aims to leverage a set of software
improvements that facilitate auto-vectorized and device parallel evaluations using the JAX (Bradbury
et al., 2018) ecosystem. More specifically, we use accelerated fitness evaluations implemented by
EvoJAX (Tang et al., 2022) and EO algorithms from evosax (Lange, 2022a). These advances in turn
significantly reduce the benchmark runtime and allow for seamless GPU/TPU acceleration.

3 NeuroEvoBench: Problems, Optimizers, Fitnesses and Experiment Types

We introduce the NeuroEvoBench benchmark (see Figure 1) to provide insights into the performance
of EO algorithms for Deep Learning problems. Our design is strongly based on the choices made by
Schmidt et al. (2021, GD case). At its core a NeuroEvoBench experiment combines a problem with
an Evolutionary Optimization algorithm and a fitness shaping operation:

Problems
8
>><

>>:

P1
P2
. . .

P11

9
>>=

>>;
11

⇥

Optimizers
8
>><

>>:

OpenAI-ES

PGPE

. . .

Sep-CMA-ES

9
>>=

>>;
10

⇥

Fitnesses
8
>><

>>:

raw
z-score
ranks
[-1, 1] norm

9
>>=

>>;
4

⇥

Experiment Types
8
<

:

Random Search
Multi-Seed Eval
Grid search

9
=

;
3

3

More specifically, they include different optimization substrates, fitness functions, and optimization
resource budgets, i.e. population sizes and number of stochastic evaluations:2 We detail each
component of NeuroEvoBench below (see also Table 1).

3.1 Problems

NEB implements a set of 11 problems from 4 core classes chosen to cover a wide range of settings.
All of the tasks are implemented in JAX (Bradbury et al., 2018) and thereby can be directly evaluated
on accelerators, speeding up the parallel population fitness computation significantly.
BBO . For comparability, we host a set of BBO benchmark tasks including the noiseless BBOB

(Hansen, 2009) and the HPO-B (Arango et al., 2021, continuous) sweep. These are concerned with
the optimization of analytical functions with different characteristics (multi-modal, conditioning, etc.)
and surrogate functions extracted from hyperparameter settings of small machine learning models.
Control . We evaluate EO performance on a set of 4 control / Reinforcement Learning tasks

including continuous control (Brax, Freeman et al., 2021) tasks using small Tanh MLP policies and
MinAtar (Young and Tian, 2019; Lange, 2022b) visual control tasks using CNN for policies. The
fitness score is computed as the cumulative episode return obtained by the parametrized policies.
Vision : We consider a set of vision classification and generation tasks including MNIST image

generation (via a MLP VAE, Kingma and Welling, 2013)), Fashion-MNIST (2 layer CNN), and
CIFAR-10 (All-CNN-C variant) classification. The training fitness used the VAE and cross-entropy
loss on the training set, while the evaluation used the test set and accuracy.
Sequence : We make use of two sequence prediction tasks: The addition regression (Le et al., 2015)

task using GRU RNN and Sequential MNIST classification (LSTM, Hochreiter and Schmidhuber
(1997)). Both tasks test the ability of EO in optimizing systems with exploding/vanishing gradients.

Table 1: Summary of problems used in our benchmark experiments. Note that problems 1 and 2
consider surrogate optimization tasks/models (Hansen, 2009; Arango et al., 2021), while all other
tasks are concerned with the evolutionary optimization of neural network weights. Throughout the
main text, we focus on such tasks but implement the BBO problems for completeness.

Data Model Task Metric Obj. Pop. Gens. Time Dim.

P1 HPO-B HPO Surrogate Perf. Perf. 4 100 5m < 20
P2 BBOB BBO Synthetic Perf. Perf. 32 100 2m < 50

P3 Ant MLP Control Return Return 512 2k 30m 4136
P4 Fetch MLP Control Return Return 512 2k 30m 4650
P5 Asterix CNN Control Return Return 256 1.5k 1h 51989
P6 Breakout CNN Control Return Return 256 1.5k 1h 51923
P7 MNIST VAE Generate Loss Loss 256 10k 7m 52984
P8 F-MNIST CNN Classify Acc. Loss 128 4k 5m 11274
P9 CIFAR-10 All-CNN-C Classify Acc. Loss 128 2.5k 1h 3994
P10 Addition GRU Regress Loss Loss 128 5k 5m 3425
P11 S-MNIST LSTM Classify Acc. Loss 512 3k 1h 10090

Our task selection is motivated by the observation that small-scale BBO benchmarks alone (e.g.
BBOB/HPO-B) do not suffice in predicting the performance of EO methods on high-dimensional tasks
requiring the optimization of network weights (see comparison of Figures 1 and 11). Furthermore,
the different task classes cover a wide range of representative Deep Learning problems required for
robust performance evaluation (see Figure 10).

3.2 Optimizers and Fitnesses

Concretely, NeuroEvoBench focuses on ten competitive EO selected from the vlasses of ES and GA
that represent different trade-off between exploration and exploitation in parameter space (Table 2):

2The majority of considered tasks were chosen to be evaluated within less than 30 minutes (estimated on a
single V100S GPU). This allows for rapid evaluation of parameter tuning in <1 day of sequential execution time.

4

Table 2: Summary of Evolutionary Optimizers used in our benchmark experiments.
ES1 ES2 ES3 ES4 ES5

EO Name OpenAI-ES PGPE ARS SNES Sep-CMA-ES

Reference Salimans et al. (2017) Sehnke et al. (2010) Mania et al. (2018) Schaul et al. (2011) Ros and Hansen (2008)

EO Type FD-GD FD-GD FD-GD FD-GD EoD

ES6 GA1 GA2 GA3 GA4
EO Name LES Gaussian-GA SAMR-GA GESMR-GA LGA

Reference Lange et al. (2022) Rechenberg (1978) Clune et al. (2008) Kumar et al. (2022) Lange et al. (2022)

EO Type Meta-EoD GA SA-GA SA-GA Meta-SA-GA

Finite Difference-based ES: A subset of ES use random perturbations to MC estimate a finite differ-
ence gradient to the fitness function, F (.):

r✓E✏⇠N (0,I)F (✓ + �✏) =
1

�
E✏⇠N (0,I)[F (✓ + �✏)✏]

This estimate is then used along standard GD-based optimizers to refine the search distribution mean
✓. ES vary in their use of fitness transformation, anti-correlated noise, elite selection and covariance.
Estimation-of-Distribution ES: A second class of ES does not rely on noise perturbations or
low-dimensional approximations to the fitness gradient. Instead, algorithms such as Sep-CMA-ES
(Ros and Hansen, 2008) rely on elite-weighted mean updates and iterative covariance estimation.
Gaussian (Self-Adaptation) GA: We consider GAs that utilize Gaussian isotropic perturbations to
the sampled children and do not use cross-over. We evaluate a simple GA with top-k elitist parent
replacement (Rechenberg, 1978) as well as two GAs that adapt the mutation rates based on the parent
performance (SAMR-GA, Clune et al. (2008) and GESMR-GA, Kumar et al. (2022)).
Learned Evolutionary Optimization: We study the performance of two meta-learned EO algorithms
(Learned ES, Lange et al. (2022) and Learned GA, Lange et al. (2023)). Instead of relying on
manually designed update rules, learned EO leverage self-attention to parameterize novel families of
EO algorithms. The corresponding parameters are meta-evolved on a small set of BBO problems.

3.3 Experiment Types

Random search with space refinement. The core experiment of NeuroEvoBench is a random
search tuning run with different budgets. More specifically following Schmidt et al. (2021), we
consider four settings: Default parameter configuration, small - 20 trials, medium - 40 trials and
large - using 50 trials with a search space refinement after 40 runs using the 10 best hyperparameter
settings. We provide additional information on the tuning ranges in the appendix.

Multi-seed re-evaluation of tuned hyperparameters. After completing the random search tuning,
we re-evaluate the best configuration on multiple random seeds. This tests the robustness of the
tuning procedure to the stochasticity of the training run. Whenever applicable, we make use of the
robust evaluation metrics introduced by the rliable library (Agarwal et al., 2021).

Grid search evaluation of core settings. Finally, we evaluate certain hyperparameter settings more
explicitly by running a grid sweep. These include different fitness score transformations for the
FD-GD ES methods, mean decay regularization, and resource settings (population/evaluation).

3.4 NeuroEvoBench Task Evaluation API

from evosax import Strategies
from neuroevobench.problems.cifar import CifarPolicy
from neuroevobench.problems.cifar import CifarTask
from neuroevobench.problems.cifar import CifarEvaluator
Define the task -specific network policy
policy = CifarPolicy ()
Instantiate the train and test task
train_task = CifarTask(train_batch_size , test=False)
test_task = CifarTask(test_batch_size , test=True)

5

Instantiate the task evaluator and run the evo search loop
evaluator = CifarEvaluator(

policy , train_task , test_task , popsize , strategy , ...)
evaluator.run(num_generations , eval_every_gen)

Listing 1: Example for NeuroEvoBench task evaluation API for CIFAR-10 Classification.

We provide an easy-to-use API for NeuroEvoBench . An example of CIFAR-10 (Krizhevsky
et al., 2009) classification is shown in Listing 1. Our API expects three ingredients: The ‘Policy’
(neural network/agent architecture), the ‘Task’ (accelerated/distributed fitness evaluator) and the
‘Evaluator’ (the iterative training/generation loop). Plus, the EO algorithm only needs to follow the
standard ask-tell API used for example in evosax (Lange, 2022a).

4 Results

Figure 2: NeuroEvoBench task evaluation after 50 trials of random search. We plot the tuned
performance of all 10 considered EO for the 9 neuroevolution tasks. GAs are generally outperformed
by ES alternatives, but there is no clear winner across all considered ES. The results are averaged
over 5 independent runs & we plot standard error bars.

We conduct a set of experiments with NeuroEvoBench and discuss the lessons learned. For this, we
focus on the neuroevolution tasks (P3-P11) in order to provide general insights to the ML community.

4.1 Given a predefined tuning budget, which EO performs best?

Is there a single EO algorithm that dominates all others across neuroevolution tasks? In Figure 2 we
plot the performance of the 10 considered EOs for the 9 neuroevolution tasks after random search

6

tuning (see Section 4.2 for more details). We find that there is no single clear winner (see also Figure
1 for the aggregated results) across all settings. Furthermore, we observe that the different Genetic
Algorithm variants are generally outperformed by the ES competitors. Finally, while the meta-learned
EO algorithms can outperform the manually designed alternatives on single tasks (e.g. Fetch and Ant
control), they appear to be only capable of limited generalization beyond their meta-training setting.

Figure 3: NeuroEvoBench best task performance across 50 trials of random search. We plot the
maximum performance tracked across the random search procedure for all 10 considered EO and for
the 9 neuroevolution benchmark tasks. We consider a single random run for the tuning process.

4.2 How much tuning is required to achieve competitive performance?

Next, we investigated the impact of the tuning budget on the performance of the EO. Ideally, EO do
not require too much tuning in order to perform well across different classes of tasks. In Figure 3 we
find that indeed most of the considered optimizers find their peak performance within the small tuning
budget and less than 20 random search tuning trials. We note that for most tasks a single evaluation
of the hyperparameters appears to provide a robust performance estimate. Only for the Asterix and
Breakout tasks we observed a significant drop in the estimated performance when re-evaluating the
best performance over multiple random seeds (see Figure 2).

4.3 What are general EO recommendations and their scaling properties?

We investigate a set of core considerations when performing Evolutionary Optimization: Resource
allocation, the effect of stochastic evaluation fitness evaluation, fitness transformations and regular-
ization techniques. More specifically for this exercise, we focus on OpenAI-ES (Salimans et al.,
2017) as a popular representative of finite-difference ES. EO rely on stochastic fitness evaluations of
the individual population members. This introduces an explicit choice of resource allocation: Shall

7

Figure 4: Resource allocation for EO. For a noisy Ant task we find that more candidate evaluations
lead to better downstream performance but require more hardware memory. This is independent of
the external noise level. The results are averaged over 3 independent runs.

Figure 5: Impact of optimizer choice, mean decay and fitness transformation on OpenAI-ES perfor-
mance. OpenAI-ES is largely robust to the optimizer choice, while decay and transformation are
task-dependent. The results are averaged over 3 independent runs & we plot standard error bars.

8

one evaluate more parameter candidates at the cost of a potentially less informative performance
estimate? Intuitively, this may be related to the inherent noise associated with the considered task.
Noiseless tasks trivially do not require multiple evaluations, but how to assign evaluations in the face
of uncertainty? We set out to investigate this question by introducing additive Gaussian noise to the
return evaluation in the Ant control task. In Figure 4 we find that it is always beneficial to prefer a
larger population over an increased number of evaluations – regardless of the external noise level.
How do the gradient optimizer choice, mean multiplicative decay regularization and fitness normal-
ization transformation affect the performance of OpenAI-ES? We consider a set of standard GD
optimizers as well as ClipUp (Toklu et al., 2020), which was designed for EO. For Fetch Adan (Xie
et al., 2022) outperforms the competitors by a slight margin. Otherwise, in Figure 5 we observe that
OpenAI-ES performs robustly across optimizers for three of the NEB tasks.

In line with GD-based optimization we see that too much mean decay (✓t+1 = (1 � �) ⇥ ✓̃t+1)
regularization can be hurtful, while small values generally improve test performance. Centered rank
fitness transformation (Salimans et al., 2017) provides a good default setting, while for the Fetch task
improvements can be achieved by using the raw return fitness score instead.

Finally, we investigate the scaling capabilities of OpenAI-ES for two key variables: Model and
population size. In Figure 6 we evaluated the performance of control policies, CNN classifier and
GRU networks for varying numbers of optimization parameters and increasing populations (given a
fixed number of EO generations). We find that an increased population size always leads to better
EO performance. An increase in model capacity, on the other hand, does not always lead to an
improvement, which may be due to the inherent required task solution and the curse of dimensionality.

Figure 6: Scaling results for EO. We consider the performance behavior of OpenAI-ES with a varying
number of population members and model size. Larger populations are always beneficial, while the
required model capacity is task-dependent. The results are averaged over 3 independent runs.

5 Discussion

Summary. We introduce NeuroEvoBench – a benchmark targeting the rigorous evaluation of
Evolutionary Optimization algorithms in the context of neural network training. It allows for easy,
programmatic, and automatic investigation into a wide range of different BBO/neuroevolution tasks,
types of EO, and budgets. Our initial investigation answers several core scientific questions regarding
resource allocation, fitness-shaping, regularization, and scalability of EO.

Limitations. We aim to support a representative selection of tasks and problems. Nonetheless, we
acknowledge that the actual real-world workload can represent a much more comprehensive range
of scenarios. Going forward and as EO methods increase in capabilities, we envision a gradual
enhancement and update of the task sweet and evaluation protocols.

Ethical Considerations. As a benchmark paper, we do not identify particular issues per se. Since
we expect our work to be used by the community, we call for a range of considerations, including
those of potential implicit bias in the task selection, evaluation protocols and result interpretation.

Future Work. We acknowledge that benchmarks have to be ‘living projects’ requiring constant
refinement and updating with respect to the community’s needs. We plan to continuously add more
results for EO supported by evosax (Lange, 2022a) and to provide a modular and easy to extend
benchmark protocol. Further investigations may include strategy restarts, asynchronous evaluation
methods or the influence of shared randomness.

9

References
AGARWAL, R., M. SCHWARZER, P. S. CASTRO, A. C. COURVILLE, AND M. BELLEMARE

(2021): “Deep reinforcement learning at the edge of the statistical precipice,” Advances in neural
information processing systems, 34, 29304–29320.

ARANGO, S. P., H. S. JOMAA, M. WISTUBA, AND J. GRABOCKA (2021): “HPO-B: A large-scale
reproducible benchmark for black-box HPO based on OpenML,” arXiv preprint arXiv:2106.06257.

BENNET, P., C. DOERR, A. MOREAU, J. RAPIN, F. TEYTAUD, AND O. TEYTAUD (2021): “Never-
grad: black-box optimization platform,” ACM SIGEVOlution, 14, 8–15.

BRADBURY, J., R. FROSTIG, P. HAWKINS, M. J. JOHNSON, C. LEARY, D. MACLAURIN, G. NEC-
ULA, A. PASZKE, J. VANDERPLAS, S. WANDERMAN-MILNE, AND Q. ZHANG (2018): “JAX:
composable transformations of Python+NumPy programs,” .

CHO, K., B. VAN MERRIËNBOER, D. BAHDANAU, AND Y. BENGIO (2014): “On the properties of
neural machine translation: Encoder-decoder approaches,” arXiv preprint arXiv:1409.1259.

CLUNE, J., D. MISEVIC, C. OFRIA, R. E. LENSKI, S. F. ELENA, AND R. SANJUÁN (2008):
“Natural selection fails to optimize mutation rates for long-term adaptation on rugged fitness
landscapes,” PLoS Computational Biology, 4, e1000187.

DENG, J., W. DONG, R. SOCHER, L.-J. LI, K. LI, AND L. FEI-FEI (2009): “Imagenet: A large-
scale hierarchical image database,” in 2009 IEEE conference on computer vision and pattern
recognition, Ieee, 248–255.

FREEMAN, C. D., E. FREY, A. RAICHUK, S. GIRGIN, I. MORDATCH, AND O. BACHEM (2021):
“Brax–A Differentiable Physics Engine for Large Scale Rigid Body Simulation,” arXiv preprint
arXiv:2106.13281.

GE, R., F. HUANG, C. JIN, AND Y. YUAN (2015): “Escaping from saddle points—online stochastic
gradient for tensor decomposition,” in Conference on learning theory, PMLR, 797–842.

GENCOGLU, O., M. VAN GILS, E. GULDOGAN, C. MORIKAWA, M. SÜZEN, M. GRUBER,
J. LEINONEN, AND H. HUTTUNEN (2019): “HARK Side of Deep Learning–From Grad Student
Descent to Automated Machine Learning,” arXiv preprint arXiv:1904.07633.

GOLOVIN, D., B. SOLNIK, S. MOITRA, G. KOCHANSKI, J. KARRO, AND D. SCULLEY (2017):
“Google vizier: A service for black-box optimization,” in Proceedings of the 23rd ACM SIGKDD
international conference on knowledge discovery and data mining, 1487–1495.

HANSEN, N. (2009): “Benchmarking a BI-population CMA-ES on the BBOB-2009 function testbed,”
in Proceedings of the 11th annual conference companion on genetic and evolutionary computation
conference: late breaking papers, 2389–2396.

HARDT, M., B. RECHT, AND Y. SINGER (2016): “Train faster, generalize better: Stability of
stochastic gradient descent,” in International conference on machine learning, PMLR, 1225–1234.

HARRIS, C. R., K. J. MILLMAN, S. J. VAN DER WALT, R. GOMMERS, P. VIRTANEN, D. COUR-
NAPEAU, E. WIESER, J. TAYLOR, S. BERG, N. J. SMITH, ET AL. (2020): “Array programming
with NumPy,” Nature, 585, 357–362.

HE, X., K. ZHAO, AND X. CHU (2021): “AutoML: A survey of the state-of-the-art,” Knowledge-
Based Systems, 212, 106622.

HOCHREITER, S. AND J. SCHMIDHUBER (1997): “Long short-term memory,” Neural computation,
9, 1735–1780.

HOOKER, S. (2021): “The hardware lottery,” Communications of the ACM, 64, 58–65.
HUNTER, J. D. (2007): “Matplotlib: A 2D graphics environment,” IEEE Annals of the History of

Computing, 9, 90–95.
KINGMA, D. P. AND J. BA (2014): “Adam: A method for stochastic optimization,” arXiv preprint

arXiv:1412.6980.
KINGMA, D. P. AND M. WELLING (2013): “Auto-encoding variational bayes,” arXiv preprint

arXiv:1312.6114.
KLEINBERG, B., Y. LI, AND Y. YUAN (2018): “An alternative view: When does SGD escape local

minima?” in International conference on machine learning, PMLR, 2698–2707.
KRIZHEVSKY, A., G. HINTON, ET AL. (2009): “Learning multiple layers of features from tiny

images,” .

10

KUMAR, A., B. LIU, R. MIIKKULAINEN, AND P. STONE (2022): “Effective Mutation Rate
Adaptation through Group Elite Selection,” arXiv preprint arXiv:2204.04817.

LANGE, R. T. (2021): “MLE-Infrastructure: A Set of Lightweight Tools for Distributed Machine
Learning Experimentation,” .

——— (2022a): “evosax: JAX-based Evolution Strategies,” arXiv preprint arXiv:2212.04180.
——— (2022b): “gymnax: A JAX-based Reinforcement Learning Environment Library,” .
LANGE, R. T., T. SCHAUL, Y. CHEN, C. LU, T. ZAHAVY, V. DALIBARD, AND S. FLENNERHAG

(2023): “Discovering Attention-Based Genetic Algorithms via Meta-Black-Box Optimization,”
arXiv preprint arXiv:2304.03995.

LANGE, R. T., T. SCHAUL, Y. CHEN, T. ZAHAVY, V. DALLIBARD, C. LU, S. SINGH, AND
S. FLENNERHAG (2022): “Discovering Evolution Strategies via Meta-Black-Box Optimization,”
arXiv preprint arXiv:2211.11260.

LE, Q. V., N. JAITLY, AND G. E. HINTON (2015): “A simple way to initialize recurrent networks of
rectified linear units,” arXiv preprint arXiv:1504.00941.

MANIA, H., A. GUY, AND B. RECHT (2018): “Simple random search of static linear policies is
competitive for reinforcement learning,” Advances in Neural Information Processing Systems, 31.

METZ, L., C. D. FREEMAN, S. S. SCHOENHOLZ, AND T. KACHMAN (2021): “Gradients are not
all you need,” arXiv preprint arXiv:2111.05803.

METZ, L., N. MAHESWARANATHAN, R. SUN, C. D. FREEMAN, B. POOLE, AND J. SOHL-
DICKSTEIN (2020): “Using a thousand optimization tasks to learn hyperparameter search strate-
gies,” arXiv preprint arXiv:2002.11887.

MORITZ, P., R. NISHIHARA, S. WANG, A. TUMANOV, R. LIAW, E. LIANG, M. ELIBOL, Z. YANG,
W. PAUL, M. I. JORDAN, ET AL. (2018): “Ray: A distributed framework for emerging {AI}
applications,” in 13th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 18), 561–577.

MOUSAVIRAD, S. J., G. SCHAEFER, S. M. J. JALALI, AND I. KOROVIN (2020): “A benchmark
of recent population-based metaheuristic algorithms for multi-layer neural network training,” in
Proceedings of the 2020 genetic and evolutionary computation conference companion, 1402–1408.

PEYRÉ, G., M. CUTURI, ET AL. (2017): “Computational optimal transport,” Center for Research in
Economics and Statistics Working Papers.

RECHENBERG, I. (1978): “Evolutionsstrategien,” in Simulationsmethoden in der Medizin und
Biologie, Springer, 83–114.

ROS, R. AND N. HANSEN (2008): “A simple modification in CMA-ES achieving linear time and
space complexity,” in International conference on parallel problem solving from nature, Springer,
296–305.

SALIMANS, T., J. HO, X. CHEN, S. SIDOR, AND I. SUTSKEVER (2017): “Evolution strategies as a
scalable alternative to reinforcement learning,” arXiv preprint arXiv:1703.03864.

SCHAUL, T., I. ANTONOGLOU, AND D. SILVER (2013): “Unit tests for stochastic optimization,”
arXiv preprint arXiv:1312.6055.

SCHAUL, T., T. GLASMACHERS, AND J. SCHMIDHUBER (2011): “High dimensions and heavy tails
for natural evolution strategies,” in Proceedings of the 13th annual conference on Genetic and
evolutionary computation, 845–852.

SCHMIDT, R. M., F. SCHNEIDER, AND P. HENNIG (2021): “Descending through a crowded
valley-benchmarking deep learning optimizers,” in International Conference on Machine Learning,
PMLR, 9367–9376.

SCHNEIDER, F., L. BALLES, AND P. HENNIG (2019): “DeepOBS: A deep learning optimizer
benchmark suite,” arXiv preprint arXiv:1903.05499.

SEHNKE, F., C. OSENDORFER, T. RÜCKSTIESS, A. GRAVES, J. PETERS, AND J. SCHMIDHUBER
(2010): “Parameter-exploring policy gradients,” Neural Networks, 23, 551–559.

TANG, Y., Y. TIAN, AND D. HA (2022): “EvoJAX: Hardware-Accelerated Neuroevolution,” arXiv
preprint arXiv:2202.05008.

TIAN, Y. AND D. HA (2022): “Modern evolution strategies for creativity: Fitting concrete images and
abstract concepts,” in Artificial Intelligence in Music, Sound, Art and Design: 11th International

11

Conference, EvoMUSART 2022, Held as Part of EvoStar 2022, Madrid, Spain, April 20–22, 2022,
Proceedings, Springer, 275–291.

TOKLU, N. E., P. LISKOWSKI, AND R. K. SRIVASTAVA (2020): “Clipup: a simple and powerful
optimizer for distribution-based policy evolution,” in International Conference on Parallel Problem
Solving from Nature, Springer, 515–527.

WASKOM, M. L. (2021): “Seaborn: statistical data visualization,” Journal of Open Source Software,
6, 3021.

XIE, X., P. ZHOU, H. LI, Z. LIN, AND S. YAN (2022): “Adan: Adaptive Nesterov Momentum
Algorithm for Faster Optimizing Deep Models,” arXiv preprint arXiv:2208.06677.

YOUNG, K. AND T. TIAN (2019): “MinAtar: An Atari-Inspired Testbed for Thorough and Repro-
ducible Reinforcement Learning Experiments,” arXiv preprint arXiv:1903.03176.

12

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] See Section 4 and open-sourced benchmark code.

(b) Did you describe the limitations of your work? [Yes] See Section 5.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Section 5.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main

experimental results (either in the supplemental material or as a URL)? [Yes]
See https://github.com/neuroevobench/neuroevobench for the benchmark
code and https://github.com/neuroevobench/neuroevobench-analysis for
reproduction configurations and visualizations.

(b) Did you specify all the training details (e.g., data splits, hyperparameters,
how they were chosen)? [Yes] See https://github.com/neuroevobench/

neuroevobench-analysis and supplementary information.
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes] See Figure captions.
(d) Did you include the total amount of compute and the type of resources used (e.g.,

type of GPUs, internal cluster, or cloud provider)? [Yes] See https://github.com/
neuroevobench/neuroevobench-analysis and supplementary information.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See supplementary

information.
(b) Did you mention the license of the assets? [Yes] See supplementary information.
(c) Did you include any new assets either in the supplemental material or as a URL?

[Yes] https://github.com/neuroevobench/neuroevobench for the benchmark
code and https://github.com/neuroevobench/neuroevobench-analysis for
reproduction configurations.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13

https://github.com/neuroevobench/neuroevobench
https://github.com/neuroevobench/neuroevobench-analysis
https://github.com/neuroevobench/neuroevobench-analysis
https://github.com/neuroevobench/neuroevobench-analysis
https://github.com/neuroevobench/neuroevobench-analysis
https://github.com/neuroevobench/neuroevobench-analysis
https://github.com/neuroevobench/neuroevobench
https://github.com/neuroevobench/neuroevobench-analysis

	Introduction
	Related Work & Background
	NeuroEvoBench: Problems, Optimizers, Fitnesses and Experiment Types
	Problems
	Optimizers and Fitnesses
	Experiment Types
	NeuroEvoBench Task Evaluation API

	Results
	Given a predefined tuning budget, which EO performs best?
	How much tuning is required to achieve competitive performance?
	What are general EO recommendations and their scaling properties?

	Discussion
	Appendix
	 Appendix
	Full Task Descriptions
	BBO Tasks
	Control Tasks
	Vision Tasks
	Sequence Tasks

	Hyperparameter Tuning Ranges
	Fitness Shaping Transformations
	Code, Data Availability & Compute Resources
	Additional Results
	Aggregated Performance by Problem Class
	Hyperparameter Robustness of EO Methods across Tasks

